]> git.proxmox.com Git - qemu.git/blob - block.c
add basic backup support to block driver
[qemu.git] / block.c
1 /*
2 * QEMU System Emulator block driver
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor/monitor.h"
28 #include "block/block_int.h"
29 #include "block/blockjob.h"
30 #include "qemu/module.h"
31 #include "qapi/qmp/qjson.h"
32 #include "sysemu/sysemu.h"
33 #include "qemu/notify.h"
34 #include "block/coroutine.h"
35 #include "qmp-commands.h"
36 #include "qemu/timer.h"
37
38 #ifdef CONFIG_BSD
39 #include <sys/types.h>
40 #include <sys/stat.h>
41 #include <sys/ioctl.h>
42 #include <sys/queue.h>
43 #ifndef __DragonFly__
44 #include <sys/disk.h>
45 #endif
46 #endif
47
48 #ifdef _WIN32
49 #include <windows.h>
50 #endif
51
52 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
53
54 typedef enum {
55 BDRV_REQ_COPY_ON_READ = 0x1,
56 BDRV_REQ_ZERO_WRITE = 0x2,
57 BDRV_REQ_BACKUP_ONLY = 0x4,
58 } BdrvRequestFlags;
59
60 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
61 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
62 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
63 BlockDriverCompletionFunc *cb, void *opaque);
64 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
65 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
66 BlockDriverCompletionFunc *cb, void *opaque);
67 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
68 int64_t sector_num, int nb_sectors,
69 QEMUIOVector *iov);
70 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
71 int64_t sector_num, int nb_sectors,
72 QEMUIOVector *iov);
73 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
74 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
75 BdrvRequestFlags flags);
76 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
77 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
78 BdrvRequestFlags flags);
79 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
80 int64_t sector_num,
81 QEMUIOVector *qiov,
82 int nb_sectors,
83 BlockDriverCompletionFunc *cb,
84 void *opaque,
85 bool is_write);
86 static void coroutine_fn bdrv_co_do_rw(void *opaque);
87 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
88 int64_t sector_num, int nb_sectors);
89
90 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
91 bool is_write, double elapsed_time, uint64_t *wait);
92 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
93 double elapsed_time, uint64_t *wait);
94 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
95 bool is_write, int64_t *wait);
96
97 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
98 QTAILQ_HEAD_INITIALIZER(bdrv_states);
99
100 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
101 QLIST_HEAD_INITIALIZER(bdrv_drivers);
102
103 /* The device to use for VM snapshots */
104 static BlockDriverState *bs_snapshots;
105
106 /* If non-zero, use only whitelisted block drivers */
107 static int use_bdrv_whitelist;
108
109 #ifdef _WIN32
110 static int is_windows_drive_prefix(const char *filename)
111 {
112 return (((filename[0] >= 'a' && filename[0] <= 'z') ||
113 (filename[0] >= 'A' && filename[0] <= 'Z')) &&
114 filename[1] == ':');
115 }
116
117 int is_windows_drive(const char *filename)
118 {
119 if (is_windows_drive_prefix(filename) &&
120 filename[2] == '\0')
121 return 1;
122 if (strstart(filename, "\\\\.\\", NULL) ||
123 strstart(filename, "//./", NULL))
124 return 1;
125 return 0;
126 }
127 #endif
128
129 /* throttling disk I/O limits */
130 void bdrv_io_limits_disable(BlockDriverState *bs)
131 {
132 bs->io_limits_enabled = false;
133
134 while (qemu_co_queue_next(&bs->throttled_reqs));
135
136 if (bs->block_timer) {
137 qemu_del_timer(bs->block_timer);
138 qemu_free_timer(bs->block_timer);
139 bs->block_timer = NULL;
140 }
141
142 bs->slice_start = 0;
143 bs->slice_end = 0;
144 bs->slice_time = 0;
145 memset(&bs->io_base, 0, sizeof(bs->io_base));
146 }
147
148 static void bdrv_block_timer(void *opaque)
149 {
150 BlockDriverState *bs = opaque;
151
152 qemu_co_queue_next(&bs->throttled_reqs);
153 }
154
155 void bdrv_io_limits_enable(BlockDriverState *bs)
156 {
157 qemu_co_queue_init(&bs->throttled_reqs);
158 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
159 bs->io_limits_enabled = true;
160 }
161
162 bool bdrv_io_limits_enabled(BlockDriverState *bs)
163 {
164 BlockIOLimit *io_limits = &bs->io_limits;
165 return io_limits->bps[BLOCK_IO_LIMIT_READ]
166 || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
167 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
168 || io_limits->iops[BLOCK_IO_LIMIT_READ]
169 || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
170 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
171 }
172
173 static void bdrv_io_limits_intercept(BlockDriverState *bs,
174 bool is_write, int nb_sectors)
175 {
176 int64_t wait_time = -1;
177
178 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
179 qemu_co_queue_wait(&bs->throttled_reqs);
180 }
181
182 /* In fact, we hope to keep each request's timing, in FIFO mode. The next
183 * throttled requests will not be dequeued until the current request is
184 * allowed to be serviced. So if the current request still exceeds the
185 * limits, it will be inserted to the head. All requests followed it will
186 * be still in throttled_reqs queue.
187 */
188
189 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
190 qemu_mod_timer(bs->block_timer,
191 wait_time + qemu_get_clock_ns(vm_clock));
192 qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
193 }
194
195 qemu_co_queue_next(&bs->throttled_reqs);
196 }
197
198 /* check if the path starts with "<protocol>:" */
199 static int path_has_protocol(const char *path)
200 {
201 const char *p;
202
203 #ifdef _WIN32
204 if (is_windows_drive(path) ||
205 is_windows_drive_prefix(path)) {
206 return 0;
207 }
208 p = path + strcspn(path, ":/\\");
209 #else
210 p = path + strcspn(path, ":/");
211 #endif
212
213 return *p == ':';
214 }
215
216 int path_is_absolute(const char *path)
217 {
218 #ifdef _WIN32
219 /* specific case for names like: "\\.\d:" */
220 if (is_windows_drive(path) || is_windows_drive_prefix(path)) {
221 return 1;
222 }
223 return (*path == '/' || *path == '\\');
224 #else
225 return (*path == '/');
226 #endif
227 }
228
229 /* if filename is absolute, just copy it to dest. Otherwise, build a
230 path to it by considering it is relative to base_path. URL are
231 supported. */
232 void path_combine(char *dest, int dest_size,
233 const char *base_path,
234 const char *filename)
235 {
236 const char *p, *p1;
237 int len;
238
239 if (dest_size <= 0)
240 return;
241 if (path_is_absolute(filename)) {
242 pstrcpy(dest, dest_size, filename);
243 } else {
244 p = strchr(base_path, ':');
245 if (p)
246 p++;
247 else
248 p = base_path;
249 p1 = strrchr(base_path, '/');
250 #ifdef _WIN32
251 {
252 const char *p2;
253 p2 = strrchr(base_path, '\\');
254 if (!p1 || p2 > p1)
255 p1 = p2;
256 }
257 #endif
258 if (p1)
259 p1++;
260 else
261 p1 = base_path;
262 if (p1 > p)
263 p = p1;
264 len = p - base_path;
265 if (len > dest_size - 1)
266 len = dest_size - 1;
267 memcpy(dest, base_path, len);
268 dest[len] = '\0';
269 pstrcat(dest, dest_size, filename);
270 }
271 }
272
273 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz)
274 {
275 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) {
276 pstrcpy(dest, sz, bs->backing_file);
277 } else {
278 path_combine(dest, sz, bs->filename, bs->backing_file);
279 }
280 }
281
282 void bdrv_register(BlockDriver *bdrv)
283 {
284 /* Block drivers without coroutine functions need emulation */
285 if (!bdrv->bdrv_co_readv) {
286 bdrv->bdrv_co_readv = bdrv_co_readv_em;
287 bdrv->bdrv_co_writev = bdrv_co_writev_em;
288
289 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
290 * the block driver lacks aio we need to emulate that too.
291 */
292 if (!bdrv->bdrv_aio_readv) {
293 /* add AIO emulation layer */
294 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
295 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
296 }
297 }
298
299 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
300 }
301
302 /* create a new block device (by default it is empty) */
303 BlockDriverState *bdrv_new(const char *device_name)
304 {
305 BlockDriverState *bs;
306
307 bs = g_malloc0(sizeof(BlockDriverState));
308 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
309 if (device_name[0] != '\0') {
310 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
311 }
312 bdrv_iostatus_disable(bs);
313 notifier_list_init(&bs->close_notifiers);
314
315 return bs;
316 }
317
318 void bdrv_add_close_notifier(BlockDriverState *bs, Notifier *notify)
319 {
320 notifier_list_add(&bs->close_notifiers, notify);
321 }
322
323 BlockDriver *bdrv_find_format(const char *format_name)
324 {
325 BlockDriver *drv1;
326 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
327 if (!strcmp(drv1->format_name, format_name)) {
328 return drv1;
329 }
330 }
331 return NULL;
332 }
333
334 static int bdrv_is_whitelisted(BlockDriver *drv)
335 {
336 static const char *whitelist[] = {
337 CONFIG_BDRV_WHITELIST
338 };
339 const char **p;
340
341 if (!whitelist[0])
342 return 1; /* no whitelist, anything goes */
343
344 for (p = whitelist; *p; p++) {
345 if (!strcmp(drv->format_name, *p)) {
346 return 1;
347 }
348 }
349 return 0;
350 }
351
352 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
353 {
354 BlockDriver *drv = bdrv_find_format(format_name);
355 return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
356 }
357
358 typedef struct CreateCo {
359 BlockDriver *drv;
360 char *filename;
361 QEMUOptionParameter *options;
362 int ret;
363 } CreateCo;
364
365 static void coroutine_fn bdrv_create_co_entry(void *opaque)
366 {
367 CreateCo *cco = opaque;
368 assert(cco->drv);
369
370 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options);
371 }
372
373 int bdrv_create(BlockDriver *drv, const char* filename,
374 QEMUOptionParameter *options)
375 {
376 int ret;
377
378 Coroutine *co;
379 CreateCo cco = {
380 .drv = drv,
381 .filename = g_strdup(filename),
382 .options = options,
383 .ret = NOT_DONE,
384 };
385
386 if (!drv->bdrv_create) {
387 ret = -ENOTSUP;
388 goto out;
389 }
390
391 if (qemu_in_coroutine()) {
392 /* Fast-path if already in coroutine context */
393 bdrv_create_co_entry(&cco);
394 } else {
395 co = qemu_coroutine_create(bdrv_create_co_entry);
396 qemu_coroutine_enter(co, &cco);
397 while (cco.ret == NOT_DONE) {
398 qemu_aio_wait();
399 }
400 }
401
402 ret = cco.ret;
403
404 out:
405 g_free(cco.filename);
406 return ret;
407 }
408
409 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
410 {
411 BlockDriver *drv;
412
413 drv = bdrv_find_protocol(filename);
414 if (drv == NULL) {
415 return -ENOENT;
416 }
417
418 return bdrv_create(drv, filename, options);
419 }
420
421 /*
422 * Create a uniquely-named empty temporary file.
423 * Return 0 upon success, otherwise a negative errno value.
424 */
425 int get_tmp_filename(char *filename, int size)
426 {
427 #ifdef _WIN32
428 char temp_dir[MAX_PATH];
429 /* GetTempFileName requires that its output buffer (4th param)
430 have length MAX_PATH or greater. */
431 assert(size >= MAX_PATH);
432 return (GetTempPath(MAX_PATH, temp_dir)
433 && GetTempFileName(temp_dir, "qem", 0, filename)
434 ? 0 : -GetLastError());
435 #else
436 int fd;
437 const char *tmpdir;
438 tmpdir = getenv("TMPDIR");
439 if (!tmpdir)
440 tmpdir = "/tmp";
441 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) {
442 return -EOVERFLOW;
443 }
444 fd = mkstemp(filename);
445 if (fd < 0) {
446 return -errno;
447 }
448 if (close(fd) != 0) {
449 unlink(filename);
450 return -errno;
451 }
452 return 0;
453 #endif
454 }
455
456 /*
457 * Detect host devices. By convention, /dev/cdrom[N] is always
458 * recognized as a host CDROM.
459 */
460 static BlockDriver *find_hdev_driver(const char *filename)
461 {
462 int score_max = 0, score;
463 BlockDriver *drv = NULL, *d;
464
465 QLIST_FOREACH(d, &bdrv_drivers, list) {
466 if (d->bdrv_probe_device) {
467 score = d->bdrv_probe_device(filename);
468 if (score > score_max) {
469 score_max = score;
470 drv = d;
471 }
472 }
473 }
474
475 return drv;
476 }
477
478 BlockDriver *bdrv_find_protocol(const char *filename)
479 {
480 BlockDriver *drv1;
481 char protocol[128];
482 int len;
483 const char *p;
484
485 /* TODO Drivers without bdrv_file_open must be specified explicitly */
486
487 /*
488 * XXX(hch): we really should not let host device detection
489 * override an explicit protocol specification, but moving this
490 * later breaks access to device names with colons in them.
491 * Thanks to the brain-dead persistent naming schemes on udev-
492 * based Linux systems those actually are quite common.
493 */
494 drv1 = find_hdev_driver(filename);
495 if (drv1) {
496 return drv1;
497 }
498
499 if (!path_has_protocol(filename)) {
500 return bdrv_find_format("file");
501 }
502 p = strchr(filename, ':');
503 assert(p != NULL);
504 len = p - filename;
505 if (len > sizeof(protocol) - 1)
506 len = sizeof(protocol) - 1;
507 memcpy(protocol, filename, len);
508 protocol[len] = '\0';
509 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
510 if (drv1->protocol_name &&
511 !strcmp(drv1->protocol_name, protocol)) {
512 return drv1;
513 }
514 }
515 return NULL;
516 }
517
518 static int find_image_format(BlockDriverState *bs, const char *filename,
519 BlockDriver **pdrv)
520 {
521 int score, score_max;
522 BlockDriver *drv1, *drv;
523 uint8_t buf[2048];
524 int ret = 0;
525
526 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
527 if (bs->sg || !bdrv_is_inserted(bs) || bdrv_getlength(bs) == 0) {
528 drv = bdrv_find_format("raw");
529 if (!drv) {
530 ret = -ENOENT;
531 }
532 *pdrv = drv;
533 return ret;
534 }
535
536 ret = bdrv_pread(bs, 0, buf, sizeof(buf));
537 if (ret < 0) {
538 *pdrv = NULL;
539 return ret;
540 }
541
542 score_max = 0;
543 drv = NULL;
544 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
545 if (drv1->bdrv_probe) {
546 score = drv1->bdrv_probe(buf, ret, filename);
547 if (score > score_max) {
548 score_max = score;
549 drv = drv1;
550 }
551 }
552 }
553 if (!drv) {
554 ret = -ENOENT;
555 }
556 *pdrv = drv;
557 return ret;
558 }
559
560 /**
561 * Set the current 'total_sectors' value
562 */
563 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
564 {
565 BlockDriver *drv = bs->drv;
566
567 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
568 if (bs->sg)
569 return 0;
570
571 /* query actual device if possible, otherwise just trust the hint */
572 if (drv->bdrv_getlength) {
573 int64_t length = drv->bdrv_getlength(bs);
574 if (length < 0) {
575 return length;
576 }
577 hint = length >> BDRV_SECTOR_BITS;
578 }
579
580 bs->total_sectors = hint;
581 return 0;
582 }
583
584 /**
585 * Set open flags for a given cache mode
586 *
587 * Return 0 on success, -1 if the cache mode was invalid.
588 */
589 int bdrv_parse_cache_flags(const char *mode, int *flags)
590 {
591 *flags &= ~BDRV_O_CACHE_MASK;
592
593 if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
594 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
595 } else if (!strcmp(mode, "directsync")) {
596 *flags |= BDRV_O_NOCACHE;
597 } else if (!strcmp(mode, "writeback")) {
598 *flags |= BDRV_O_CACHE_WB;
599 } else if (!strcmp(mode, "unsafe")) {
600 *flags |= BDRV_O_CACHE_WB;
601 *flags |= BDRV_O_NO_FLUSH;
602 } else if (!strcmp(mode, "writethrough")) {
603 /* this is the default */
604 } else {
605 return -1;
606 }
607
608 return 0;
609 }
610
611 /**
612 * The copy-on-read flag is actually a reference count so multiple users may
613 * use the feature without worrying about clobbering its previous state.
614 * Copy-on-read stays enabled until all users have called to disable it.
615 */
616 void bdrv_enable_copy_on_read(BlockDriverState *bs)
617 {
618 bs->copy_on_read++;
619 }
620
621 void bdrv_disable_copy_on_read(BlockDriverState *bs)
622 {
623 assert(bs->copy_on_read > 0);
624 bs->copy_on_read--;
625 }
626
627 static int bdrv_open_flags(BlockDriverState *bs, int flags)
628 {
629 int open_flags = flags | BDRV_O_CACHE_WB;
630
631 /*
632 * Clear flags that are internal to the block layer before opening the
633 * image.
634 */
635 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
636
637 /*
638 * Snapshots should be writable.
639 */
640 if (bs->is_temporary) {
641 open_flags |= BDRV_O_RDWR;
642 }
643
644 return open_flags;
645 }
646
647 /*
648 * Common part for opening disk images and files
649 */
650 static int bdrv_open_common(BlockDriverState *bs, BlockDriverState *file,
651 const char *filename,
652 int flags, BlockDriver *drv)
653 {
654 int ret, open_flags;
655
656 assert(drv != NULL);
657 assert(bs->file == NULL);
658
659 trace_bdrv_open_common(bs, filename, flags, drv->format_name);
660
661 bs->open_flags = flags;
662 bs->buffer_alignment = 512;
663
664 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
665 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
666 bdrv_enable_copy_on_read(bs);
667 }
668
669 pstrcpy(bs->filename, sizeof(bs->filename), filename);
670
671 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
672 return -ENOTSUP;
673 }
674
675 bs->drv = drv;
676 bs->opaque = g_malloc0(drv->instance_size);
677
678 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
679 open_flags = bdrv_open_flags(bs, flags);
680
681 bs->read_only = !(open_flags & BDRV_O_RDWR);
682
683 /* Open the image, either directly or using a protocol */
684 if (drv->bdrv_file_open) {
685 if (file != NULL) {
686 bdrv_swap(file, bs);
687 ret = 0;
688 } else {
689 ret = drv->bdrv_file_open(bs, filename, open_flags);
690 }
691 } else {
692 assert(file != NULL);
693 bs->file = file;
694 ret = drv->bdrv_open(bs, open_flags);
695 }
696
697 if (ret < 0) {
698 goto free_and_fail;
699 }
700
701 ret = refresh_total_sectors(bs, bs->total_sectors);
702 if (ret < 0) {
703 goto free_and_fail;
704 }
705
706 #ifndef _WIN32
707 if (bs->is_temporary) {
708 unlink(filename);
709 }
710 #endif
711 return 0;
712
713 free_and_fail:
714 bs->file = NULL;
715 g_free(bs->opaque);
716 bs->opaque = NULL;
717 bs->drv = NULL;
718 return ret;
719 }
720
721 /*
722 * Opens a file using a protocol (file, host_device, nbd, ...)
723 */
724 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
725 {
726 BlockDriverState *bs;
727 BlockDriver *drv;
728 int ret;
729
730 drv = bdrv_find_protocol(filename);
731 if (!drv) {
732 return -ENOENT;
733 }
734
735 bs = bdrv_new("");
736 ret = bdrv_open_common(bs, NULL, filename, flags, drv);
737 if (ret < 0) {
738 bdrv_delete(bs);
739 return ret;
740 }
741 bs->growable = 1;
742 *pbs = bs;
743 return 0;
744 }
745
746 int bdrv_open_backing_file(BlockDriverState *bs)
747 {
748 char backing_filename[PATH_MAX];
749 int back_flags, ret;
750 BlockDriver *back_drv = NULL;
751
752 if (bs->backing_hd != NULL) {
753 return 0;
754 }
755
756 bs->open_flags &= ~BDRV_O_NO_BACKING;
757 if (bs->backing_file[0] == '\0') {
758 return 0;
759 }
760
761 bs->backing_hd = bdrv_new("");
762 bdrv_get_full_backing_filename(bs, backing_filename,
763 sizeof(backing_filename));
764
765 if (bs->backing_format[0] != '\0') {
766 back_drv = bdrv_find_format(bs->backing_format);
767 }
768
769 /* backing files always opened read-only */
770 back_flags = bs->open_flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT);
771
772 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
773 if (ret < 0) {
774 bdrv_delete(bs->backing_hd);
775 bs->backing_hd = NULL;
776 bs->open_flags |= BDRV_O_NO_BACKING;
777 return ret;
778 }
779 return 0;
780 }
781
782 /*
783 * Opens a disk image (raw, qcow2, vmdk, ...)
784 */
785 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
786 BlockDriver *drv)
787 {
788 int ret;
789 /* TODO: extra byte is a hack to ensure MAX_PATH space on Windows. */
790 char tmp_filename[PATH_MAX + 1];
791 BlockDriverState *file = NULL;
792
793 if (flags & BDRV_O_SNAPSHOT) {
794 BlockDriverState *bs1;
795 int64_t total_size;
796 int is_protocol = 0;
797 BlockDriver *bdrv_qcow2;
798 QEMUOptionParameter *options;
799 char backing_filename[PATH_MAX];
800
801 /* if snapshot, we create a temporary backing file and open it
802 instead of opening 'filename' directly */
803
804 /* if there is a backing file, use it */
805 bs1 = bdrv_new("");
806 ret = bdrv_open(bs1, filename, 0, drv);
807 if (ret < 0) {
808 bdrv_delete(bs1);
809 return ret;
810 }
811 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
812
813 if (bs1->drv && bs1->drv->protocol_name)
814 is_protocol = 1;
815
816 bdrv_delete(bs1);
817
818 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename));
819 if (ret < 0) {
820 return ret;
821 }
822
823 /* Real path is meaningless for protocols */
824 if (is_protocol)
825 snprintf(backing_filename, sizeof(backing_filename),
826 "%s", filename);
827 else if (!realpath(filename, backing_filename))
828 return -errno;
829
830 bdrv_qcow2 = bdrv_find_format("qcow2");
831 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
832
833 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
834 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
835 if (drv) {
836 set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
837 drv->format_name);
838 }
839
840 ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
841 free_option_parameters(options);
842 if (ret < 0) {
843 return ret;
844 }
845
846 filename = tmp_filename;
847 drv = bdrv_qcow2;
848 bs->is_temporary = 1;
849 }
850
851 /* Open image file without format layer */
852 if (flags & BDRV_O_RDWR) {
853 flags |= BDRV_O_ALLOW_RDWR;
854 }
855
856 ret = bdrv_file_open(&file, filename, bdrv_open_flags(bs, flags));
857 if (ret < 0) {
858 return ret;
859 }
860
861 /* Find the right image format driver */
862 if (!drv) {
863 ret = find_image_format(file, filename, &drv);
864 }
865
866 if (!drv) {
867 goto unlink_and_fail;
868 }
869
870 /* Open the image */
871 ret = bdrv_open_common(bs, file, filename, flags, drv);
872 if (ret < 0) {
873 goto unlink_and_fail;
874 }
875
876 if (bs->file != file) {
877 bdrv_delete(file);
878 file = NULL;
879 }
880
881 /* If there is a backing file, use it */
882 if ((flags & BDRV_O_NO_BACKING) == 0) {
883 ret = bdrv_open_backing_file(bs);
884 if (ret < 0) {
885 bdrv_close(bs);
886 return ret;
887 }
888 }
889
890 if (!bdrv_key_required(bs)) {
891 bdrv_dev_change_media_cb(bs, true);
892 }
893
894 /* throttling disk I/O limits */
895 if (bs->io_limits_enabled) {
896 bdrv_io_limits_enable(bs);
897 }
898
899 return 0;
900
901 unlink_and_fail:
902 if (file != NULL) {
903 bdrv_delete(file);
904 }
905 if (bs->is_temporary) {
906 unlink(filename);
907 }
908 return ret;
909 }
910
911 typedef struct BlockReopenQueueEntry {
912 bool prepared;
913 BDRVReopenState state;
914 QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry;
915 } BlockReopenQueueEntry;
916
917 /*
918 * Adds a BlockDriverState to a simple queue for an atomic, transactional
919 * reopen of multiple devices.
920 *
921 * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT
922 * already performed, or alternatively may be NULL a new BlockReopenQueue will
923 * be created and initialized. This newly created BlockReopenQueue should be
924 * passed back in for subsequent calls that are intended to be of the same
925 * atomic 'set'.
926 *
927 * bs is the BlockDriverState to add to the reopen queue.
928 *
929 * flags contains the open flags for the associated bs
930 *
931 * returns a pointer to bs_queue, which is either the newly allocated
932 * bs_queue, or the existing bs_queue being used.
933 *
934 */
935 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue,
936 BlockDriverState *bs, int flags)
937 {
938 assert(bs != NULL);
939
940 BlockReopenQueueEntry *bs_entry;
941 if (bs_queue == NULL) {
942 bs_queue = g_new0(BlockReopenQueue, 1);
943 QSIMPLEQ_INIT(bs_queue);
944 }
945
946 if (bs->file) {
947 bdrv_reopen_queue(bs_queue, bs->file, flags);
948 }
949
950 bs_entry = g_new0(BlockReopenQueueEntry, 1);
951 QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry);
952
953 bs_entry->state.bs = bs;
954 bs_entry->state.flags = flags;
955
956 return bs_queue;
957 }
958
959 /*
960 * Reopen multiple BlockDriverStates atomically & transactionally.
961 *
962 * The queue passed in (bs_queue) must have been built up previous
963 * via bdrv_reopen_queue().
964 *
965 * Reopens all BDS specified in the queue, with the appropriate
966 * flags. All devices are prepared for reopen, and failure of any
967 * device will cause all device changes to be abandonded, and intermediate
968 * data cleaned up.
969 *
970 * If all devices prepare successfully, then the changes are committed
971 * to all devices.
972 *
973 */
974 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp)
975 {
976 int ret = -1;
977 BlockReopenQueueEntry *bs_entry, *next;
978 Error *local_err = NULL;
979
980 assert(bs_queue != NULL);
981
982 bdrv_drain_all();
983
984 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
985 if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) {
986 error_propagate(errp, local_err);
987 goto cleanup;
988 }
989 bs_entry->prepared = true;
990 }
991
992 /* If we reach this point, we have success and just need to apply the
993 * changes
994 */
995 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
996 bdrv_reopen_commit(&bs_entry->state);
997 }
998
999 ret = 0;
1000
1001 cleanup:
1002 QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) {
1003 if (ret && bs_entry->prepared) {
1004 bdrv_reopen_abort(&bs_entry->state);
1005 }
1006 g_free(bs_entry);
1007 }
1008 g_free(bs_queue);
1009 return ret;
1010 }
1011
1012
1013 /* Reopen a single BlockDriverState with the specified flags. */
1014 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp)
1015 {
1016 int ret = -1;
1017 Error *local_err = NULL;
1018 BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags);
1019
1020 ret = bdrv_reopen_multiple(queue, &local_err);
1021 if (local_err != NULL) {
1022 error_propagate(errp, local_err);
1023 }
1024 return ret;
1025 }
1026
1027
1028 /*
1029 * Prepares a BlockDriverState for reopen. All changes are staged in the
1030 * 'opaque' field of the BDRVReopenState, which is used and allocated by
1031 * the block driver layer .bdrv_reopen_prepare()
1032 *
1033 * bs is the BlockDriverState to reopen
1034 * flags are the new open flags
1035 * queue is the reopen queue
1036 *
1037 * Returns 0 on success, non-zero on error. On error errp will be set
1038 * as well.
1039 *
1040 * On failure, bdrv_reopen_abort() will be called to clean up any data.
1041 * It is the responsibility of the caller to then call the abort() or
1042 * commit() for any other BDS that have been left in a prepare() state
1043 *
1044 */
1045 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue,
1046 Error **errp)
1047 {
1048 int ret = -1;
1049 Error *local_err = NULL;
1050 BlockDriver *drv;
1051
1052 assert(reopen_state != NULL);
1053 assert(reopen_state->bs->drv != NULL);
1054 drv = reopen_state->bs->drv;
1055
1056 /* if we are to stay read-only, do not allow permission change
1057 * to r/w */
1058 if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) &&
1059 reopen_state->flags & BDRV_O_RDWR) {
1060 error_set(errp, QERR_DEVICE_IS_READ_ONLY,
1061 reopen_state->bs->device_name);
1062 goto error;
1063 }
1064
1065
1066 ret = bdrv_flush(reopen_state->bs);
1067 if (ret) {
1068 error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive",
1069 strerror(-ret));
1070 goto error;
1071 }
1072
1073 if (drv->bdrv_reopen_prepare) {
1074 ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err);
1075 if (ret) {
1076 if (local_err != NULL) {
1077 error_propagate(errp, local_err);
1078 } else {
1079 error_set(errp, QERR_OPEN_FILE_FAILED,
1080 reopen_state->bs->filename);
1081 }
1082 goto error;
1083 }
1084 } else {
1085 /* It is currently mandatory to have a bdrv_reopen_prepare()
1086 * handler for each supported drv. */
1087 error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
1088 drv->format_name, reopen_state->bs->device_name,
1089 "reopening of file");
1090 ret = -1;
1091 goto error;
1092 }
1093
1094 ret = 0;
1095
1096 error:
1097 return ret;
1098 }
1099
1100 /*
1101 * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and
1102 * makes them final by swapping the staging BlockDriverState contents into
1103 * the active BlockDriverState contents.
1104 */
1105 void bdrv_reopen_commit(BDRVReopenState *reopen_state)
1106 {
1107 BlockDriver *drv;
1108
1109 assert(reopen_state != NULL);
1110 drv = reopen_state->bs->drv;
1111 assert(drv != NULL);
1112
1113 /* If there are any driver level actions to take */
1114 if (drv->bdrv_reopen_commit) {
1115 drv->bdrv_reopen_commit(reopen_state);
1116 }
1117
1118 /* set BDS specific flags now */
1119 reopen_state->bs->open_flags = reopen_state->flags;
1120 reopen_state->bs->enable_write_cache = !!(reopen_state->flags &
1121 BDRV_O_CACHE_WB);
1122 reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR);
1123 }
1124
1125 /*
1126 * Abort the reopen, and delete and free the staged changes in
1127 * reopen_state
1128 */
1129 void bdrv_reopen_abort(BDRVReopenState *reopen_state)
1130 {
1131 BlockDriver *drv;
1132
1133 assert(reopen_state != NULL);
1134 drv = reopen_state->bs->drv;
1135 assert(drv != NULL);
1136
1137 if (drv->bdrv_reopen_abort) {
1138 drv->bdrv_reopen_abort(reopen_state);
1139 }
1140 }
1141
1142
1143 void bdrv_close(BlockDriverState *bs)
1144 {
1145 bdrv_flush(bs);
1146 if (bs->job) {
1147 block_job_cancel_sync(bs->job);
1148 }
1149 bdrv_drain_all();
1150 notifier_list_notify(&bs->close_notifiers, bs);
1151
1152 if (bs->drv) {
1153 if (bs == bs_snapshots) {
1154 bs_snapshots = NULL;
1155 }
1156 if (bs->backing_hd) {
1157 bdrv_delete(bs->backing_hd);
1158 bs->backing_hd = NULL;
1159 }
1160 bs->drv->bdrv_close(bs);
1161 g_free(bs->opaque);
1162 #ifdef _WIN32
1163 if (bs->is_temporary) {
1164 unlink(bs->filename);
1165 }
1166 #endif
1167 bs->opaque = NULL;
1168 bs->drv = NULL;
1169 bs->copy_on_read = 0;
1170 bs->backing_file[0] = '\0';
1171 bs->backing_format[0] = '\0';
1172 bs->total_sectors = 0;
1173 bs->encrypted = 0;
1174 bs->valid_key = 0;
1175 bs->sg = 0;
1176 bs->growable = 0;
1177
1178 if (bs->file != NULL) {
1179 bdrv_delete(bs->file);
1180 bs->file = NULL;
1181 }
1182 }
1183
1184 bdrv_dev_change_media_cb(bs, false);
1185
1186 /*throttling disk I/O limits*/
1187 if (bs->io_limits_enabled) {
1188 bdrv_io_limits_disable(bs);
1189 }
1190 }
1191
1192 void bdrv_close_all(void)
1193 {
1194 BlockDriverState *bs;
1195
1196 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1197 bdrv_close(bs);
1198 }
1199 }
1200
1201 /*
1202 * Wait for pending requests to complete across all BlockDriverStates
1203 *
1204 * This function does not flush data to disk, use bdrv_flush_all() for that
1205 * after calling this function.
1206 *
1207 * Note that completion of an asynchronous I/O operation can trigger any
1208 * number of other I/O operations on other devices---for example a coroutine
1209 * can be arbitrarily complex and a constant flow of I/O can come until the
1210 * coroutine is complete. Because of this, it is not possible to have a
1211 * function to drain a single device's I/O queue.
1212 */
1213 void bdrv_drain_all(void)
1214 {
1215 BlockDriverState *bs;
1216 bool busy;
1217
1218 do {
1219 busy = qemu_aio_wait();
1220
1221 /* FIXME: We do not have timer support here, so this is effectively
1222 * a busy wait.
1223 */
1224 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1225 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
1226 qemu_co_queue_restart_all(&bs->throttled_reqs);
1227 busy = true;
1228 }
1229 }
1230 } while (busy);
1231
1232 /* If requests are still pending there is a bug somewhere */
1233 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1234 assert(QLIST_EMPTY(&bs->tracked_requests));
1235 assert(qemu_co_queue_empty(&bs->throttled_reqs));
1236 }
1237 }
1238
1239 /* make a BlockDriverState anonymous by removing from bdrv_state list.
1240 Also, NULL terminate the device_name to prevent double remove */
1241 void bdrv_make_anon(BlockDriverState *bs)
1242 {
1243 if (bs->device_name[0] != '\0') {
1244 QTAILQ_REMOVE(&bdrv_states, bs, list);
1245 }
1246 bs->device_name[0] = '\0';
1247 }
1248
1249 static void bdrv_rebind(BlockDriverState *bs)
1250 {
1251 if (bs->drv && bs->drv->bdrv_rebind) {
1252 bs->drv->bdrv_rebind(bs);
1253 }
1254 }
1255
1256 static void bdrv_move_feature_fields(BlockDriverState *bs_dest,
1257 BlockDriverState *bs_src)
1258 {
1259 /* move some fields that need to stay attached to the device */
1260 bs_dest->open_flags = bs_src->open_flags;
1261
1262 /* dev info */
1263 bs_dest->dev_ops = bs_src->dev_ops;
1264 bs_dest->dev_opaque = bs_src->dev_opaque;
1265 bs_dest->dev = bs_src->dev;
1266 bs_dest->buffer_alignment = bs_src->buffer_alignment;
1267 bs_dest->copy_on_read = bs_src->copy_on_read;
1268
1269 bs_dest->enable_write_cache = bs_src->enable_write_cache;
1270
1271 /* i/o timing parameters */
1272 bs_dest->slice_time = bs_src->slice_time;
1273 bs_dest->slice_start = bs_src->slice_start;
1274 bs_dest->slice_end = bs_src->slice_end;
1275 bs_dest->io_limits = bs_src->io_limits;
1276 bs_dest->io_base = bs_src->io_base;
1277 bs_dest->throttled_reqs = bs_src->throttled_reqs;
1278 bs_dest->block_timer = bs_src->block_timer;
1279 bs_dest->io_limits_enabled = bs_src->io_limits_enabled;
1280
1281 /* r/w error */
1282 bs_dest->on_read_error = bs_src->on_read_error;
1283 bs_dest->on_write_error = bs_src->on_write_error;
1284
1285 /* i/o status */
1286 bs_dest->iostatus_enabled = bs_src->iostatus_enabled;
1287 bs_dest->iostatus = bs_src->iostatus;
1288
1289 /* dirty bitmap */
1290 bs_dest->dirty_bitmap = bs_src->dirty_bitmap;
1291
1292 /* job */
1293 bs_dest->in_use = bs_src->in_use;
1294 bs_dest->job = bs_src->job;
1295
1296 /* keep the same entry in bdrv_states */
1297 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name),
1298 bs_src->device_name);
1299 bs_dest->list = bs_src->list;
1300 }
1301
1302 /*
1303 * Swap bs contents for two image chains while they are live,
1304 * while keeping required fields on the BlockDriverState that is
1305 * actually attached to a device.
1306 *
1307 * This will modify the BlockDriverState fields, and swap contents
1308 * between bs_new and bs_old. Both bs_new and bs_old are modified.
1309 *
1310 * bs_new is required to be anonymous.
1311 *
1312 * This function does not create any image files.
1313 */
1314 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old)
1315 {
1316 BlockDriverState tmp;
1317
1318 /* bs_new must be anonymous and shouldn't have anything fancy enabled */
1319 assert(bs_new->device_name[0] == '\0');
1320 assert(bs_new->dirty_bitmap == NULL);
1321 assert(bs_new->job == NULL);
1322 assert(bs_new->dev == NULL);
1323 assert(bs_new->in_use == 0);
1324 assert(bs_new->io_limits_enabled == false);
1325 assert(bs_new->block_timer == NULL);
1326
1327 tmp = *bs_new;
1328 *bs_new = *bs_old;
1329 *bs_old = tmp;
1330
1331 /* there are some fields that should not be swapped, move them back */
1332 bdrv_move_feature_fields(&tmp, bs_old);
1333 bdrv_move_feature_fields(bs_old, bs_new);
1334 bdrv_move_feature_fields(bs_new, &tmp);
1335
1336 /* bs_new shouldn't be in bdrv_states even after the swap! */
1337 assert(bs_new->device_name[0] == '\0');
1338
1339 /* Check a few fields that should remain attached to the device */
1340 assert(bs_new->dev == NULL);
1341 assert(bs_new->job == NULL);
1342 assert(bs_new->in_use == 0);
1343 assert(bs_new->io_limits_enabled == false);
1344 assert(bs_new->block_timer == NULL);
1345
1346 bdrv_rebind(bs_new);
1347 bdrv_rebind(bs_old);
1348 }
1349
1350 /*
1351 * Add new bs contents at the top of an image chain while the chain is
1352 * live, while keeping required fields on the top layer.
1353 *
1354 * This will modify the BlockDriverState fields, and swap contents
1355 * between bs_new and bs_top. Both bs_new and bs_top are modified.
1356 *
1357 * bs_new is required to be anonymous.
1358 *
1359 * This function does not create any image files.
1360 */
1361 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
1362 {
1363 bdrv_swap(bs_new, bs_top);
1364
1365 /* The contents of 'tmp' will become bs_top, as we are
1366 * swapping bs_new and bs_top contents. */
1367 bs_top->backing_hd = bs_new;
1368 bs_top->open_flags &= ~BDRV_O_NO_BACKING;
1369 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file),
1370 bs_new->filename);
1371 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format),
1372 bs_new->drv ? bs_new->drv->format_name : "");
1373 }
1374
1375 void bdrv_delete(BlockDriverState *bs)
1376 {
1377 assert(!bs->dev);
1378 assert(!bs->job);
1379 assert(!bs->in_use);
1380
1381 /* remove from list, if necessary */
1382 bdrv_make_anon(bs);
1383
1384 bdrv_close(bs);
1385
1386 assert(bs != bs_snapshots);
1387 g_free(bs);
1388 }
1389
1390 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
1391 /* TODO change to DeviceState *dev when all users are qdevified */
1392 {
1393 if (bs->dev) {
1394 return -EBUSY;
1395 }
1396 bs->dev = dev;
1397 bdrv_iostatus_reset(bs);
1398 return 0;
1399 }
1400
1401 /* TODO qdevified devices don't use this, remove when devices are qdevified */
1402 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
1403 {
1404 if (bdrv_attach_dev(bs, dev) < 0) {
1405 abort();
1406 }
1407 }
1408
1409 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1410 /* TODO change to DeviceState *dev when all users are qdevified */
1411 {
1412 assert(bs->dev == dev);
1413 bs->dev = NULL;
1414 bs->dev_ops = NULL;
1415 bs->dev_opaque = NULL;
1416 bs->buffer_alignment = 512;
1417 }
1418
1419 /* TODO change to return DeviceState * when all users are qdevified */
1420 void *bdrv_get_attached_dev(BlockDriverState *bs)
1421 {
1422 return bs->dev;
1423 }
1424
1425 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1426 void *opaque)
1427 {
1428 bs->dev_ops = ops;
1429 bs->dev_opaque = opaque;
1430 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
1431 bs_snapshots = NULL;
1432 }
1433 }
1434
1435 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1436 enum MonitorEvent ev,
1437 BlockErrorAction action, bool is_read)
1438 {
1439 QObject *data;
1440 const char *action_str;
1441
1442 switch (action) {
1443 case BDRV_ACTION_REPORT:
1444 action_str = "report";
1445 break;
1446 case BDRV_ACTION_IGNORE:
1447 action_str = "ignore";
1448 break;
1449 case BDRV_ACTION_STOP:
1450 action_str = "stop";
1451 break;
1452 default:
1453 abort();
1454 }
1455
1456 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1457 bdrv->device_name,
1458 action_str,
1459 is_read ? "read" : "write");
1460 monitor_protocol_event(ev, data);
1461
1462 qobject_decref(data);
1463 }
1464
1465 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1466 {
1467 QObject *data;
1468
1469 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1470 bdrv_get_device_name(bs), ejected);
1471 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1472
1473 qobject_decref(data);
1474 }
1475
1476 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1477 {
1478 if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1479 bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1480 bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1481 if (tray_was_closed) {
1482 /* tray open */
1483 bdrv_emit_qmp_eject_event(bs, true);
1484 }
1485 if (load) {
1486 /* tray close */
1487 bdrv_emit_qmp_eject_event(bs, false);
1488 }
1489 }
1490 }
1491
1492 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1493 {
1494 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1495 }
1496
1497 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1498 {
1499 if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1500 bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1501 }
1502 }
1503
1504 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1505 {
1506 if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1507 return bs->dev_ops->is_tray_open(bs->dev_opaque);
1508 }
1509 return false;
1510 }
1511
1512 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1513 {
1514 if (bs->dev_ops && bs->dev_ops->resize_cb) {
1515 bs->dev_ops->resize_cb(bs->dev_opaque);
1516 }
1517 }
1518
1519 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1520 {
1521 if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1522 return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1523 }
1524 return false;
1525 }
1526
1527 /*
1528 * Run consistency checks on an image
1529 *
1530 * Returns 0 if the check could be completed (it doesn't mean that the image is
1531 * free of errors) or -errno when an internal error occurred. The results of the
1532 * check are stored in res.
1533 */
1534 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix)
1535 {
1536 if (bs->drv->bdrv_check == NULL) {
1537 return -ENOTSUP;
1538 }
1539
1540 memset(res, 0, sizeof(*res));
1541 return bs->drv->bdrv_check(bs, res, fix);
1542 }
1543
1544 #define COMMIT_BUF_SECTORS 2048
1545
1546 /* commit COW file into the raw image */
1547 int bdrv_commit(BlockDriverState *bs)
1548 {
1549 BlockDriver *drv = bs->drv;
1550 int64_t sector, total_sectors;
1551 int n, ro, open_flags;
1552 int ret = 0;
1553 uint8_t *buf;
1554 char filename[PATH_MAX];
1555
1556 if (!drv)
1557 return -ENOMEDIUM;
1558
1559 if (!bs->backing_hd) {
1560 return -ENOTSUP;
1561 }
1562
1563 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1564 return -EBUSY;
1565 }
1566
1567 ro = bs->backing_hd->read_only;
1568 /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */
1569 pstrcpy(filename, sizeof(filename), bs->backing_hd->filename);
1570 open_flags = bs->backing_hd->open_flags;
1571
1572 if (ro) {
1573 if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) {
1574 return -EACCES;
1575 }
1576 }
1577
1578 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1579 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1580
1581 for (sector = 0; sector < total_sectors; sector += n) {
1582 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1583
1584 if (bdrv_read(bs, sector, buf, n) != 0) {
1585 ret = -EIO;
1586 goto ro_cleanup;
1587 }
1588
1589 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1590 ret = -EIO;
1591 goto ro_cleanup;
1592 }
1593 }
1594 }
1595
1596 if (drv->bdrv_make_empty) {
1597 ret = drv->bdrv_make_empty(bs);
1598 bdrv_flush(bs);
1599 }
1600
1601 /*
1602 * Make sure all data we wrote to the backing device is actually
1603 * stable on disk.
1604 */
1605 if (bs->backing_hd)
1606 bdrv_flush(bs->backing_hd);
1607
1608 ro_cleanup:
1609 g_free(buf);
1610
1611 if (ro) {
1612 /* ignoring error return here */
1613 bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL);
1614 }
1615
1616 return ret;
1617 }
1618
1619 int bdrv_commit_all(void)
1620 {
1621 BlockDriverState *bs;
1622
1623 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1624 int ret = bdrv_commit(bs);
1625 if (ret < 0) {
1626 return ret;
1627 }
1628 }
1629 return 0;
1630 }
1631
1632 struct BdrvTrackedRequest {
1633 BlockDriverState *bs;
1634 int64_t sector_num;
1635 int nb_sectors;
1636 bool is_write;
1637 QLIST_ENTRY(BdrvTrackedRequest) list;
1638 Coroutine *co; /* owner, used for deadlock detection */
1639 CoQueue wait_queue; /* coroutines blocked on this request */
1640 };
1641
1642 /**
1643 * Remove an active request from the tracked requests list
1644 *
1645 * This function should be called when a tracked request is completing.
1646 */
1647 static void tracked_request_end(BdrvTrackedRequest *req)
1648 {
1649 QLIST_REMOVE(req, list);
1650 qemu_co_queue_restart_all(&req->wait_queue);
1651 }
1652
1653 /**
1654 * Add an active request to the tracked requests list
1655 */
1656 static void tracked_request_begin(BdrvTrackedRequest *req,
1657 BlockDriverState *bs,
1658 int64_t sector_num,
1659 int nb_sectors, bool is_write)
1660 {
1661 *req = (BdrvTrackedRequest){
1662 .bs = bs,
1663 .sector_num = sector_num,
1664 .nb_sectors = nb_sectors,
1665 .is_write = is_write,
1666 .co = qemu_coroutine_self(),
1667 };
1668
1669 qemu_co_queue_init(&req->wait_queue);
1670
1671 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1672 }
1673
1674 /**
1675 * Round a region to cluster boundaries
1676 */
1677 void bdrv_round_to_clusters(BlockDriverState *bs,
1678 int64_t sector_num, int nb_sectors,
1679 int64_t *cluster_sector_num,
1680 int *cluster_nb_sectors)
1681 {
1682 BlockDriverInfo bdi;
1683
1684 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1685 *cluster_sector_num = sector_num;
1686 *cluster_nb_sectors = nb_sectors;
1687 } else {
1688 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1689 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1690 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1691 nb_sectors, c);
1692 }
1693 }
1694
1695 /**
1696 * Round a region to job cluster boundaries
1697 */
1698 static void round_to_job_clusters(BlockDriverState *bs,
1699 int64_t sector_num, int nb_sectors,
1700 int job_cluster_size,
1701 int64_t *cluster_sector_num,
1702 int *cluster_nb_sectors)
1703 {
1704 int64_t c = job_cluster_size/BDRV_SECTOR_SIZE;
1705
1706 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1707 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1708 nb_sectors, c);
1709 }
1710
1711 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1712 int64_t sector_num, int nb_sectors) {
1713 /* aaaa bbbb */
1714 if (sector_num >= req->sector_num + req->nb_sectors) {
1715 return false;
1716 }
1717 /* bbbb aaaa */
1718 if (req->sector_num >= sector_num + nb_sectors) {
1719 return false;
1720 }
1721 return true;
1722 }
1723
1724 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1725 int64_t sector_num,
1726 int nb_sectors,
1727 int job_cluster_size)
1728 {
1729 BdrvTrackedRequest *req;
1730 int64_t cluster_sector_num;
1731 int cluster_nb_sectors;
1732 bool retry;
1733
1734 /* If we touch the same cluster it counts as an overlap. This guarantees
1735 * that allocating writes will be serialized and not race with each other
1736 * for the same cluster. For example, in copy-on-read it ensures that the
1737 * CoR read and write operations are atomic and guest writes cannot
1738 * interleave between them.
1739 */
1740 bdrv_round_to_clusters(bs, sector_num, nb_sectors,
1741 &cluster_sector_num, &cluster_nb_sectors);
1742
1743 if (job_cluster_size) {
1744 round_to_job_clusters(bs, sector_num, nb_sectors, job_cluster_size,
1745 &cluster_sector_num, &cluster_nb_sectors);
1746 }
1747
1748 do {
1749 retry = false;
1750 QLIST_FOREACH(req, &bs->tracked_requests, list) {
1751 if (tracked_request_overlaps(req, cluster_sector_num,
1752 cluster_nb_sectors)) {
1753 /* Hitting this means there was a reentrant request, for
1754 * example, a block driver issuing nested requests. This must
1755 * never happen since it means deadlock.
1756 */
1757 assert(qemu_coroutine_self() != req->co);
1758
1759 qemu_co_queue_wait(&req->wait_queue);
1760 retry = true;
1761 break;
1762 }
1763 }
1764 } while (retry);
1765 }
1766
1767 /*
1768 * Return values:
1769 * 0 - success
1770 * -EINVAL - backing format specified, but no file
1771 * -ENOSPC - can't update the backing file because no space is left in the
1772 * image file header
1773 * -ENOTSUP - format driver doesn't support changing the backing file
1774 */
1775 int bdrv_change_backing_file(BlockDriverState *bs,
1776 const char *backing_file, const char *backing_fmt)
1777 {
1778 BlockDriver *drv = bs->drv;
1779 int ret;
1780
1781 /* Backing file format doesn't make sense without a backing file */
1782 if (backing_fmt && !backing_file) {
1783 return -EINVAL;
1784 }
1785
1786 if (drv->bdrv_change_backing_file != NULL) {
1787 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1788 } else {
1789 ret = -ENOTSUP;
1790 }
1791
1792 if (ret == 0) {
1793 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
1794 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
1795 }
1796 return ret;
1797 }
1798
1799 /*
1800 * Finds the image layer in the chain that has 'bs' as its backing file.
1801 *
1802 * active is the current topmost image.
1803 *
1804 * Returns NULL if bs is not found in active's image chain,
1805 * or if active == bs.
1806 */
1807 BlockDriverState *bdrv_find_overlay(BlockDriverState *active,
1808 BlockDriverState *bs)
1809 {
1810 BlockDriverState *overlay = NULL;
1811 BlockDriverState *intermediate;
1812
1813 assert(active != NULL);
1814 assert(bs != NULL);
1815
1816 /* if bs is the same as active, then by definition it has no overlay
1817 */
1818 if (active == bs) {
1819 return NULL;
1820 }
1821
1822 intermediate = active;
1823 while (intermediate->backing_hd) {
1824 if (intermediate->backing_hd == bs) {
1825 overlay = intermediate;
1826 break;
1827 }
1828 intermediate = intermediate->backing_hd;
1829 }
1830
1831 return overlay;
1832 }
1833
1834 typedef struct BlkIntermediateStates {
1835 BlockDriverState *bs;
1836 QSIMPLEQ_ENTRY(BlkIntermediateStates) entry;
1837 } BlkIntermediateStates;
1838
1839
1840 /*
1841 * Drops images above 'base' up to and including 'top', and sets the image
1842 * above 'top' to have base as its backing file.
1843 *
1844 * Requires that the overlay to 'top' is opened r/w, so that the backing file
1845 * information in 'bs' can be properly updated.
1846 *
1847 * E.g., this will convert the following chain:
1848 * bottom <- base <- intermediate <- top <- active
1849 *
1850 * to
1851 *
1852 * bottom <- base <- active
1853 *
1854 * It is allowed for bottom==base, in which case it converts:
1855 *
1856 * base <- intermediate <- top <- active
1857 *
1858 * to
1859 *
1860 * base <- active
1861 *
1862 * Error conditions:
1863 * if active == top, that is considered an error
1864 *
1865 */
1866 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top,
1867 BlockDriverState *base)
1868 {
1869 BlockDriverState *intermediate;
1870 BlockDriverState *base_bs = NULL;
1871 BlockDriverState *new_top_bs = NULL;
1872 BlkIntermediateStates *intermediate_state, *next;
1873 int ret = -EIO;
1874
1875 QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete;
1876 QSIMPLEQ_INIT(&states_to_delete);
1877
1878 if (!top->drv || !base->drv) {
1879 goto exit;
1880 }
1881
1882 new_top_bs = bdrv_find_overlay(active, top);
1883
1884 if (new_top_bs == NULL) {
1885 /* we could not find the image above 'top', this is an error */
1886 goto exit;
1887 }
1888
1889 /* special case of new_top_bs->backing_hd already pointing to base - nothing
1890 * to do, no intermediate images */
1891 if (new_top_bs->backing_hd == base) {
1892 ret = 0;
1893 goto exit;
1894 }
1895
1896 intermediate = top;
1897
1898 /* now we will go down through the list, and add each BDS we find
1899 * into our deletion queue, until we hit the 'base'
1900 */
1901 while (intermediate) {
1902 intermediate_state = g_malloc0(sizeof(BlkIntermediateStates));
1903 intermediate_state->bs = intermediate;
1904 QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry);
1905
1906 if (intermediate->backing_hd == base) {
1907 base_bs = intermediate->backing_hd;
1908 break;
1909 }
1910 intermediate = intermediate->backing_hd;
1911 }
1912 if (base_bs == NULL) {
1913 /* something went wrong, we did not end at the base. safely
1914 * unravel everything, and exit with error */
1915 goto exit;
1916 }
1917
1918 /* success - we can delete the intermediate states, and link top->base */
1919 ret = bdrv_change_backing_file(new_top_bs, base_bs->filename,
1920 base_bs->drv ? base_bs->drv->format_name : "");
1921 if (ret) {
1922 goto exit;
1923 }
1924 new_top_bs->backing_hd = base_bs;
1925
1926
1927 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1928 /* so that bdrv_close() does not recursively close the chain */
1929 intermediate_state->bs->backing_hd = NULL;
1930 bdrv_delete(intermediate_state->bs);
1931 }
1932 ret = 0;
1933
1934 exit:
1935 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1936 g_free(intermediate_state);
1937 }
1938 return ret;
1939 }
1940
1941
1942 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1943 size_t size)
1944 {
1945 int64_t len;
1946
1947 if (!bdrv_is_inserted(bs))
1948 return -ENOMEDIUM;
1949
1950 if (bs->growable)
1951 return 0;
1952
1953 len = bdrv_getlength(bs);
1954
1955 if (offset < 0)
1956 return -EIO;
1957
1958 if ((offset > len) || (len - offset < size))
1959 return -EIO;
1960
1961 return 0;
1962 }
1963
1964 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1965 int nb_sectors)
1966 {
1967 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1968 nb_sectors * BDRV_SECTOR_SIZE);
1969 }
1970
1971 typedef struct RwCo {
1972 BlockDriverState *bs;
1973 int64_t sector_num;
1974 int nb_sectors;
1975 QEMUIOVector *qiov;
1976 bool is_write;
1977 int ret;
1978 } RwCo;
1979
1980 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1981 {
1982 RwCo *rwco = opaque;
1983
1984 if (!rwco->is_write) {
1985 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1986 rwco->nb_sectors, rwco->qiov, 0);
1987 } else {
1988 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1989 rwco->nb_sectors, rwco->qiov, 0);
1990 }
1991 }
1992
1993 /*
1994 * Process a synchronous request using coroutines
1995 */
1996 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1997 int nb_sectors, bool is_write)
1998 {
1999 QEMUIOVector qiov;
2000 struct iovec iov = {
2001 .iov_base = (void *)buf,
2002 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
2003 };
2004 Coroutine *co;
2005 RwCo rwco = {
2006 .bs = bs,
2007 .sector_num = sector_num,
2008 .nb_sectors = nb_sectors,
2009 .qiov = &qiov,
2010 .is_write = is_write,
2011 .ret = NOT_DONE,
2012 };
2013
2014 qemu_iovec_init_external(&qiov, &iov, 1);
2015
2016 /**
2017 * In sync call context, when the vcpu is blocked, this throttling timer
2018 * will not fire; so the I/O throttling function has to be disabled here
2019 * if it has been enabled.
2020 */
2021 if (bs->io_limits_enabled) {
2022 fprintf(stderr, "Disabling I/O throttling on '%s' due "
2023 "to synchronous I/O.\n", bdrv_get_device_name(bs));
2024 bdrv_io_limits_disable(bs);
2025 }
2026
2027 if (qemu_in_coroutine()) {
2028 /* Fast-path if already in coroutine context */
2029 bdrv_rw_co_entry(&rwco);
2030 } else {
2031 co = qemu_coroutine_create(bdrv_rw_co_entry);
2032 qemu_coroutine_enter(co, &rwco);
2033 while (rwco.ret == NOT_DONE) {
2034 qemu_aio_wait();
2035 }
2036 }
2037 return rwco.ret;
2038 }
2039
2040 /* return < 0 if error. See bdrv_write() for the return codes */
2041 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
2042 uint8_t *buf, int nb_sectors)
2043 {
2044 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
2045 }
2046
2047 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
2048 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
2049 uint8_t *buf, int nb_sectors)
2050 {
2051 bool enabled;
2052 int ret;
2053
2054 enabled = bs->io_limits_enabled;
2055 bs->io_limits_enabled = false;
2056 ret = bdrv_read(bs, 0, buf, 1);
2057 bs->io_limits_enabled = enabled;
2058 return ret;
2059 }
2060
2061 /* Return < 0 if error. Important errors are:
2062 -EIO generic I/O error (may happen for all errors)
2063 -ENOMEDIUM No media inserted.
2064 -EINVAL Invalid sector number or nb_sectors
2065 -EACCES Trying to write a read-only device
2066 */
2067 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
2068 const uint8_t *buf, int nb_sectors)
2069 {
2070 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
2071 }
2072
2073 int bdrv_pread(BlockDriverState *bs, int64_t offset,
2074 void *buf, int count1)
2075 {
2076 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2077 int len, nb_sectors, count;
2078 int64_t sector_num;
2079 int ret;
2080
2081 count = count1;
2082 /* first read to align to sector start */
2083 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2084 if (len > count)
2085 len = count;
2086 sector_num = offset >> BDRV_SECTOR_BITS;
2087 if (len > 0) {
2088 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2089 return ret;
2090 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
2091 count -= len;
2092 if (count == 0)
2093 return count1;
2094 sector_num++;
2095 buf += len;
2096 }
2097
2098 /* read the sectors "in place" */
2099 nb_sectors = count >> BDRV_SECTOR_BITS;
2100 if (nb_sectors > 0) {
2101 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
2102 return ret;
2103 sector_num += nb_sectors;
2104 len = nb_sectors << BDRV_SECTOR_BITS;
2105 buf += len;
2106 count -= len;
2107 }
2108
2109 /* add data from the last sector */
2110 if (count > 0) {
2111 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2112 return ret;
2113 memcpy(buf, tmp_buf, count);
2114 }
2115 return count1;
2116 }
2117
2118 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
2119 const void *buf, int count1)
2120 {
2121 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2122 int len, nb_sectors, count;
2123 int64_t sector_num;
2124 int ret;
2125
2126 count = count1;
2127 /* first write to align to sector start */
2128 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2129 if (len > count)
2130 len = count;
2131 sector_num = offset >> BDRV_SECTOR_BITS;
2132 if (len > 0) {
2133 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2134 return ret;
2135 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
2136 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2137 return ret;
2138 count -= len;
2139 if (count == 0)
2140 return count1;
2141 sector_num++;
2142 buf += len;
2143 }
2144
2145 /* write the sectors "in place" */
2146 nb_sectors = count >> BDRV_SECTOR_BITS;
2147 if (nb_sectors > 0) {
2148 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
2149 return ret;
2150 sector_num += nb_sectors;
2151 len = nb_sectors << BDRV_SECTOR_BITS;
2152 buf += len;
2153 count -= len;
2154 }
2155
2156 /* add data from the last sector */
2157 if (count > 0) {
2158 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2159 return ret;
2160 memcpy(tmp_buf, buf, count);
2161 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2162 return ret;
2163 }
2164 return count1;
2165 }
2166
2167 /*
2168 * Writes to the file and ensures that no writes are reordered across this
2169 * request (acts as a barrier)
2170 *
2171 * Returns 0 on success, -errno in error cases.
2172 */
2173 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
2174 const void *buf, int count)
2175 {
2176 int ret;
2177
2178 ret = bdrv_pwrite(bs, offset, buf, count);
2179 if (ret < 0) {
2180 return ret;
2181 }
2182
2183 /* No flush needed for cache modes that already do it */
2184 if (bs->enable_write_cache) {
2185 bdrv_flush(bs);
2186 }
2187
2188 return 0;
2189 }
2190
2191 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
2192 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2193 {
2194 /* Perform I/O through a temporary buffer so that users who scribble over
2195 * their read buffer while the operation is in progress do not end up
2196 * modifying the image file. This is critical for zero-copy guest I/O
2197 * where anything might happen inside guest memory.
2198 */
2199 void *bounce_buffer;
2200
2201 BlockDriver *drv = bs->drv;
2202 struct iovec iov;
2203 QEMUIOVector bounce_qiov;
2204 int64_t cluster_sector_num;
2205 int cluster_nb_sectors;
2206 size_t skip_bytes;
2207 int ret;
2208
2209 /* Cover entire cluster so no additional backing file I/O is required when
2210 * allocating cluster in the image file.
2211 */
2212 bdrv_round_to_clusters(bs, sector_num, nb_sectors,
2213 &cluster_sector_num, &cluster_nb_sectors);
2214
2215 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
2216 cluster_sector_num, cluster_nb_sectors);
2217
2218 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
2219 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
2220 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
2221
2222 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
2223 &bounce_qiov);
2224 if (ret < 0) {
2225 goto err;
2226 }
2227
2228 if (drv->bdrv_co_write_zeroes &&
2229 buffer_is_zero(bounce_buffer, iov.iov_len)) {
2230 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
2231 cluster_nb_sectors);
2232 } else {
2233 /* This does not change the data on the disk, it is not necessary
2234 * to flush even in cache=writethrough mode.
2235 */
2236 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
2237 &bounce_qiov);
2238 }
2239
2240 if (ret < 0) {
2241 /* It might be okay to ignore write errors for guest requests. If this
2242 * is a deliberate copy-on-read then we don't want to ignore the error.
2243 * Simply report it in all cases.
2244 */
2245 goto err;
2246 }
2247
2248 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
2249 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
2250 nb_sectors * BDRV_SECTOR_SIZE);
2251
2252 err:
2253 qemu_vfree(bounce_buffer);
2254 return ret;
2255 }
2256
2257 /*
2258 * Handle a read request in coroutine context
2259 */
2260 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
2261 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2262 BdrvRequestFlags flags)
2263 {
2264 BlockDriver *drv = bs->drv;
2265 BdrvTrackedRequest req;
2266 int ret;
2267
2268 if (!drv) {
2269 return -ENOMEDIUM;
2270 }
2271 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2272 return -EIO;
2273 }
2274
2275 /* throttling disk read I/O */
2276 if (bs->io_limits_enabled) {
2277 bdrv_io_limits_intercept(bs, false, nb_sectors);
2278 }
2279
2280 if (bs->copy_on_read) {
2281 flags |= BDRV_REQ_COPY_ON_READ;
2282 }
2283 if (flags & BDRV_REQ_COPY_ON_READ) {
2284 bs->copy_on_read_in_flight++;
2285 }
2286
2287 int job_cluster_size = bs->job && bs->job->cluster_size ?
2288 bs->job->cluster_size : 0;
2289
2290 if (bs->copy_on_read_in_flight || job_cluster_size) {
2291 wait_for_overlapping_requests(bs, sector_num, nb_sectors,
2292 job_cluster_size);
2293 }
2294
2295 tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
2296
2297 if (bs->job && bs->job->job_type->before_read) {
2298 ret = bs->job->job_type->before_read(bs, sector_num, nb_sectors, qiov);
2299 if ((ret < 0) || (flags & BDRV_REQ_BACKUP_ONLY)) {
2300 /* Note: We do not return any data to the caller */
2301 goto out;
2302 }
2303 }
2304
2305 if (flags & BDRV_REQ_COPY_ON_READ) {
2306 int pnum;
2307
2308 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
2309 if (ret < 0) {
2310 goto out;
2311 }
2312
2313 if (!ret || pnum != nb_sectors) {
2314 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
2315 goto out;
2316 }
2317 }
2318
2319 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
2320
2321 out:
2322 tracked_request_end(&req);
2323
2324 if (flags & BDRV_REQ_COPY_ON_READ) {
2325 bs->copy_on_read_in_flight--;
2326 }
2327
2328 return ret;
2329 }
2330
2331 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
2332 int nb_sectors, QEMUIOVector *qiov)
2333 {
2334 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
2335
2336 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
2337 }
2338
2339 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
2340 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2341 {
2342 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
2343
2344 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
2345 BDRV_REQ_COPY_ON_READ);
2346 }
2347
2348 int coroutine_fn bdrv_co_backup(BlockDriverState *bs,
2349 int64_t sector_num, int nb_sectors)
2350 {
2351 if (!bs->job) {
2352 return -ENOTSUP;
2353 }
2354
2355 return bdrv_co_do_readv(bs, sector_num, nb_sectors, NULL,
2356 BDRV_REQ_BACKUP_ONLY);
2357 }
2358
2359 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
2360 int64_t sector_num, int nb_sectors)
2361 {
2362 BlockDriver *drv = bs->drv;
2363 QEMUIOVector qiov;
2364 struct iovec iov;
2365 int ret;
2366
2367 /* TODO Emulate only part of misaligned requests instead of letting block
2368 * drivers return -ENOTSUP and emulate everything */
2369
2370 /* First try the efficient write zeroes operation */
2371 if (drv->bdrv_co_write_zeroes) {
2372 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2373 if (ret != -ENOTSUP) {
2374 return ret;
2375 }
2376 }
2377
2378 /* Fall back to bounce buffer if write zeroes is unsupported */
2379 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE;
2380 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
2381 memset(iov.iov_base, 0, iov.iov_len);
2382 qemu_iovec_init_external(&qiov, &iov, 1);
2383
2384 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
2385
2386 qemu_vfree(iov.iov_base);
2387 return ret;
2388 }
2389
2390 /*
2391 * Handle a write request in coroutine context
2392 */
2393 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
2394 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2395 BdrvRequestFlags flags)
2396 {
2397 BlockDriver *drv = bs->drv;
2398 BdrvTrackedRequest req;
2399 int ret;
2400
2401 if (!bs->drv) {
2402 return -ENOMEDIUM;
2403 }
2404 if (bs->read_only) {
2405 return -EACCES;
2406 }
2407 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2408 return -EIO;
2409 }
2410
2411 /* throttling disk write I/O */
2412 if (bs->io_limits_enabled) {
2413 bdrv_io_limits_intercept(bs, true, nb_sectors);
2414 }
2415
2416 int job_cluster_size = bs->job && bs->job->cluster_size ?
2417 bs->job->cluster_size : 0;
2418
2419 if (bs->copy_on_read_in_flight || job_cluster_size) {
2420 wait_for_overlapping_requests(bs, sector_num, nb_sectors,
2421 job_cluster_size);
2422 }
2423
2424 tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
2425
2426 if (bs->job && bs->job->job_type->before_write) {
2427 ret = bs->job->job_type->before_write(bs, sector_num, nb_sectors, qiov);
2428 if (ret < 0) {
2429 goto out;
2430 }
2431 }
2432
2433 if (flags & BDRV_REQ_ZERO_WRITE) {
2434 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
2435 } else {
2436 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
2437 }
2438
2439 if (ret == 0 && !bs->enable_write_cache) {
2440 ret = bdrv_co_flush(bs);
2441 }
2442
2443 if (bs->dirty_bitmap) {
2444 bdrv_set_dirty(bs, sector_num, nb_sectors);
2445 }
2446
2447 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
2448 bs->wr_highest_sector = sector_num + nb_sectors - 1;
2449 }
2450
2451 out:
2452 tracked_request_end(&req);
2453
2454 return ret;
2455 }
2456
2457 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
2458 int nb_sectors, QEMUIOVector *qiov)
2459 {
2460 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
2461
2462 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
2463 }
2464
2465 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
2466 int64_t sector_num, int nb_sectors)
2467 {
2468 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2469
2470 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
2471 BDRV_REQ_ZERO_WRITE);
2472 }
2473
2474 /**
2475 * Truncate file to 'offset' bytes (needed only for file protocols)
2476 */
2477 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
2478 {
2479 BlockDriver *drv = bs->drv;
2480 int ret;
2481 if (!drv)
2482 return -ENOMEDIUM;
2483 if (!drv->bdrv_truncate)
2484 return -ENOTSUP;
2485 if (bs->read_only)
2486 return -EACCES;
2487 if (bdrv_in_use(bs))
2488 return -EBUSY;
2489 ret = drv->bdrv_truncate(bs, offset);
2490 if (ret == 0) {
2491 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
2492 bdrv_dev_resize_cb(bs);
2493 }
2494 return ret;
2495 }
2496
2497 /**
2498 * Length of a allocated file in bytes. Sparse files are counted by actual
2499 * allocated space. Return < 0 if error or unknown.
2500 */
2501 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
2502 {
2503 BlockDriver *drv = bs->drv;
2504 if (!drv) {
2505 return -ENOMEDIUM;
2506 }
2507 if (drv->bdrv_get_allocated_file_size) {
2508 return drv->bdrv_get_allocated_file_size(bs);
2509 }
2510 if (bs->file) {
2511 return bdrv_get_allocated_file_size(bs->file);
2512 }
2513 return -ENOTSUP;
2514 }
2515
2516 /**
2517 * Length of a file in bytes. Return < 0 if error or unknown.
2518 */
2519 int64_t bdrv_getlength(BlockDriverState *bs)
2520 {
2521 BlockDriver *drv = bs->drv;
2522 if (!drv)
2523 return -ENOMEDIUM;
2524
2525 if (bs->growable || bdrv_dev_has_removable_media(bs)) {
2526 if (drv->bdrv_getlength) {
2527 return drv->bdrv_getlength(bs);
2528 }
2529 }
2530 return bs->total_sectors * BDRV_SECTOR_SIZE;
2531 }
2532
2533 /* return 0 as number of sectors if no device present or error */
2534 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
2535 {
2536 int64_t length;
2537 length = bdrv_getlength(bs);
2538 if (length < 0)
2539 length = 0;
2540 else
2541 length = length >> BDRV_SECTOR_BITS;
2542 *nb_sectors_ptr = length;
2543 }
2544
2545 /* throttling disk io limits */
2546 void bdrv_set_io_limits(BlockDriverState *bs,
2547 BlockIOLimit *io_limits)
2548 {
2549 bs->io_limits = *io_limits;
2550 bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2551 }
2552
2553 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error,
2554 BlockdevOnError on_write_error)
2555 {
2556 bs->on_read_error = on_read_error;
2557 bs->on_write_error = on_write_error;
2558 }
2559
2560 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read)
2561 {
2562 return is_read ? bs->on_read_error : bs->on_write_error;
2563 }
2564
2565 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error)
2566 {
2567 BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error;
2568
2569 switch (on_err) {
2570 case BLOCKDEV_ON_ERROR_ENOSPC:
2571 return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT;
2572 case BLOCKDEV_ON_ERROR_STOP:
2573 return BDRV_ACTION_STOP;
2574 case BLOCKDEV_ON_ERROR_REPORT:
2575 return BDRV_ACTION_REPORT;
2576 case BLOCKDEV_ON_ERROR_IGNORE:
2577 return BDRV_ACTION_IGNORE;
2578 default:
2579 abort();
2580 }
2581 }
2582
2583 /* This is done by device models because, while the block layer knows
2584 * about the error, it does not know whether an operation comes from
2585 * the device or the block layer (from a job, for example).
2586 */
2587 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action,
2588 bool is_read, int error)
2589 {
2590 assert(error >= 0);
2591 bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read);
2592 if (action == BDRV_ACTION_STOP) {
2593 vm_stop(RUN_STATE_IO_ERROR);
2594 bdrv_iostatus_set_err(bs, error);
2595 }
2596 }
2597
2598 int bdrv_is_read_only(BlockDriverState *bs)
2599 {
2600 return bs->read_only;
2601 }
2602
2603 int bdrv_is_sg(BlockDriverState *bs)
2604 {
2605 return bs->sg;
2606 }
2607
2608 int bdrv_enable_write_cache(BlockDriverState *bs)
2609 {
2610 return bs->enable_write_cache;
2611 }
2612
2613 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce)
2614 {
2615 bs->enable_write_cache = wce;
2616
2617 /* so a reopen() will preserve wce */
2618 if (wce) {
2619 bs->open_flags |= BDRV_O_CACHE_WB;
2620 } else {
2621 bs->open_flags &= ~BDRV_O_CACHE_WB;
2622 }
2623 }
2624
2625 int bdrv_is_encrypted(BlockDriverState *bs)
2626 {
2627 if (bs->backing_hd && bs->backing_hd->encrypted)
2628 return 1;
2629 return bs->encrypted;
2630 }
2631
2632 int bdrv_key_required(BlockDriverState *bs)
2633 {
2634 BlockDriverState *backing_hd = bs->backing_hd;
2635
2636 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2637 return 1;
2638 return (bs->encrypted && !bs->valid_key);
2639 }
2640
2641 int bdrv_set_key(BlockDriverState *bs, const char *key)
2642 {
2643 int ret;
2644 if (bs->backing_hd && bs->backing_hd->encrypted) {
2645 ret = bdrv_set_key(bs->backing_hd, key);
2646 if (ret < 0)
2647 return ret;
2648 if (!bs->encrypted)
2649 return 0;
2650 }
2651 if (!bs->encrypted) {
2652 return -EINVAL;
2653 } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2654 return -ENOMEDIUM;
2655 }
2656 ret = bs->drv->bdrv_set_key(bs, key);
2657 if (ret < 0) {
2658 bs->valid_key = 0;
2659 } else if (!bs->valid_key) {
2660 bs->valid_key = 1;
2661 /* call the change callback now, we skipped it on open */
2662 bdrv_dev_change_media_cb(bs, true);
2663 }
2664 return ret;
2665 }
2666
2667 const char *bdrv_get_format_name(BlockDriverState *bs)
2668 {
2669 return bs->drv ? bs->drv->format_name : NULL;
2670 }
2671
2672 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2673 void *opaque)
2674 {
2675 BlockDriver *drv;
2676
2677 QLIST_FOREACH(drv, &bdrv_drivers, list) {
2678 it(opaque, drv->format_name);
2679 }
2680 }
2681
2682 BlockDriverState *bdrv_find(const char *name)
2683 {
2684 BlockDriverState *bs;
2685
2686 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2687 if (!strcmp(name, bs->device_name)) {
2688 return bs;
2689 }
2690 }
2691 return NULL;
2692 }
2693
2694 BlockDriverState *bdrv_next(BlockDriverState *bs)
2695 {
2696 if (!bs) {
2697 return QTAILQ_FIRST(&bdrv_states);
2698 }
2699 return QTAILQ_NEXT(bs, list);
2700 }
2701
2702 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2703 {
2704 BlockDriverState *bs;
2705
2706 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2707 it(opaque, bs);
2708 }
2709 }
2710
2711 const char *bdrv_get_device_name(BlockDriverState *bs)
2712 {
2713 return bs->device_name;
2714 }
2715
2716 int bdrv_get_flags(BlockDriverState *bs)
2717 {
2718 return bs->open_flags;
2719 }
2720
2721 void bdrv_flush_all(void)
2722 {
2723 BlockDriverState *bs;
2724
2725 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2726 bdrv_flush(bs);
2727 }
2728 }
2729
2730 int bdrv_has_zero_init(BlockDriverState *bs)
2731 {
2732 assert(bs->drv);
2733
2734 if (bs->drv->bdrv_has_zero_init) {
2735 return bs->drv->bdrv_has_zero_init(bs);
2736 }
2737
2738 return 1;
2739 }
2740
2741 typedef struct BdrvCoIsAllocatedData {
2742 BlockDriverState *bs;
2743 int64_t sector_num;
2744 int nb_sectors;
2745 int *pnum;
2746 int ret;
2747 bool done;
2748 } BdrvCoIsAllocatedData;
2749
2750 /*
2751 * Returns true iff the specified sector is present in the disk image. Drivers
2752 * not implementing the functionality are assumed to not support backing files,
2753 * hence all their sectors are reported as allocated.
2754 *
2755 * If 'sector_num' is beyond the end of the disk image the return value is 0
2756 * and 'pnum' is set to 0.
2757 *
2758 * 'pnum' is set to the number of sectors (including and immediately following
2759 * the specified sector) that are known to be in the same
2760 * allocated/unallocated state.
2761 *
2762 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
2763 * beyond the end of the disk image it will be clamped.
2764 */
2765 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2766 int nb_sectors, int *pnum)
2767 {
2768 int64_t n;
2769
2770 if (sector_num >= bs->total_sectors) {
2771 *pnum = 0;
2772 return 0;
2773 }
2774
2775 n = bs->total_sectors - sector_num;
2776 if (n < nb_sectors) {
2777 nb_sectors = n;
2778 }
2779
2780 if (!bs->drv->bdrv_co_is_allocated) {
2781 *pnum = nb_sectors;
2782 return 1;
2783 }
2784
2785 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2786 }
2787
2788 /* Coroutine wrapper for bdrv_is_allocated() */
2789 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2790 {
2791 BdrvCoIsAllocatedData *data = opaque;
2792 BlockDriverState *bs = data->bs;
2793
2794 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2795 data->pnum);
2796 data->done = true;
2797 }
2798
2799 /*
2800 * Synchronous wrapper around bdrv_co_is_allocated().
2801 *
2802 * See bdrv_co_is_allocated() for details.
2803 */
2804 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2805 int *pnum)
2806 {
2807 Coroutine *co;
2808 BdrvCoIsAllocatedData data = {
2809 .bs = bs,
2810 .sector_num = sector_num,
2811 .nb_sectors = nb_sectors,
2812 .pnum = pnum,
2813 .done = false,
2814 };
2815
2816 co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2817 qemu_coroutine_enter(co, &data);
2818 while (!data.done) {
2819 qemu_aio_wait();
2820 }
2821 return data.ret;
2822 }
2823
2824 /*
2825 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2826 *
2827 * Return true if the given sector is allocated in any image between
2828 * BASE and TOP (inclusive). BASE can be NULL to check if the given
2829 * sector is allocated in any image of the chain. Return false otherwise.
2830 *
2831 * 'pnum' is set to the number of sectors (including and immediately following
2832 * the specified sector) that are known to be in the same
2833 * allocated/unallocated state.
2834 *
2835 */
2836 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2837 BlockDriverState *base,
2838 int64_t sector_num,
2839 int nb_sectors, int *pnum)
2840 {
2841 BlockDriverState *intermediate;
2842 int ret, n = nb_sectors;
2843
2844 intermediate = top;
2845 while (intermediate && intermediate != base) {
2846 int pnum_inter;
2847 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors,
2848 &pnum_inter);
2849 if (ret < 0) {
2850 return ret;
2851 } else if (ret) {
2852 *pnum = pnum_inter;
2853 return 1;
2854 }
2855
2856 /*
2857 * [sector_num, nb_sectors] is unallocated on top but intermediate
2858 * might have
2859 *
2860 * [sector_num+x, nr_sectors] allocated.
2861 */
2862 if (n > pnum_inter &&
2863 (intermediate == top ||
2864 sector_num + pnum_inter < intermediate->total_sectors)) {
2865 n = pnum_inter;
2866 }
2867
2868 intermediate = intermediate->backing_hd;
2869 }
2870
2871 *pnum = n;
2872 return 0;
2873 }
2874
2875 BlockInfo *bdrv_query_info(BlockDriverState *bs)
2876 {
2877 BlockInfo *info = g_malloc0(sizeof(*info));
2878 info->device = g_strdup(bs->device_name);
2879 info->type = g_strdup("unknown");
2880 info->locked = bdrv_dev_is_medium_locked(bs);
2881 info->removable = bdrv_dev_has_removable_media(bs);
2882
2883 if (bdrv_dev_has_removable_media(bs)) {
2884 info->has_tray_open = true;
2885 info->tray_open = bdrv_dev_is_tray_open(bs);
2886 }
2887
2888 if (bdrv_iostatus_is_enabled(bs)) {
2889 info->has_io_status = true;
2890 info->io_status = bs->iostatus;
2891 }
2892
2893 if (bs->dirty_bitmap) {
2894 info->has_dirty = true;
2895 info->dirty = g_malloc0(sizeof(*info->dirty));
2896 info->dirty->count = bdrv_get_dirty_count(bs) * BDRV_SECTOR_SIZE;
2897 info->dirty->granularity =
2898 ((int64_t) BDRV_SECTOR_SIZE << hbitmap_granularity(bs->dirty_bitmap));
2899 }
2900
2901 if (bs->drv) {
2902 info->has_inserted = true;
2903 info->inserted = g_malloc0(sizeof(*info->inserted));
2904 info->inserted->file = g_strdup(bs->filename);
2905 info->inserted->ro = bs->read_only;
2906 info->inserted->drv = g_strdup(bs->drv->format_name);
2907 info->inserted->encrypted = bs->encrypted;
2908 info->inserted->encryption_key_missing = bdrv_key_required(bs);
2909
2910 if (bs->backing_file[0]) {
2911 info->inserted->has_backing_file = true;
2912 info->inserted->backing_file = g_strdup(bs->backing_file);
2913 }
2914
2915 info->inserted->backing_file_depth = bdrv_get_backing_file_depth(bs);
2916
2917 if (bs->io_limits_enabled) {
2918 info->inserted->bps =
2919 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2920 info->inserted->bps_rd =
2921 bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2922 info->inserted->bps_wr =
2923 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2924 info->inserted->iops =
2925 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2926 info->inserted->iops_rd =
2927 bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2928 info->inserted->iops_wr =
2929 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2930 }
2931 }
2932 return info;
2933 }
2934
2935 BlockInfoList *qmp_query_block(Error **errp)
2936 {
2937 BlockInfoList *head = NULL, **p_next = &head;
2938 BlockDriverState *bs;
2939
2940 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2941 BlockInfoList *info = g_malloc0(sizeof(*info));
2942 info->value = bdrv_query_info(bs);
2943
2944 *p_next = info;
2945 p_next = &info->next;
2946 }
2947
2948 return head;
2949 }
2950
2951 BlockStats *bdrv_query_stats(const BlockDriverState *bs)
2952 {
2953 BlockStats *s;
2954
2955 s = g_malloc0(sizeof(*s));
2956
2957 if (bs->device_name[0]) {
2958 s->has_device = true;
2959 s->device = g_strdup(bs->device_name);
2960 }
2961
2962 s->stats = g_malloc0(sizeof(*s->stats));
2963 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2964 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2965 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2966 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2967 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2968 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2969 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2970 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2971 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2972
2973 if (bs->file) {
2974 s->has_parent = true;
2975 s->parent = bdrv_query_stats(bs->file);
2976 }
2977
2978 return s;
2979 }
2980
2981 BlockStatsList *qmp_query_blockstats(Error **errp)
2982 {
2983 BlockStatsList *head = NULL, **p_next = &head;
2984 BlockDriverState *bs;
2985
2986 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2987 BlockStatsList *info = g_malloc0(sizeof(*info));
2988 info->value = bdrv_query_stats(bs);
2989
2990 *p_next = info;
2991 p_next = &info->next;
2992 }
2993
2994 return head;
2995 }
2996
2997 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
2998 {
2999 if (bs->backing_hd && bs->backing_hd->encrypted)
3000 return bs->backing_file;
3001 else if (bs->encrypted)
3002 return bs->filename;
3003 else
3004 return NULL;
3005 }
3006
3007 void bdrv_get_backing_filename(BlockDriverState *bs,
3008 char *filename, int filename_size)
3009 {
3010 pstrcpy(filename, filename_size, bs->backing_file);
3011 }
3012
3013 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
3014 const uint8_t *buf, int nb_sectors)
3015 {
3016 BlockDriver *drv = bs->drv;
3017 if (!drv)
3018 return -ENOMEDIUM;
3019 if (!drv->bdrv_write_compressed)
3020 return -ENOTSUP;
3021 if (bdrv_check_request(bs, sector_num, nb_sectors))
3022 return -EIO;
3023
3024 assert(!bs->dirty_bitmap);
3025
3026 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
3027 }
3028
3029 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
3030 {
3031 BlockDriver *drv = bs->drv;
3032 if (!drv)
3033 return -ENOMEDIUM;
3034 if (!drv->bdrv_get_info)
3035 return -ENOTSUP;
3036 memset(bdi, 0, sizeof(*bdi));
3037 return drv->bdrv_get_info(bs, bdi);
3038 }
3039
3040 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
3041 int64_t pos, int size)
3042 {
3043 BlockDriver *drv = bs->drv;
3044 if (!drv)
3045 return -ENOMEDIUM;
3046 if (drv->bdrv_save_vmstate)
3047 return drv->bdrv_save_vmstate(bs, buf, pos, size);
3048 if (bs->file)
3049 return bdrv_save_vmstate(bs->file, buf, pos, size);
3050 return -ENOTSUP;
3051 }
3052
3053 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
3054 int64_t pos, int size)
3055 {
3056 BlockDriver *drv = bs->drv;
3057 if (!drv)
3058 return -ENOMEDIUM;
3059 if (drv->bdrv_load_vmstate)
3060 return drv->bdrv_load_vmstate(bs, buf, pos, size);
3061 if (bs->file)
3062 return bdrv_load_vmstate(bs->file, buf, pos, size);
3063 return -ENOTSUP;
3064 }
3065
3066 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
3067 {
3068 BlockDriver *drv = bs->drv;
3069
3070 if (!drv || !drv->bdrv_debug_event) {
3071 return;
3072 }
3073
3074 drv->bdrv_debug_event(bs, event);
3075 }
3076
3077 int bdrv_debug_breakpoint(BlockDriverState *bs, const char *event,
3078 const char *tag)
3079 {
3080 while (bs && bs->drv && !bs->drv->bdrv_debug_breakpoint) {
3081 bs = bs->file;
3082 }
3083
3084 if (bs && bs->drv && bs->drv->bdrv_debug_breakpoint) {
3085 return bs->drv->bdrv_debug_breakpoint(bs, event, tag);
3086 }
3087
3088 return -ENOTSUP;
3089 }
3090
3091 int bdrv_debug_resume(BlockDriverState *bs, const char *tag)
3092 {
3093 while (bs && bs->drv && !bs->drv->bdrv_debug_resume) {
3094 bs = bs->file;
3095 }
3096
3097 if (bs && bs->drv && bs->drv->bdrv_debug_resume) {
3098 return bs->drv->bdrv_debug_resume(bs, tag);
3099 }
3100
3101 return -ENOTSUP;
3102 }
3103
3104 bool bdrv_debug_is_suspended(BlockDriverState *bs, const char *tag)
3105 {
3106 while (bs && bs->drv && !bs->drv->bdrv_debug_is_suspended) {
3107 bs = bs->file;
3108 }
3109
3110 if (bs && bs->drv && bs->drv->bdrv_debug_is_suspended) {
3111 return bs->drv->bdrv_debug_is_suspended(bs, tag);
3112 }
3113
3114 return false;
3115 }
3116
3117 /**************************************************************/
3118 /* handling of snapshots */
3119
3120 int bdrv_can_snapshot(BlockDriverState *bs)
3121 {
3122 BlockDriver *drv = bs->drv;
3123 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3124 return 0;
3125 }
3126
3127 if (!drv->bdrv_snapshot_create) {
3128 if (bs->file != NULL) {
3129 return bdrv_can_snapshot(bs->file);
3130 }
3131 return 0;
3132 }
3133
3134 return 1;
3135 }
3136
3137 int bdrv_is_snapshot(BlockDriverState *bs)
3138 {
3139 return !!(bs->open_flags & BDRV_O_SNAPSHOT);
3140 }
3141
3142 BlockDriverState *bdrv_snapshots(void)
3143 {
3144 BlockDriverState *bs;
3145
3146 if (bs_snapshots) {
3147 return bs_snapshots;
3148 }
3149
3150 bs = NULL;
3151 while ((bs = bdrv_next(bs))) {
3152 if (bdrv_can_snapshot(bs)) {
3153 bs_snapshots = bs;
3154 return bs;
3155 }
3156 }
3157 return NULL;
3158 }
3159
3160 int bdrv_snapshot_create(BlockDriverState *bs,
3161 QEMUSnapshotInfo *sn_info)
3162 {
3163 BlockDriver *drv = bs->drv;
3164 if (!drv)
3165 return -ENOMEDIUM;
3166 if (drv->bdrv_snapshot_create)
3167 return drv->bdrv_snapshot_create(bs, sn_info);
3168 if (bs->file)
3169 return bdrv_snapshot_create(bs->file, sn_info);
3170 return -ENOTSUP;
3171 }
3172
3173 int bdrv_snapshot_goto(BlockDriverState *bs,
3174 const char *snapshot_id)
3175 {
3176 BlockDriver *drv = bs->drv;
3177 int ret, open_ret;
3178
3179 if (!drv)
3180 return -ENOMEDIUM;
3181 if (drv->bdrv_snapshot_goto)
3182 return drv->bdrv_snapshot_goto(bs, snapshot_id);
3183
3184 if (bs->file) {
3185 drv->bdrv_close(bs);
3186 ret = bdrv_snapshot_goto(bs->file, snapshot_id);
3187 open_ret = drv->bdrv_open(bs, bs->open_flags);
3188 if (open_ret < 0) {
3189 bdrv_delete(bs->file);
3190 bs->drv = NULL;
3191 return open_ret;
3192 }
3193 return ret;
3194 }
3195
3196 return -ENOTSUP;
3197 }
3198
3199 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
3200 {
3201 BlockDriver *drv = bs->drv;
3202 if (!drv)
3203 return -ENOMEDIUM;
3204 if (drv->bdrv_snapshot_delete)
3205 return drv->bdrv_snapshot_delete(bs, snapshot_id);
3206 if (bs->file)
3207 return bdrv_snapshot_delete(bs->file, snapshot_id);
3208 return -ENOTSUP;
3209 }
3210
3211 int bdrv_snapshot_list(BlockDriverState *bs,
3212 QEMUSnapshotInfo **psn_info)
3213 {
3214 BlockDriver *drv = bs->drv;
3215 if (!drv)
3216 return -ENOMEDIUM;
3217 if (drv->bdrv_snapshot_list)
3218 return drv->bdrv_snapshot_list(bs, psn_info);
3219 if (bs->file)
3220 return bdrv_snapshot_list(bs->file, psn_info);
3221 return -ENOTSUP;
3222 }
3223
3224 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
3225 const char *snapshot_name)
3226 {
3227 BlockDriver *drv = bs->drv;
3228 if (!drv) {
3229 return -ENOMEDIUM;
3230 }
3231 if (!bs->read_only) {
3232 return -EINVAL;
3233 }
3234 if (drv->bdrv_snapshot_load_tmp) {
3235 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
3236 }
3237 return -ENOTSUP;
3238 }
3239
3240 /* backing_file can either be relative, or absolute, or a protocol. If it is
3241 * relative, it must be relative to the chain. So, passing in bs->filename
3242 * from a BDS as backing_file should not be done, as that may be relative to
3243 * the CWD rather than the chain. */
3244 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
3245 const char *backing_file)
3246 {
3247 char *filename_full = NULL;
3248 char *backing_file_full = NULL;
3249 char *filename_tmp = NULL;
3250 int is_protocol = 0;
3251 BlockDriverState *curr_bs = NULL;
3252 BlockDriverState *retval = NULL;
3253
3254 if (!bs || !bs->drv || !backing_file) {
3255 return NULL;
3256 }
3257
3258 filename_full = g_malloc(PATH_MAX);
3259 backing_file_full = g_malloc(PATH_MAX);
3260 filename_tmp = g_malloc(PATH_MAX);
3261
3262 is_protocol = path_has_protocol(backing_file);
3263
3264 for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) {
3265
3266 /* If either of the filename paths is actually a protocol, then
3267 * compare unmodified paths; otherwise make paths relative */
3268 if (is_protocol || path_has_protocol(curr_bs->backing_file)) {
3269 if (strcmp(backing_file, curr_bs->backing_file) == 0) {
3270 retval = curr_bs->backing_hd;
3271 break;
3272 }
3273 } else {
3274 /* If not an absolute filename path, make it relative to the current
3275 * image's filename path */
3276 path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3277 backing_file);
3278
3279 /* We are going to compare absolute pathnames */
3280 if (!realpath(filename_tmp, filename_full)) {
3281 continue;
3282 }
3283
3284 /* We need to make sure the backing filename we are comparing against
3285 * is relative to the current image filename (or absolute) */
3286 path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3287 curr_bs->backing_file);
3288
3289 if (!realpath(filename_tmp, backing_file_full)) {
3290 continue;
3291 }
3292
3293 if (strcmp(backing_file_full, filename_full) == 0) {
3294 retval = curr_bs->backing_hd;
3295 break;
3296 }
3297 }
3298 }
3299
3300 g_free(filename_full);
3301 g_free(backing_file_full);
3302 g_free(filename_tmp);
3303 return retval;
3304 }
3305
3306 int bdrv_get_backing_file_depth(BlockDriverState *bs)
3307 {
3308 if (!bs->drv) {
3309 return 0;
3310 }
3311
3312 if (!bs->backing_hd) {
3313 return 0;
3314 }
3315
3316 return 1 + bdrv_get_backing_file_depth(bs->backing_hd);
3317 }
3318
3319 BlockDriverState *bdrv_find_base(BlockDriverState *bs)
3320 {
3321 BlockDriverState *curr_bs = NULL;
3322
3323 if (!bs) {
3324 return NULL;
3325 }
3326
3327 curr_bs = bs;
3328
3329 while (curr_bs->backing_hd) {
3330 curr_bs = curr_bs->backing_hd;
3331 }
3332 return curr_bs;
3333 }
3334
3335 #define NB_SUFFIXES 4
3336
3337 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
3338 {
3339 static const char suffixes[NB_SUFFIXES] = "KMGT";
3340 int64_t base;
3341 int i;
3342
3343 if (size <= 999) {
3344 snprintf(buf, buf_size, "%" PRId64, size);
3345 } else {
3346 base = 1024;
3347 for(i = 0; i < NB_SUFFIXES; i++) {
3348 if (size < (10 * base)) {
3349 snprintf(buf, buf_size, "%0.1f%c",
3350 (double)size / base,
3351 suffixes[i]);
3352 break;
3353 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
3354 snprintf(buf, buf_size, "%" PRId64 "%c",
3355 ((size + (base >> 1)) / base),
3356 suffixes[i]);
3357 break;
3358 }
3359 base = base * 1024;
3360 }
3361 }
3362 return buf;
3363 }
3364
3365 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
3366 {
3367 char buf1[128], date_buf[128], clock_buf[128];
3368 struct tm tm;
3369 time_t ti;
3370 int64_t secs;
3371
3372 if (!sn) {
3373 snprintf(buf, buf_size,
3374 "%-10s%-20s%7s%20s%15s",
3375 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
3376 } else {
3377 ti = sn->date_sec;
3378 localtime_r(&ti, &tm);
3379 strftime(date_buf, sizeof(date_buf),
3380 "%Y-%m-%d %H:%M:%S", &tm);
3381 secs = sn->vm_clock_nsec / 1000000000;
3382 snprintf(clock_buf, sizeof(clock_buf),
3383 "%02d:%02d:%02d.%03d",
3384 (int)(secs / 3600),
3385 (int)((secs / 60) % 60),
3386 (int)(secs % 60),
3387 (int)((sn->vm_clock_nsec / 1000000) % 1000));
3388 snprintf(buf, buf_size,
3389 "%-10s%-20s%7s%20s%15s",
3390 sn->id_str, sn->name,
3391 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
3392 date_buf,
3393 clock_buf);
3394 }
3395 return buf;
3396 }
3397
3398 /**************************************************************/
3399 /* async I/Os */
3400
3401 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
3402 QEMUIOVector *qiov, int nb_sectors,
3403 BlockDriverCompletionFunc *cb, void *opaque)
3404 {
3405 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
3406
3407 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3408 cb, opaque, false);
3409 }
3410
3411 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
3412 QEMUIOVector *qiov, int nb_sectors,
3413 BlockDriverCompletionFunc *cb, void *opaque)
3414 {
3415 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
3416
3417 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3418 cb, opaque, true);
3419 }
3420
3421
3422 typedef struct MultiwriteCB {
3423 int error;
3424 int num_requests;
3425 int num_callbacks;
3426 struct {
3427 BlockDriverCompletionFunc *cb;
3428 void *opaque;
3429 QEMUIOVector *free_qiov;
3430 } callbacks[];
3431 } MultiwriteCB;
3432
3433 static void multiwrite_user_cb(MultiwriteCB *mcb)
3434 {
3435 int i;
3436
3437 for (i = 0; i < mcb->num_callbacks; i++) {
3438 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
3439 if (mcb->callbacks[i].free_qiov) {
3440 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
3441 }
3442 g_free(mcb->callbacks[i].free_qiov);
3443 }
3444 }
3445
3446 static void multiwrite_cb(void *opaque, int ret)
3447 {
3448 MultiwriteCB *mcb = opaque;
3449
3450 trace_multiwrite_cb(mcb, ret);
3451
3452 if (ret < 0 && !mcb->error) {
3453 mcb->error = ret;
3454 }
3455
3456 mcb->num_requests--;
3457 if (mcb->num_requests == 0) {
3458 multiwrite_user_cb(mcb);
3459 g_free(mcb);
3460 }
3461 }
3462
3463 static int multiwrite_req_compare(const void *a, const void *b)
3464 {
3465 const BlockRequest *req1 = a, *req2 = b;
3466
3467 /*
3468 * Note that we can't simply subtract req2->sector from req1->sector
3469 * here as that could overflow the return value.
3470 */
3471 if (req1->sector > req2->sector) {
3472 return 1;
3473 } else if (req1->sector < req2->sector) {
3474 return -1;
3475 } else {
3476 return 0;
3477 }
3478 }
3479
3480 /*
3481 * Takes a bunch of requests and tries to merge them. Returns the number of
3482 * requests that remain after merging.
3483 */
3484 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
3485 int num_reqs, MultiwriteCB *mcb)
3486 {
3487 int i, outidx;
3488
3489 // Sort requests by start sector
3490 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
3491
3492 // Check if adjacent requests touch the same clusters. If so, combine them,
3493 // filling up gaps with zero sectors.
3494 outidx = 0;
3495 for (i = 1; i < num_reqs; i++) {
3496 int merge = 0;
3497 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
3498
3499 // Handle exactly sequential writes and overlapping writes.
3500 if (reqs[i].sector <= oldreq_last) {
3501 merge = 1;
3502 }
3503
3504 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
3505 merge = 0;
3506 }
3507
3508 if (merge) {
3509 size_t size;
3510 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
3511 qemu_iovec_init(qiov,
3512 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
3513
3514 // Add the first request to the merged one. If the requests are
3515 // overlapping, drop the last sectors of the first request.
3516 size = (reqs[i].sector - reqs[outidx].sector) << 9;
3517 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
3518
3519 // We should need to add any zeros between the two requests
3520 assert (reqs[i].sector <= oldreq_last);
3521
3522 // Add the second request
3523 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
3524
3525 reqs[outidx].nb_sectors = qiov->size >> 9;
3526 reqs[outidx].qiov = qiov;
3527
3528 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
3529 } else {
3530 outidx++;
3531 reqs[outidx].sector = reqs[i].sector;
3532 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
3533 reqs[outidx].qiov = reqs[i].qiov;
3534 }
3535 }
3536
3537 return outidx + 1;
3538 }
3539
3540 /*
3541 * Submit multiple AIO write requests at once.
3542 *
3543 * On success, the function returns 0 and all requests in the reqs array have
3544 * been submitted. In error case this function returns -1, and any of the
3545 * requests may or may not be submitted yet. In particular, this means that the
3546 * callback will be called for some of the requests, for others it won't. The
3547 * caller must check the error field of the BlockRequest to wait for the right
3548 * callbacks (if error != 0, no callback will be called).
3549 *
3550 * The implementation may modify the contents of the reqs array, e.g. to merge
3551 * requests. However, the fields opaque and error are left unmodified as they
3552 * are used to signal failure for a single request to the caller.
3553 */
3554 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3555 {
3556 MultiwriteCB *mcb;
3557 int i;
3558
3559 /* don't submit writes if we don't have a medium */
3560 if (bs->drv == NULL) {
3561 for (i = 0; i < num_reqs; i++) {
3562 reqs[i].error = -ENOMEDIUM;
3563 }
3564 return -1;
3565 }
3566
3567 if (num_reqs == 0) {
3568 return 0;
3569 }
3570
3571 // Create MultiwriteCB structure
3572 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3573 mcb->num_requests = 0;
3574 mcb->num_callbacks = num_reqs;
3575
3576 for (i = 0; i < num_reqs; i++) {
3577 mcb->callbacks[i].cb = reqs[i].cb;
3578 mcb->callbacks[i].opaque = reqs[i].opaque;
3579 }
3580
3581 // Check for mergable requests
3582 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3583
3584 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3585
3586 /* Run the aio requests. */
3587 mcb->num_requests = num_reqs;
3588 for (i = 0; i < num_reqs; i++) {
3589 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3590 reqs[i].nb_sectors, multiwrite_cb, mcb);
3591 }
3592
3593 return 0;
3594 }
3595
3596 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3597 {
3598 acb->aiocb_info->cancel(acb);
3599 }
3600
3601 /* block I/O throttling */
3602 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3603 bool is_write, double elapsed_time, uint64_t *wait)
3604 {
3605 uint64_t bps_limit = 0;
3606 double bytes_limit, bytes_base, bytes_res;
3607 double slice_time, wait_time;
3608
3609 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3610 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3611 } else if (bs->io_limits.bps[is_write]) {
3612 bps_limit = bs->io_limits.bps[is_write];
3613 } else {
3614 if (wait) {
3615 *wait = 0;
3616 }
3617
3618 return false;
3619 }
3620
3621 slice_time = bs->slice_end - bs->slice_start;
3622 slice_time /= (NANOSECONDS_PER_SECOND);
3623 bytes_limit = bps_limit * slice_time;
3624 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
3625 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3626 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
3627 }
3628
3629 /* bytes_base: the bytes of data which have been read/written; and
3630 * it is obtained from the history statistic info.
3631 * bytes_res: the remaining bytes of data which need to be read/written.
3632 * (bytes_base + bytes_res) / bps_limit: used to calcuate
3633 * the total time for completing reading/writting all data.
3634 */
3635 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3636
3637 if (bytes_base + bytes_res <= bytes_limit) {
3638 if (wait) {
3639 *wait = 0;
3640 }
3641
3642 return false;
3643 }
3644
3645 /* Calc approx time to dispatch */
3646 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3647
3648 /* When the I/O rate at runtime exceeds the limits,
3649 * bs->slice_end need to be extended in order that the current statistic
3650 * info can be kept until the timer fire, so it is increased and tuned
3651 * based on the result of experiment.
3652 */
3653 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3654 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3655 if (wait) {
3656 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3657 }
3658
3659 return true;
3660 }
3661
3662 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3663 double elapsed_time, uint64_t *wait)
3664 {
3665 uint64_t iops_limit = 0;
3666 double ios_limit, ios_base;
3667 double slice_time, wait_time;
3668
3669 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3670 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3671 } else if (bs->io_limits.iops[is_write]) {
3672 iops_limit = bs->io_limits.iops[is_write];
3673 } else {
3674 if (wait) {
3675 *wait = 0;
3676 }
3677
3678 return false;
3679 }
3680
3681 slice_time = bs->slice_end - bs->slice_start;
3682 slice_time /= (NANOSECONDS_PER_SECOND);
3683 ios_limit = iops_limit * slice_time;
3684 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3685 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3686 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3687 }
3688
3689 if (ios_base + 1 <= ios_limit) {
3690 if (wait) {
3691 *wait = 0;
3692 }
3693
3694 return false;
3695 }
3696
3697 /* Calc approx time to dispatch */
3698 wait_time = (ios_base + 1) / iops_limit;
3699 if (wait_time > elapsed_time) {
3700 wait_time = wait_time - elapsed_time;
3701 } else {
3702 wait_time = 0;
3703 }
3704
3705 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3706 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3707 if (wait) {
3708 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3709 }
3710
3711 return true;
3712 }
3713
3714 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3715 bool is_write, int64_t *wait)
3716 {
3717 int64_t now, max_wait;
3718 uint64_t bps_wait = 0, iops_wait = 0;
3719 double elapsed_time;
3720 int bps_ret, iops_ret;
3721
3722 now = qemu_get_clock_ns(vm_clock);
3723 if ((bs->slice_start < now)
3724 && (bs->slice_end > now)) {
3725 bs->slice_end = now + bs->slice_time;
3726 } else {
3727 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
3728 bs->slice_start = now;
3729 bs->slice_end = now + bs->slice_time;
3730
3731 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write];
3732 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3733
3734 bs->io_base.ios[is_write] = bs->nr_ops[is_write];
3735 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write];
3736 }
3737
3738 elapsed_time = now - bs->slice_start;
3739 elapsed_time /= (NANOSECONDS_PER_SECOND);
3740
3741 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors,
3742 is_write, elapsed_time, &bps_wait);
3743 iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3744 elapsed_time, &iops_wait);
3745 if (bps_ret || iops_ret) {
3746 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3747 if (wait) {
3748 *wait = max_wait;
3749 }
3750
3751 now = qemu_get_clock_ns(vm_clock);
3752 if (bs->slice_end < now + max_wait) {
3753 bs->slice_end = now + max_wait;
3754 }
3755
3756 return true;
3757 }
3758
3759 if (wait) {
3760 *wait = 0;
3761 }
3762
3763 return false;
3764 }
3765
3766 /**************************************************************/
3767 /* async block device emulation */
3768
3769 typedef struct BlockDriverAIOCBSync {
3770 BlockDriverAIOCB common;
3771 QEMUBH *bh;
3772 int ret;
3773 /* vector translation state */
3774 QEMUIOVector *qiov;
3775 uint8_t *bounce;
3776 int is_write;
3777 } BlockDriverAIOCBSync;
3778
3779 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3780 {
3781 BlockDriverAIOCBSync *acb =
3782 container_of(blockacb, BlockDriverAIOCBSync, common);
3783 qemu_bh_delete(acb->bh);
3784 acb->bh = NULL;
3785 qemu_aio_release(acb);
3786 }
3787
3788 static const AIOCBInfo bdrv_em_aiocb_info = {
3789 .aiocb_size = sizeof(BlockDriverAIOCBSync),
3790 .cancel = bdrv_aio_cancel_em,
3791 };
3792
3793 static void bdrv_aio_bh_cb(void *opaque)
3794 {
3795 BlockDriverAIOCBSync *acb = opaque;
3796
3797 if (!acb->is_write)
3798 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
3799 qemu_vfree(acb->bounce);
3800 acb->common.cb(acb->common.opaque, acb->ret);
3801 qemu_bh_delete(acb->bh);
3802 acb->bh = NULL;
3803 qemu_aio_release(acb);
3804 }
3805
3806 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3807 int64_t sector_num,
3808 QEMUIOVector *qiov,
3809 int nb_sectors,
3810 BlockDriverCompletionFunc *cb,
3811 void *opaque,
3812 int is_write)
3813
3814 {
3815 BlockDriverAIOCBSync *acb;
3816
3817 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
3818 acb->is_write = is_write;
3819 acb->qiov = qiov;
3820 acb->bounce = qemu_blockalign(bs, qiov->size);
3821 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3822
3823 if (is_write) {
3824 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
3825 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3826 } else {
3827 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3828 }
3829
3830 qemu_bh_schedule(acb->bh);
3831
3832 return &acb->common;
3833 }
3834
3835 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3836 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3837 BlockDriverCompletionFunc *cb, void *opaque)
3838 {
3839 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3840 }
3841
3842 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3843 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3844 BlockDriverCompletionFunc *cb, void *opaque)
3845 {
3846 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3847 }
3848
3849
3850 typedef struct BlockDriverAIOCBCoroutine {
3851 BlockDriverAIOCB common;
3852 BlockRequest req;
3853 bool is_write;
3854 bool *done;
3855 QEMUBH* bh;
3856 } BlockDriverAIOCBCoroutine;
3857
3858 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3859 {
3860 BlockDriverAIOCBCoroutine *acb =
3861 container_of(blockacb, BlockDriverAIOCBCoroutine, common);
3862 bool done = false;
3863
3864 acb->done = &done;
3865 while (!done) {
3866 qemu_aio_wait();
3867 }
3868 }
3869
3870 static const AIOCBInfo bdrv_em_co_aiocb_info = {
3871 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine),
3872 .cancel = bdrv_aio_co_cancel_em,
3873 };
3874
3875 static void bdrv_co_em_bh(void *opaque)
3876 {
3877 BlockDriverAIOCBCoroutine *acb = opaque;
3878
3879 acb->common.cb(acb->common.opaque, acb->req.error);
3880
3881 if (acb->done) {
3882 *acb->done = true;
3883 }
3884
3885 qemu_bh_delete(acb->bh);
3886 qemu_aio_release(acb);
3887 }
3888
3889 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3890 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3891 {
3892 BlockDriverAIOCBCoroutine *acb = opaque;
3893 BlockDriverState *bs = acb->common.bs;
3894
3895 if (!acb->is_write) {
3896 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3897 acb->req.nb_sectors, acb->req.qiov, 0);
3898 } else {
3899 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3900 acb->req.nb_sectors, acb->req.qiov, 0);
3901 }
3902
3903 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3904 qemu_bh_schedule(acb->bh);
3905 }
3906
3907 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3908 int64_t sector_num,
3909 QEMUIOVector *qiov,
3910 int nb_sectors,
3911 BlockDriverCompletionFunc *cb,
3912 void *opaque,
3913 bool is_write)
3914 {
3915 Coroutine *co;
3916 BlockDriverAIOCBCoroutine *acb;
3917
3918 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3919 acb->req.sector = sector_num;
3920 acb->req.nb_sectors = nb_sectors;
3921 acb->req.qiov = qiov;
3922 acb->is_write = is_write;
3923 acb->done = NULL;
3924
3925 co = qemu_coroutine_create(bdrv_co_do_rw);
3926 qemu_coroutine_enter(co, acb);
3927
3928 return &acb->common;
3929 }
3930
3931 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3932 {
3933 BlockDriverAIOCBCoroutine *acb = opaque;
3934 BlockDriverState *bs = acb->common.bs;
3935
3936 acb->req.error = bdrv_co_flush(bs);
3937 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3938 qemu_bh_schedule(acb->bh);
3939 }
3940
3941 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3942 BlockDriverCompletionFunc *cb, void *opaque)
3943 {
3944 trace_bdrv_aio_flush(bs, opaque);
3945
3946 Coroutine *co;
3947 BlockDriverAIOCBCoroutine *acb;
3948
3949 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3950 acb->done = NULL;
3951
3952 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3953 qemu_coroutine_enter(co, acb);
3954
3955 return &acb->common;
3956 }
3957
3958 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3959 {
3960 BlockDriverAIOCBCoroutine *acb = opaque;
3961 BlockDriverState *bs = acb->common.bs;
3962
3963 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3964 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3965 qemu_bh_schedule(acb->bh);
3966 }
3967
3968 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3969 int64_t sector_num, int nb_sectors,
3970 BlockDriverCompletionFunc *cb, void *opaque)
3971 {
3972 Coroutine *co;
3973 BlockDriverAIOCBCoroutine *acb;
3974
3975 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3976
3977 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3978 acb->req.sector = sector_num;
3979 acb->req.nb_sectors = nb_sectors;
3980 acb->done = NULL;
3981 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3982 qemu_coroutine_enter(co, acb);
3983
3984 return &acb->common;
3985 }
3986
3987 void bdrv_init(void)
3988 {
3989 module_call_init(MODULE_INIT_BLOCK);
3990 }
3991
3992 void bdrv_init_with_whitelist(void)
3993 {
3994 use_bdrv_whitelist = 1;
3995 bdrv_init();
3996 }
3997
3998 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
3999 BlockDriverCompletionFunc *cb, void *opaque)
4000 {
4001 BlockDriverAIOCB *acb;
4002
4003 acb = g_slice_alloc(aiocb_info->aiocb_size);
4004 acb->aiocb_info = aiocb_info;
4005 acb->bs = bs;
4006 acb->cb = cb;
4007 acb->opaque = opaque;
4008 return acb;
4009 }
4010
4011 void qemu_aio_release(void *p)
4012 {
4013 BlockDriverAIOCB *acb = p;
4014 g_slice_free1(acb->aiocb_info->aiocb_size, acb);
4015 }
4016
4017 /**************************************************************/
4018 /* Coroutine block device emulation */
4019
4020 typedef struct CoroutineIOCompletion {
4021 Coroutine *coroutine;
4022 int ret;
4023 } CoroutineIOCompletion;
4024
4025 static void bdrv_co_io_em_complete(void *opaque, int ret)
4026 {
4027 CoroutineIOCompletion *co = opaque;
4028
4029 co->ret = ret;
4030 qemu_coroutine_enter(co->coroutine, NULL);
4031 }
4032
4033 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
4034 int nb_sectors, QEMUIOVector *iov,
4035 bool is_write)
4036 {
4037 CoroutineIOCompletion co = {
4038 .coroutine = qemu_coroutine_self(),
4039 };
4040 BlockDriverAIOCB *acb;
4041
4042 if (is_write) {
4043 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
4044 bdrv_co_io_em_complete, &co);
4045 } else {
4046 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
4047 bdrv_co_io_em_complete, &co);
4048 }
4049
4050 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
4051 if (!acb) {
4052 return -EIO;
4053 }
4054 qemu_coroutine_yield();
4055
4056 return co.ret;
4057 }
4058
4059 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
4060 int64_t sector_num, int nb_sectors,
4061 QEMUIOVector *iov)
4062 {
4063 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
4064 }
4065
4066 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
4067 int64_t sector_num, int nb_sectors,
4068 QEMUIOVector *iov)
4069 {
4070 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
4071 }
4072
4073 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
4074 {
4075 RwCo *rwco = opaque;
4076
4077 rwco->ret = bdrv_co_flush(rwco->bs);
4078 }
4079
4080 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
4081 {
4082 int ret;
4083
4084 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
4085 return 0;
4086 }
4087
4088 /* Write back cached data to the OS even with cache=unsafe */
4089 if (bs->drv->bdrv_co_flush_to_os) {
4090 ret = bs->drv->bdrv_co_flush_to_os(bs);
4091 if (ret < 0) {
4092 return ret;
4093 }
4094 }
4095
4096 /* But don't actually force it to the disk with cache=unsafe */
4097 if (bs->open_flags & BDRV_O_NO_FLUSH) {
4098 goto flush_parent;
4099 }
4100
4101 if (bs->drv->bdrv_co_flush_to_disk) {
4102 ret = bs->drv->bdrv_co_flush_to_disk(bs);
4103 } else if (bs->drv->bdrv_aio_flush) {
4104 BlockDriverAIOCB *acb;
4105 CoroutineIOCompletion co = {
4106 .coroutine = qemu_coroutine_self(),
4107 };
4108
4109 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
4110 if (acb == NULL) {
4111 ret = -EIO;
4112 } else {
4113 qemu_coroutine_yield();
4114 ret = co.ret;
4115 }
4116 } else {
4117 /*
4118 * Some block drivers always operate in either writethrough or unsafe
4119 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
4120 * know how the server works (because the behaviour is hardcoded or
4121 * depends on server-side configuration), so we can't ensure that
4122 * everything is safe on disk. Returning an error doesn't work because
4123 * that would break guests even if the server operates in writethrough
4124 * mode.
4125 *
4126 * Let's hope the user knows what he's doing.
4127 */
4128 ret = 0;
4129 }
4130 if (ret < 0) {
4131 return ret;
4132 }
4133
4134 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
4135 * in the case of cache=unsafe, so there are no useless flushes.
4136 */
4137 flush_parent:
4138 return bdrv_co_flush(bs->file);
4139 }
4140
4141 void bdrv_invalidate_cache(BlockDriverState *bs)
4142 {
4143 if (bs->drv && bs->drv->bdrv_invalidate_cache) {
4144 bs->drv->bdrv_invalidate_cache(bs);
4145 }
4146 }
4147
4148 void bdrv_invalidate_cache_all(void)
4149 {
4150 BlockDriverState *bs;
4151
4152 QTAILQ_FOREACH(bs, &bdrv_states, list) {
4153 bdrv_invalidate_cache(bs);
4154 }
4155 }
4156
4157 void bdrv_clear_incoming_migration_all(void)
4158 {
4159 BlockDriverState *bs;
4160
4161 QTAILQ_FOREACH(bs, &bdrv_states, list) {
4162 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING);
4163 }
4164 }
4165
4166 int bdrv_flush(BlockDriverState *bs)
4167 {
4168 Coroutine *co;
4169 RwCo rwco = {
4170 .bs = bs,
4171 .ret = NOT_DONE,
4172 };
4173
4174 if (qemu_in_coroutine()) {
4175 /* Fast-path if already in coroutine context */
4176 bdrv_flush_co_entry(&rwco);
4177 } else {
4178 co = qemu_coroutine_create(bdrv_flush_co_entry);
4179 qemu_coroutine_enter(co, &rwco);
4180 while (rwco.ret == NOT_DONE) {
4181 qemu_aio_wait();
4182 }
4183 }
4184
4185 return rwco.ret;
4186 }
4187
4188 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
4189 {
4190 RwCo *rwco = opaque;
4191
4192 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
4193 }
4194
4195 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
4196 int nb_sectors)
4197 {
4198 if (!bs->drv) {
4199 return -ENOMEDIUM;
4200 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
4201 return -EIO;
4202 } else if (bs->read_only) {
4203 return -EROFS;
4204 }
4205
4206 if (bs->dirty_bitmap) {
4207 bdrv_reset_dirty(bs, sector_num, nb_sectors);
4208 }
4209
4210 if (bs->drv->bdrv_co_discard) {
4211 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
4212 } else if (bs->drv->bdrv_aio_discard) {
4213 BlockDriverAIOCB *acb;
4214 CoroutineIOCompletion co = {
4215 .coroutine = qemu_coroutine_self(),
4216 };
4217
4218 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
4219 bdrv_co_io_em_complete, &co);
4220 if (acb == NULL) {
4221 return -EIO;
4222 } else {
4223 qemu_coroutine_yield();
4224 return co.ret;
4225 }
4226 } else {
4227 return 0;
4228 }
4229 }
4230
4231 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
4232 {
4233 Coroutine *co;
4234 RwCo rwco = {
4235 .bs = bs,
4236 .sector_num = sector_num,
4237 .nb_sectors = nb_sectors,
4238 .ret = NOT_DONE,
4239 };
4240
4241 if (qemu_in_coroutine()) {
4242 /* Fast-path if already in coroutine context */
4243 bdrv_discard_co_entry(&rwco);
4244 } else {
4245 co = qemu_coroutine_create(bdrv_discard_co_entry);
4246 qemu_coroutine_enter(co, &rwco);
4247 while (rwco.ret == NOT_DONE) {
4248 qemu_aio_wait();
4249 }
4250 }
4251
4252 return rwco.ret;
4253 }
4254
4255 /**************************************************************/
4256 /* removable device support */
4257
4258 /**
4259 * Return TRUE if the media is present
4260 */
4261 int bdrv_is_inserted(BlockDriverState *bs)
4262 {
4263 BlockDriver *drv = bs->drv;
4264
4265 if (!drv)
4266 return 0;
4267 if (!drv->bdrv_is_inserted)
4268 return 1;
4269 return drv->bdrv_is_inserted(bs);
4270 }
4271
4272 /**
4273 * Return whether the media changed since the last call to this
4274 * function, or -ENOTSUP if we don't know. Most drivers don't know.
4275 */
4276 int bdrv_media_changed(BlockDriverState *bs)
4277 {
4278 BlockDriver *drv = bs->drv;
4279
4280 if (drv && drv->bdrv_media_changed) {
4281 return drv->bdrv_media_changed(bs);
4282 }
4283 return -ENOTSUP;
4284 }
4285
4286 /**
4287 * If eject_flag is TRUE, eject the media. Otherwise, close the tray
4288 */
4289 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
4290 {
4291 BlockDriver *drv = bs->drv;
4292
4293 if (drv && drv->bdrv_eject) {
4294 drv->bdrv_eject(bs, eject_flag);
4295 }
4296
4297 if (bs->device_name[0] != '\0') {
4298 bdrv_emit_qmp_eject_event(bs, eject_flag);
4299 }
4300 }
4301
4302 /**
4303 * Lock or unlock the media (if it is locked, the user won't be able
4304 * to eject it manually).
4305 */
4306 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
4307 {
4308 BlockDriver *drv = bs->drv;
4309
4310 trace_bdrv_lock_medium(bs, locked);
4311
4312 if (drv && drv->bdrv_lock_medium) {
4313 drv->bdrv_lock_medium(bs, locked);
4314 }
4315 }
4316
4317 /* needed for generic scsi interface */
4318
4319 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
4320 {
4321 BlockDriver *drv = bs->drv;
4322
4323 if (drv && drv->bdrv_ioctl)
4324 return drv->bdrv_ioctl(bs, req, buf);
4325 return -ENOTSUP;
4326 }
4327
4328 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
4329 unsigned long int req, void *buf,
4330 BlockDriverCompletionFunc *cb, void *opaque)
4331 {
4332 BlockDriver *drv = bs->drv;
4333
4334 if (drv && drv->bdrv_aio_ioctl)
4335 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
4336 return NULL;
4337 }
4338
4339 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
4340 {
4341 bs->buffer_alignment = align;
4342 }
4343
4344 void *qemu_blockalign(BlockDriverState *bs, size_t size)
4345 {
4346 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
4347 }
4348
4349 /*
4350 * Check if all memory in this vector is sector aligned.
4351 */
4352 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
4353 {
4354 int i;
4355
4356 for (i = 0; i < qiov->niov; i++) {
4357 if ((uintptr_t) qiov->iov[i].iov_base % bs->buffer_alignment) {
4358 return false;
4359 }
4360 }
4361
4362 return true;
4363 }
4364
4365 void bdrv_set_dirty_tracking(BlockDriverState *bs, int granularity)
4366 {
4367 int64_t bitmap_size;
4368
4369 assert((granularity & (granularity - 1)) == 0);
4370
4371 if (granularity) {
4372 granularity >>= BDRV_SECTOR_BITS;
4373 assert(!bs->dirty_bitmap);
4374 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS);
4375 bs->dirty_bitmap = hbitmap_alloc(bitmap_size, ffs(granularity) - 1);
4376 } else {
4377 if (bs->dirty_bitmap) {
4378 hbitmap_free(bs->dirty_bitmap);
4379 bs->dirty_bitmap = NULL;
4380 }
4381 }
4382 }
4383
4384 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
4385 {
4386 if (bs->dirty_bitmap) {
4387 return hbitmap_get(bs->dirty_bitmap, sector);
4388 } else {
4389 return 0;
4390 }
4391 }
4392
4393 void bdrv_dirty_iter_init(BlockDriverState *bs, HBitmapIter *hbi)
4394 {
4395 hbitmap_iter_init(hbi, bs->dirty_bitmap, 0);
4396 }
4397
4398 void bdrv_set_dirty(BlockDriverState *bs, int64_t cur_sector,
4399 int nr_sectors)
4400 {
4401 hbitmap_set(bs->dirty_bitmap, cur_sector, nr_sectors);
4402 }
4403
4404 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
4405 int nr_sectors)
4406 {
4407 hbitmap_reset(bs->dirty_bitmap, cur_sector, nr_sectors);
4408 }
4409
4410 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
4411 {
4412 if (bs->dirty_bitmap) {
4413 return hbitmap_count(bs->dirty_bitmap);
4414 } else {
4415 return 0;
4416 }
4417 }
4418
4419 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
4420 {
4421 assert(bs->in_use != in_use);
4422 bs->in_use = in_use;
4423 }
4424
4425 int bdrv_in_use(BlockDriverState *bs)
4426 {
4427 return bs->in_use;
4428 }
4429
4430 void bdrv_iostatus_enable(BlockDriverState *bs)
4431 {
4432 bs->iostatus_enabled = true;
4433 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4434 }
4435
4436 /* The I/O status is only enabled if the drive explicitly
4437 * enables it _and_ the VM is configured to stop on errors */
4438 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
4439 {
4440 return (bs->iostatus_enabled &&
4441 (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC ||
4442 bs->on_write_error == BLOCKDEV_ON_ERROR_STOP ||
4443 bs->on_read_error == BLOCKDEV_ON_ERROR_STOP));
4444 }
4445
4446 void bdrv_iostatus_disable(BlockDriverState *bs)
4447 {
4448 bs->iostatus_enabled = false;
4449 }
4450
4451 void bdrv_iostatus_reset(BlockDriverState *bs)
4452 {
4453 if (bdrv_iostatus_is_enabled(bs)) {
4454 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4455 if (bs->job) {
4456 block_job_iostatus_reset(bs->job);
4457 }
4458 }
4459 }
4460
4461 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
4462 {
4463 assert(bdrv_iostatus_is_enabled(bs));
4464 if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
4465 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
4466 BLOCK_DEVICE_IO_STATUS_FAILED;
4467 }
4468 }
4469
4470 void
4471 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
4472 enum BlockAcctType type)
4473 {
4474 assert(type < BDRV_MAX_IOTYPE);
4475
4476 cookie->bytes = bytes;
4477 cookie->start_time_ns = get_clock();
4478 cookie->type = type;
4479 }
4480
4481 void
4482 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
4483 {
4484 assert(cookie->type < BDRV_MAX_IOTYPE);
4485
4486 bs->nr_bytes[cookie->type] += cookie->bytes;
4487 bs->nr_ops[cookie->type]++;
4488 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
4489 }
4490
4491 void bdrv_img_create(const char *filename, const char *fmt,
4492 const char *base_filename, const char *base_fmt,
4493 char *options, uint64_t img_size, int flags, Error **errp)
4494 {
4495 QEMUOptionParameter *param = NULL, *create_options = NULL;
4496 QEMUOptionParameter *backing_fmt, *backing_file, *size;
4497 BlockDriverState *bs = NULL;
4498 BlockDriver *drv, *proto_drv;
4499 BlockDriver *backing_drv = NULL;
4500 int ret = 0;
4501
4502 /* Find driver and parse its options */
4503 drv = bdrv_find_format(fmt);
4504 if (!drv) {
4505 error_setg(errp, "Unknown file format '%s'", fmt);
4506 return;
4507 }
4508
4509 proto_drv = bdrv_find_protocol(filename);
4510 if (!proto_drv) {
4511 error_setg(errp, "Unknown protocol '%s'", filename);
4512 return;
4513 }
4514
4515 create_options = append_option_parameters(create_options,
4516 drv->create_options);
4517 create_options = append_option_parameters(create_options,
4518 proto_drv->create_options);
4519
4520 /* Create parameter list with default values */
4521 param = parse_option_parameters("", create_options, param);
4522
4523 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
4524
4525 /* Parse -o options */
4526 if (options) {
4527 param = parse_option_parameters(options, create_options, param);
4528 if (param == NULL) {
4529 error_setg(errp, "Invalid options for file format '%s'.", fmt);
4530 goto out;
4531 }
4532 }
4533
4534 if (base_filename) {
4535 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
4536 base_filename)) {
4537 error_setg(errp, "Backing file not supported for file format '%s'",
4538 fmt);
4539 goto out;
4540 }
4541 }
4542
4543 if (base_fmt) {
4544 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
4545 error_setg(errp, "Backing file format not supported for file "
4546 "format '%s'", fmt);
4547 goto out;
4548 }
4549 }
4550
4551 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
4552 if (backing_file && backing_file->value.s) {
4553 if (!strcmp(filename, backing_file->value.s)) {
4554 error_setg(errp, "Error: Trying to create an image with the "
4555 "same filename as the backing file");
4556 goto out;
4557 }
4558 }
4559
4560 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
4561 if (backing_fmt && backing_fmt->value.s) {
4562 backing_drv = bdrv_find_format(backing_fmt->value.s);
4563 if (!backing_drv) {
4564 error_setg(errp, "Unknown backing file format '%s'",
4565 backing_fmt->value.s);
4566 goto out;
4567 }
4568 }
4569
4570 // The size for the image must always be specified, with one exception:
4571 // If we are using a backing file, we can obtain the size from there
4572 size = get_option_parameter(param, BLOCK_OPT_SIZE);
4573 if (size && size->value.n == -1) {
4574 if (backing_file && backing_file->value.s) {
4575 uint64_t size;
4576 char buf[32];
4577 int back_flags;
4578
4579 /* backing files always opened read-only */
4580 back_flags =
4581 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
4582
4583 bs = bdrv_new("");
4584
4585 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv);
4586 if (ret < 0) {
4587 error_setg_errno(errp, -ret, "Could not open '%s'",
4588 backing_file->value.s);
4589 goto out;
4590 }
4591 bdrv_get_geometry(bs, &size);
4592 size *= 512;
4593
4594 snprintf(buf, sizeof(buf), "%" PRId64, size);
4595 set_option_parameter(param, BLOCK_OPT_SIZE, buf);
4596 } else {
4597 error_setg(errp, "Image creation needs a size parameter");
4598 goto out;
4599 }
4600 }
4601
4602 printf("Formatting '%s', fmt=%s ", filename, fmt);
4603 print_option_parameters(param);
4604 puts("");
4605
4606 ret = bdrv_create(drv, filename, param);
4607 if (ret < 0) {
4608 if (ret == -ENOTSUP) {
4609 error_setg(errp,"Formatting or formatting option not supported for "
4610 "file format '%s'", fmt);
4611 } else if (ret == -EFBIG) {
4612 error_setg(errp, "The image size is too large for file format '%s'",
4613 fmt);
4614 } else {
4615 error_setg(errp, "%s: error while creating %s: %s", filename, fmt,
4616 strerror(-ret));
4617 }
4618 }
4619
4620 out:
4621 free_option_parameters(create_options);
4622 free_option_parameters(param);
4623
4624 if (bs) {
4625 bdrv_delete(bs);
4626 }
4627 }