]> git.proxmox.com Git - qemu.git/blob - block.c
target-i386: Enable SSSE3 TCG support
[qemu.git] / block.c
1 /*
2 * QEMU System Emulator block driver
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor.h"
28 #include "block_int.h"
29 #include "blockjob.h"
30 #include "module.h"
31 #include "qjson.h"
32 #include "sysemu.h"
33 #include "notify.h"
34 #include "qemu-coroutine.h"
35 #include "qmp-commands.h"
36 #include "qemu-timer.h"
37
38 #ifdef CONFIG_BSD
39 #include <sys/types.h>
40 #include <sys/stat.h>
41 #include <sys/ioctl.h>
42 #include <sys/queue.h>
43 #ifndef __DragonFly__
44 #include <sys/disk.h>
45 #endif
46 #endif
47
48 #ifdef _WIN32
49 #include <windows.h>
50 #endif
51
52 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
53
54 typedef enum {
55 BDRV_REQ_COPY_ON_READ = 0x1,
56 BDRV_REQ_ZERO_WRITE = 0x2,
57 } BdrvRequestFlags;
58
59 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
60 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
62 BlockDriverCompletionFunc *cb, void *opaque);
63 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
64 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
65 BlockDriverCompletionFunc *cb, void *opaque);
66 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
67 int64_t sector_num, int nb_sectors,
68 QEMUIOVector *iov);
69 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
70 int64_t sector_num, int nb_sectors,
71 QEMUIOVector *iov);
72 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
74 BdrvRequestFlags flags);
75 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
76 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
77 BdrvRequestFlags flags);
78 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
79 int64_t sector_num,
80 QEMUIOVector *qiov,
81 int nb_sectors,
82 BlockDriverCompletionFunc *cb,
83 void *opaque,
84 bool is_write);
85 static void coroutine_fn bdrv_co_do_rw(void *opaque);
86 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
87 int64_t sector_num, int nb_sectors);
88
89 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
90 bool is_write, double elapsed_time, uint64_t *wait);
91 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
92 double elapsed_time, uint64_t *wait);
93 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
94 bool is_write, int64_t *wait);
95
96 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
97 QTAILQ_HEAD_INITIALIZER(bdrv_states);
98
99 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
100 QLIST_HEAD_INITIALIZER(bdrv_drivers);
101
102 /* The device to use for VM snapshots */
103 static BlockDriverState *bs_snapshots;
104
105 /* If non-zero, use only whitelisted block drivers */
106 static int use_bdrv_whitelist;
107
108 #ifdef _WIN32
109 static int is_windows_drive_prefix(const char *filename)
110 {
111 return (((filename[0] >= 'a' && filename[0] <= 'z') ||
112 (filename[0] >= 'A' && filename[0] <= 'Z')) &&
113 filename[1] == ':');
114 }
115
116 int is_windows_drive(const char *filename)
117 {
118 if (is_windows_drive_prefix(filename) &&
119 filename[2] == '\0')
120 return 1;
121 if (strstart(filename, "\\\\.\\", NULL) ||
122 strstart(filename, "//./", NULL))
123 return 1;
124 return 0;
125 }
126 #endif
127
128 /* throttling disk I/O limits */
129 void bdrv_io_limits_disable(BlockDriverState *bs)
130 {
131 bs->io_limits_enabled = false;
132
133 while (qemu_co_queue_next(&bs->throttled_reqs));
134
135 if (bs->block_timer) {
136 qemu_del_timer(bs->block_timer);
137 qemu_free_timer(bs->block_timer);
138 bs->block_timer = NULL;
139 }
140
141 bs->slice_start = 0;
142 bs->slice_end = 0;
143 bs->slice_time = 0;
144 memset(&bs->io_base, 0, sizeof(bs->io_base));
145 }
146
147 static void bdrv_block_timer(void *opaque)
148 {
149 BlockDriverState *bs = opaque;
150
151 qemu_co_queue_next(&bs->throttled_reqs);
152 }
153
154 void bdrv_io_limits_enable(BlockDriverState *bs)
155 {
156 qemu_co_queue_init(&bs->throttled_reqs);
157 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
158 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
159 bs->slice_start = qemu_get_clock_ns(vm_clock);
160 bs->slice_end = bs->slice_start + bs->slice_time;
161 memset(&bs->io_base, 0, sizeof(bs->io_base));
162 bs->io_limits_enabled = true;
163 }
164
165 bool bdrv_io_limits_enabled(BlockDriverState *bs)
166 {
167 BlockIOLimit *io_limits = &bs->io_limits;
168 return io_limits->bps[BLOCK_IO_LIMIT_READ]
169 || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
170 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
171 || io_limits->iops[BLOCK_IO_LIMIT_READ]
172 || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
173 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
174 }
175
176 static void bdrv_io_limits_intercept(BlockDriverState *bs,
177 bool is_write, int nb_sectors)
178 {
179 int64_t wait_time = -1;
180
181 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
182 qemu_co_queue_wait(&bs->throttled_reqs);
183 }
184
185 /* In fact, we hope to keep each request's timing, in FIFO mode. The next
186 * throttled requests will not be dequeued until the current request is
187 * allowed to be serviced. So if the current request still exceeds the
188 * limits, it will be inserted to the head. All requests followed it will
189 * be still in throttled_reqs queue.
190 */
191
192 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
193 qemu_mod_timer(bs->block_timer,
194 wait_time + qemu_get_clock_ns(vm_clock));
195 qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
196 }
197
198 qemu_co_queue_next(&bs->throttled_reqs);
199 }
200
201 /* check if the path starts with "<protocol>:" */
202 static int path_has_protocol(const char *path)
203 {
204 const char *p;
205
206 #ifdef _WIN32
207 if (is_windows_drive(path) ||
208 is_windows_drive_prefix(path)) {
209 return 0;
210 }
211 p = path + strcspn(path, ":/\\");
212 #else
213 p = path + strcspn(path, ":/");
214 #endif
215
216 return *p == ':';
217 }
218
219 int path_is_absolute(const char *path)
220 {
221 #ifdef _WIN32
222 /* specific case for names like: "\\.\d:" */
223 if (is_windows_drive(path) || is_windows_drive_prefix(path)) {
224 return 1;
225 }
226 return (*path == '/' || *path == '\\');
227 #else
228 return (*path == '/');
229 #endif
230 }
231
232 /* if filename is absolute, just copy it to dest. Otherwise, build a
233 path to it by considering it is relative to base_path. URL are
234 supported. */
235 void path_combine(char *dest, int dest_size,
236 const char *base_path,
237 const char *filename)
238 {
239 const char *p, *p1;
240 int len;
241
242 if (dest_size <= 0)
243 return;
244 if (path_is_absolute(filename)) {
245 pstrcpy(dest, dest_size, filename);
246 } else {
247 p = strchr(base_path, ':');
248 if (p)
249 p++;
250 else
251 p = base_path;
252 p1 = strrchr(base_path, '/');
253 #ifdef _WIN32
254 {
255 const char *p2;
256 p2 = strrchr(base_path, '\\');
257 if (!p1 || p2 > p1)
258 p1 = p2;
259 }
260 #endif
261 if (p1)
262 p1++;
263 else
264 p1 = base_path;
265 if (p1 > p)
266 p = p1;
267 len = p - base_path;
268 if (len > dest_size - 1)
269 len = dest_size - 1;
270 memcpy(dest, base_path, len);
271 dest[len] = '\0';
272 pstrcat(dest, dest_size, filename);
273 }
274 }
275
276 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz)
277 {
278 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) {
279 pstrcpy(dest, sz, bs->backing_file);
280 } else {
281 path_combine(dest, sz, bs->filename, bs->backing_file);
282 }
283 }
284
285 void bdrv_register(BlockDriver *bdrv)
286 {
287 /* Block drivers without coroutine functions need emulation */
288 if (!bdrv->bdrv_co_readv) {
289 bdrv->bdrv_co_readv = bdrv_co_readv_em;
290 bdrv->bdrv_co_writev = bdrv_co_writev_em;
291
292 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
293 * the block driver lacks aio we need to emulate that too.
294 */
295 if (!bdrv->bdrv_aio_readv) {
296 /* add AIO emulation layer */
297 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
298 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
299 }
300 }
301
302 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
303 }
304
305 /* create a new block device (by default it is empty) */
306 BlockDriverState *bdrv_new(const char *device_name)
307 {
308 BlockDriverState *bs;
309
310 bs = g_malloc0(sizeof(BlockDriverState));
311 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
312 if (device_name[0] != '\0') {
313 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
314 }
315 bdrv_iostatus_disable(bs);
316 notifier_list_init(&bs->close_notifiers);
317
318 return bs;
319 }
320
321 void bdrv_add_close_notifier(BlockDriverState *bs, Notifier *notify)
322 {
323 notifier_list_add(&bs->close_notifiers, notify);
324 }
325
326 BlockDriver *bdrv_find_format(const char *format_name)
327 {
328 BlockDriver *drv1;
329 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
330 if (!strcmp(drv1->format_name, format_name)) {
331 return drv1;
332 }
333 }
334 return NULL;
335 }
336
337 static int bdrv_is_whitelisted(BlockDriver *drv)
338 {
339 static const char *whitelist[] = {
340 CONFIG_BDRV_WHITELIST
341 };
342 const char **p;
343
344 if (!whitelist[0])
345 return 1; /* no whitelist, anything goes */
346
347 for (p = whitelist; *p; p++) {
348 if (!strcmp(drv->format_name, *p)) {
349 return 1;
350 }
351 }
352 return 0;
353 }
354
355 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
356 {
357 BlockDriver *drv = bdrv_find_format(format_name);
358 return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
359 }
360
361 typedef struct CreateCo {
362 BlockDriver *drv;
363 char *filename;
364 QEMUOptionParameter *options;
365 int ret;
366 } CreateCo;
367
368 static void coroutine_fn bdrv_create_co_entry(void *opaque)
369 {
370 CreateCo *cco = opaque;
371 assert(cco->drv);
372
373 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options);
374 }
375
376 int bdrv_create(BlockDriver *drv, const char* filename,
377 QEMUOptionParameter *options)
378 {
379 int ret;
380
381 Coroutine *co;
382 CreateCo cco = {
383 .drv = drv,
384 .filename = g_strdup(filename),
385 .options = options,
386 .ret = NOT_DONE,
387 };
388
389 if (!drv->bdrv_create) {
390 ret = -ENOTSUP;
391 goto out;
392 }
393
394 if (qemu_in_coroutine()) {
395 /* Fast-path if already in coroutine context */
396 bdrv_create_co_entry(&cco);
397 } else {
398 co = qemu_coroutine_create(bdrv_create_co_entry);
399 qemu_coroutine_enter(co, &cco);
400 while (cco.ret == NOT_DONE) {
401 qemu_aio_wait();
402 }
403 }
404
405 ret = cco.ret;
406
407 out:
408 g_free(cco.filename);
409 return ret;
410 }
411
412 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
413 {
414 BlockDriver *drv;
415
416 drv = bdrv_find_protocol(filename);
417 if (drv == NULL) {
418 return -ENOENT;
419 }
420
421 return bdrv_create(drv, filename, options);
422 }
423
424 /*
425 * Create a uniquely-named empty temporary file.
426 * Return 0 upon success, otherwise a negative errno value.
427 */
428 int get_tmp_filename(char *filename, int size)
429 {
430 #ifdef _WIN32
431 char temp_dir[MAX_PATH];
432 /* GetTempFileName requires that its output buffer (4th param)
433 have length MAX_PATH or greater. */
434 assert(size >= MAX_PATH);
435 return (GetTempPath(MAX_PATH, temp_dir)
436 && GetTempFileName(temp_dir, "qem", 0, filename)
437 ? 0 : -GetLastError());
438 #else
439 int fd;
440 const char *tmpdir;
441 tmpdir = getenv("TMPDIR");
442 if (!tmpdir)
443 tmpdir = "/tmp";
444 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) {
445 return -EOVERFLOW;
446 }
447 fd = mkstemp(filename);
448 if (fd < 0) {
449 return -errno;
450 }
451 if (close(fd) != 0) {
452 unlink(filename);
453 return -errno;
454 }
455 return 0;
456 #endif
457 }
458
459 /*
460 * Detect host devices. By convention, /dev/cdrom[N] is always
461 * recognized as a host CDROM.
462 */
463 static BlockDriver *find_hdev_driver(const char *filename)
464 {
465 int score_max = 0, score;
466 BlockDriver *drv = NULL, *d;
467
468 QLIST_FOREACH(d, &bdrv_drivers, list) {
469 if (d->bdrv_probe_device) {
470 score = d->bdrv_probe_device(filename);
471 if (score > score_max) {
472 score_max = score;
473 drv = d;
474 }
475 }
476 }
477
478 return drv;
479 }
480
481 BlockDriver *bdrv_find_protocol(const char *filename)
482 {
483 BlockDriver *drv1;
484 char protocol[128];
485 int len;
486 const char *p;
487
488 /* TODO Drivers without bdrv_file_open must be specified explicitly */
489
490 /*
491 * XXX(hch): we really should not let host device detection
492 * override an explicit protocol specification, but moving this
493 * later breaks access to device names with colons in them.
494 * Thanks to the brain-dead persistent naming schemes on udev-
495 * based Linux systems those actually are quite common.
496 */
497 drv1 = find_hdev_driver(filename);
498 if (drv1) {
499 return drv1;
500 }
501
502 if (!path_has_protocol(filename)) {
503 return bdrv_find_format("file");
504 }
505 p = strchr(filename, ':');
506 assert(p != NULL);
507 len = p - filename;
508 if (len > sizeof(protocol) - 1)
509 len = sizeof(protocol) - 1;
510 memcpy(protocol, filename, len);
511 protocol[len] = '\0';
512 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
513 if (drv1->protocol_name &&
514 !strcmp(drv1->protocol_name, protocol)) {
515 return drv1;
516 }
517 }
518 return NULL;
519 }
520
521 static int find_image_format(const char *filename, BlockDriver **pdrv)
522 {
523 int ret, score, score_max;
524 BlockDriver *drv1, *drv;
525 uint8_t buf[2048];
526 BlockDriverState *bs;
527
528 ret = bdrv_file_open(&bs, filename, 0);
529 if (ret < 0) {
530 *pdrv = NULL;
531 return ret;
532 }
533
534 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
535 if (bs->sg || !bdrv_is_inserted(bs)) {
536 bdrv_delete(bs);
537 drv = bdrv_find_format("raw");
538 if (!drv) {
539 ret = -ENOENT;
540 }
541 *pdrv = drv;
542 return ret;
543 }
544
545 ret = bdrv_pread(bs, 0, buf, sizeof(buf));
546 bdrv_delete(bs);
547 if (ret < 0) {
548 *pdrv = NULL;
549 return ret;
550 }
551
552 score_max = 0;
553 drv = NULL;
554 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
555 if (drv1->bdrv_probe) {
556 score = drv1->bdrv_probe(buf, ret, filename);
557 if (score > score_max) {
558 score_max = score;
559 drv = drv1;
560 }
561 }
562 }
563 if (!drv) {
564 ret = -ENOENT;
565 }
566 *pdrv = drv;
567 return ret;
568 }
569
570 /**
571 * Set the current 'total_sectors' value
572 */
573 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
574 {
575 BlockDriver *drv = bs->drv;
576
577 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
578 if (bs->sg)
579 return 0;
580
581 /* query actual device if possible, otherwise just trust the hint */
582 if (drv->bdrv_getlength) {
583 int64_t length = drv->bdrv_getlength(bs);
584 if (length < 0) {
585 return length;
586 }
587 hint = length >> BDRV_SECTOR_BITS;
588 }
589
590 bs->total_sectors = hint;
591 return 0;
592 }
593
594 /**
595 * Set open flags for a given cache mode
596 *
597 * Return 0 on success, -1 if the cache mode was invalid.
598 */
599 int bdrv_parse_cache_flags(const char *mode, int *flags)
600 {
601 *flags &= ~BDRV_O_CACHE_MASK;
602
603 if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
604 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
605 } else if (!strcmp(mode, "directsync")) {
606 *flags |= BDRV_O_NOCACHE;
607 } else if (!strcmp(mode, "writeback")) {
608 *flags |= BDRV_O_CACHE_WB;
609 } else if (!strcmp(mode, "unsafe")) {
610 *flags |= BDRV_O_CACHE_WB;
611 *flags |= BDRV_O_NO_FLUSH;
612 } else if (!strcmp(mode, "writethrough")) {
613 /* this is the default */
614 } else {
615 return -1;
616 }
617
618 return 0;
619 }
620
621 /**
622 * The copy-on-read flag is actually a reference count so multiple users may
623 * use the feature without worrying about clobbering its previous state.
624 * Copy-on-read stays enabled until all users have called to disable it.
625 */
626 void bdrv_enable_copy_on_read(BlockDriverState *bs)
627 {
628 bs->copy_on_read++;
629 }
630
631 void bdrv_disable_copy_on_read(BlockDriverState *bs)
632 {
633 assert(bs->copy_on_read > 0);
634 bs->copy_on_read--;
635 }
636
637 /*
638 * Common part for opening disk images and files
639 */
640 static int bdrv_open_common(BlockDriverState *bs, const char *filename,
641 int flags, BlockDriver *drv)
642 {
643 int ret, open_flags;
644
645 assert(drv != NULL);
646 assert(bs->file == NULL);
647
648 trace_bdrv_open_common(bs, filename, flags, drv->format_name);
649
650 bs->open_flags = flags;
651 bs->buffer_alignment = 512;
652
653 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
654 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
655 bdrv_enable_copy_on_read(bs);
656 }
657
658 pstrcpy(bs->filename, sizeof(bs->filename), filename);
659
660 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
661 return -ENOTSUP;
662 }
663
664 bs->drv = drv;
665 bs->opaque = g_malloc0(drv->instance_size);
666
667 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
668 open_flags = flags | BDRV_O_CACHE_WB;
669
670 /*
671 * Clear flags that are internal to the block layer before opening the
672 * image.
673 */
674 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
675
676 /*
677 * Snapshots should be writable.
678 */
679 if (bs->is_temporary) {
680 open_flags |= BDRV_O_RDWR;
681 }
682
683 bs->read_only = !(open_flags & BDRV_O_RDWR);
684
685 /* Open the image, either directly or using a protocol */
686 if (drv->bdrv_file_open) {
687 ret = drv->bdrv_file_open(bs, filename, open_flags);
688 } else {
689 ret = bdrv_file_open(&bs->file, filename, open_flags);
690 if (ret >= 0) {
691 ret = drv->bdrv_open(bs, open_flags);
692 }
693 }
694
695 if (ret < 0) {
696 goto free_and_fail;
697 }
698
699 ret = refresh_total_sectors(bs, bs->total_sectors);
700 if (ret < 0) {
701 goto free_and_fail;
702 }
703
704 #ifndef _WIN32
705 if (bs->is_temporary) {
706 unlink(filename);
707 }
708 #endif
709 return 0;
710
711 free_and_fail:
712 if (bs->file) {
713 bdrv_delete(bs->file);
714 bs->file = NULL;
715 }
716 g_free(bs->opaque);
717 bs->opaque = NULL;
718 bs->drv = NULL;
719 return ret;
720 }
721
722 /*
723 * Opens a file using a protocol (file, host_device, nbd, ...)
724 */
725 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
726 {
727 BlockDriverState *bs;
728 BlockDriver *drv;
729 int ret;
730
731 drv = bdrv_find_protocol(filename);
732 if (!drv) {
733 return -ENOENT;
734 }
735
736 bs = bdrv_new("");
737 ret = bdrv_open_common(bs, filename, flags, drv);
738 if (ret < 0) {
739 bdrv_delete(bs);
740 return ret;
741 }
742 bs->growable = 1;
743 *pbs = bs;
744 return 0;
745 }
746
747 int bdrv_open_backing_file(BlockDriverState *bs)
748 {
749 char backing_filename[PATH_MAX];
750 int back_flags, ret;
751 BlockDriver *back_drv = NULL;
752
753 if (bs->backing_hd != NULL) {
754 return 0;
755 }
756
757 bs->open_flags &= ~BDRV_O_NO_BACKING;
758 if (bs->backing_file[0] == '\0') {
759 return 0;
760 }
761
762 bs->backing_hd = bdrv_new("");
763 bdrv_get_full_backing_filename(bs, backing_filename,
764 sizeof(backing_filename));
765
766 if (bs->backing_format[0] != '\0') {
767 back_drv = bdrv_find_format(bs->backing_format);
768 }
769
770 /* backing files always opened read-only */
771 back_flags = bs->open_flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT);
772
773 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
774 if (ret < 0) {
775 bdrv_delete(bs->backing_hd);
776 bs->backing_hd = NULL;
777 bs->open_flags |= BDRV_O_NO_BACKING;
778 return ret;
779 }
780 return 0;
781 }
782
783 /*
784 * Opens a disk image (raw, qcow2, vmdk, ...)
785 */
786 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
787 BlockDriver *drv)
788 {
789 int ret;
790 /* TODO: extra byte is a hack to ensure MAX_PATH space on Windows. */
791 char tmp_filename[PATH_MAX + 1];
792
793 if (flags & BDRV_O_SNAPSHOT) {
794 BlockDriverState *bs1;
795 int64_t total_size;
796 int is_protocol = 0;
797 BlockDriver *bdrv_qcow2;
798 QEMUOptionParameter *options;
799 char backing_filename[PATH_MAX];
800
801 /* if snapshot, we create a temporary backing file and open it
802 instead of opening 'filename' directly */
803
804 /* if there is a backing file, use it */
805 bs1 = bdrv_new("");
806 ret = bdrv_open(bs1, filename, 0, drv);
807 if (ret < 0) {
808 bdrv_delete(bs1);
809 return ret;
810 }
811 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
812
813 if (bs1->drv && bs1->drv->protocol_name)
814 is_protocol = 1;
815
816 bdrv_delete(bs1);
817
818 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename));
819 if (ret < 0) {
820 return ret;
821 }
822
823 /* Real path is meaningless for protocols */
824 if (is_protocol)
825 snprintf(backing_filename, sizeof(backing_filename),
826 "%s", filename);
827 else if (!realpath(filename, backing_filename))
828 return -errno;
829
830 bdrv_qcow2 = bdrv_find_format("qcow2");
831 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
832
833 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
834 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
835 if (drv) {
836 set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
837 drv->format_name);
838 }
839
840 ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
841 free_option_parameters(options);
842 if (ret < 0) {
843 return ret;
844 }
845
846 filename = tmp_filename;
847 drv = bdrv_qcow2;
848 bs->is_temporary = 1;
849 }
850
851 /* Find the right image format driver */
852 if (!drv) {
853 ret = find_image_format(filename, &drv);
854 }
855
856 if (!drv) {
857 goto unlink_and_fail;
858 }
859
860 if (flags & BDRV_O_RDWR) {
861 flags |= BDRV_O_ALLOW_RDWR;
862 }
863
864 /* Open the image */
865 ret = bdrv_open_common(bs, filename, flags, drv);
866 if (ret < 0) {
867 goto unlink_and_fail;
868 }
869
870 /* If there is a backing file, use it */
871 if ((flags & BDRV_O_NO_BACKING) == 0) {
872 ret = bdrv_open_backing_file(bs);
873 if (ret < 0) {
874 bdrv_close(bs);
875 return ret;
876 }
877 }
878
879 if (!bdrv_key_required(bs)) {
880 bdrv_dev_change_media_cb(bs, true);
881 }
882
883 /* throttling disk I/O limits */
884 if (bs->io_limits_enabled) {
885 bdrv_io_limits_enable(bs);
886 }
887
888 return 0;
889
890 unlink_and_fail:
891 if (bs->is_temporary) {
892 unlink(filename);
893 }
894 return ret;
895 }
896
897 typedef struct BlockReopenQueueEntry {
898 bool prepared;
899 BDRVReopenState state;
900 QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry;
901 } BlockReopenQueueEntry;
902
903 /*
904 * Adds a BlockDriverState to a simple queue for an atomic, transactional
905 * reopen of multiple devices.
906 *
907 * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT
908 * already performed, or alternatively may be NULL a new BlockReopenQueue will
909 * be created and initialized. This newly created BlockReopenQueue should be
910 * passed back in for subsequent calls that are intended to be of the same
911 * atomic 'set'.
912 *
913 * bs is the BlockDriverState to add to the reopen queue.
914 *
915 * flags contains the open flags for the associated bs
916 *
917 * returns a pointer to bs_queue, which is either the newly allocated
918 * bs_queue, or the existing bs_queue being used.
919 *
920 */
921 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue,
922 BlockDriverState *bs, int flags)
923 {
924 assert(bs != NULL);
925
926 BlockReopenQueueEntry *bs_entry;
927 if (bs_queue == NULL) {
928 bs_queue = g_new0(BlockReopenQueue, 1);
929 QSIMPLEQ_INIT(bs_queue);
930 }
931
932 if (bs->file) {
933 bdrv_reopen_queue(bs_queue, bs->file, flags);
934 }
935
936 bs_entry = g_new0(BlockReopenQueueEntry, 1);
937 QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry);
938
939 bs_entry->state.bs = bs;
940 bs_entry->state.flags = flags;
941
942 return bs_queue;
943 }
944
945 /*
946 * Reopen multiple BlockDriverStates atomically & transactionally.
947 *
948 * The queue passed in (bs_queue) must have been built up previous
949 * via bdrv_reopen_queue().
950 *
951 * Reopens all BDS specified in the queue, with the appropriate
952 * flags. All devices are prepared for reopen, and failure of any
953 * device will cause all device changes to be abandonded, and intermediate
954 * data cleaned up.
955 *
956 * If all devices prepare successfully, then the changes are committed
957 * to all devices.
958 *
959 */
960 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp)
961 {
962 int ret = -1;
963 BlockReopenQueueEntry *bs_entry, *next;
964 Error *local_err = NULL;
965
966 assert(bs_queue != NULL);
967
968 bdrv_drain_all();
969
970 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
971 if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) {
972 error_propagate(errp, local_err);
973 goto cleanup;
974 }
975 bs_entry->prepared = true;
976 }
977
978 /* If we reach this point, we have success and just need to apply the
979 * changes
980 */
981 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
982 bdrv_reopen_commit(&bs_entry->state);
983 }
984
985 ret = 0;
986
987 cleanup:
988 QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) {
989 if (ret && bs_entry->prepared) {
990 bdrv_reopen_abort(&bs_entry->state);
991 }
992 g_free(bs_entry);
993 }
994 g_free(bs_queue);
995 return ret;
996 }
997
998
999 /* Reopen a single BlockDriverState with the specified flags. */
1000 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp)
1001 {
1002 int ret = -1;
1003 Error *local_err = NULL;
1004 BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags);
1005
1006 ret = bdrv_reopen_multiple(queue, &local_err);
1007 if (local_err != NULL) {
1008 error_propagate(errp, local_err);
1009 }
1010 return ret;
1011 }
1012
1013
1014 /*
1015 * Prepares a BlockDriverState for reopen. All changes are staged in the
1016 * 'opaque' field of the BDRVReopenState, which is used and allocated by
1017 * the block driver layer .bdrv_reopen_prepare()
1018 *
1019 * bs is the BlockDriverState to reopen
1020 * flags are the new open flags
1021 * queue is the reopen queue
1022 *
1023 * Returns 0 on success, non-zero on error. On error errp will be set
1024 * as well.
1025 *
1026 * On failure, bdrv_reopen_abort() will be called to clean up any data.
1027 * It is the responsibility of the caller to then call the abort() or
1028 * commit() for any other BDS that have been left in a prepare() state
1029 *
1030 */
1031 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue,
1032 Error **errp)
1033 {
1034 int ret = -1;
1035 Error *local_err = NULL;
1036 BlockDriver *drv;
1037
1038 assert(reopen_state != NULL);
1039 assert(reopen_state->bs->drv != NULL);
1040 drv = reopen_state->bs->drv;
1041
1042 /* if we are to stay read-only, do not allow permission change
1043 * to r/w */
1044 if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) &&
1045 reopen_state->flags & BDRV_O_RDWR) {
1046 error_set(errp, QERR_DEVICE_IS_READ_ONLY,
1047 reopen_state->bs->device_name);
1048 goto error;
1049 }
1050
1051
1052 ret = bdrv_flush(reopen_state->bs);
1053 if (ret) {
1054 error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive",
1055 strerror(-ret));
1056 goto error;
1057 }
1058
1059 if (drv->bdrv_reopen_prepare) {
1060 ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err);
1061 if (ret) {
1062 if (local_err != NULL) {
1063 error_propagate(errp, local_err);
1064 } else {
1065 error_set(errp, QERR_OPEN_FILE_FAILED,
1066 reopen_state->bs->filename);
1067 }
1068 goto error;
1069 }
1070 } else {
1071 /* It is currently mandatory to have a bdrv_reopen_prepare()
1072 * handler for each supported drv. */
1073 error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
1074 drv->format_name, reopen_state->bs->device_name,
1075 "reopening of file");
1076 ret = -1;
1077 goto error;
1078 }
1079
1080 ret = 0;
1081
1082 error:
1083 return ret;
1084 }
1085
1086 /*
1087 * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and
1088 * makes them final by swapping the staging BlockDriverState contents into
1089 * the active BlockDriverState contents.
1090 */
1091 void bdrv_reopen_commit(BDRVReopenState *reopen_state)
1092 {
1093 BlockDriver *drv;
1094
1095 assert(reopen_state != NULL);
1096 drv = reopen_state->bs->drv;
1097 assert(drv != NULL);
1098
1099 /* If there are any driver level actions to take */
1100 if (drv->bdrv_reopen_commit) {
1101 drv->bdrv_reopen_commit(reopen_state);
1102 }
1103
1104 /* set BDS specific flags now */
1105 reopen_state->bs->open_flags = reopen_state->flags;
1106 reopen_state->bs->enable_write_cache = !!(reopen_state->flags &
1107 BDRV_O_CACHE_WB);
1108 reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR);
1109 }
1110
1111 /*
1112 * Abort the reopen, and delete and free the staged changes in
1113 * reopen_state
1114 */
1115 void bdrv_reopen_abort(BDRVReopenState *reopen_state)
1116 {
1117 BlockDriver *drv;
1118
1119 assert(reopen_state != NULL);
1120 drv = reopen_state->bs->drv;
1121 assert(drv != NULL);
1122
1123 if (drv->bdrv_reopen_abort) {
1124 drv->bdrv_reopen_abort(reopen_state);
1125 }
1126 }
1127
1128
1129 void bdrv_close(BlockDriverState *bs)
1130 {
1131 bdrv_flush(bs);
1132 if (bs->job) {
1133 block_job_cancel_sync(bs->job);
1134 }
1135 bdrv_drain_all();
1136 notifier_list_notify(&bs->close_notifiers, bs);
1137
1138 if (bs->drv) {
1139 if (bs == bs_snapshots) {
1140 bs_snapshots = NULL;
1141 }
1142 if (bs->backing_hd) {
1143 bdrv_delete(bs->backing_hd);
1144 bs->backing_hd = NULL;
1145 }
1146 bs->drv->bdrv_close(bs);
1147 g_free(bs->opaque);
1148 #ifdef _WIN32
1149 if (bs->is_temporary) {
1150 unlink(bs->filename);
1151 }
1152 #endif
1153 bs->opaque = NULL;
1154 bs->drv = NULL;
1155 bs->copy_on_read = 0;
1156 bs->backing_file[0] = '\0';
1157 bs->backing_format[0] = '\0';
1158 bs->total_sectors = 0;
1159 bs->encrypted = 0;
1160 bs->valid_key = 0;
1161 bs->sg = 0;
1162 bs->growable = 0;
1163
1164 if (bs->file != NULL) {
1165 bdrv_delete(bs->file);
1166 bs->file = NULL;
1167 }
1168 }
1169
1170 bdrv_dev_change_media_cb(bs, false);
1171
1172 /*throttling disk I/O limits*/
1173 if (bs->io_limits_enabled) {
1174 bdrv_io_limits_disable(bs);
1175 }
1176 }
1177
1178 void bdrv_close_all(void)
1179 {
1180 BlockDriverState *bs;
1181
1182 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1183 bdrv_close(bs);
1184 }
1185 }
1186
1187 /*
1188 * Wait for pending requests to complete across all BlockDriverStates
1189 *
1190 * This function does not flush data to disk, use bdrv_flush_all() for that
1191 * after calling this function.
1192 *
1193 * Note that completion of an asynchronous I/O operation can trigger any
1194 * number of other I/O operations on other devices---for example a coroutine
1195 * can be arbitrarily complex and a constant flow of I/O can come until the
1196 * coroutine is complete. Because of this, it is not possible to have a
1197 * function to drain a single device's I/O queue.
1198 */
1199 void bdrv_drain_all(void)
1200 {
1201 BlockDriverState *bs;
1202 bool busy;
1203
1204 do {
1205 busy = qemu_aio_wait();
1206
1207 /* FIXME: We do not have timer support here, so this is effectively
1208 * a busy wait.
1209 */
1210 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1211 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
1212 qemu_co_queue_restart_all(&bs->throttled_reqs);
1213 busy = true;
1214 }
1215 }
1216 } while (busy);
1217
1218 /* If requests are still pending there is a bug somewhere */
1219 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1220 assert(QLIST_EMPTY(&bs->tracked_requests));
1221 assert(qemu_co_queue_empty(&bs->throttled_reqs));
1222 }
1223 }
1224
1225 /* make a BlockDriverState anonymous by removing from bdrv_state list.
1226 Also, NULL terminate the device_name to prevent double remove */
1227 void bdrv_make_anon(BlockDriverState *bs)
1228 {
1229 if (bs->device_name[0] != '\0') {
1230 QTAILQ_REMOVE(&bdrv_states, bs, list);
1231 }
1232 bs->device_name[0] = '\0';
1233 }
1234
1235 static void bdrv_rebind(BlockDriverState *bs)
1236 {
1237 if (bs->drv && bs->drv->bdrv_rebind) {
1238 bs->drv->bdrv_rebind(bs);
1239 }
1240 }
1241
1242 static void bdrv_move_feature_fields(BlockDriverState *bs_dest,
1243 BlockDriverState *bs_src)
1244 {
1245 /* move some fields that need to stay attached to the device */
1246 bs_dest->open_flags = bs_src->open_flags;
1247
1248 /* dev info */
1249 bs_dest->dev_ops = bs_src->dev_ops;
1250 bs_dest->dev_opaque = bs_src->dev_opaque;
1251 bs_dest->dev = bs_src->dev;
1252 bs_dest->buffer_alignment = bs_src->buffer_alignment;
1253 bs_dest->copy_on_read = bs_src->copy_on_read;
1254
1255 bs_dest->enable_write_cache = bs_src->enable_write_cache;
1256
1257 /* i/o timing parameters */
1258 bs_dest->slice_time = bs_src->slice_time;
1259 bs_dest->slice_start = bs_src->slice_start;
1260 bs_dest->slice_end = bs_src->slice_end;
1261 bs_dest->io_limits = bs_src->io_limits;
1262 bs_dest->io_base = bs_src->io_base;
1263 bs_dest->throttled_reqs = bs_src->throttled_reqs;
1264 bs_dest->block_timer = bs_src->block_timer;
1265 bs_dest->io_limits_enabled = bs_src->io_limits_enabled;
1266
1267 /* r/w error */
1268 bs_dest->on_read_error = bs_src->on_read_error;
1269 bs_dest->on_write_error = bs_src->on_write_error;
1270
1271 /* i/o status */
1272 bs_dest->iostatus_enabled = bs_src->iostatus_enabled;
1273 bs_dest->iostatus = bs_src->iostatus;
1274
1275 /* dirty bitmap */
1276 bs_dest->dirty_count = bs_src->dirty_count;
1277 bs_dest->dirty_bitmap = bs_src->dirty_bitmap;
1278
1279 /* job */
1280 bs_dest->in_use = bs_src->in_use;
1281 bs_dest->job = bs_src->job;
1282
1283 /* keep the same entry in bdrv_states */
1284 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name),
1285 bs_src->device_name);
1286 bs_dest->list = bs_src->list;
1287 }
1288
1289 /*
1290 * Swap bs contents for two image chains while they are live,
1291 * while keeping required fields on the BlockDriverState that is
1292 * actually attached to a device.
1293 *
1294 * This will modify the BlockDriverState fields, and swap contents
1295 * between bs_new and bs_old. Both bs_new and bs_old are modified.
1296 *
1297 * bs_new is required to be anonymous.
1298 *
1299 * This function does not create any image files.
1300 */
1301 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old)
1302 {
1303 BlockDriverState tmp;
1304
1305 /* bs_new must be anonymous and shouldn't have anything fancy enabled */
1306 assert(bs_new->device_name[0] == '\0');
1307 assert(bs_new->dirty_bitmap == NULL);
1308 assert(bs_new->job == NULL);
1309 assert(bs_new->dev == NULL);
1310 assert(bs_new->in_use == 0);
1311 assert(bs_new->io_limits_enabled == false);
1312 assert(bs_new->block_timer == NULL);
1313
1314 tmp = *bs_new;
1315 *bs_new = *bs_old;
1316 *bs_old = tmp;
1317
1318 /* there are some fields that should not be swapped, move them back */
1319 bdrv_move_feature_fields(&tmp, bs_old);
1320 bdrv_move_feature_fields(bs_old, bs_new);
1321 bdrv_move_feature_fields(bs_new, &tmp);
1322
1323 /* bs_new shouldn't be in bdrv_states even after the swap! */
1324 assert(bs_new->device_name[0] == '\0');
1325
1326 /* Check a few fields that should remain attached to the device */
1327 assert(bs_new->dev == NULL);
1328 assert(bs_new->job == NULL);
1329 assert(bs_new->in_use == 0);
1330 assert(bs_new->io_limits_enabled == false);
1331 assert(bs_new->block_timer == NULL);
1332
1333 bdrv_rebind(bs_new);
1334 bdrv_rebind(bs_old);
1335 }
1336
1337 /*
1338 * Add new bs contents at the top of an image chain while the chain is
1339 * live, while keeping required fields on the top layer.
1340 *
1341 * This will modify the BlockDriverState fields, and swap contents
1342 * between bs_new and bs_top. Both bs_new and bs_top are modified.
1343 *
1344 * bs_new is required to be anonymous.
1345 *
1346 * This function does not create any image files.
1347 */
1348 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
1349 {
1350 bdrv_swap(bs_new, bs_top);
1351
1352 /* The contents of 'tmp' will become bs_top, as we are
1353 * swapping bs_new and bs_top contents. */
1354 bs_top->backing_hd = bs_new;
1355 bs_top->open_flags &= ~BDRV_O_NO_BACKING;
1356 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file),
1357 bs_new->filename);
1358 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format),
1359 bs_new->drv ? bs_new->drv->format_name : "");
1360 }
1361
1362 void bdrv_delete(BlockDriverState *bs)
1363 {
1364 assert(!bs->dev);
1365 assert(!bs->job);
1366 assert(!bs->in_use);
1367
1368 /* remove from list, if necessary */
1369 bdrv_make_anon(bs);
1370
1371 bdrv_close(bs);
1372
1373 assert(bs != bs_snapshots);
1374 g_free(bs);
1375 }
1376
1377 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
1378 /* TODO change to DeviceState *dev when all users are qdevified */
1379 {
1380 if (bs->dev) {
1381 return -EBUSY;
1382 }
1383 bs->dev = dev;
1384 bdrv_iostatus_reset(bs);
1385 return 0;
1386 }
1387
1388 /* TODO qdevified devices don't use this, remove when devices are qdevified */
1389 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
1390 {
1391 if (bdrv_attach_dev(bs, dev) < 0) {
1392 abort();
1393 }
1394 }
1395
1396 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1397 /* TODO change to DeviceState *dev when all users are qdevified */
1398 {
1399 assert(bs->dev == dev);
1400 bs->dev = NULL;
1401 bs->dev_ops = NULL;
1402 bs->dev_opaque = NULL;
1403 bs->buffer_alignment = 512;
1404 }
1405
1406 /* TODO change to return DeviceState * when all users are qdevified */
1407 void *bdrv_get_attached_dev(BlockDriverState *bs)
1408 {
1409 return bs->dev;
1410 }
1411
1412 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1413 void *opaque)
1414 {
1415 bs->dev_ops = ops;
1416 bs->dev_opaque = opaque;
1417 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
1418 bs_snapshots = NULL;
1419 }
1420 }
1421
1422 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1423 enum MonitorEvent ev,
1424 BlockErrorAction action, bool is_read)
1425 {
1426 QObject *data;
1427 const char *action_str;
1428
1429 switch (action) {
1430 case BDRV_ACTION_REPORT:
1431 action_str = "report";
1432 break;
1433 case BDRV_ACTION_IGNORE:
1434 action_str = "ignore";
1435 break;
1436 case BDRV_ACTION_STOP:
1437 action_str = "stop";
1438 break;
1439 default:
1440 abort();
1441 }
1442
1443 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1444 bdrv->device_name,
1445 action_str,
1446 is_read ? "read" : "write");
1447 monitor_protocol_event(ev, data);
1448
1449 qobject_decref(data);
1450 }
1451
1452 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1453 {
1454 QObject *data;
1455
1456 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1457 bdrv_get_device_name(bs), ejected);
1458 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1459
1460 qobject_decref(data);
1461 }
1462
1463 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1464 {
1465 if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1466 bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1467 bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1468 if (tray_was_closed) {
1469 /* tray open */
1470 bdrv_emit_qmp_eject_event(bs, true);
1471 }
1472 if (load) {
1473 /* tray close */
1474 bdrv_emit_qmp_eject_event(bs, false);
1475 }
1476 }
1477 }
1478
1479 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1480 {
1481 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1482 }
1483
1484 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1485 {
1486 if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1487 bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1488 }
1489 }
1490
1491 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1492 {
1493 if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1494 return bs->dev_ops->is_tray_open(bs->dev_opaque);
1495 }
1496 return false;
1497 }
1498
1499 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1500 {
1501 if (bs->dev_ops && bs->dev_ops->resize_cb) {
1502 bs->dev_ops->resize_cb(bs->dev_opaque);
1503 }
1504 }
1505
1506 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1507 {
1508 if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1509 return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1510 }
1511 return false;
1512 }
1513
1514 /*
1515 * Run consistency checks on an image
1516 *
1517 * Returns 0 if the check could be completed (it doesn't mean that the image is
1518 * free of errors) or -errno when an internal error occurred. The results of the
1519 * check are stored in res.
1520 */
1521 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix)
1522 {
1523 if (bs->drv->bdrv_check == NULL) {
1524 return -ENOTSUP;
1525 }
1526
1527 memset(res, 0, sizeof(*res));
1528 return bs->drv->bdrv_check(bs, res, fix);
1529 }
1530
1531 #define COMMIT_BUF_SECTORS 2048
1532
1533 /* commit COW file into the raw image */
1534 int bdrv_commit(BlockDriverState *bs)
1535 {
1536 BlockDriver *drv = bs->drv;
1537 int64_t sector, total_sectors;
1538 int n, ro, open_flags;
1539 int ret = 0;
1540 uint8_t *buf;
1541 char filename[PATH_MAX];
1542
1543 if (!drv)
1544 return -ENOMEDIUM;
1545
1546 if (!bs->backing_hd) {
1547 return -ENOTSUP;
1548 }
1549
1550 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1551 return -EBUSY;
1552 }
1553
1554 ro = bs->backing_hd->read_only;
1555 /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */
1556 pstrcpy(filename, sizeof(filename), bs->backing_hd->filename);
1557 open_flags = bs->backing_hd->open_flags;
1558
1559 if (ro) {
1560 if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) {
1561 return -EACCES;
1562 }
1563 }
1564
1565 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1566 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1567
1568 for (sector = 0; sector < total_sectors; sector += n) {
1569 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1570
1571 if (bdrv_read(bs, sector, buf, n) != 0) {
1572 ret = -EIO;
1573 goto ro_cleanup;
1574 }
1575
1576 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1577 ret = -EIO;
1578 goto ro_cleanup;
1579 }
1580 }
1581 }
1582
1583 if (drv->bdrv_make_empty) {
1584 ret = drv->bdrv_make_empty(bs);
1585 bdrv_flush(bs);
1586 }
1587
1588 /*
1589 * Make sure all data we wrote to the backing device is actually
1590 * stable on disk.
1591 */
1592 if (bs->backing_hd)
1593 bdrv_flush(bs->backing_hd);
1594
1595 ro_cleanup:
1596 g_free(buf);
1597
1598 if (ro) {
1599 /* ignoring error return here */
1600 bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL);
1601 }
1602
1603 return ret;
1604 }
1605
1606 int bdrv_commit_all(void)
1607 {
1608 BlockDriverState *bs;
1609
1610 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1611 int ret = bdrv_commit(bs);
1612 if (ret < 0) {
1613 return ret;
1614 }
1615 }
1616 return 0;
1617 }
1618
1619 struct BdrvTrackedRequest {
1620 BlockDriverState *bs;
1621 int64_t sector_num;
1622 int nb_sectors;
1623 bool is_write;
1624 QLIST_ENTRY(BdrvTrackedRequest) list;
1625 Coroutine *co; /* owner, used for deadlock detection */
1626 CoQueue wait_queue; /* coroutines blocked on this request */
1627 };
1628
1629 /**
1630 * Remove an active request from the tracked requests list
1631 *
1632 * This function should be called when a tracked request is completing.
1633 */
1634 static void tracked_request_end(BdrvTrackedRequest *req)
1635 {
1636 QLIST_REMOVE(req, list);
1637 qemu_co_queue_restart_all(&req->wait_queue);
1638 }
1639
1640 /**
1641 * Add an active request to the tracked requests list
1642 */
1643 static void tracked_request_begin(BdrvTrackedRequest *req,
1644 BlockDriverState *bs,
1645 int64_t sector_num,
1646 int nb_sectors, bool is_write)
1647 {
1648 *req = (BdrvTrackedRequest){
1649 .bs = bs,
1650 .sector_num = sector_num,
1651 .nb_sectors = nb_sectors,
1652 .is_write = is_write,
1653 .co = qemu_coroutine_self(),
1654 };
1655
1656 qemu_co_queue_init(&req->wait_queue);
1657
1658 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1659 }
1660
1661 /**
1662 * Round a region to cluster boundaries
1663 */
1664 static void round_to_clusters(BlockDriverState *bs,
1665 int64_t sector_num, int nb_sectors,
1666 int64_t *cluster_sector_num,
1667 int *cluster_nb_sectors)
1668 {
1669 BlockDriverInfo bdi;
1670
1671 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1672 *cluster_sector_num = sector_num;
1673 *cluster_nb_sectors = nb_sectors;
1674 } else {
1675 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1676 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1677 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1678 nb_sectors, c);
1679 }
1680 }
1681
1682 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1683 int64_t sector_num, int nb_sectors) {
1684 /* aaaa bbbb */
1685 if (sector_num >= req->sector_num + req->nb_sectors) {
1686 return false;
1687 }
1688 /* bbbb aaaa */
1689 if (req->sector_num >= sector_num + nb_sectors) {
1690 return false;
1691 }
1692 return true;
1693 }
1694
1695 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1696 int64_t sector_num, int nb_sectors)
1697 {
1698 BdrvTrackedRequest *req;
1699 int64_t cluster_sector_num;
1700 int cluster_nb_sectors;
1701 bool retry;
1702
1703 /* If we touch the same cluster it counts as an overlap. This guarantees
1704 * that allocating writes will be serialized and not race with each other
1705 * for the same cluster. For example, in copy-on-read it ensures that the
1706 * CoR read and write operations are atomic and guest writes cannot
1707 * interleave between them.
1708 */
1709 round_to_clusters(bs, sector_num, nb_sectors,
1710 &cluster_sector_num, &cluster_nb_sectors);
1711
1712 do {
1713 retry = false;
1714 QLIST_FOREACH(req, &bs->tracked_requests, list) {
1715 if (tracked_request_overlaps(req, cluster_sector_num,
1716 cluster_nb_sectors)) {
1717 /* Hitting this means there was a reentrant request, for
1718 * example, a block driver issuing nested requests. This must
1719 * never happen since it means deadlock.
1720 */
1721 assert(qemu_coroutine_self() != req->co);
1722
1723 qemu_co_queue_wait(&req->wait_queue);
1724 retry = true;
1725 break;
1726 }
1727 }
1728 } while (retry);
1729 }
1730
1731 /*
1732 * Return values:
1733 * 0 - success
1734 * -EINVAL - backing format specified, but no file
1735 * -ENOSPC - can't update the backing file because no space is left in the
1736 * image file header
1737 * -ENOTSUP - format driver doesn't support changing the backing file
1738 */
1739 int bdrv_change_backing_file(BlockDriverState *bs,
1740 const char *backing_file, const char *backing_fmt)
1741 {
1742 BlockDriver *drv = bs->drv;
1743 int ret;
1744
1745 /* Backing file format doesn't make sense without a backing file */
1746 if (backing_fmt && !backing_file) {
1747 return -EINVAL;
1748 }
1749
1750 if (drv->bdrv_change_backing_file != NULL) {
1751 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1752 } else {
1753 ret = -ENOTSUP;
1754 }
1755
1756 if (ret == 0) {
1757 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
1758 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
1759 }
1760 return ret;
1761 }
1762
1763 /*
1764 * Finds the image layer in the chain that has 'bs' as its backing file.
1765 *
1766 * active is the current topmost image.
1767 *
1768 * Returns NULL if bs is not found in active's image chain,
1769 * or if active == bs.
1770 */
1771 BlockDriverState *bdrv_find_overlay(BlockDriverState *active,
1772 BlockDriverState *bs)
1773 {
1774 BlockDriverState *overlay = NULL;
1775 BlockDriverState *intermediate;
1776
1777 assert(active != NULL);
1778 assert(bs != NULL);
1779
1780 /* if bs is the same as active, then by definition it has no overlay
1781 */
1782 if (active == bs) {
1783 return NULL;
1784 }
1785
1786 intermediate = active;
1787 while (intermediate->backing_hd) {
1788 if (intermediate->backing_hd == bs) {
1789 overlay = intermediate;
1790 break;
1791 }
1792 intermediate = intermediate->backing_hd;
1793 }
1794
1795 return overlay;
1796 }
1797
1798 typedef struct BlkIntermediateStates {
1799 BlockDriverState *bs;
1800 QSIMPLEQ_ENTRY(BlkIntermediateStates) entry;
1801 } BlkIntermediateStates;
1802
1803
1804 /*
1805 * Drops images above 'base' up to and including 'top', and sets the image
1806 * above 'top' to have base as its backing file.
1807 *
1808 * Requires that the overlay to 'top' is opened r/w, so that the backing file
1809 * information in 'bs' can be properly updated.
1810 *
1811 * E.g., this will convert the following chain:
1812 * bottom <- base <- intermediate <- top <- active
1813 *
1814 * to
1815 *
1816 * bottom <- base <- active
1817 *
1818 * It is allowed for bottom==base, in which case it converts:
1819 *
1820 * base <- intermediate <- top <- active
1821 *
1822 * to
1823 *
1824 * base <- active
1825 *
1826 * Error conditions:
1827 * if active == top, that is considered an error
1828 *
1829 */
1830 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top,
1831 BlockDriverState *base)
1832 {
1833 BlockDriverState *intermediate;
1834 BlockDriverState *base_bs = NULL;
1835 BlockDriverState *new_top_bs = NULL;
1836 BlkIntermediateStates *intermediate_state, *next;
1837 int ret = -EIO;
1838
1839 QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete;
1840 QSIMPLEQ_INIT(&states_to_delete);
1841
1842 if (!top->drv || !base->drv) {
1843 goto exit;
1844 }
1845
1846 new_top_bs = bdrv_find_overlay(active, top);
1847
1848 if (new_top_bs == NULL) {
1849 /* we could not find the image above 'top', this is an error */
1850 goto exit;
1851 }
1852
1853 /* special case of new_top_bs->backing_hd already pointing to base - nothing
1854 * to do, no intermediate images */
1855 if (new_top_bs->backing_hd == base) {
1856 ret = 0;
1857 goto exit;
1858 }
1859
1860 intermediate = top;
1861
1862 /* now we will go down through the list, and add each BDS we find
1863 * into our deletion queue, until we hit the 'base'
1864 */
1865 while (intermediate) {
1866 intermediate_state = g_malloc0(sizeof(BlkIntermediateStates));
1867 intermediate_state->bs = intermediate;
1868 QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry);
1869
1870 if (intermediate->backing_hd == base) {
1871 base_bs = intermediate->backing_hd;
1872 break;
1873 }
1874 intermediate = intermediate->backing_hd;
1875 }
1876 if (base_bs == NULL) {
1877 /* something went wrong, we did not end at the base. safely
1878 * unravel everything, and exit with error */
1879 goto exit;
1880 }
1881
1882 /* success - we can delete the intermediate states, and link top->base */
1883 ret = bdrv_change_backing_file(new_top_bs, base_bs->filename,
1884 base_bs->drv ? base_bs->drv->format_name : "");
1885 if (ret) {
1886 goto exit;
1887 }
1888 new_top_bs->backing_hd = base_bs;
1889
1890
1891 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1892 /* so that bdrv_close() does not recursively close the chain */
1893 intermediate_state->bs->backing_hd = NULL;
1894 bdrv_delete(intermediate_state->bs);
1895 }
1896 ret = 0;
1897
1898 exit:
1899 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1900 g_free(intermediate_state);
1901 }
1902 return ret;
1903 }
1904
1905
1906 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1907 size_t size)
1908 {
1909 int64_t len;
1910
1911 if (!bdrv_is_inserted(bs))
1912 return -ENOMEDIUM;
1913
1914 if (bs->growable)
1915 return 0;
1916
1917 len = bdrv_getlength(bs);
1918
1919 if (offset < 0)
1920 return -EIO;
1921
1922 if ((offset > len) || (len - offset < size))
1923 return -EIO;
1924
1925 return 0;
1926 }
1927
1928 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1929 int nb_sectors)
1930 {
1931 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1932 nb_sectors * BDRV_SECTOR_SIZE);
1933 }
1934
1935 typedef struct RwCo {
1936 BlockDriverState *bs;
1937 int64_t sector_num;
1938 int nb_sectors;
1939 QEMUIOVector *qiov;
1940 bool is_write;
1941 int ret;
1942 } RwCo;
1943
1944 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1945 {
1946 RwCo *rwco = opaque;
1947
1948 if (!rwco->is_write) {
1949 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1950 rwco->nb_sectors, rwco->qiov, 0);
1951 } else {
1952 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1953 rwco->nb_sectors, rwco->qiov, 0);
1954 }
1955 }
1956
1957 /*
1958 * Process a synchronous request using coroutines
1959 */
1960 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1961 int nb_sectors, bool is_write)
1962 {
1963 QEMUIOVector qiov;
1964 struct iovec iov = {
1965 .iov_base = (void *)buf,
1966 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1967 };
1968 Coroutine *co;
1969 RwCo rwco = {
1970 .bs = bs,
1971 .sector_num = sector_num,
1972 .nb_sectors = nb_sectors,
1973 .qiov = &qiov,
1974 .is_write = is_write,
1975 .ret = NOT_DONE,
1976 };
1977
1978 qemu_iovec_init_external(&qiov, &iov, 1);
1979
1980 /**
1981 * In sync call context, when the vcpu is blocked, this throttling timer
1982 * will not fire; so the I/O throttling function has to be disabled here
1983 * if it has been enabled.
1984 */
1985 if (bs->io_limits_enabled) {
1986 fprintf(stderr, "Disabling I/O throttling on '%s' due "
1987 "to synchronous I/O.\n", bdrv_get_device_name(bs));
1988 bdrv_io_limits_disable(bs);
1989 }
1990
1991 if (qemu_in_coroutine()) {
1992 /* Fast-path if already in coroutine context */
1993 bdrv_rw_co_entry(&rwco);
1994 } else {
1995 co = qemu_coroutine_create(bdrv_rw_co_entry);
1996 qemu_coroutine_enter(co, &rwco);
1997 while (rwco.ret == NOT_DONE) {
1998 qemu_aio_wait();
1999 }
2000 }
2001 return rwco.ret;
2002 }
2003
2004 /* return < 0 if error. See bdrv_write() for the return codes */
2005 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
2006 uint8_t *buf, int nb_sectors)
2007 {
2008 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
2009 }
2010
2011 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
2012 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
2013 uint8_t *buf, int nb_sectors)
2014 {
2015 bool enabled;
2016 int ret;
2017
2018 enabled = bs->io_limits_enabled;
2019 bs->io_limits_enabled = false;
2020 ret = bdrv_read(bs, 0, buf, 1);
2021 bs->io_limits_enabled = enabled;
2022 return ret;
2023 }
2024
2025 #define BITS_PER_LONG (sizeof(unsigned long) * 8)
2026
2027 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num,
2028 int nb_sectors, int dirty)
2029 {
2030 int64_t start, end;
2031 unsigned long val, idx, bit;
2032
2033 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK;
2034 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK;
2035
2036 for (; start <= end; start++) {
2037 idx = start / BITS_PER_LONG;
2038 bit = start % BITS_PER_LONG;
2039 val = bs->dirty_bitmap[idx];
2040 if (dirty) {
2041 if (!(val & (1UL << bit))) {
2042 bs->dirty_count++;
2043 val |= 1UL << bit;
2044 }
2045 } else {
2046 if (val & (1UL << bit)) {
2047 bs->dirty_count--;
2048 val &= ~(1UL << bit);
2049 }
2050 }
2051 bs->dirty_bitmap[idx] = val;
2052 }
2053 }
2054
2055 /* Return < 0 if error. Important errors are:
2056 -EIO generic I/O error (may happen for all errors)
2057 -ENOMEDIUM No media inserted.
2058 -EINVAL Invalid sector number or nb_sectors
2059 -EACCES Trying to write a read-only device
2060 */
2061 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
2062 const uint8_t *buf, int nb_sectors)
2063 {
2064 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
2065 }
2066
2067 int bdrv_pread(BlockDriverState *bs, int64_t offset,
2068 void *buf, int count1)
2069 {
2070 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2071 int len, nb_sectors, count;
2072 int64_t sector_num;
2073 int ret;
2074
2075 count = count1;
2076 /* first read to align to sector start */
2077 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2078 if (len > count)
2079 len = count;
2080 sector_num = offset >> BDRV_SECTOR_BITS;
2081 if (len > 0) {
2082 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2083 return ret;
2084 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
2085 count -= len;
2086 if (count == 0)
2087 return count1;
2088 sector_num++;
2089 buf += len;
2090 }
2091
2092 /* read the sectors "in place" */
2093 nb_sectors = count >> BDRV_SECTOR_BITS;
2094 if (nb_sectors > 0) {
2095 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
2096 return ret;
2097 sector_num += nb_sectors;
2098 len = nb_sectors << BDRV_SECTOR_BITS;
2099 buf += len;
2100 count -= len;
2101 }
2102
2103 /* add data from the last sector */
2104 if (count > 0) {
2105 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2106 return ret;
2107 memcpy(buf, tmp_buf, count);
2108 }
2109 return count1;
2110 }
2111
2112 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
2113 const void *buf, int count1)
2114 {
2115 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2116 int len, nb_sectors, count;
2117 int64_t sector_num;
2118 int ret;
2119
2120 count = count1;
2121 /* first write to align to sector start */
2122 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2123 if (len > count)
2124 len = count;
2125 sector_num = offset >> BDRV_SECTOR_BITS;
2126 if (len > 0) {
2127 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2128 return ret;
2129 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
2130 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2131 return ret;
2132 count -= len;
2133 if (count == 0)
2134 return count1;
2135 sector_num++;
2136 buf += len;
2137 }
2138
2139 /* write the sectors "in place" */
2140 nb_sectors = count >> BDRV_SECTOR_BITS;
2141 if (nb_sectors > 0) {
2142 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
2143 return ret;
2144 sector_num += nb_sectors;
2145 len = nb_sectors << BDRV_SECTOR_BITS;
2146 buf += len;
2147 count -= len;
2148 }
2149
2150 /* add data from the last sector */
2151 if (count > 0) {
2152 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2153 return ret;
2154 memcpy(tmp_buf, buf, count);
2155 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2156 return ret;
2157 }
2158 return count1;
2159 }
2160
2161 /*
2162 * Writes to the file and ensures that no writes are reordered across this
2163 * request (acts as a barrier)
2164 *
2165 * Returns 0 on success, -errno in error cases.
2166 */
2167 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
2168 const void *buf, int count)
2169 {
2170 int ret;
2171
2172 ret = bdrv_pwrite(bs, offset, buf, count);
2173 if (ret < 0) {
2174 return ret;
2175 }
2176
2177 /* No flush needed for cache modes that already do it */
2178 if (bs->enable_write_cache) {
2179 bdrv_flush(bs);
2180 }
2181
2182 return 0;
2183 }
2184
2185 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
2186 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2187 {
2188 /* Perform I/O through a temporary buffer so that users who scribble over
2189 * their read buffer while the operation is in progress do not end up
2190 * modifying the image file. This is critical for zero-copy guest I/O
2191 * where anything might happen inside guest memory.
2192 */
2193 void *bounce_buffer;
2194
2195 BlockDriver *drv = bs->drv;
2196 struct iovec iov;
2197 QEMUIOVector bounce_qiov;
2198 int64_t cluster_sector_num;
2199 int cluster_nb_sectors;
2200 size_t skip_bytes;
2201 int ret;
2202
2203 /* Cover entire cluster so no additional backing file I/O is required when
2204 * allocating cluster in the image file.
2205 */
2206 round_to_clusters(bs, sector_num, nb_sectors,
2207 &cluster_sector_num, &cluster_nb_sectors);
2208
2209 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
2210 cluster_sector_num, cluster_nb_sectors);
2211
2212 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
2213 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
2214 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
2215
2216 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
2217 &bounce_qiov);
2218 if (ret < 0) {
2219 goto err;
2220 }
2221
2222 if (drv->bdrv_co_write_zeroes &&
2223 buffer_is_zero(bounce_buffer, iov.iov_len)) {
2224 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
2225 cluster_nb_sectors);
2226 } else {
2227 /* This does not change the data on the disk, it is not necessary
2228 * to flush even in cache=writethrough mode.
2229 */
2230 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
2231 &bounce_qiov);
2232 }
2233
2234 if (ret < 0) {
2235 /* It might be okay to ignore write errors for guest requests. If this
2236 * is a deliberate copy-on-read then we don't want to ignore the error.
2237 * Simply report it in all cases.
2238 */
2239 goto err;
2240 }
2241
2242 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
2243 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
2244 nb_sectors * BDRV_SECTOR_SIZE);
2245
2246 err:
2247 qemu_vfree(bounce_buffer);
2248 return ret;
2249 }
2250
2251 /*
2252 * Handle a read request in coroutine context
2253 */
2254 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
2255 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2256 BdrvRequestFlags flags)
2257 {
2258 BlockDriver *drv = bs->drv;
2259 BdrvTrackedRequest req;
2260 int ret;
2261
2262 if (!drv) {
2263 return -ENOMEDIUM;
2264 }
2265 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2266 return -EIO;
2267 }
2268
2269 /* throttling disk read I/O */
2270 if (bs->io_limits_enabled) {
2271 bdrv_io_limits_intercept(bs, false, nb_sectors);
2272 }
2273
2274 if (bs->copy_on_read) {
2275 flags |= BDRV_REQ_COPY_ON_READ;
2276 }
2277 if (flags & BDRV_REQ_COPY_ON_READ) {
2278 bs->copy_on_read_in_flight++;
2279 }
2280
2281 if (bs->copy_on_read_in_flight) {
2282 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2283 }
2284
2285 tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
2286
2287 if (flags & BDRV_REQ_COPY_ON_READ) {
2288 int pnum;
2289
2290 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
2291 if (ret < 0) {
2292 goto out;
2293 }
2294
2295 if (!ret || pnum != nb_sectors) {
2296 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
2297 goto out;
2298 }
2299 }
2300
2301 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
2302
2303 out:
2304 tracked_request_end(&req);
2305
2306 if (flags & BDRV_REQ_COPY_ON_READ) {
2307 bs->copy_on_read_in_flight--;
2308 }
2309
2310 return ret;
2311 }
2312
2313 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
2314 int nb_sectors, QEMUIOVector *qiov)
2315 {
2316 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
2317
2318 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
2319 }
2320
2321 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
2322 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2323 {
2324 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
2325
2326 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
2327 BDRV_REQ_COPY_ON_READ);
2328 }
2329
2330 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
2331 int64_t sector_num, int nb_sectors)
2332 {
2333 BlockDriver *drv = bs->drv;
2334 QEMUIOVector qiov;
2335 struct iovec iov;
2336 int ret;
2337
2338 /* TODO Emulate only part of misaligned requests instead of letting block
2339 * drivers return -ENOTSUP and emulate everything */
2340
2341 /* First try the efficient write zeroes operation */
2342 if (drv->bdrv_co_write_zeroes) {
2343 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2344 if (ret != -ENOTSUP) {
2345 return ret;
2346 }
2347 }
2348
2349 /* Fall back to bounce buffer if write zeroes is unsupported */
2350 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE;
2351 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
2352 memset(iov.iov_base, 0, iov.iov_len);
2353 qemu_iovec_init_external(&qiov, &iov, 1);
2354
2355 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
2356
2357 qemu_vfree(iov.iov_base);
2358 return ret;
2359 }
2360
2361 /*
2362 * Handle a write request in coroutine context
2363 */
2364 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
2365 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2366 BdrvRequestFlags flags)
2367 {
2368 BlockDriver *drv = bs->drv;
2369 BdrvTrackedRequest req;
2370 int ret;
2371
2372 if (!bs->drv) {
2373 return -ENOMEDIUM;
2374 }
2375 if (bs->read_only) {
2376 return -EACCES;
2377 }
2378 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2379 return -EIO;
2380 }
2381
2382 /* throttling disk write I/O */
2383 if (bs->io_limits_enabled) {
2384 bdrv_io_limits_intercept(bs, true, nb_sectors);
2385 }
2386
2387 if (bs->copy_on_read_in_flight) {
2388 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2389 }
2390
2391 tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
2392
2393 if (flags & BDRV_REQ_ZERO_WRITE) {
2394 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
2395 } else {
2396 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
2397 }
2398
2399 if (ret == 0 && !bs->enable_write_cache) {
2400 ret = bdrv_co_flush(bs);
2401 }
2402
2403 if (bs->dirty_bitmap) {
2404 bdrv_set_dirty(bs, sector_num, nb_sectors);
2405 }
2406
2407 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
2408 bs->wr_highest_sector = sector_num + nb_sectors - 1;
2409 }
2410
2411 tracked_request_end(&req);
2412
2413 return ret;
2414 }
2415
2416 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
2417 int nb_sectors, QEMUIOVector *qiov)
2418 {
2419 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
2420
2421 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
2422 }
2423
2424 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
2425 int64_t sector_num, int nb_sectors)
2426 {
2427 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2428
2429 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
2430 BDRV_REQ_ZERO_WRITE);
2431 }
2432
2433 /**
2434 * Truncate file to 'offset' bytes (needed only for file protocols)
2435 */
2436 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
2437 {
2438 BlockDriver *drv = bs->drv;
2439 int ret;
2440 if (!drv)
2441 return -ENOMEDIUM;
2442 if (!drv->bdrv_truncate)
2443 return -ENOTSUP;
2444 if (bs->read_only)
2445 return -EACCES;
2446 if (bdrv_in_use(bs))
2447 return -EBUSY;
2448 ret = drv->bdrv_truncate(bs, offset);
2449 if (ret == 0) {
2450 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
2451 bdrv_dev_resize_cb(bs);
2452 }
2453 return ret;
2454 }
2455
2456 /**
2457 * Length of a allocated file in bytes. Sparse files are counted by actual
2458 * allocated space. Return < 0 if error or unknown.
2459 */
2460 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
2461 {
2462 BlockDriver *drv = bs->drv;
2463 if (!drv) {
2464 return -ENOMEDIUM;
2465 }
2466 if (drv->bdrv_get_allocated_file_size) {
2467 return drv->bdrv_get_allocated_file_size(bs);
2468 }
2469 if (bs->file) {
2470 return bdrv_get_allocated_file_size(bs->file);
2471 }
2472 return -ENOTSUP;
2473 }
2474
2475 /**
2476 * Length of a file in bytes. Return < 0 if error or unknown.
2477 */
2478 int64_t bdrv_getlength(BlockDriverState *bs)
2479 {
2480 BlockDriver *drv = bs->drv;
2481 if (!drv)
2482 return -ENOMEDIUM;
2483
2484 if (bs->growable || bdrv_dev_has_removable_media(bs)) {
2485 if (drv->bdrv_getlength) {
2486 return drv->bdrv_getlength(bs);
2487 }
2488 }
2489 return bs->total_sectors * BDRV_SECTOR_SIZE;
2490 }
2491
2492 /* return 0 as number of sectors if no device present or error */
2493 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
2494 {
2495 int64_t length;
2496 length = bdrv_getlength(bs);
2497 if (length < 0)
2498 length = 0;
2499 else
2500 length = length >> BDRV_SECTOR_BITS;
2501 *nb_sectors_ptr = length;
2502 }
2503
2504 /* throttling disk io limits */
2505 void bdrv_set_io_limits(BlockDriverState *bs,
2506 BlockIOLimit *io_limits)
2507 {
2508 bs->io_limits = *io_limits;
2509 bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2510 }
2511
2512 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error,
2513 BlockdevOnError on_write_error)
2514 {
2515 bs->on_read_error = on_read_error;
2516 bs->on_write_error = on_write_error;
2517 }
2518
2519 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read)
2520 {
2521 return is_read ? bs->on_read_error : bs->on_write_error;
2522 }
2523
2524 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error)
2525 {
2526 BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error;
2527
2528 switch (on_err) {
2529 case BLOCKDEV_ON_ERROR_ENOSPC:
2530 return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT;
2531 case BLOCKDEV_ON_ERROR_STOP:
2532 return BDRV_ACTION_STOP;
2533 case BLOCKDEV_ON_ERROR_REPORT:
2534 return BDRV_ACTION_REPORT;
2535 case BLOCKDEV_ON_ERROR_IGNORE:
2536 return BDRV_ACTION_IGNORE;
2537 default:
2538 abort();
2539 }
2540 }
2541
2542 /* This is done by device models because, while the block layer knows
2543 * about the error, it does not know whether an operation comes from
2544 * the device or the block layer (from a job, for example).
2545 */
2546 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action,
2547 bool is_read, int error)
2548 {
2549 assert(error >= 0);
2550 bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read);
2551 if (action == BDRV_ACTION_STOP) {
2552 vm_stop(RUN_STATE_IO_ERROR);
2553 bdrv_iostatus_set_err(bs, error);
2554 }
2555 }
2556
2557 int bdrv_is_read_only(BlockDriverState *bs)
2558 {
2559 return bs->read_only;
2560 }
2561
2562 int bdrv_is_sg(BlockDriverState *bs)
2563 {
2564 return bs->sg;
2565 }
2566
2567 int bdrv_enable_write_cache(BlockDriverState *bs)
2568 {
2569 return bs->enable_write_cache;
2570 }
2571
2572 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce)
2573 {
2574 bs->enable_write_cache = wce;
2575
2576 /* so a reopen() will preserve wce */
2577 if (wce) {
2578 bs->open_flags |= BDRV_O_CACHE_WB;
2579 } else {
2580 bs->open_flags &= ~BDRV_O_CACHE_WB;
2581 }
2582 }
2583
2584 int bdrv_is_encrypted(BlockDriverState *bs)
2585 {
2586 if (bs->backing_hd && bs->backing_hd->encrypted)
2587 return 1;
2588 return bs->encrypted;
2589 }
2590
2591 int bdrv_key_required(BlockDriverState *bs)
2592 {
2593 BlockDriverState *backing_hd = bs->backing_hd;
2594
2595 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2596 return 1;
2597 return (bs->encrypted && !bs->valid_key);
2598 }
2599
2600 int bdrv_set_key(BlockDriverState *bs, const char *key)
2601 {
2602 int ret;
2603 if (bs->backing_hd && bs->backing_hd->encrypted) {
2604 ret = bdrv_set_key(bs->backing_hd, key);
2605 if (ret < 0)
2606 return ret;
2607 if (!bs->encrypted)
2608 return 0;
2609 }
2610 if (!bs->encrypted) {
2611 return -EINVAL;
2612 } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2613 return -ENOMEDIUM;
2614 }
2615 ret = bs->drv->bdrv_set_key(bs, key);
2616 if (ret < 0) {
2617 bs->valid_key = 0;
2618 } else if (!bs->valid_key) {
2619 bs->valid_key = 1;
2620 /* call the change callback now, we skipped it on open */
2621 bdrv_dev_change_media_cb(bs, true);
2622 }
2623 return ret;
2624 }
2625
2626 const char *bdrv_get_format_name(BlockDriverState *bs)
2627 {
2628 return bs->drv ? bs->drv->format_name : NULL;
2629 }
2630
2631 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2632 void *opaque)
2633 {
2634 BlockDriver *drv;
2635
2636 QLIST_FOREACH(drv, &bdrv_drivers, list) {
2637 it(opaque, drv->format_name);
2638 }
2639 }
2640
2641 BlockDriverState *bdrv_find(const char *name)
2642 {
2643 BlockDriverState *bs;
2644
2645 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2646 if (!strcmp(name, bs->device_name)) {
2647 return bs;
2648 }
2649 }
2650 return NULL;
2651 }
2652
2653 BlockDriverState *bdrv_next(BlockDriverState *bs)
2654 {
2655 if (!bs) {
2656 return QTAILQ_FIRST(&bdrv_states);
2657 }
2658 return QTAILQ_NEXT(bs, list);
2659 }
2660
2661 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2662 {
2663 BlockDriverState *bs;
2664
2665 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2666 it(opaque, bs);
2667 }
2668 }
2669
2670 const char *bdrv_get_device_name(BlockDriverState *bs)
2671 {
2672 return bs->device_name;
2673 }
2674
2675 int bdrv_get_flags(BlockDriverState *bs)
2676 {
2677 return bs->open_flags;
2678 }
2679
2680 void bdrv_flush_all(void)
2681 {
2682 BlockDriverState *bs;
2683
2684 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2685 bdrv_flush(bs);
2686 }
2687 }
2688
2689 int bdrv_has_zero_init(BlockDriverState *bs)
2690 {
2691 assert(bs->drv);
2692
2693 if (bs->drv->bdrv_has_zero_init) {
2694 return bs->drv->bdrv_has_zero_init(bs);
2695 }
2696
2697 return 1;
2698 }
2699
2700 typedef struct BdrvCoIsAllocatedData {
2701 BlockDriverState *bs;
2702 int64_t sector_num;
2703 int nb_sectors;
2704 int *pnum;
2705 int ret;
2706 bool done;
2707 } BdrvCoIsAllocatedData;
2708
2709 /*
2710 * Returns true iff the specified sector is present in the disk image. Drivers
2711 * not implementing the functionality are assumed to not support backing files,
2712 * hence all their sectors are reported as allocated.
2713 *
2714 * If 'sector_num' is beyond the end of the disk image the return value is 0
2715 * and 'pnum' is set to 0.
2716 *
2717 * 'pnum' is set to the number of sectors (including and immediately following
2718 * the specified sector) that are known to be in the same
2719 * allocated/unallocated state.
2720 *
2721 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
2722 * beyond the end of the disk image it will be clamped.
2723 */
2724 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2725 int nb_sectors, int *pnum)
2726 {
2727 int64_t n;
2728
2729 if (sector_num >= bs->total_sectors) {
2730 *pnum = 0;
2731 return 0;
2732 }
2733
2734 n = bs->total_sectors - sector_num;
2735 if (n < nb_sectors) {
2736 nb_sectors = n;
2737 }
2738
2739 if (!bs->drv->bdrv_co_is_allocated) {
2740 *pnum = nb_sectors;
2741 return 1;
2742 }
2743
2744 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2745 }
2746
2747 /* Coroutine wrapper for bdrv_is_allocated() */
2748 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2749 {
2750 BdrvCoIsAllocatedData *data = opaque;
2751 BlockDriverState *bs = data->bs;
2752
2753 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2754 data->pnum);
2755 data->done = true;
2756 }
2757
2758 /*
2759 * Synchronous wrapper around bdrv_co_is_allocated().
2760 *
2761 * See bdrv_co_is_allocated() for details.
2762 */
2763 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2764 int *pnum)
2765 {
2766 Coroutine *co;
2767 BdrvCoIsAllocatedData data = {
2768 .bs = bs,
2769 .sector_num = sector_num,
2770 .nb_sectors = nb_sectors,
2771 .pnum = pnum,
2772 .done = false,
2773 };
2774
2775 co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2776 qemu_coroutine_enter(co, &data);
2777 while (!data.done) {
2778 qemu_aio_wait();
2779 }
2780 return data.ret;
2781 }
2782
2783 /*
2784 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2785 *
2786 * Return true if the given sector is allocated in any image between
2787 * BASE and TOP (inclusive). BASE can be NULL to check if the given
2788 * sector is allocated in any image of the chain. Return false otherwise.
2789 *
2790 * 'pnum' is set to the number of sectors (including and immediately following
2791 * the specified sector) that are known to be in the same
2792 * allocated/unallocated state.
2793 *
2794 */
2795 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2796 BlockDriverState *base,
2797 int64_t sector_num,
2798 int nb_sectors, int *pnum)
2799 {
2800 BlockDriverState *intermediate;
2801 int ret, n = nb_sectors;
2802
2803 intermediate = top;
2804 while (intermediate && intermediate != base) {
2805 int pnum_inter;
2806 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors,
2807 &pnum_inter);
2808 if (ret < 0) {
2809 return ret;
2810 } else if (ret) {
2811 *pnum = pnum_inter;
2812 return 1;
2813 }
2814
2815 /*
2816 * [sector_num, nb_sectors] is unallocated on top but intermediate
2817 * might have
2818 *
2819 * [sector_num+x, nr_sectors] allocated.
2820 */
2821 if (n > pnum_inter) {
2822 n = pnum_inter;
2823 }
2824
2825 intermediate = intermediate->backing_hd;
2826 }
2827
2828 *pnum = n;
2829 return 0;
2830 }
2831
2832 BlockInfo *bdrv_query_info(BlockDriverState *bs)
2833 {
2834 BlockInfo *info = g_malloc0(sizeof(*info));
2835 info->device = g_strdup(bs->device_name);
2836 info->type = g_strdup("unknown");
2837 info->locked = bdrv_dev_is_medium_locked(bs);
2838 info->removable = bdrv_dev_has_removable_media(bs);
2839
2840 if (bdrv_dev_has_removable_media(bs)) {
2841 info->has_tray_open = true;
2842 info->tray_open = bdrv_dev_is_tray_open(bs);
2843 }
2844
2845 if (bdrv_iostatus_is_enabled(bs)) {
2846 info->has_io_status = true;
2847 info->io_status = bs->iostatus;
2848 }
2849
2850 if (bs->dirty_bitmap) {
2851 info->has_dirty = true;
2852 info->dirty = g_malloc0(sizeof(*info->dirty));
2853 info->dirty->count = bdrv_get_dirty_count(bs) *
2854 BDRV_SECTORS_PER_DIRTY_CHUNK * BDRV_SECTOR_SIZE;
2855 }
2856
2857 if (bs->drv) {
2858 info->has_inserted = true;
2859 info->inserted = g_malloc0(sizeof(*info->inserted));
2860 info->inserted->file = g_strdup(bs->filename);
2861 info->inserted->ro = bs->read_only;
2862 info->inserted->drv = g_strdup(bs->drv->format_name);
2863 info->inserted->encrypted = bs->encrypted;
2864 info->inserted->encryption_key_missing = bdrv_key_required(bs);
2865
2866 if (bs->backing_file[0]) {
2867 info->inserted->has_backing_file = true;
2868 info->inserted->backing_file = g_strdup(bs->backing_file);
2869 }
2870
2871 info->inserted->backing_file_depth = bdrv_get_backing_file_depth(bs);
2872
2873 if (bs->io_limits_enabled) {
2874 info->inserted->bps =
2875 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2876 info->inserted->bps_rd =
2877 bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2878 info->inserted->bps_wr =
2879 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2880 info->inserted->iops =
2881 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2882 info->inserted->iops_rd =
2883 bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2884 info->inserted->iops_wr =
2885 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2886 }
2887 }
2888 return info;
2889 }
2890
2891 BlockInfoList *qmp_query_block(Error **errp)
2892 {
2893 BlockInfoList *head = NULL, **p_next = &head;
2894 BlockDriverState *bs;
2895
2896 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2897 BlockInfoList *info = g_malloc0(sizeof(*info));
2898 info->value = bdrv_query_info(bs);
2899
2900 *p_next = info;
2901 p_next = &info->next;
2902 }
2903
2904 return head;
2905 }
2906
2907 BlockStats *bdrv_query_stats(const BlockDriverState *bs)
2908 {
2909 BlockStats *s;
2910
2911 s = g_malloc0(sizeof(*s));
2912
2913 if (bs->device_name[0]) {
2914 s->has_device = true;
2915 s->device = g_strdup(bs->device_name);
2916 }
2917
2918 s->stats = g_malloc0(sizeof(*s->stats));
2919 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2920 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2921 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2922 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2923 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2924 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2925 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2926 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2927 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2928
2929 if (bs->file) {
2930 s->has_parent = true;
2931 s->parent = bdrv_query_stats(bs->file);
2932 }
2933
2934 return s;
2935 }
2936
2937 BlockStatsList *qmp_query_blockstats(Error **errp)
2938 {
2939 BlockStatsList *head = NULL, **p_next = &head;
2940 BlockDriverState *bs;
2941
2942 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2943 BlockStatsList *info = g_malloc0(sizeof(*info));
2944 info->value = bdrv_query_stats(bs);
2945
2946 *p_next = info;
2947 p_next = &info->next;
2948 }
2949
2950 return head;
2951 }
2952
2953 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
2954 {
2955 if (bs->backing_hd && bs->backing_hd->encrypted)
2956 return bs->backing_file;
2957 else if (bs->encrypted)
2958 return bs->filename;
2959 else
2960 return NULL;
2961 }
2962
2963 void bdrv_get_backing_filename(BlockDriverState *bs,
2964 char *filename, int filename_size)
2965 {
2966 pstrcpy(filename, filename_size, bs->backing_file);
2967 }
2968
2969 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
2970 const uint8_t *buf, int nb_sectors)
2971 {
2972 BlockDriver *drv = bs->drv;
2973 if (!drv)
2974 return -ENOMEDIUM;
2975 if (!drv->bdrv_write_compressed)
2976 return -ENOTSUP;
2977 if (bdrv_check_request(bs, sector_num, nb_sectors))
2978 return -EIO;
2979
2980 assert(!bs->dirty_bitmap);
2981
2982 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
2983 }
2984
2985 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
2986 {
2987 BlockDriver *drv = bs->drv;
2988 if (!drv)
2989 return -ENOMEDIUM;
2990 if (!drv->bdrv_get_info)
2991 return -ENOTSUP;
2992 memset(bdi, 0, sizeof(*bdi));
2993 return drv->bdrv_get_info(bs, bdi);
2994 }
2995
2996 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2997 int64_t pos, int size)
2998 {
2999 BlockDriver *drv = bs->drv;
3000 if (!drv)
3001 return -ENOMEDIUM;
3002 if (drv->bdrv_save_vmstate)
3003 return drv->bdrv_save_vmstate(bs, buf, pos, size);
3004 if (bs->file)
3005 return bdrv_save_vmstate(bs->file, buf, pos, size);
3006 return -ENOTSUP;
3007 }
3008
3009 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
3010 int64_t pos, int size)
3011 {
3012 BlockDriver *drv = bs->drv;
3013 if (!drv)
3014 return -ENOMEDIUM;
3015 if (drv->bdrv_load_vmstate)
3016 return drv->bdrv_load_vmstate(bs, buf, pos, size);
3017 if (bs->file)
3018 return bdrv_load_vmstate(bs->file, buf, pos, size);
3019 return -ENOTSUP;
3020 }
3021
3022 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
3023 {
3024 BlockDriver *drv = bs->drv;
3025
3026 if (!drv || !drv->bdrv_debug_event) {
3027 return;
3028 }
3029
3030 drv->bdrv_debug_event(bs, event);
3031
3032 }
3033
3034 /**************************************************************/
3035 /* handling of snapshots */
3036
3037 int bdrv_can_snapshot(BlockDriverState *bs)
3038 {
3039 BlockDriver *drv = bs->drv;
3040 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3041 return 0;
3042 }
3043
3044 if (!drv->bdrv_snapshot_create) {
3045 if (bs->file != NULL) {
3046 return bdrv_can_snapshot(bs->file);
3047 }
3048 return 0;
3049 }
3050
3051 return 1;
3052 }
3053
3054 int bdrv_is_snapshot(BlockDriverState *bs)
3055 {
3056 return !!(bs->open_flags & BDRV_O_SNAPSHOT);
3057 }
3058
3059 BlockDriverState *bdrv_snapshots(void)
3060 {
3061 BlockDriverState *bs;
3062
3063 if (bs_snapshots) {
3064 return bs_snapshots;
3065 }
3066
3067 bs = NULL;
3068 while ((bs = bdrv_next(bs))) {
3069 if (bdrv_can_snapshot(bs)) {
3070 bs_snapshots = bs;
3071 return bs;
3072 }
3073 }
3074 return NULL;
3075 }
3076
3077 int bdrv_snapshot_create(BlockDriverState *bs,
3078 QEMUSnapshotInfo *sn_info)
3079 {
3080 BlockDriver *drv = bs->drv;
3081 if (!drv)
3082 return -ENOMEDIUM;
3083 if (drv->bdrv_snapshot_create)
3084 return drv->bdrv_snapshot_create(bs, sn_info);
3085 if (bs->file)
3086 return bdrv_snapshot_create(bs->file, sn_info);
3087 return -ENOTSUP;
3088 }
3089
3090 int bdrv_snapshot_goto(BlockDriverState *bs,
3091 const char *snapshot_id)
3092 {
3093 BlockDriver *drv = bs->drv;
3094 int ret, open_ret;
3095
3096 if (!drv)
3097 return -ENOMEDIUM;
3098 if (drv->bdrv_snapshot_goto)
3099 return drv->bdrv_snapshot_goto(bs, snapshot_id);
3100
3101 if (bs->file) {
3102 drv->bdrv_close(bs);
3103 ret = bdrv_snapshot_goto(bs->file, snapshot_id);
3104 open_ret = drv->bdrv_open(bs, bs->open_flags);
3105 if (open_ret < 0) {
3106 bdrv_delete(bs->file);
3107 bs->drv = NULL;
3108 return open_ret;
3109 }
3110 return ret;
3111 }
3112
3113 return -ENOTSUP;
3114 }
3115
3116 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
3117 {
3118 BlockDriver *drv = bs->drv;
3119 if (!drv)
3120 return -ENOMEDIUM;
3121 if (drv->bdrv_snapshot_delete)
3122 return drv->bdrv_snapshot_delete(bs, snapshot_id);
3123 if (bs->file)
3124 return bdrv_snapshot_delete(bs->file, snapshot_id);
3125 return -ENOTSUP;
3126 }
3127
3128 int bdrv_snapshot_list(BlockDriverState *bs,
3129 QEMUSnapshotInfo **psn_info)
3130 {
3131 BlockDriver *drv = bs->drv;
3132 if (!drv)
3133 return -ENOMEDIUM;
3134 if (drv->bdrv_snapshot_list)
3135 return drv->bdrv_snapshot_list(bs, psn_info);
3136 if (bs->file)
3137 return bdrv_snapshot_list(bs->file, psn_info);
3138 return -ENOTSUP;
3139 }
3140
3141 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
3142 const char *snapshot_name)
3143 {
3144 BlockDriver *drv = bs->drv;
3145 if (!drv) {
3146 return -ENOMEDIUM;
3147 }
3148 if (!bs->read_only) {
3149 return -EINVAL;
3150 }
3151 if (drv->bdrv_snapshot_load_tmp) {
3152 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
3153 }
3154 return -ENOTSUP;
3155 }
3156
3157 /* backing_file can either be relative, or absolute, or a protocol. If it is
3158 * relative, it must be relative to the chain. So, passing in bs->filename
3159 * from a BDS as backing_file should not be done, as that may be relative to
3160 * the CWD rather than the chain. */
3161 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
3162 const char *backing_file)
3163 {
3164 char *filename_full = NULL;
3165 char *backing_file_full = NULL;
3166 char *filename_tmp = NULL;
3167 int is_protocol = 0;
3168 BlockDriverState *curr_bs = NULL;
3169 BlockDriverState *retval = NULL;
3170
3171 if (!bs || !bs->drv || !backing_file) {
3172 return NULL;
3173 }
3174
3175 filename_full = g_malloc(PATH_MAX);
3176 backing_file_full = g_malloc(PATH_MAX);
3177 filename_tmp = g_malloc(PATH_MAX);
3178
3179 is_protocol = path_has_protocol(backing_file);
3180
3181 for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) {
3182
3183 /* If either of the filename paths is actually a protocol, then
3184 * compare unmodified paths; otherwise make paths relative */
3185 if (is_protocol || path_has_protocol(curr_bs->backing_file)) {
3186 if (strcmp(backing_file, curr_bs->backing_file) == 0) {
3187 retval = curr_bs->backing_hd;
3188 break;
3189 }
3190 } else {
3191 /* If not an absolute filename path, make it relative to the current
3192 * image's filename path */
3193 path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3194 backing_file);
3195
3196 /* We are going to compare absolute pathnames */
3197 if (!realpath(filename_tmp, filename_full)) {
3198 continue;
3199 }
3200
3201 /* We need to make sure the backing filename we are comparing against
3202 * is relative to the current image filename (or absolute) */
3203 path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3204 curr_bs->backing_file);
3205
3206 if (!realpath(filename_tmp, backing_file_full)) {
3207 continue;
3208 }
3209
3210 if (strcmp(backing_file_full, filename_full) == 0) {
3211 retval = curr_bs->backing_hd;
3212 break;
3213 }
3214 }
3215 }
3216
3217 g_free(filename_full);
3218 g_free(backing_file_full);
3219 g_free(filename_tmp);
3220 return retval;
3221 }
3222
3223 int bdrv_get_backing_file_depth(BlockDriverState *bs)
3224 {
3225 if (!bs->drv) {
3226 return 0;
3227 }
3228
3229 if (!bs->backing_hd) {
3230 return 0;
3231 }
3232
3233 return 1 + bdrv_get_backing_file_depth(bs->backing_hd);
3234 }
3235
3236 BlockDriverState *bdrv_find_base(BlockDriverState *bs)
3237 {
3238 BlockDriverState *curr_bs = NULL;
3239
3240 if (!bs) {
3241 return NULL;
3242 }
3243
3244 curr_bs = bs;
3245
3246 while (curr_bs->backing_hd) {
3247 curr_bs = curr_bs->backing_hd;
3248 }
3249 return curr_bs;
3250 }
3251
3252 #define NB_SUFFIXES 4
3253
3254 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
3255 {
3256 static const char suffixes[NB_SUFFIXES] = "KMGT";
3257 int64_t base;
3258 int i;
3259
3260 if (size <= 999) {
3261 snprintf(buf, buf_size, "%" PRId64, size);
3262 } else {
3263 base = 1024;
3264 for(i = 0; i < NB_SUFFIXES; i++) {
3265 if (size < (10 * base)) {
3266 snprintf(buf, buf_size, "%0.1f%c",
3267 (double)size / base,
3268 suffixes[i]);
3269 break;
3270 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
3271 snprintf(buf, buf_size, "%" PRId64 "%c",
3272 ((size + (base >> 1)) / base),
3273 suffixes[i]);
3274 break;
3275 }
3276 base = base * 1024;
3277 }
3278 }
3279 return buf;
3280 }
3281
3282 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
3283 {
3284 char buf1[128], date_buf[128], clock_buf[128];
3285 #ifdef _WIN32
3286 struct tm *ptm;
3287 #else
3288 struct tm tm;
3289 #endif
3290 time_t ti;
3291 int64_t secs;
3292
3293 if (!sn) {
3294 snprintf(buf, buf_size,
3295 "%-10s%-20s%7s%20s%15s",
3296 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
3297 } else {
3298 ti = sn->date_sec;
3299 #ifdef _WIN32
3300 ptm = localtime(&ti);
3301 strftime(date_buf, sizeof(date_buf),
3302 "%Y-%m-%d %H:%M:%S", ptm);
3303 #else
3304 localtime_r(&ti, &tm);
3305 strftime(date_buf, sizeof(date_buf),
3306 "%Y-%m-%d %H:%M:%S", &tm);
3307 #endif
3308 secs = sn->vm_clock_nsec / 1000000000;
3309 snprintf(clock_buf, sizeof(clock_buf),
3310 "%02d:%02d:%02d.%03d",
3311 (int)(secs / 3600),
3312 (int)((secs / 60) % 60),
3313 (int)(secs % 60),
3314 (int)((sn->vm_clock_nsec / 1000000) % 1000));
3315 snprintf(buf, buf_size,
3316 "%-10s%-20s%7s%20s%15s",
3317 sn->id_str, sn->name,
3318 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
3319 date_buf,
3320 clock_buf);
3321 }
3322 return buf;
3323 }
3324
3325 /**************************************************************/
3326 /* async I/Os */
3327
3328 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
3329 QEMUIOVector *qiov, int nb_sectors,
3330 BlockDriverCompletionFunc *cb, void *opaque)
3331 {
3332 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
3333
3334 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3335 cb, opaque, false);
3336 }
3337
3338 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
3339 QEMUIOVector *qiov, int nb_sectors,
3340 BlockDriverCompletionFunc *cb, void *opaque)
3341 {
3342 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
3343
3344 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3345 cb, opaque, true);
3346 }
3347
3348
3349 typedef struct MultiwriteCB {
3350 int error;
3351 int num_requests;
3352 int num_callbacks;
3353 struct {
3354 BlockDriverCompletionFunc *cb;
3355 void *opaque;
3356 QEMUIOVector *free_qiov;
3357 } callbacks[];
3358 } MultiwriteCB;
3359
3360 static void multiwrite_user_cb(MultiwriteCB *mcb)
3361 {
3362 int i;
3363
3364 for (i = 0; i < mcb->num_callbacks; i++) {
3365 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
3366 if (mcb->callbacks[i].free_qiov) {
3367 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
3368 }
3369 g_free(mcb->callbacks[i].free_qiov);
3370 }
3371 }
3372
3373 static void multiwrite_cb(void *opaque, int ret)
3374 {
3375 MultiwriteCB *mcb = opaque;
3376
3377 trace_multiwrite_cb(mcb, ret);
3378
3379 if (ret < 0 && !mcb->error) {
3380 mcb->error = ret;
3381 }
3382
3383 mcb->num_requests--;
3384 if (mcb->num_requests == 0) {
3385 multiwrite_user_cb(mcb);
3386 g_free(mcb);
3387 }
3388 }
3389
3390 static int multiwrite_req_compare(const void *a, const void *b)
3391 {
3392 const BlockRequest *req1 = a, *req2 = b;
3393
3394 /*
3395 * Note that we can't simply subtract req2->sector from req1->sector
3396 * here as that could overflow the return value.
3397 */
3398 if (req1->sector > req2->sector) {
3399 return 1;
3400 } else if (req1->sector < req2->sector) {
3401 return -1;
3402 } else {
3403 return 0;
3404 }
3405 }
3406
3407 /*
3408 * Takes a bunch of requests and tries to merge them. Returns the number of
3409 * requests that remain after merging.
3410 */
3411 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
3412 int num_reqs, MultiwriteCB *mcb)
3413 {
3414 int i, outidx;
3415
3416 // Sort requests by start sector
3417 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
3418
3419 // Check if adjacent requests touch the same clusters. If so, combine them,
3420 // filling up gaps with zero sectors.
3421 outidx = 0;
3422 for (i = 1; i < num_reqs; i++) {
3423 int merge = 0;
3424 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
3425
3426 // Handle exactly sequential writes and overlapping writes.
3427 if (reqs[i].sector <= oldreq_last) {
3428 merge = 1;
3429 }
3430
3431 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
3432 merge = 0;
3433 }
3434
3435 if (merge) {
3436 size_t size;
3437 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
3438 qemu_iovec_init(qiov,
3439 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
3440
3441 // Add the first request to the merged one. If the requests are
3442 // overlapping, drop the last sectors of the first request.
3443 size = (reqs[i].sector - reqs[outidx].sector) << 9;
3444 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
3445
3446 // We should need to add any zeros between the two requests
3447 assert (reqs[i].sector <= oldreq_last);
3448
3449 // Add the second request
3450 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
3451
3452 reqs[outidx].nb_sectors = qiov->size >> 9;
3453 reqs[outidx].qiov = qiov;
3454
3455 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
3456 } else {
3457 outidx++;
3458 reqs[outidx].sector = reqs[i].sector;
3459 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
3460 reqs[outidx].qiov = reqs[i].qiov;
3461 }
3462 }
3463
3464 return outidx + 1;
3465 }
3466
3467 /*
3468 * Submit multiple AIO write requests at once.
3469 *
3470 * On success, the function returns 0 and all requests in the reqs array have
3471 * been submitted. In error case this function returns -1, and any of the
3472 * requests may or may not be submitted yet. In particular, this means that the
3473 * callback will be called for some of the requests, for others it won't. The
3474 * caller must check the error field of the BlockRequest to wait for the right
3475 * callbacks (if error != 0, no callback will be called).
3476 *
3477 * The implementation may modify the contents of the reqs array, e.g. to merge
3478 * requests. However, the fields opaque and error are left unmodified as they
3479 * are used to signal failure for a single request to the caller.
3480 */
3481 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3482 {
3483 MultiwriteCB *mcb;
3484 int i;
3485
3486 /* don't submit writes if we don't have a medium */
3487 if (bs->drv == NULL) {
3488 for (i = 0; i < num_reqs; i++) {
3489 reqs[i].error = -ENOMEDIUM;
3490 }
3491 return -1;
3492 }
3493
3494 if (num_reqs == 0) {
3495 return 0;
3496 }
3497
3498 // Create MultiwriteCB structure
3499 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3500 mcb->num_requests = 0;
3501 mcb->num_callbacks = num_reqs;
3502
3503 for (i = 0; i < num_reqs; i++) {
3504 mcb->callbacks[i].cb = reqs[i].cb;
3505 mcb->callbacks[i].opaque = reqs[i].opaque;
3506 }
3507
3508 // Check for mergable requests
3509 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3510
3511 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3512
3513 /* Run the aio requests. */
3514 mcb->num_requests = num_reqs;
3515 for (i = 0; i < num_reqs; i++) {
3516 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3517 reqs[i].nb_sectors, multiwrite_cb, mcb);
3518 }
3519
3520 return 0;
3521 }
3522
3523 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3524 {
3525 acb->aiocb_info->cancel(acb);
3526 }
3527
3528 /* block I/O throttling */
3529 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3530 bool is_write, double elapsed_time, uint64_t *wait)
3531 {
3532 uint64_t bps_limit = 0;
3533 double bytes_limit, bytes_base, bytes_res;
3534 double slice_time, wait_time;
3535
3536 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3537 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3538 } else if (bs->io_limits.bps[is_write]) {
3539 bps_limit = bs->io_limits.bps[is_write];
3540 } else {
3541 if (wait) {
3542 *wait = 0;
3543 }
3544
3545 return false;
3546 }
3547
3548 slice_time = bs->slice_end - bs->slice_start;
3549 slice_time /= (NANOSECONDS_PER_SECOND);
3550 bytes_limit = bps_limit * slice_time;
3551 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
3552 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3553 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
3554 }
3555
3556 /* bytes_base: the bytes of data which have been read/written; and
3557 * it is obtained from the history statistic info.
3558 * bytes_res: the remaining bytes of data which need to be read/written.
3559 * (bytes_base + bytes_res) / bps_limit: used to calcuate
3560 * the total time for completing reading/writting all data.
3561 */
3562 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3563
3564 if (bytes_base + bytes_res <= bytes_limit) {
3565 if (wait) {
3566 *wait = 0;
3567 }
3568
3569 return false;
3570 }
3571
3572 /* Calc approx time to dispatch */
3573 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3574
3575 /* When the I/O rate at runtime exceeds the limits,
3576 * bs->slice_end need to be extended in order that the current statistic
3577 * info can be kept until the timer fire, so it is increased and tuned
3578 * based on the result of experiment.
3579 */
3580 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3581 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3582 if (wait) {
3583 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3584 }
3585
3586 return true;
3587 }
3588
3589 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3590 double elapsed_time, uint64_t *wait)
3591 {
3592 uint64_t iops_limit = 0;
3593 double ios_limit, ios_base;
3594 double slice_time, wait_time;
3595
3596 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3597 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3598 } else if (bs->io_limits.iops[is_write]) {
3599 iops_limit = bs->io_limits.iops[is_write];
3600 } else {
3601 if (wait) {
3602 *wait = 0;
3603 }
3604
3605 return false;
3606 }
3607
3608 slice_time = bs->slice_end - bs->slice_start;
3609 slice_time /= (NANOSECONDS_PER_SECOND);
3610 ios_limit = iops_limit * slice_time;
3611 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3612 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3613 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3614 }
3615
3616 if (ios_base + 1 <= ios_limit) {
3617 if (wait) {
3618 *wait = 0;
3619 }
3620
3621 return false;
3622 }
3623
3624 /* Calc approx time to dispatch */
3625 wait_time = (ios_base + 1) / iops_limit;
3626 if (wait_time > elapsed_time) {
3627 wait_time = wait_time - elapsed_time;
3628 } else {
3629 wait_time = 0;
3630 }
3631
3632 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3633 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3634 if (wait) {
3635 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3636 }
3637
3638 return true;
3639 }
3640
3641 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3642 bool is_write, int64_t *wait)
3643 {
3644 int64_t now, max_wait;
3645 uint64_t bps_wait = 0, iops_wait = 0;
3646 double elapsed_time;
3647 int bps_ret, iops_ret;
3648
3649 now = qemu_get_clock_ns(vm_clock);
3650 if ((bs->slice_start < now)
3651 && (bs->slice_end > now)) {
3652 bs->slice_end = now + bs->slice_time;
3653 } else {
3654 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
3655 bs->slice_start = now;
3656 bs->slice_end = now + bs->slice_time;
3657
3658 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write];
3659 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3660
3661 bs->io_base.ios[is_write] = bs->nr_ops[is_write];
3662 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write];
3663 }
3664
3665 elapsed_time = now - bs->slice_start;
3666 elapsed_time /= (NANOSECONDS_PER_SECOND);
3667
3668 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors,
3669 is_write, elapsed_time, &bps_wait);
3670 iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3671 elapsed_time, &iops_wait);
3672 if (bps_ret || iops_ret) {
3673 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3674 if (wait) {
3675 *wait = max_wait;
3676 }
3677
3678 now = qemu_get_clock_ns(vm_clock);
3679 if (bs->slice_end < now + max_wait) {
3680 bs->slice_end = now + max_wait;
3681 }
3682
3683 return true;
3684 }
3685
3686 if (wait) {
3687 *wait = 0;
3688 }
3689
3690 return false;
3691 }
3692
3693 /**************************************************************/
3694 /* async block device emulation */
3695
3696 typedef struct BlockDriverAIOCBSync {
3697 BlockDriverAIOCB common;
3698 QEMUBH *bh;
3699 int ret;
3700 /* vector translation state */
3701 QEMUIOVector *qiov;
3702 uint8_t *bounce;
3703 int is_write;
3704 } BlockDriverAIOCBSync;
3705
3706 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3707 {
3708 BlockDriverAIOCBSync *acb =
3709 container_of(blockacb, BlockDriverAIOCBSync, common);
3710 qemu_bh_delete(acb->bh);
3711 acb->bh = NULL;
3712 qemu_aio_release(acb);
3713 }
3714
3715 static const AIOCBInfo bdrv_em_aiocb_info = {
3716 .aiocb_size = sizeof(BlockDriverAIOCBSync),
3717 .cancel = bdrv_aio_cancel_em,
3718 };
3719
3720 static void bdrv_aio_bh_cb(void *opaque)
3721 {
3722 BlockDriverAIOCBSync *acb = opaque;
3723
3724 if (!acb->is_write)
3725 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
3726 qemu_vfree(acb->bounce);
3727 acb->common.cb(acb->common.opaque, acb->ret);
3728 qemu_bh_delete(acb->bh);
3729 acb->bh = NULL;
3730 qemu_aio_release(acb);
3731 }
3732
3733 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3734 int64_t sector_num,
3735 QEMUIOVector *qiov,
3736 int nb_sectors,
3737 BlockDriverCompletionFunc *cb,
3738 void *opaque,
3739 int is_write)
3740
3741 {
3742 BlockDriverAIOCBSync *acb;
3743
3744 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
3745 acb->is_write = is_write;
3746 acb->qiov = qiov;
3747 acb->bounce = qemu_blockalign(bs, qiov->size);
3748 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3749
3750 if (is_write) {
3751 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
3752 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3753 } else {
3754 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3755 }
3756
3757 qemu_bh_schedule(acb->bh);
3758
3759 return &acb->common;
3760 }
3761
3762 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3763 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3764 BlockDriverCompletionFunc *cb, void *opaque)
3765 {
3766 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3767 }
3768
3769 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3770 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3771 BlockDriverCompletionFunc *cb, void *opaque)
3772 {
3773 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3774 }
3775
3776
3777 typedef struct BlockDriverAIOCBCoroutine {
3778 BlockDriverAIOCB common;
3779 BlockRequest req;
3780 bool is_write;
3781 QEMUBH* bh;
3782 } BlockDriverAIOCBCoroutine;
3783
3784 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3785 {
3786 qemu_aio_flush();
3787 }
3788
3789 static const AIOCBInfo bdrv_em_co_aiocb_info = {
3790 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine),
3791 .cancel = bdrv_aio_co_cancel_em,
3792 };
3793
3794 static void bdrv_co_em_bh(void *opaque)
3795 {
3796 BlockDriverAIOCBCoroutine *acb = opaque;
3797
3798 acb->common.cb(acb->common.opaque, acb->req.error);
3799 qemu_bh_delete(acb->bh);
3800 qemu_aio_release(acb);
3801 }
3802
3803 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3804 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3805 {
3806 BlockDriverAIOCBCoroutine *acb = opaque;
3807 BlockDriverState *bs = acb->common.bs;
3808
3809 if (!acb->is_write) {
3810 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3811 acb->req.nb_sectors, acb->req.qiov, 0);
3812 } else {
3813 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3814 acb->req.nb_sectors, acb->req.qiov, 0);
3815 }
3816
3817 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3818 qemu_bh_schedule(acb->bh);
3819 }
3820
3821 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3822 int64_t sector_num,
3823 QEMUIOVector *qiov,
3824 int nb_sectors,
3825 BlockDriverCompletionFunc *cb,
3826 void *opaque,
3827 bool is_write)
3828 {
3829 Coroutine *co;
3830 BlockDriverAIOCBCoroutine *acb;
3831
3832 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3833 acb->req.sector = sector_num;
3834 acb->req.nb_sectors = nb_sectors;
3835 acb->req.qiov = qiov;
3836 acb->is_write = is_write;
3837
3838 co = qemu_coroutine_create(bdrv_co_do_rw);
3839 qemu_coroutine_enter(co, acb);
3840
3841 return &acb->common;
3842 }
3843
3844 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3845 {
3846 BlockDriverAIOCBCoroutine *acb = opaque;
3847 BlockDriverState *bs = acb->common.bs;
3848
3849 acb->req.error = bdrv_co_flush(bs);
3850 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3851 qemu_bh_schedule(acb->bh);
3852 }
3853
3854 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3855 BlockDriverCompletionFunc *cb, void *opaque)
3856 {
3857 trace_bdrv_aio_flush(bs, opaque);
3858
3859 Coroutine *co;
3860 BlockDriverAIOCBCoroutine *acb;
3861
3862 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3863 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3864 qemu_coroutine_enter(co, acb);
3865
3866 return &acb->common;
3867 }
3868
3869 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3870 {
3871 BlockDriverAIOCBCoroutine *acb = opaque;
3872 BlockDriverState *bs = acb->common.bs;
3873
3874 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3875 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3876 qemu_bh_schedule(acb->bh);
3877 }
3878
3879 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3880 int64_t sector_num, int nb_sectors,
3881 BlockDriverCompletionFunc *cb, void *opaque)
3882 {
3883 Coroutine *co;
3884 BlockDriverAIOCBCoroutine *acb;
3885
3886 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3887
3888 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3889 acb->req.sector = sector_num;
3890 acb->req.nb_sectors = nb_sectors;
3891 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3892 qemu_coroutine_enter(co, acb);
3893
3894 return &acb->common;
3895 }
3896
3897 void bdrv_init(void)
3898 {
3899 module_call_init(MODULE_INIT_BLOCK);
3900 }
3901
3902 void bdrv_init_with_whitelist(void)
3903 {
3904 use_bdrv_whitelist = 1;
3905 bdrv_init();
3906 }
3907
3908 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
3909 BlockDriverCompletionFunc *cb, void *opaque)
3910 {
3911 BlockDriverAIOCB *acb;
3912
3913 acb = g_slice_alloc(aiocb_info->aiocb_size);
3914 acb->aiocb_info = aiocb_info;
3915 acb->bs = bs;
3916 acb->cb = cb;
3917 acb->opaque = opaque;
3918 return acb;
3919 }
3920
3921 void qemu_aio_release(void *p)
3922 {
3923 BlockDriverAIOCB *acb = p;
3924 g_slice_free1(acb->aiocb_info->aiocb_size, acb);
3925 }
3926
3927 /**************************************************************/
3928 /* Coroutine block device emulation */
3929
3930 typedef struct CoroutineIOCompletion {
3931 Coroutine *coroutine;
3932 int ret;
3933 } CoroutineIOCompletion;
3934
3935 static void bdrv_co_io_em_complete(void *opaque, int ret)
3936 {
3937 CoroutineIOCompletion *co = opaque;
3938
3939 co->ret = ret;
3940 qemu_coroutine_enter(co->coroutine, NULL);
3941 }
3942
3943 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
3944 int nb_sectors, QEMUIOVector *iov,
3945 bool is_write)
3946 {
3947 CoroutineIOCompletion co = {
3948 .coroutine = qemu_coroutine_self(),
3949 };
3950 BlockDriverAIOCB *acb;
3951
3952 if (is_write) {
3953 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
3954 bdrv_co_io_em_complete, &co);
3955 } else {
3956 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
3957 bdrv_co_io_em_complete, &co);
3958 }
3959
3960 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
3961 if (!acb) {
3962 return -EIO;
3963 }
3964 qemu_coroutine_yield();
3965
3966 return co.ret;
3967 }
3968
3969 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
3970 int64_t sector_num, int nb_sectors,
3971 QEMUIOVector *iov)
3972 {
3973 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
3974 }
3975
3976 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
3977 int64_t sector_num, int nb_sectors,
3978 QEMUIOVector *iov)
3979 {
3980 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
3981 }
3982
3983 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
3984 {
3985 RwCo *rwco = opaque;
3986
3987 rwco->ret = bdrv_co_flush(rwco->bs);
3988 }
3989
3990 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
3991 {
3992 int ret;
3993
3994 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3995 return 0;
3996 }
3997
3998 /* Write back cached data to the OS even with cache=unsafe */
3999 if (bs->drv->bdrv_co_flush_to_os) {
4000 ret = bs->drv->bdrv_co_flush_to_os(bs);
4001 if (ret < 0) {
4002 return ret;
4003 }
4004 }
4005
4006 /* But don't actually force it to the disk with cache=unsafe */
4007 if (bs->open_flags & BDRV_O_NO_FLUSH) {
4008 goto flush_parent;
4009 }
4010
4011 if (bs->drv->bdrv_co_flush_to_disk) {
4012 ret = bs->drv->bdrv_co_flush_to_disk(bs);
4013 } else if (bs->drv->bdrv_aio_flush) {
4014 BlockDriverAIOCB *acb;
4015 CoroutineIOCompletion co = {
4016 .coroutine = qemu_coroutine_self(),
4017 };
4018
4019 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
4020 if (acb == NULL) {
4021 ret = -EIO;
4022 } else {
4023 qemu_coroutine_yield();
4024 ret = co.ret;
4025 }
4026 } else {
4027 /*
4028 * Some block drivers always operate in either writethrough or unsafe
4029 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
4030 * know how the server works (because the behaviour is hardcoded or
4031 * depends on server-side configuration), so we can't ensure that
4032 * everything is safe on disk. Returning an error doesn't work because
4033 * that would break guests even if the server operates in writethrough
4034 * mode.
4035 *
4036 * Let's hope the user knows what he's doing.
4037 */
4038 ret = 0;
4039 }
4040 if (ret < 0) {
4041 return ret;
4042 }
4043
4044 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
4045 * in the case of cache=unsafe, so there are no useless flushes.
4046 */
4047 flush_parent:
4048 return bdrv_co_flush(bs->file);
4049 }
4050
4051 void bdrv_invalidate_cache(BlockDriverState *bs)
4052 {
4053 if (bs->drv && bs->drv->bdrv_invalidate_cache) {
4054 bs->drv->bdrv_invalidate_cache(bs);
4055 }
4056 }
4057
4058 void bdrv_invalidate_cache_all(void)
4059 {
4060 BlockDriverState *bs;
4061
4062 QTAILQ_FOREACH(bs, &bdrv_states, list) {
4063 bdrv_invalidate_cache(bs);
4064 }
4065 }
4066
4067 void bdrv_clear_incoming_migration_all(void)
4068 {
4069 BlockDriverState *bs;
4070
4071 QTAILQ_FOREACH(bs, &bdrv_states, list) {
4072 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING);
4073 }
4074 }
4075
4076 int bdrv_flush(BlockDriverState *bs)
4077 {
4078 Coroutine *co;
4079 RwCo rwco = {
4080 .bs = bs,
4081 .ret = NOT_DONE,
4082 };
4083
4084 if (qemu_in_coroutine()) {
4085 /* Fast-path if already in coroutine context */
4086 bdrv_flush_co_entry(&rwco);
4087 } else {
4088 co = qemu_coroutine_create(bdrv_flush_co_entry);
4089 qemu_coroutine_enter(co, &rwco);
4090 while (rwco.ret == NOT_DONE) {
4091 qemu_aio_wait();
4092 }
4093 }
4094
4095 return rwco.ret;
4096 }
4097
4098 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
4099 {
4100 RwCo *rwco = opaque;
4101
4102 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
4103 }
4104
4105 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
4106 int nb_sectors)
4107 {
4108 if (!bs->drv) {
4109 return -ENOMEDIUM;
4110 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
4111 return -EIO;
4112 } else if (bs->read_only) {
4113 return -EROFS;
4114 } else if (bs->drv->bdrv_co_discard) {
4115 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
4116 } else if (bs->drv->bdrv_aio_discard) {
4117 BlockDriverAIOCB *acb;
4118 CoroutineIOCompletion co = {
4119 .coroutine = qemu_coroutine_self(),
4120 };
4121
4122 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
4123 bdrv_co_io_em_complete, &co);
4124 if (acb == NULL) {
4125 return -EIO;
4126 } else {
4127 qemu_coroutine_yield();
4128 return co.ret;
4129 }
4130 } else {
4131 return 0;
4132 }
4133 }
4134
4135 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
4136 {
4137 Coroutine *co;
4138 RwCo rwco = {
4139 .bs = bs,
4140 .sector_num = sector_num,
4141 .nb_sectors = nb_sectors,
4142 .ret = NOT_DONE,
4143 };
4144
4145 if (qemu_in_coroutine()) {
4146 /* Fast-path if already in coroutine context */
4147 bdrv_discard_co_entry(&rwco);
4148 } else {
4149 co = qemu_coroutine_create(bdrv_discard_co_entry);
4150 qemu_coroutine_enter(co, &rwco);
4151 while (rwco.ret == NOT_DONE) {
4152 qemu_aio_wait();
4153 }
4154 }
4155
4156 return rwco.ret;
4157 }
4158
4159 /**************************************************************/
4160 /* removable device support */
4161
4162 /**
4163 * Return TRUE if the media is present
4164 */
4165 int bdrv_is_inserted(BlockDriverState *bs)
4166 {
4167 BlockDriver *drv = bs->drv;
4168
4169 if (!drv)
4170 return 0;
4171 if (!drv->bdrv_is_inserted)
4172 return 1;
4173 return drv->bdrv_is_inserted(bs);
4174 }
4175
4176 /**
4177 * Return whether the media changed since the last call to this
4178 * function, or -ENOTSUP if we don't know. Most drivers don't know.
4179 */
4180 int bdrv_media_changed(BlockDriverState *bs)
4181 {
4182 BlockDriver *drv = bs->drv;
4183
4184 if (drv && drv->bdrv_media_changed) {
4185 return drv->bdrv_media_changed(bs);
4186 }
4187 return -ENOTSUP;
4188 }
4189
4190 /**
4191 * If eject_flag is TRUE, eject the media. Otherwise, close the tray
4192 */
4193 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
4194 {
4195 BlockDriver *drv = bs->drv;
4196
4197 if (drv && drv->bdrv_eject) {
4198 drv->bdrv_eject(bs, eject_flag);
4199 }
4200
4201 if (bs->device_name[0] != '\0') {
4202 bdrv_emit_qmp_eject_event(bs, eject_flag);
4203 }
4204 }
4205
4206 /**
4207 * Lock or unlock the media (if it is locked, the user won't be able
4208 * to eject it manually).
4209 */
4210 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
4211 {
4212 BlockDriver *drv = bs->drv;
4213
4214 trace_bdrv_lock_medium(bs, locked);
4215
4216 if (drv && drv->bdrv_lock_medium) {
4217 drv->bdrv_lock_medium(bs, locked);
4218 }
4219 }
4220
4221 /* needed for generic scsi interface */
4222
4223 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
4224 {
4225 BlockDriver *drv = bs->drv;
4226
4227 if (drv && drv->bdrv_ioctl)
4228 return drv->bdrv_ioctl(bs, req, buf);
4229 return -ENOTSUP;
4230 }
4231
4232 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
4233 unsigned long int req, void *buf,
4234 BlockDriverCompletionFunc *cb, void *opaque)
4235 {
4236 BlockDriver *drv = bs->drv;
4237
4238 if (drv && drv->bdrv_aio_ioctl)
4239 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
4240 return NULL;
4241 }
4242
4243 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
4244 {
4245 bs->buffer_alignment = align;
4246 }
4247
4248 void *qemu_blockalign(BlockDriverState *bs, size_t size)
4249 {
4250 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
4251 }
4252
4253 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable)
4254 {
4255 int64_t bitmap_size;
4256
4257 bs->dirty_count = 0;
4258 if (enable) {
4259 if (!bs->dirty_bitmap) {
4260 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) +
4261 BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG - 1;
4262 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG;
4263
4264 bs->dirty_bitmap = g_new0(unsigned long, bitmap_size);
4265 }
4266 } else {
4267 if (bs->dirty_bitmap) {
4268 g_free(bs->dirty_bitmap);
4269 bs->dirty_bitmap = NULL;
4270 }
4271 }
4272 }
4273
4274 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
4275 {
4276 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
4277
4278 if (bs->dirty_bitmap &&
4279 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) {
4280 return !!(bs->dirty_bitmap[chunk / BITS_PER_LONG] &
4281 (1UL << (chunk % BITS_PER_LONG)));
4282 } else {
4283 return 0;
4284 }
4285 }
4286
4287 int64_t bdrv_get_next_dirty(BlockDriverState *bs, int64_t sector)
4288 {
4289 int64_t chunk;
4290 int bit, elem;
4291
4292 /* Avoid an infinite loop. */
4293 assert(bs->dirty_count > 0);
4294
4295 sector = (sector | (BDRV_SECTORS_PER_DIRTY_CHUNK - 1)) + 1;
4296 chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
4297
4298 QEMU_BUILD_BUG_ON(sizeof(bs->dirty_bitmap[0]) * 8 != BITS_PER_LONG);
4299 elem = chunk / BITS_PER_LONG;
4300 bit = chunk % BITS_PER_LONG;
4301 for (;;) {
4302 if (sector >= bs->total_sectors) {
4303 sector = 0;
4304 bit = elem = 0;
4305 }
4306 if (bit == 0 && bs->dirty_bitmap[elem] == 0) {
4307 sector += BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG;
4308 elem++;
4309 } else {
4310 if (bs->dirty_bitmap[elem] & (1UL << bit)) {
4311 return sector;
4312 }
4313 sector += BDRV_SECTORS_PER_DIRTY_CHUNK;
4314 if (++bit == BITS_PER_LONG) {
4315 bit = 0;
4316 elem++;
4317 }
4318 }
4319 }
4320 }
4321
4322 void bdrv_set_dirty(BlockDriverState *bs, int64_t cur_sector,
4323 int nr_sectors)
4324 {
4325 set_dirty_bitmap(bs, cur_sector, nr_sectors, 1);
4326 }
4327
4328 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
4329 int nr_sectors)
4330 {
4331 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0);
4332 }
4333
4334 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
4335 {
4336 return bs->dirty_count;
4337 }
4338
4339 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
4340 {
4341 assert(bs->in_use != in_use);
4342 bs->in_use = in_use;
4343 }
4344
4345 int bdrv_in_use(BlockDriverState *bs)
4346 {
4347 return bs->in_use;
4348 }
4349
4350 void bdrv_iostatus_enable(BlockDriverState *bs)
4351 {
4352 bs->iostatus_enabled = true;
4353 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4354 }
4355
4356 /* The I/O status is only enabled if the drive explicitly
4357 * enables it _and_ the VM is configured to stop on errors */
4358 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
4359 {
4360 return (bs->iostatus_enabled &&
4361 (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC ||
4362 bs->on_write_error == BLOCKDEV_ON_ERROR_STOP ||
4363 bs->on_read_error == BLOCKDEV_ON_ERROR_STOP));
4364 }
4365
4366 void bdrv_iostatus_disable(BlockDriverState *bs)
4367 {
4368 bs->iostatus_enabled = false;
4369 }
4370
4371 void bdrv_iostatus_reset(BlockDriverState *bs)
4372 {
4373 if (bdrv_iostatus_is_enabled(bs)) {
4374 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4375 if (bs->job) {
4376 block_job_iostatus_reset(bs->job);
4377 }
4378 }
4379 }
4380
4381 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
4382 {
4383 assert(bdrv_iostatus_is_enabled(bs));
4384 if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
4385 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
4386 BLOCK_DEVICE_IO_STATUS_FAILED;
4387 }
4388 }
4389
4390 void
4391 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
4392 enum BlockAcctType type)
4393 {
4394 assert(type < BDRV_MAX_IOTYPE);
4395
4396 cookie->bytes = bytes;
4397 cookie->start_time_ns = get_clock();
4398 cookie->type = type;
4399 }
4400
4401 void
4402 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
4403 {
4404 assert(cookie->type < BDRV_MAX_IOTYPE);
4405
4406 bs->nr_bytes[cookie->type] += cookie->bytes;
4407 bs->nr_ops[cookie->type]++;
4408 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
4409 }
4410
4411 int bdrv_img_create(const char *filename, const char *fmt,
4412 const char *base_filename, const char *base_fmt,
4413 char *options, uint64_t img_size, int flags)
4414 {
4415 QEMUOptionParameter *param = NULL, *create_options = NULL;
4416 QEMUOptionParameter *backing_fmt, *backing_file, *size;
4417 BlockDriverState *bs = NULL;
4418 BlockDriver *drv, *proto_drv;
4419 BlockDriver *backing_drv = NULL;
4420 int ret = 0;
4421
4422 /* Find driver and parse its options */
4423 drv = bdrv_find_format(fmt);
4424 if (!drv) {
4425 error_report("Unknown file format '%s'", fmt);
4426 ret = -EINVAL;
4427 goto out;
4428 }
4429
4430 proto_drv = bdrv_find_protocol(filename);
4431 if (!proto_drv) {
4432 error_report("Unknown protocol '%s'", filename);
4433 ret = -EINVAL;
4434 goto out;
4435 }
4436
4437 create_options = append_option_parameters(create_options,
4438 drv->create_options);
4439 create_options = append_option_parameters(create_options,
4440 proto_drv->create_options);
4441
4442 /* Create parameter list with default values */
4443 param = parse_option_parameters("", create_options, param);
4444
4445 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
4446
4447 /* Parse -o options */
4448 if (options) {
4449 param = parse_option_parameters(options, create_options, param);
4450 if (param == NULL) {
4451 error_report("Invalid options for file format '%s'.", fmt);
4452 ret = -EINVAL;
4453 goto out;
4454 }
4455 }
4456
4457 if (base_filename) {
4458 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
4459 base_filename)) {
4460 error_report("Backing file not supported for file format '%s'",
4461 fmt);
4462 ret = -EINVAL;
4463 goto out;
4464 }
4465 }
4466
4467 if (base_fmt) {
4468 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
4469 error_report("Backing file format not supported for file "
4470 "format '%s'", fmt);
4471 ret = -EINVAL;
4472 goto out;
4473 }
4474 }
4475
4476 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
4477 if (backing_file && backing_file->value.s) {
4478 if (!strcmp(filename, backing_file->value.s)) {
4479 error_report("Error: Trying to create an image with the "
4480 "same filename as the backing file");
4481 ret = -EINVAL;
4482 goto out;
4483 }
4484 }
4485
4486 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
4487 if (backing_fmt && backing_fmt->value.s) {
4488 backing_drv = bdrv_find_format(backing_fmt->value.s);
4489 if (!backing_drv) {
4490 error_report("Unknown backing file format '%s'",
4491 backing_fmt->value.s);
4492 ret = -EINVAL;
4493 goto out;
4494 }
4495 }
4496
4497 // The size for the image must always be specified, with one exception:
4498 // If we are using a backing file, we can obtain the size from there
4499 size = get_option_parameter(param, BLOCK_OPT_SIZE);
4500 if (size && size->value.n == -1) {
4501 if (backing_file && backing_file->value.s) {
4502 uint64_t size;
4503 char buf[32];
4504 int back_flags;
4505
4506 /* backing files always opened read-only */
4507 back_flags =
4508 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
4509
4510 bs = bdrv_new("");
4511
4512 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv);
4513 if (ret < 0) {
4514 error_report("Could not open '%s'", backing_file->value.s);
4515 goto out;
4516 }
4517 bdrv_get_geometry(bs, &size);
4518 size *= 512;
4519
4520 snprintf(buf, sizeof(buf), "%" PRId64, size);
4521 set_option_parameter(param, BLOCK_OPT_SIZE, buf);
4522 } else {
4523 error_report("Image creation needs a size parameter");
4524 ret = -EINVAL;
4525 goto out;
4526 }
4527 }
4528
4529 printf("Formatting '%s', fmt=%s ", filename, fmt);
4530 print_option_parameters(param);
4531 puts("");
4532
4533 ret = bdrv_create(drv, filename, param);
4534
4535 if (ret < 0) {
4536 if (ret == -ENOTSUP) {
4537 error_report("Formatting or formatting option not supported for "
4538 "file format '%s'", fmt);
4539 } else if (ret == -EFBIG) {
4540 error_report("The image size is too large for file format '%s'",
4541 fmt);
4542 } else {
4543 error_report("%s: error while creating %s: %s", filename, fmt,
4544 strerror(-ret));
4545 }
4546 }
4547
4548 out:
4549 free_option_parameters(create_options);
4550 free_option_parameters(param);
4551
4552 if (bs) {
4553 bdrv_delete(bs);
4554 }
4555
4556 return ret;
4557 }