]> git.proxmox.com Git - qemu.git/blob - block.c
Merge remote-tracking branch 'qmp/queue/qmp' into staging
[qemu.git] / block.c
1 /*
2 * QEMU System Emulator block driver
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor.h"
28 #include "block_int.h"
29 #include "module.h"
30 #include "qjson.h"
31 #include "qemu-coroutine.h"
32 #include "qmp-commands.h"
33 #include "qemu-timer.h"
34
35 #ifdef CONFIG_BSD
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/queue.h>
40 #ifndef __DragonFly__
41 #include <sys/disk.h>
42 #endif
43 #endif
44
45 #ifdef _WIN32
46 #include <windows.h>
47 #endif
48
49 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
50
51 typedef enum {
52 BDRV_REQ_COPY_ON_READ = 0x1,
53 BDRV_REQ_ZERO_WRITE = 0x2,
54 } BdrvRequestFlags;
55
56 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
57 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
58 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
59 BlockDriverCompletionFunc *cb, void *opaque);
60 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
62 BlockDriverCompletionFunc *cb, void *opaque);
63 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
64 int64_t sector_num, int nb_sectors,
65 QEMUIOVector *iov);
66 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
67 int64_t sector_num, int nb_sectors,
68 QEMUIOVector *iov);
69 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
70 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
71 BdrvRequestFlags flags);
72 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
74 BdrvRequestFlags flags);
75 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
76 int64_t sector_num,
77 QEMUIOVector *qiov,
78 int nb_sectors,
79 BlockDriverCompletionFunc *cb,
80 void *opaque,
81 bool is_write);
82 static void coroutine_fn bdrv_co_do_rw(void *opaque);
83 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
84 int64_t sector_num, int nb_sectors);
85
86 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
87 bool is_write, double elapsed_time, uint64_t *wait);
88 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
89 double elapsed_time, uint64_t *wait);
90 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
91 bool is_write, int64_t *wait);
92
93 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
94 QTAILQ_HEAD_INITIALIZER(bdrv_states);
95
96 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
97 QLIST_HEAD_INITIALIZER(bdrv_drivers);
98
99 /* The device to use for VM snapshots */
100 static BlockDriverState *bs_snapshots;
101
102 /* If non-zero, use only whitelisted block drivers */
103 static int use_bdrv_whitelist;
104
105 #ifdef _WIN32
106 static int is_windows_drive_prefix(const char *filename)
107 {
108 return (((filename[0] >= 'a' && filename[0] <= 'z') ||
109 (filename[0] >= 'A' && filename[0] <= 'Z')) &&
110 filename[1] == ':');
111 }
112
113 int is_windows_drive(const char *filename)
114 {
115 if (is_windows_drive_prefix(filename) &&
116 filename[2] == '\0')
117 return 1;
118 if (strstart(filename, "\\\\.\\", NULL) ||
119 strstart(filename, "//./", NULL))
120 return 1;
121 return 0;
122 }
123 #endif
124
125 /* throttling disk I/O limits */
126 void bdrv_io_limits_disable(BlockDriverState *bs)
127 {
128 bs->io_limits_enabled = false;
129
130 while (qemu_co_queue_next(&bs->throttled_reqs));
131
132 if (bs->block_timer) {
133 qemu_del_timer(bs->block_timer);
134 qemu_free_timer(bs->block_timer);
135 bs->block_timer = NULL;
136 }
137
138 bs->slice_start = 0;
139 bs->slice_end = 0;
140 bs->slice_time = 0;
141 memset(&bs->io_base, 0, sizeof(bs->io_base));
142 }
143
144 static void bdrv_block_timer(void *opaque)
145 {
146 BlockDriverState *bs = opaque;
147
148 qemu_co_queue_next(&bs->throttled_reqs);
149 }
150
151 void bdrv_io_limits_enable(BlockDriverState *bs)
152 {
153 qemu_co_queue_init(&bs->throttled_reqs);
154 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
155 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
156 bs->slice_start = qemu_get_clock_ns(vm_clock);
157 bs->slice_end = bs->slice_start + bs->slice_time;
158 memset(&bs->io_base, 0, sizeof(bs->io_base));
159 bs->io_limits_enabled = true;
160 }
161
162 bool bdrv_io_limits_enabled(BlockDriverState *bs)
163 {
164 BlockIOLimit *io_limits = &bs->io_limits;
165 return io_limits->bps[BLOCK_IO_LIMIT_READ]
166 || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
167 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
168 || io_limits->iops[BLOCK_IO_LIMIT_READ]
169 || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
170 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
171 }
172
173 static void bdrv_io_limits_intercept(BlockDriverState *bs,
174 bool is_write, int nb_sectors)
175 {
176 int64_t wait_time = -1;
177
178 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
179 qemu_co_queue_wait(&bs->throttled_reqs);
180 }
181
182 /* In fact, we hope to keep each request's timing, in FIFO mode. The next
183 * throttled requests will not be dequeued until the current request is
184 * allowed to be serviced. So if the current request still exceeds the
185 * limits, it will be inserted to the head. All requests followed it will
186 * be still in throttled_reqs queue.
187 */
188
189 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
190 qemu_mod_timer(bs->block_timer,
191 wait_time + qemu_get_clock_ns(vm_clock));
192 qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
193 }
194
195 qemu_co_queue_next(&bs->throttled_reqs);
196 }
197
198 /* check if the path starts with "<protocol>:" */
199 static int path_has_protocol(const char *path)
200 {
201 const char *p;
202
203 #ifdef _WIN32
204 if (is_windows_drive(path) ||
205 is_windows_drive_prefix(path)) {
206 return 0;
207 }
208 p = path + strcspn(path, ":/\\");
209 #else
210 p = path + strcspn(path, ":/");
211 #endif
212
213 return *p == ':';
214 }
215
216 int path_is_absolute(const char *path)
217 {
218 #ifdef _WIN32
219 /* specific case for names like: "\\.\d:" */
220 if (is_windows_drive(path) || is_windows_drive_prefix(path)) {
221 return 1;
222 }
223 return (*path == '/' || *path == '\\');
224 #else
225 return (*path == '/');
226 #endif
227 }
228
229 /* if filename is absolute, just copy it to dest. Otherwise, build a
230 path to it by considering it is relative to base_path. URL are
231 supported. */
232 void path_combine(char *dest, int dest_size,
233 const char *base_path,
234 const char *filename)
235 {
236 const char *p, *p1;
237 int len;
238
239 if (dest_size <= 0)
240 return;
241 if (path_is_absolute(filename)) {
242 pstrcpy(dest, dest_size, filename);
243 } else {
244 p = strchr(base_path, ':');
245 if (p)
246 p++;
247 else
248 p = base_path;
249 p1 = strrchr(base_path, '/');
250 #ifdef _WIN32
251 {
252 const char *p2;
253 p2 = strrchr(base_path, '\\');
254 if (!p1 || p2 > p1)
255 p1 = p2;
256 }
257 #endif
258 if (p1)
259 p1++;
260 else
261 p1 = base_path;
262 if (p1 > p)
263 p = p1;
264 len = p - base_path;
265 if (len > dest_size - 1)
266 len = dest_size - 1;
267 memcpy(dest, base_path, len);
268 dest[len] = '\0';
269 pstrcat(dest, dest_size, filename);
270 }
271 }
272
273 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz)
274 {
275 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) {
276 pstrcpy(dest, sz, bs->backing_file);
277 } else {
278 path_combine(dest, sz, bs->filename, bs->backing_file);
279 }
280 }
281
282 void bdrv_register(BlockDriver *bdrv)
283 {
284 /* Block drivers without coroutine functions need emulation */
285 if (!bdrv->bdrv_co_readv) {
286 bdrv->bdrv_co_readv = bdrv_co_readv_em;
287 bdrv->bdrv_co_writev = bdrv_co_writev_em;
288
289 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
290 * the block driver lacks aio we need to emulate that too.
291 */
292 if (!bdrv->bdrv_aio_readv) {
293 /* add AIO emulation layer */
294 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
295 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
296 }
297 }
298
299 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
300 }
301
302 /* create a new block device (by default it is empty) */
303 BlockDriverState *bdrv_new(const char *device_name)
304 {
305 BlockDriverState *bs;
306
307 bs = g_malloc0(sizeof(BlockDriverState));
308 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
309 if (device_name[0] != '\0') {
310 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
311 }
312 bdrv_iostatus_disable(bs);
313 return bs;
314 }
315
316 BlockDriver *bdrv_find_format(const char *format_name)
317 {
318 BlockDriver *drv1;
319 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
320 if (!strcmp(drv1->format_name, format_name)) {
321 return drv1;
322 }
323 }
324 return NULL;
325 }
326
327 static int bdrv_is_whitelisted(BlockDriver *drv)
328 {
329 static const char *whitelist[] = {
330 CONFIG_BDRV_WHITELIST
331 };
332 const char **p;
333
334 if (!whitelist[0])
335 return 1; /* no whitelist, anything goes */
336
337 for (p = whitelist; *p; p++) {
338 if (!strcmp(drv->format_name, *p)) {
339 return 1;
340 }
341 }
342 return 0;
343 }
344
345 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
346 {
347 BlockDriver *drv = bdrv_find_format(format_name);
348 return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
349 }
350
351 typedef struct CreateCo {
352 BlockDriver *drv;
353 char *filename;
354 QEMUOptionParameter *options;
355 int ret;
356 } CreateCo;
357
358 static void coroutine_fn bdrv_create_co_entry(void *opaque)
359 {
360 CreateCo *cco = opaque;
361 assert(cco->drv);
362
363 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options);
364 }
365
366 int bdrv_create(BlockDriver *drv, const char* filename,
367 QEMUOptionParameter *options)
368 {
369 int ret;
370
371 Coroutine *co;
372 CreateCo cco = {
373 .drv = drv,
374 .filename = g_strdup(filename),
375 .options = options,
376 .ret = NOT_DONE,
377 };
378
379 if (!drv->bdrv_create) {
380 return -ENOTSUP;
381 }
382
383 if (qemu_in_coroutine()) {
384 /* Fast-path if already in coroutine context */
385 bdrv_create_co_entry(&cco);
386 } else {
387 co = qemu_coroutine_create(bdrv_create_co_entry);
388 qemu_coroutine_enter(co, &cco);
389 while (cco.ret == NOT_DONE) {
390 qemu_aio_wait();
391 }
392 }
393
394 ret = cco.ret;
395 g_free(cco.filename);
396
397 return ret;
398 }
399
400 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
401 {
402 BlockDriver *drv;
403
404 drv = bdrv_find_protocol(filename);
405 if (drv == NULL) {
406 return -ENOENT;
407 }
408
409 return bdrv_create(drv, filename, options);
410 }
411
412 #ifdef _WIN32
413 void get_tmp_filename(char *filename, int size)
414 {
415 char temp_dir[MAX_PATH];
416
417 GetTempPath(MAX_PATH, temp_dir);
418 GetTempFileName(temp_dir, "qem", 0, filename);
419 }
420 #else
421 void get_tmp_filename(char *filename, int size)
422 {
423 int fd;
424 const char *tmpdir;
425 /* XXX: race condition possible */
426 tmpdir = getenv("TMPDIR");
427 if (!tmpdir)
428 tmpdir = "/tmp";
429 snprintf(filename, size, "%s/vl.XXXXXX", tmpdir);
430 fd = mkstemp(filename);
431 close(fd);
432 }
433 #endif
434
435 /*
436 * Detect host devices. By convention, /dev/cdrom[N] is always
437 * recognized as a host CDROM.
438 */
439 static BlockDriver *find_hdev_driver(const char *filename)
440 {
441 int score_max = 0, score;
442 BlockDriver *drv = NULL, *d;
443
444 QLIST_FOREACH(d, &bdrv_drivers, list) {
445 if (d->bdrv_probe_device) {
446 score = d->bdrv_probe_device(filename);
447 if (score > score_max) {
448 score_max = score;
449 drv = d;
450 }
451 }
452 }
453
454 return drv;
455 }
456
457 BlockDriver *bdrv_find_protocol(const char *filename)
458 {
459 BlockDriver *drv1;
460 char protocol[128];
461 int len;
462 const char *p;
463
464 /* TODO Drivers without bdrv_file_open must be specified explicitly */
465
466 /*
467 * XXX(hch): we really should not let host device detection
468 * override an explicit protocol specification, but moving this
469 * later breaks access to device names with colons in them.
470 * Thanks to the brain-dead persistent naming schemes on udev-
471 * based Linux systems those actually are quite common.
472 */
473 drv1 = find_hdev_driver(filename);
474 if (drv1) {
475 return drv1;
476 }
477
478 if (!path_has_protocol(filename)) {
479 return bdrv_find_format("file");
480 }
481 p = strchr(filename, ':');
482 assert(p != NULL);
483 len = p - filename;
484 if (len > sizeof(protocol) - 1)
485 len = sizeof(protocol) - 1;
486 memcpy(protocol, filename, len);
487 protocol[len] = '\0';
488 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
489 if (drv1->protocol_name &&
490 !strcmp(drv1->protocol_name, protocol)) {
491 return drv1;
492 }
493 }
494 return NULL;
495 }
496
497 static int find_image_format(const char *filename, BlockDriver **pdrv)
498 {
499 int ret, score, score_max;
500 BlockDriver *drv1, *drv;
501 uint8_t buf[2048];
502 BlockDriverState *bs;
503
504 ret = bdrv_file_open(&bs, filename, 0);
505 if (ret < 0) {
506 *pdrv = NULL;
507 return ret;
508 }
509
510 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
511 if (bs->sg || !bdrv_is_inserted(bs)) {
512 bdrv_delete(bs);
513 drv = bdrv_find_format("raw");
514 if (!drv) {
515 ret = -ENOENT;
516 }
517 *pdrv = drv;
518 return ret;
519 }
520
521 ret = bdrv_pread(bs, 0, buf, sizeof(buf));
522 bdrv_delete(bs);
523 if (ret < 0) {
524 *pdrv = NULL;
525 return ret;
526 }
527
528 score_max = 0;
529 drv = NULL;
530 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
531 if (drv1->bdrv_probe) {
532 score = drv1->bdrv_probe(buf, ret, filename);
533 if (score > score_max) {
534 score_max = score;
535 drv = drv1;
536 }
537 }
538 }
539 if (!drv) {
540 ret = -ENOENT;
541 }
542 *pdrv = drv;
543 return ret;
544 }
545
546 /**
547 * Set the current 'total_sectors' value
548 */
549 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
550 {
551 BlockDriver *drv = bs->drv;
552
553 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
554 if (bs->sg)
555 return 0;
556
557 /* query actual device if possible, otherwise just trust the hint */
558 if (drv->bdrv_getlength) {
559 int64_t length = drv->bdrv_getlength(bs);
560 if (length < 0) {
561 return length;
562 }
563 hint = length >> BDRV_SECTOR_BITS;
564 }
565
566 bs->total_sectors = hint;
567 return 0;
568 }
569
570 /**
571 * Set open flags for a given cache mode
572 *
573 * Return 0 on success, -1 if the cache mode was invalid.
574 */
575 int bdrv_parse_cache_flags(const char *mode, int *flags)
576 {
577 *flags &= ~BDRV_O_CACHE_MASK;
578
579 if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
580 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
581 } else if (!strcmp(mode, "directsync")) {
582 *flags |= BDRV_O_NOCACHE;
583 } else if (!strcmp(mode, "writeback")) {
584 *flags |= BDRV_O_CACHE_WB;
585 } else if (!strcmp(mode, "unsafe")) {
586 *flags |= BDRV_O_CACHE_WB;
587 *flags |= BDRV_O_NO_FLUSH;
588 } else if (!strcmp(mode, "writethrough")) {
589 /* this is the default */
590 } else {
591 return -1;
592 }
593
594 return 0;
595 }
596
597 /**
598 * The copy-on-read flag is actually a reference count so multiple users may
599 * use the feature without worrying about clobbering its previous state.
600 * Copy-on-read stays enabled until all users have called to disable it.
601 */
602 void bdrv_enable_copy_on_read(BlockDriverState *bs)
603 {
604 bs->copy_on_read++;
605 }
606
607 void bdrv_disable_copy_on_read(BlockDriverState *bs)
608 {
609 assert(bs->copy_on_read > 0);
610 bs->copy_on_read--;
611 }
612
613 /*
614 * Common part for opening disk images and files
615 */
616 static int bdrv_open_common(BlockDriverState *bs, const char *filename,
617 int flags, BlockDriver *drv)
618 {
619 int ret, open_flags;
620
621 assert(drv != NULL);
622 assert(bs->file == NULL);
623
624 trace_bdrv_open_common(bs, filename, flags, drv->format_name);
625
626 bs->open_flags = flags;
627 bs->buffer_alignment = 512;
628
629 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
630 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
631 bdrv_enable_copy_on_read(bs);
632 }
633
634 pstrcpy(bs->filename, sizeof(bs->filename), filename);
635
636 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
637 return -ENOTSUP;
638 }
639
640 bs->drv = drv;
641 bs->opaque = g_malloc0(drv->instance_size);
642
643 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
644
645 /*
646 * Clear flags that are internal to the block layer before opening the
647 * image.
648 */
649 open_flags = flags & ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
650
651 /*
652 * Snapshots should be writable.
653 */
654 if (bs->is_temporary) {
655 open_flags |= BDRV_O_RDWR;
656 }
657
658 bs->keep_read_only = bs->read_only = !(open_flags & BDRV_O_RDWR);
659
660 /* Open the image, either directly or using a protocol */
661 if (drv->bdrv_file_open) {
662 ret = drv->bdrv_file_open(bs, filename, open_flags);
663 } else {
664 ret = bdrv_file_open(&bs->file, filename, open_flags);
665 if (ret >= 0) {
666 ret = drv->bdrv_open(bs, open_flags);
667 }
668 }
669
670 if (ret < 0) {
671 goto free_and_fail;
672 }
673
674 ret = refresh_total_sectors(bs, bs->total_sectors);
675 if (ret < 0) {
676 goto free_and_fail;
677 }
678
679 #ifndef _WIN32
680 if (bs->is_temporary) {
681 unlink(filename);
682 }
683 #endif
684 return 0;
685
686 free_and_fail:
687 if (bs->file) {
688 bdrv_delete(bs->file);
689 bs->file = NULL;
690 }
691 g_free(bs->opaque);
692 bs->opaque = NULL;
693 bs->drv = NULL;
694 return ret;
695 }
696
697 /*
698 * Opens a file using a protocol (file, host_device, nbd, ...)
699 */
700 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
701 {
702 BlockDriverState *bs;
703 BlockDriver *drv;
704 int ret;
705
706 drv = bdrv_find_protocol(filename);
707 if (!drv) {
708 return -ENOENT;
709 }
710
711 bs = bdrv_new("");
712 ret = bdrv_open_common(bs, filename, flags, drv);
713 if (ret < 0) {
714 bdrv_delete(bs);
715 return ret;
716 }
717 bs->growable = 1;
718 *pbs = bs;
719 return 0;
720 }
721
722 /*
723 * Opens a disk image (raw, qcow2, vmdk, ...)
724 */
725 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
726 BlockDriver *drv)
727 {
728 int ret;
729 char tmp_filename[PATH_MAX];
730
731 if (flags & BDRV_O_SNAPSHOT) {
732 BlockDriverState *bs1;
733 int64_t total_size;
734 int is_protocol = 0;
735 BlockDriver *bdrv_qcow2;
736 QEMUOptionParameter *options;
737 char backing_filename[PATH_MAX];
738
739 /* if snapshot, we create a temporary backing file and open it
740 instead of opening 'filename' directly */
741
742 /* if there is a backing file, use it */
743 bs1 = bdrv_new("");
744 ret = bdrv_open(bs1, filename, 0, drv);
745 if (ret < 0) {
746 bdrv_delete(bs1);
747 return ret;
748 }
749 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
750
751 if (bs1->drv && bs1->drv->protocol_name)
752 is_protocol = 1;
753
754 bdrv_delete(bs1);
755
756 get_tmp_filename(tmp_filename, sizeof(tmp_filename));
757
758 /* Real path is meaningless for protocols */
759 if (is_protocol)
760 snprintf(backing_filename, sizeof(backing_filename),
761 "%s", filename);
762 else if (!realpath(filename, backing_filename))
763 return -errno;
764
765 bdrv_qcow2 = bdrv_find_format("qcow2");
766 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
767
768 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
769 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
770 if (drv) {
771 set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
772 drv->format_name);
773 }
774
775 ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
776 free_option_parameters(options);
777 if (ret < 0) {
778 return ret;
779 }
780
781 filename = tmp_filename;
782 drv = bdrv_qcow2;
783 bs->is_temporary = 1;
784 }
785
786 /* Find the right image format driver */
787 if (!drv) {
788 ret = find_image_format(filename, &drv);
789 }
790
791 if (!drv) {
792 goto unlink_and_fail;
793 }
794
795 /* Open the image */
796 ret = bdrv_open_common(bs, filename, flags, drv);
797 if (ret < 0) {
798 goto unlink_and_fail;
799 }
800
801 /* If there is a backing file, use it */
802 if ((flags & BDRV_O_NO_BACKING) == 0 && bs->backing_file[0] != '\0') {
803 char backing_filename[PATH_MAX];
804 int back_flags;
805 BlockDriver *back_drv = NULL;
806
807 bs->backing_hd = bdrv_new("");
808 bdrv_get_full_backing_filename(bs, backing_filename,
809 sizeof(backing_filename));
810
811 if (bs->backing_format[0] != '\0') {
812 back_drv = bdrv_find_format(bs->backing_format);
813 }
814
815 /* backing files always opened read-only */
816 back_flags =
817 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
818
819 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
820 if (ret < 0) {
821 bdrv_close(bs);
822 return ret;
823 }
824 if (bs->is_temporary) {
825 bs->backing_hd->keep_read_only = !(flags & BDRV_O_RDWR);
826 } else {
827 /* base image inherits from "parent" */
828 bs->backing_hd->keep_read_only = bs->keep_read_only;
829 }
830 }
831
832 if (!bdrv_key_required(bs)) {
833 bdrv_dev_change_media_cb(bs, true);
834 }
835
836 /* throttling disk I/O limits */
837 if (bs->io_limits_enabled) {
838 bdrv_io_limits_enable(bs);
839 }
840
841 return 0;
842
843 unlink_and_fail:
844 if (bs->is_temporary) {
845 unlink(filename);
846 }
847 return ret;
848 }
849
850 void bdrv_close(BlockDriverState *bs)
851 {
852 bdrv_flush(bs);
853 if (bs->drv) {
854 if (bs->job) {
855 block_job_cancel_sync(bs->job);
856 }
857 bdrv_drain_all();
858
859 if (bs == bs_snapshots) {
860 bs_snapshots = NULL;
861 }
862 if (bs->backing_hd) {
863 bdrv_delete(bs->backing_hd);
864 bs->backing_hd = NULL;
865 }
866 bs->drv->bdrv_close(bs);
867 g_free(bs->opaque);
868 #ifdef _WIN32
869 if (bs->is_temporary) {
870 unlink(bs->filename);
871 }
872 #endif
873 bs->opaque = NULL;
874 bs->drv = NULL;
875 bs->copy_on_read = 0;
876 bs->backing_file[0] = '\0';
877 bs->backing_format[0] = '\0';
878 bs->total_sectors = 0;
879 bs->encrypted = 0;
880 bs->valid_key = 0;
881 bs->sg = 0;
882 bs->growable = 0;
883
884 if (bs->file != NULL) {
885 bdrv_delete(bs->file);
886 bs->file = NULL;
887 }
888
889 bdrv_dev_change_media_cb(bs, false);
890 }
891
892 /*throttling disk I/O limits*/
893 if (bs->io_limits_enabled) {
894 bdrv_io_limits_disable(bs);
895 }
896 }
897
898 void bdrv_close_all(void)
899 {
900 BlockDriverState *bs;
901
902 QTAILQ_FOREACH(bs, &bdrv_states, list) {
903 bdrv_close(bs);
904 }
905 }
906
907 /*
908 * Wait for pending requests to complete across all BlockDriverStates
909 *
910 * This function does not flush data to disk, use bdrv_flush_all() for that
911 * after calling this function.
912 *
913 * Note that completion of an asynchronous I/O operation can trigger any
914 * number of other I/O operations on other devices---for example a coroutine
915 * can be arbitrarily complex and a constant flow of I/O can come until the
916 * coroutine is complete. Because of this, it is not possible to have a
917 * function to drain a single device's I/O queue.
918 */
919 void bdrv_drain_all(void)
920 {
921 BlockDriverState *bs;
922 bool busy;
923
924 do {
925 busy = qemu_aio_wait();
926
927 /* FIXME: We do not have timer support here, so this is effectively
928 * a busy wait.
929 */
930 QTAILQ_FOREACH(bs, &bdrv_states, list) {
931 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
932 qemu_co_queue_restart_all(&bs->throttled_reqs);
933 busy = true;
934 }
935 }
936 } while (busy);
937
938 /* If requests are still pending there is a bug somewhere */
939 QTAILQ_FOREACH(bs, &bdrv_states, list) {
940 assert(QLIST_EMPTY(&bs->tracked_requests));
941 assert(qemu_co_queue_empty(&bs->throttled_reqs));
942 }
943 }
944
945 /* make a BlockDriverState anonymous by removing from bdrv_state list.
946 Also, NULL terminate the device_name to prevent double remove */
947 void bdrv_make_anon(BlockDriverState *bs)
948 {
949 if (bs->device_name[0] != '\0') {
950 QTAILQ_REMOVE(&bdrv_states, bs, list);
951 }
952 bs->device_name[0] = '\0';
953 }
954
955 static void bdrv_rebind(BlockDriverState *bs)
956 {
957 if (bs->drv && bs->drv->bdrv_rebind) {
958 bs->drv->bdrv_rebind(bs);
959 }
960 }
961
962 /*
963 * Add new bs contents at the top of an image chain while the chain is
964 * live, while keeping required fields on the top layer.
965 *
966 * This will modify the BlockDriverState fields, and swap contents
967 * between bs_new and bs_top. Both bs_new and bs_top are modified.
968 *
969 * bs_new is required to be anonymous.
970 *
971 * This function does not create any image files.
972 */
973 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
974 {
975 BlockDriverState tmp;
976
977 /* bs_new must be anonymous */
978 assert(bs_new->device_name[0] == '\0');
979
980 tmp = *bs_new;
981
982 /* there are some fields that need to stay on the top layer: */
983 tmp.open_flags = bs_top->open_flags;
984
985 /* dev info */
986 tmp.dev_ops = bs_top->dev_ops;
987 tmp.dev_opaque = bs_top->dev_opaque;
988 tmp.dev = bs_top->dev;
989 tmp.buffer_alignment = bs_top->buffer_alignment;
990 tmp.copy_on_read = bs_top->copy_on_read;
991
992 /* i/o timing parameters */
993 tmp.slice_time = bs_top->slice_time;
994 tmp.slice_start = bs_top->slice_start;
995 tmp.slice_end = bs_top->slice_end;
996 tmp.io_limits = bs_top->io_limits;
997 tmp.io_base = bs_top->io_base;
998 tmp.throttled_reqs = bs_top->throttled_reqs;
999 tmp.block_timer = bs_top->block_timer;
1000 tmp.io_limits_enabled = bs_top->io_limits_enabled;
1001
1002 /* geometry */
1003 tmp.cyls = bs_top->cyls;
1004 tmp.heads = bs_top->heads;
1005 tmp.secs = bs_top->secs;
1006 tmp.translation = bs_top->translation;
1007
1008 /* r/w error */
1009 tmp.on_read_error = bs_top->on_read_error;
1010 tmp.on_write_error = bs_top->on_write_error;
1011
1012 /* i/o status */
1013 tmp.iostatus_enabled = bs_top->iostatus_enabled;
1014 tmp.iostatus = bs_top->iostatus;
1015
1016 /* keep the same entry in bdrv_states */
1017 pstrcpy(tmp.device_name, sizeof(tmp.device_name), bs_top->device_name);
1018 tmp.list = bs_top->list;
1019
1020 /* The contents of 'tmp' will become bs_top, as we are
1021 * swapping bs_new and bs_top contents. */
1022 tmp.backing_hd = bs_new;
1023 pstrcpy(tmp.backing_file, sizeof(tmp.backing_file), bs_top->filename);
1024 bdrv_get_format(bs_top, tmp.backing_format, sizeof(tmp.backing_format));
1025
1026 /* swap contents of the fixed new bs and the current top */
1027 *bs_new = *bs_top;
1028 *bs_top = tmp;
1029
1030 /* device_name[] was carried over from the old bs_top. bs_new
1031 * shouldn't be in bdrv_states, so we need to make device_name[]
1032 * reflect the anonymity of bs_new
1033 */
1034 bs_new->device_name[0] = '\0';
1035
1036 /* clear the copied fields in the new backing file */
1037 bdrv_detach_dev(bs_new, bs_new->dev);
1038
1039 qemu_co_queue_init(&bs_new->throttled_reqs);
1040 memset(&bs_new->io_base, 0, sizeof(bs_new->io_base));
1041 memset(&bs_new->io_limits, 0, sizeof(bs_new->io_limits));
1042 bdrv_iostatus_disable(bs_new);
1043
1044 /* we don't use bdrv_io_limits_disable() for this, because we don't want
1045 * to affect or delete the block_timer, as it has been moved to bs_top */
1046 bs_new->io_limits_enabled = false;
1047 bs_new->block_timer = NULL;
1048 bs_new->slice_time = 0;
1049 bs_new->slice_start = 0;
1050 bs_new->slice_end = 0;
1051
1052 bdrv_rebind(bs_new);
1053 bdrv_rebind(bs_top);
1054 }
1055
1056 void bdrv_delete(BlockDriverState *bs)
1057 {
1058 assert(!bs->dev);
1059 assert(!bs->job);
1060 assert(!bs->in_use);
1061
1062 /* remove from list, if necessary */
1063 bdrv_make_anon(bs);
1064
1065 bdrv_close(bs);
1066
1067 assert(bs != bs_snapshots);
1068 g_free(bs);
1069 }
1070
1071 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
1072 /* TODO change to DeviceState *dev when all users are qdevified */
1073 {
1074 if (bs->dev) {
1075 return -EBUSY;
1076 }
1077 bs->dev = dev;
1078 bdrv_iostatus_reset(bs);
1079 return 0;
1080 }
1081
1082 /* TODO qdevified devices don't use this, remove when devices are qdevified */
1083 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
1084 {
1085 if (bdrv_attach_dev(bs, dev) < 0) {
1086 abort();
1087 }
1088 }
1089
1090 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1091 /* TODO change to DeviceState *dev when all users are qdevified */
1092 {
1093 assert(bs->dev == dev);
1094 bs->dev = NULL;
1095 bs->dev_ops = NULL;
1096 bs->dev_opaque = NULL;
1097 bs->buffer_alignment = 512;
1098 }
1099
1100 /* TODO change to return DeviceState * when all users are qdevified */
1101 void *bdrv_get_attached_dev(BlockDriverState *bs)
1102 {
1103 return bs->dev;
1104 }
1105
1106 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1107 void *opaque)
1108 {
1109 bs->dev_ops = ops;
1110 bs->dev_opaque = opaque;
1111 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
1112 bs_snapshots = NULL;
1113 }
1114 }
1115
1116 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1117 BlockQMPEventAction action, int is_read)
1118 {
1119 QObject *data;
1120 const char *action_str;
1121
1122 switch (action) {
1123 case BDRV_ACTION_REPORT:
1124 action_str = "report";
1125 break;
1126 case BDRV_ACTION_IGNORE:
1127 action_str = "ignore";
1128 break;
1129 case BDRV_ACTION_STOP:
1130 action_str = "stop";
1131 break;
1132 default:
1133 abort();
1134 }
1135
1136 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1137 bdrv->device_name,
1138 action_str,
1139 is_read ? "read" : "write");
1140 monitor_protocol_event(QEVENT_BLOCK_IO_ERROR, data);
1141
1142 qobject_decref(data);
1143 }
1144
1145 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1146 {
1147 QObject *data;
1148
1149 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1150 bdrv_get_device_name(bs), ejected);
1151 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1152
1153 qobject_decref(data);
1154 }
1155
1156 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1157 {
1158 if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1159 bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1160 bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1161 if (tray_was_closed) {
1162 /* tray open */
1163 bdrv_emit_qmp_eject_event(bs, true);
1164 }
1165 if (load) {
1166 /* tray close */
1167 bdrv_emit_qmp_eject_event(bs, false);
1168 }
1169 }
1170 }
1171
1172 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1173 {
1174 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1175 }
1176
1177 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1178 {
1179 if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1180 bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1181 }
1182 }
1183
1184 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1185 {
1186 if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1187 return bs->dev_ops->is_tray_open(bs->dev_opaque);
1188 }
1189 return false;
1190 }
1191
1192 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1193 {
1194 if (bs->dev_ops && bs->dev_ops->resize_cb) {
1195 bs->dev_ops->resize_cb(bs->dev_opaque);
1196 }
1197 }
1198
1199 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1200 {
1201 if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1202 return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1203 }
1204 return false;
1205 }
1206
1207 /*
1208 * Run consistency checks on an image
1209 *
1210 * Returns 0 if the check could be completed (it doesn't mean that the image is
1211 * free of errors) or -errno when an internal error occurred. The results of the
1212 * check are stored in res.
1213 */
1214 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res)
1215 {
1216 if (bs->drv->bdrv_check == NULL) {
1217 return -ENOTSUP;
1218 }
1219
1220 memset(res, 0, sizeof(*res));
1221 return bs->drv->bdrv_check(bs, res);
1222 }
1223
1224 #define COMMIT_BUF_SECTORS 2048
1225
1226 /* commit COW file into the raw image */
1227 int bdrv_commit(BlockDriverState *bs)
1228 {
1229 BlockDriver *drv = bs->drv;
1230 BlockDriver *backing_drv;
1231 int64_t sector, total_sectors;
1232 int n, ro, open_flags;
1233 int ret = 0, rw_ret = 0;
1234 uint8_t *buf;
1235 char filename[1024];
1236 BlockDriverState *bs_rw, *bs_ro;
1237
1238 if (!drv)
1239 return -ENOMEDIUM;
1240
1241 if (!bs->backing_hd) {
1242 return -ENOTSUP;
1243 }
1244
1245 if (bs->backing_hd->keep_read_only) {
1246 return -EACCES;
1247 }
1248
1249 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1250 return -EBUSY;
1251 }
1252
1253 backing_drv = bs->backing_hd->drv;
1254 ro = bs->backing_hd->read_only;
1255 strncpy(filename, bs->backing_hd->filename, sizeof(filename));
1256 open_flags = bs->backing_hd->open_flags;
1257
1258 if (ro) {
1259 /* re-open as RW */
1260 bdrv_delete(bs->backing_hd);
1261 bs->backing_hd = NULL;
1262 bs_rw = bdrv_new("");
1263 rw_ret = bdrv_open(bs_rw, filename, open_flags | BDRV_O_RDWR,
1264 backing_drv);
1265 if (rw_ret < 0) {
1266 bdrv_delete(bs_rw);
1267 /* try to re-open read-only */
1268 bs_ro = bdrv_new("");
1269 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR,
1270 backing_drv);
1271 if (ret < 0) {
1272 bdrv_delete(bs_ro);
1273 /* drive not functional anymore */
1274 bs->drv = NULL;
1275 return ret;
1276 }
1277 bs->backing_hd = bs_ro;
1278 return rw_ret;
1279 }
1280 bs->backing_hd = bs_rw;
1281 }
1282
1283 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1284 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1285
1286 for (sector = 0; sector < total_sectors; sector += n) {
1287 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1288
1289 if (bdrv_read(bs, sector, buf, n) != 0) {
1290 ret = -EIO;
1291 goto ro_cleanup;
1292 }
1293
1294 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1295 ret = -EIO;
1296 goto ro_cleanup;
1297 }
1298 }
1299 }
1300
1301 if (drv->bdrv_make_empty) {
1302 ret = drv->bdrv_make_empty(bs);
1303 bdrv_flush(bs);
1304 }
1305
1306 /*
1307 * Make sure all data we wrote to the backing device is actually
1308 * stable on disk.
1309 */
1310 if (bs->backing_hd)
1311 bdrv_flush(bs->backing_hd);
1312
1313 ro_cleanup:
1314 g_free(buf);
1315
1316 if (ro) {
1317 /* re-open as RO */
1318 bdrv_delete(bs->backing_hd);
1319 bs->backing_hd = NULL;
1320 bs_ro = bdrv_new("");
1321 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR,
1322 backing_drv);
1323 if (ret < 0) {
1324 bdrv_delete(bs_ro);
1325 /* drive not functional anymore */
1326 bs->drv = NULL;
1327 return ret;
1328 }
1329 bs->backing_hd = bs_ro;
1330 bs->backing_hd->keep_read_only = 0;
1331 }
1332
1333 return ret;
1334 }
1335
1336 int bdrv_commit_all(void)
1337 {
1338 BlockDriverState *bs;
1339
1340 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1341 int ret = bdrv_commit(bs);
1342 if (ret < 0) {
1343 return ret;
1344 }
1345 }
1346 return 0;
1347 }
1348
1349 struct BdrvTrackedRequest {
1350 BlockDriverState *bs;
1351 int64_t sector_num;
1352 int nb_sectors;
1353 bool is_write;
1354 QLIST_ENTRY(BdrvTrackedRequest) list;
1355 Coroutine *co; /* owner, used for deadlock detection */
1356 CoQueue wait_queue; /* coroutines blocked on this request */
1357 };
1358
1359 /**
1360 * Remove an active request from the tracked requests list
1361 *
1362 * This function should be called when a tracked request is completing.
1363 */
1364 static void tracked_request_end(BdrvTrackedRequest *req)
1365 {
1366 QLIST_REMOVE(req, list);
1367 qemu_co_queue_restart_all(&req->wait_queue);
1368 }
1369
1370 /**
1371 * Add an active request to the tracked requests list
1372 */
1373 static void tracked_request_begin(BdrvTrackedRequest *req,
1374 BlockDriverState *bs,
1375 int64_t sector_num,
1376 int nb_sectors, bool is_write)
1377 {
1378 *req = (BdrvTrackedRequest){
1379 .bs = bs,
1380 .sector_num = sector_num,
1381 .nb_sectors = nb_sectors,
1382 .is_write = is_write,
1383 .co = qemu_coroutine_self(),
1384 };
1385
1386 qemu_co_queue_init(&req->wait_queue);
1387
1388 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1389 }
1390
1391 /**
1392 * Round a region to cluster boundaries
1393 */
1394 static void round_to_clusters(BlockDriverState *bs,
1395 int64_t sector_num, int nb_sectors,
1396 int64_t *cluster_sector_num,
1397 int *cluster_nb_sectors)
1398 {
1399 BlockDriverInfo bdi;
1400
1401 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1402 *cluster_sector_num = sector_num;
1403 *cluster_nb_sectors = nb_sectors;
1404 } else {
1405 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1406 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1407 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1408 nb_sectors, c);
1409 }
1410 }
1411
1412 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1413 int64_t sector_num, int nb_sectors) {
1414 /* aaaa bbbb */
1415 if (sector_num >= req->sector_num + req->nb_sectors) {
1416 return false;
1417 }
1418 /* bbbb aaaa */
1419 if (req->sector_num >= sector_num + nb_sectors) {
1420 return false;
1421 }
1422 return true;
1423 }
1424
1425 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1426 int64_t sector_num, int nb_sectors)
1427 {
1428 BdrvTrackedRequest *req;
1429 int64_t cluster_sector_num;
1430 int cluster_nb_sectors;
1431 bool retry;
1432
1433 /* If we touch the same cluster it counts as an overlap. This guarantees
1434 * that allocating writes will be serialized and not race with each other
1435 * for the same cluster. For example, in copy-on-read it ensures that the
1436 * CoR read and write operations are atomic and guest writes cannot
1437 * interleave between them.
1438 */
1439 round_to_clusters(bs, sector_num, nb_sectors,
1440 &cluster_sector_num, &cluster_nb_sectors);
1441
1442 do {
1443 retry = false;
1444 QLIST_FOREACH(req, &bs->tracked_requests, list) {
1445 if (tracked_request_overlaps(req, cluster_sector_num,
1446 cluster_nb_sectors)) {
1447 /* Hitting this means there was a reentrant request, for
1448 * example, a block driver issuing nested requests. This must
1449 * never happen since it means deadlock.
1450 */
1451 assert(qemu_coroutine_self() != req->co);
1452
1453 qemu_co_queue_wait(&req->wait_queue);
1454 retry = true;
1455 break;
1456 }
1457 }
1458 } while (retry);
1459 }
1460
1461 /*
1462 * Return values:
1463 * 0 - success
1464 * -EINVAL - backing format specified, but no file
1465 * -ENOSPC - can't update the backing file because no space is left in the
1466 * image file header
1467 * -ENOTSUP - format driver doesn't support changing the backing file
1468 */
1469 int bdrv_change_backing_file(BlockDriverState *bs,
1470 const char *backing_file, const char *backing_fmt)
1471 {
1472 BlockDriver *drv = bs->drv;
1473 int ret;
1474
1475 /* Backing file format doesn't make sense without a backing file */
1476 if (backing_fmt && !backing_file) {
1477 return -EINVAL;
1478 }
1479
1480 if (drv->bdrv_change_backing_file != NULL) {
1481 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1482 } else {
1483 ret = -ENOTSUP;
1484 }
1485
1486 if (ret == 0) {
1487 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
1488 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
1489 }
1490 return ret;
1491 }
1492
1493 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1494 size_t size)
1495 {
1496 int64_t len;
1497
1498 if (!bdrv_is_inserted(bs))
1499 return -ENOMEDIUM;
1500
1501 if (bs->growable)
1502 return 0;
1503
1504 len = bdrv_getlength(bs);
1505
1506 if (offset < 0)
1507 return -EIO;
1508
1509 if ((offset > len) || (len - offset < size))
1510 return -EIO;
1511
1512 return 0;
1513 }
1514
1515 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1516 int nb_sectors)
1517 {
1518 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1519 nb_sectors * BDRV_SECTOR_SIZE);
1520 }
1521
1522 typedef struct RwCo {
1523 BlockDriverState *bs;
1524 int64_t sector_num;
1525 int nb_sectors;
1526 QEMUIOVector *qiov;
1527 bool is_write;
1528 int ret;
1529 } RwCo;
1530
1531 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1532 {
1533 RwCo *rwco = opaque;
1534
1535 if (!rwco->is_write) {
1536 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1537 rwco->nb_sectors, rwco->qiov, 0);
1538 } else {
1539 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1540 rwco->nb_sectors, rwco->qiov, 0);
1541 }
1542 }
1543
1544 /*
1545 * Process a synchronous request using coroutines
1546 */
1547 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1548 int nb_sectors, bool is_write)
1549 {
1550 QEMUIOVector qiov;
1551 struct iovec iov = {
1552 .iov_base = (void *)buf,
1553 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1554 };
1555 Coroutine *co;
1556 RwCo rwco = {
1557 .bs = bs,
1558 .sector_num = sector_num,
1559 .nb_sectors = nb_sectors,
1560 .qiov = &qiov,
1561 .is_write = is_write,
1562 .ret = NOT_DONE,
1563 };
1564
1565 qemu_iovec_init_external(&qiov, &iov, 1);
1566
1567 /**
1568 * In sync call context, when the vcpu is blocked, this throttling timer
1569 * will not fire; so the I/O throttling function has to be disabled here
1570 * if it has been enabled.
1571 */
1572 if (bs->io_limits_enabled) {
1573 fprintf(stderr, "Disabling I/O throttling on '%s' due "
1574 "to synchronous I/O.\n", bdrv_get_device_name(bs));
1575 bdrv_io_limits_disable(bs);
1576 }
1577
1578 if (qemu_in_coroutine()) {
1579 /* Fast-path if already in coroutine context */
1580 bdrv_rw_co_entry(&rwco);
1581 } else {
1582 co = qemu_coroutine_create(bdrv_rw_co_entry);
1583 qemu_coroutine_enter(co, &rwco);
1584 while (rwco.ret == NOT_DONE) {
1585 qemu_aio_wait();
1586 }
1587 }
1588 return rwco.ret;
1589 }
1590
1591 /* return < 0 if error. See bdrv_write() for the return codes */
1592 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
1593 uint8_t *buf, int nb_sectors)
1594 {
1595 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
1596 }
1597
1598 #define BITS_PER_LONG (sizeof(unsigned long) * 8)
1599
1600 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num,
1601 int nb_sectors, int dirty)
1602 {
1603 int64_t start, end;
1604 unsigned long val, idx, bit;
1605
1606 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK;
1607 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK;
1608
1609 for (; start <= end; start++) {
1610 idx = start / BITS_PER_LONG;
1611 bit = start % BITS_PER_LONG;
1612 val = bs->dirty_bitmap[idx];
1613 if (dirty) {
1614 if (!(val & (1UL << bit))) {
1615 bs->dirty_count++;
1616 val |= 1UL << bit;
1617 }
1618 } else {
1619 if (val & (1UL << bit)) {
1620 bs->dirty_count--;
1621 val &= ~(1UL << bit);
1622 }
1623 }
1624 bs->dirty_bitmap[idx] = val;
1625 }
1626 }
1627
1628 /* Return < 0 if error. Important errors are:
1629 -EIO generic I/O error (may happen for all errors)
1630 -ENOMEDIUM No media inserted.
1631 -EINVAL Invalid sector number or nb_sectors
1632 -EACCES Trying to write a read-only device
1633 */
1634 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
1635 const uint8_t *buf, int nb_sectors)
1636 {
1637 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
1638 }
1639
1640 int bdrv_pread(BlockDriverState *bs, int64_t offset,
1641 void *buf, int count1)
1642 {
1643 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1644 int len, nb_sectors, count;
1645 int64_t sector_num;
1646 int ret;
1647
1648 count = count1;
1649 /* first read to align to sector start */
1650 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1651 if (len > count)
1652 len = count;
1653 sector_num = offset >> BDRV_SECTOR_BITS;
1654 if (len > 0) {
1655 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1656 return ret;
1657 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
1658 count -= len;
1659 if (count == 0)
1660 return count1;
1661 sector_num++;
1662 buf += len;
1663 }
1664
1665 /* read the sectors "in place" */
1666 nb_sectors = count >> BDRV_SECTOR_BITS;
1667 if (nb_sectors > 0) {
1668 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
1669 return ret;
1670 sector_num += nb_sectors;
1671 len = nb_sectors << BDRV_SECTOR_BITS;
1672 buf += len;
1673 count -= len;
1674 }
1675
1676 /* add data from the last sector */
1677 if (count > 0) {
1678 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1679 return ret;
1680 memcpy(buf, tmp_buf, count);
1681 }
1682 return count1;
1683 }
1684
1685 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
1686 const void *buf, int count1)
1687 {
1688 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1689 int len, nb_sectors, count;
1690 int64_t sector_num;
1691 int ret;
1692
1693 count = count1;
1694 /* first write to align to sector start */
1695 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1696 if (len > count)
1697 len = count;
1698 sector_num = offset >> BDRV_SECTOR_BITS;
1699 if (len > 0) {
1700 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1701 return ret;
1702 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
1703 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1704 return ret;
1705 count -= len;
1706 if (count == 0)
1707 return count1;
1708 sector_num++;
1709 buf += len;
1710 }
1711
1712 /* write the sectors "in place" */
1713 nb_sectors = count >> BDRV_SECTOR_BITS;
1714 if (nb_sectors > 0) {
1715 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
1716 return ret;
1717 sector_num += nb_sectors;
1718 len = nb_sectors << BDRV_SECTOR_BITS;
1719 buf += len;
1720 count -= len;
1721 }
1722
1723 /* add data from the last sector */
1724 if (count > 0) {
1725 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1726 return ret;
1727 memcpy(tmp_buf, buf, count);
1728 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1729 return ret;
1730 }
1731 return count1;
1732 }
1733
1734 /*
1735 * Writes to the file and ensures that no writes are reordered across this
1736 * request (acts as a barrier)
1737 *
1738 * Returns 0 on success, -errno in error cases.
1739 */
1740 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
1741 const void *buf, int count)
1742 {
1743 int ret;
1744
1745 ret = bdrv_pwrite(bs, offset, buf, count);
1746 if (ret < 0) {
1747 return ret;
1748 }
1749
1750 /* No flush needed for cache modes that use O_DSYNC */
1751 if ((bs->open_flags & BDRV_O_CACHE_WB) != 0) {
1752 bdrv_flush(bs);
1753 }
1754
1755 return 0;
1756 }
1757
1758 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
1759 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1760 {
1761 /* Perform I/O through a temporary buffer so that users who scribble over
1762 * their read buffer while the operation is in progress do not end up
1763 * modifying the image file. This is critical for zero-copy guest I/O
1764 * where anything might happen inside guest memory.
1765 */
1766 void *bounce_buffer;
1767
1768 BlockDriver *drv = bs->drv;
1769 struct iovec iov;
1770 QEMUIOVector bounce_qiov;
1771 int64_t cluster_sector_num;
1772 int cluster_nb_sectors;
1773 size_t skip_bytes;
1774 int ret;
1775
1776 /* Cover entire cluster so no additional backing file I/O is required when
1777 * allocating cluster in the image file.
1778 */
1779 round_to_clusters(bs, sector_num, nb_sectors,
1780 &cluster_sector_num, &cluster_nb_sectors);
1781
1782 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
1783 cluster_sector_num, cluster_nb_sectors);
1784
1785 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
1786 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
1787 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
1788
1789 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
1790 &bounce_qiov);
1791 if (ret < 0) {
1792 goto err;
1793 }
1794
1795 if (drv->bdrv_co_write_zeroes &&
1796 buffer_is_zero(bounce_buffer, iov.iov_len)) {
1797 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
1798 cluster_nb_sectors);
1799 } else {
1800 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
1801 &bounce_qiov);
1802 }
1803
1804 if (ret < 0) {
1805 /* It might be okay to ignore write errors for guest requests. If this
1806 * is a deliberate copy-on-read then we don't want to ignore the error.
1807 * Simply report it in all cases.
1808 */
1809 goto err;
1810 }
1811
1812 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
1813 qemu_iovec_from_buffer(qiov, bounce_buffer + skip_bytes,
1814 nb_sectors * BDRV_SECTOR_SIZE);
1815
1816 err:
1817 qemu_vfree(bounce_buffer);
1818 return ret;
1819 }
1820
1821 /*
1822 * Handle a read request in coroutine context
1823 */
1824 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
1825 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1826 BdrvRequestFlags flags)
1827 {
1828 BlockDriver *drv = bs->drv;
1829 BdrvTrackedRequest req;
1830 int ret;
1831
1832 if (!drv) {
1833 return -ENOMEDIUM;
1834 }
1835 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
1836 return -EIO;
1837 }
1838
1839 /* throttling disk read I/O */
1840 if (bs->io_limits_enabled) {
1841 bdrv_io_limits_intercept(bs, false, nb_sectors);
1842 }
1843
1844 if (bs->copy_on_read) {
1845 flags |= BDRV_REQ_COPY_ON_READ;
1846 }
1847 if (flags & BDRV_REQ_COPY_ON_READ) {
1848 bs->copy_on_read_in_flight++;
1849 }
1850
1851 if (bs->copy_on_read_in_flight) {
1852 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
1853 }
1854
1855 tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
1856
1857 if (flags & BDRV_REQ_COPY_ON_READ) {
1858 int pnum;
1859
1860 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
1861 if (ret < 0) {
1862 goto out;
1863 }
1864
1865 if (!ret || pnum != nb_sectors) {
1866 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
1867 goto out;
1868 }
1869 }
1870
1871 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1872
1873 out:
1874 tracked_request_end(&req);
1875
1876 if (flags & BDRV_REQ_COPY_ON_READ) {
1877 bs->copy_on_read_in_flight--;
1878 }
1879
1880 return ret;
1881 }
1882
1883 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1884 int nb_sectors, QEMUIOVector *qiov)
1885 {
1886 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1887
1888 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1889 }
1890
1891 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1892 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1893 {
1894 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1895
1896 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1897 BDRV_REQ_COPY_ON_READ);
1898 }
1899
1900 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1901 int64_t sector_num, int nb_sectors)
1902 {
1903 BlockDriver *drv = bs->drv;
1904 QEMUIOVector qiov;
1905 struct iovec iov;
1906 int ret;
1907
1908 /* TODO Emulate only part of misaligned requests instead of letting block
1909 * drivers return -ENOTSUP and emulate everything */
1910
1911 /* First try the efficient write zeroes operation */
1912 if (drv->bdrv_co_write_zeroes) {
1913 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
1914 if (ret != -ENOTSUP) {
1915 return ret;
1916 }
1917 }
1918
1919 /* Fall back to bounce buffer if write zeroes is unsupported */
1920 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE;
1921 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
1922 memset(iov.iov_base, 0, iov.iov_len);
1923 qemu_iovec_init_external(&qiov, &iov, 1);
1924
1925 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
1926
1927 qemu_vfree(iov.iov_base);
1928 return ret;
1929 }
1930
1931 /*
1932 * Handle a write request in coroutine context
1933 */
1934 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1935 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1936 BdrvRequestFlags flags)
1937 {
1938 BlockDriver *drv = bs->drv;
1939 BdrvTrackedRequest req;
1940 int ret;
1941
1942 if (!bs->drv) {
1943 return -ENOMEDIUM;
1944 }
1945 if (bs->read_only) {
1946 return -EACCES;
1947 }
1948 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
1949 return -EIO;
1950 }
1951
1952 /* throttling disk write I/O */
1953 if (bs->io_limits_enabled) {
1954 bdrv_io_limits_intercept(bs, true, nb_sectors);
1955 }
1956
1957 if (bs->copy_on_read_in_flight) {
1958 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
1959 }
1960
1961 tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
1962
1963 if (flags & BDRV_REQ_ZERO_WRITE) {
1964 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
1965 } else {
1966 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1967 }
1968
1969 if (bs->dirty_bitmap) {
1970 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
1971 }
1972
1973 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
1974 bs->wr_highest_sector = sector_num + nb_sectors - 1;
1975 }
1976
1977 tracked_request_end(&req);
1978
1979 return ret;
1980 }
1981
1982 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1983 int nb_sectors, QEMUIOVector *qiov)
1984 {
1985 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1986
1987 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1988 }
1989
1990 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
1991 int64_t sector_num, int nb_sectors)
1992 {
1993 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
1994
1995 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
1996 BDRV_REQ_ZERO_WRITE);
1997 }
1998
1999 /**
2000 * Truncate file to 'offset' bytes (needed only for file protocols)
2001 */
2002 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
2003 {
2004 BlockDriver *drv = bs->drv;
2005 int ret;
2006 if (!drv)
2007 return -ENOMEDIUM;
2008 if (!drv->bdrv_truncate)
2009 return -ENOTSUP;
2010 if (bs->read_only)
2011 return -EACCES;
2012 if (bdrv_in_use(bs))
2013 return -EBUSY;
2014 ret = drv->bdrv_truncate(bs, offset);
2015 if (ret == 0) {
2016 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
2017 bdrv_dev_resize_cb(bs);
2018 }
2019 return ret;
2020 }
2021
2022 /**
2023 * Length of a allocated file in bytes. Sparse files are counted by actual
2024 * allocated space. Return < 0 if error or unknown.
2025 */
2026 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
2027 {
2028 BlockDriver *drv = bs->drv;
2029 if (!drv) {
2030 return -ENOMEDIUM;
2031 }
2032 if (drv->bdrv_get_allocated_file_size) {
2033 return drv->bdrv_get_allocated_file_size(bs);
2034 }
2035 if (bs->file) {
2036 return bdrv_get_allocated_file_size(bs->file);
2037 }
2038 return -ENOTSUP;
2039 }
2040
2041 /**
2042 * Length of a file in bytes. Return < 0 if error or unknown.
2043 */
2044 int64_t bdrv_getlength(BlockDriverState *bs)
2045 {
2046 BlockDriver *drv = bs->drv;
2047 if (!drv)
2048 return -ENOMEDIUM;
2049
2050 if (bs->growable || bdrv_dev_has_removable_media(bs)) {
2051 if (drv->bdrv_getlength) {
2052 return drv->bdrv_getlength(bs);
2053 }
2054 }
2055 return bs->total_sectors * BDRV_SECTOR_SIZE;
2056 }
2057
2058 /* return 0 as number of sectors if no device present or error */
2059 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
2060 {
2061 int64_t length;
2062 length = bdrv_getlength(bs);
2063 if (length < 0)
2064 length = 0;
2065 else
2066 length = length >> BDRV_SECTOR_BITS;
2067 *nb_sectors_ptr = length;
2068 }
2069
2070 struct partition {
2071 uint8_t boot_ind; /* 0x80 - active */
2072 uint8_t head; /* starting head */
2073 uint8_t sector; /* starting sector */
2074 uint8_t cyl; /* starting cylinder */
2075 uint8_t sys_ind; /* What partition type */
2076 uint8_t end_head; /* end head */
2077 uint8_t end_sector; /* end sector */
2078 uint8_t end_cyl; /* end cylinder */
2079 uint32_t start_sect; /* starting sector counting from 0 */
2080 uint32_t nr_sects; /* nr of sectors in partition */
2081 } QEMU_PACKED;
2082
2083 /* try to guess the disk logical geometry from the MSDOS partition table. Return 0 if OK, -1 if could not guess */
2084 static int guess_disk_lchs(BlockDriverState *bs,
2085 int *pcylinders, int *pheads, int *psectors)
2086 {
2087 uint8_t buf[BDRV_SECTOR_SIZE];
2088 int ret, i, heads, sectors, cylinders;
2089 struct partition *p;
2090 uint32_t nr_sects;
2091 uint64_t nb_sectors;
2092 bool enabled;
2093
2094 bdrv_get_geometry(bs, &nb_sectors);
2095
2096 /**
2097 * The function will be invoked during startup not only in sync I/O mode,
2098 * but also in async I/O mode. So the I/O throttling function has to
2099 * be disabled temporarily here, not permanently.
2100 */
2101 enabled = bs->io_limits_enabled;
2102 bs->io_limits_enabled = false;
2103 ret = bdrv_read(bs, 0, buf, 1);
2104 bs->io_limits_enabled = enabled;
2105 if (ret < 0)
2106 return -1;
2107 /* test msdos magic */
2108 if (buf[510] != 0x55 || buf[511] != 0xaa)
2109 return -1;
2110 for(i = 0; i < 4; i++) {
2111 p = ((struct partition *)(buf + 0x1be)) + i;
2112 nr_sects = le32_to_cpu(p->nr_sects);
2113 if (nr_sects && p->end_head) {
2114 /* We make the assumption that the partition terminates on
2115 a cylinder boundary */
2116 heads = p->end_head + 1;
2117 sectors = p->end_sector & 63;
2118 if (sectors == 0)
2119 continue;
2120 cylinders = nb_sectors / (heads * sectors);
2121 if (cylinders < 1 || cylinders > 16383)
2122 continue;
2123 *pheads = heads;
2124 *psectors = sectors;
2125 *pcylinders = cylinders;
2126 #if 0
2127 printf("guessed geometry: LCHS=%d %d %d\n",
2128 cylinders, heads, sectors);
2129 #endif
2130 return 0;
2131 }
2132 }
2133 return -1;
2134 }
2135
2136 void bdrv_guess_geometry(BlockDriverState *bs, int *pcyls, int *pheads, int *psecs)
2137 {
2138 int translation, lba_detected = 0;
2139 int cylinders, heads, secs;
2140 uint64_t nb_sectors;
2141
2142 /* if a geometry hint is available, use it */
2143 bdrv_get_geometry(bs, &nb_sectors);
2144 bdrv_get_geometry_hint(bs, &cylinders, &heads, &secs);
2145 translation = bdrv_get_translation_hint(bs);
2146 if (cylinders != 0) {
2147 *pcyls = cylinders;
2148 *pheads = heads;
2149 *psecs = secs;
2150 } else {
2151 if (guess_disk_lchs(bs, &cylinders, &heads, &secs) == 0) {
2152 if (heads > 16) {
2153 /* if heads > 16, it means that a BIOS LBA
2154 translation was active, so the default
2155 hardware geometry is OK */
2156 lba_detected = 1;
2157 goto default_geometry;
2158 } else {
2159 *pcyls = cylinders;
2160 *pheads = heads;
2161 *psecs = secs;
2162 /* disable any translation to be in sync with
2163 the logical geometry */
2164 if (translation == BIOS_ATA_TRANSLATION_AUTO) {
2165 bdrv_set_translation_hint(bs,
2166 BIOS_ATA_TRANSLATION_NONE);
2167 }
2168 }
2169 } else {
2170 default_geometry:
2171 /* if no geometry, use a standard physical disk geometry */
2172 cylinders = nb_sectors / (16 * 63);
2173
2174 if (cylinders > 16383)
2175 cylinders = 16383;
2176 else if (cylinders < 2)
2177 cylinders = 2;
2178 *pcyls = cylinders;
2179 *pheads = 16;
2180 *psecs = 63;
2181 if ((lba_detected == 1) && (translation == BIOS_ATA_TRANSLATION_AUTO)) {
2182 if ((*pcyls * *pheads) <= 131072) {
2183 bdrv_set_translation_hint(bs,
2184 BIOS_ATA_TRANSLATION_LARGE);
2185 } else {
2186 bdrv_set_translation_hint(bs,
2187 BIOS_ATA_TRANSLATION_LBA);
2188 }
2189 }
2190 }
2191 bdrv_set_geometry_hint(bs, *pcyls, *pheads, *psecs);
2192 }
2193 }
2194
2195 void bdrv_set_geometry_hint(BlockDriverState *bs,
2196 int cyls, int heads, int secs)
2197 {
2198 bs->cyls = cyls;
2199 bs->heads = heads;
2200 bs->secs = secs;
2201 }
2202
2203 void bdrv_set_translation_hint(BlockDriverState *bs, int translation)
2204 {
2205 bs->translation = translation;
2206 }
2207
2208 void bdrv_get_geometry_hint(BlockDriverState *bs,
2209 int *pcyls, int *pheads, int *psecs)
2210 {
2211 *pcyls = bs->cyls;
2212 *pheads = bs->heads;
2213 *psecs = bs->secs;
2214 }
2215
2216 /* throttling disk io limits */
2217 void bdrv_set_io_limits(BlockDriverState *bs,
2218 BlockIOLimit *io_limits)
2219 {
2220 bs->io_limits = *io_limits;
2221 bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2222 }
2223
2224 /* Recognize floppy formats */
2225 typedef struct FDFormat {
2226 FDriveType drive;
2227 uint8_t last_sect;
2228 uint8_t max_track;
2229 uint8_t max_head;
2230 FDriveRate rate;
2231 } FDFormat;
2232
2233 static const FDFormat fd_formats[] = {
2234 /* First entry is default format */
2235 /* 1.44 MB 3"1/2 floppy disks */
2236 { FDRIVE_DRV_144, 18, 80, 1, FDRIVE_RATE_500K, },
2237 { FDRIVE_DRV_144, 20, 80, 1, FDRIVE_RATE_500K, },
2238 { FDRIVE_DRV_144, 21, 80, 1, FDRIVE_RATE_500K, },
2239 { FDRIVE_DRV_144, 21, 82, 1, FDRIVE_RATE_500K, },
2240 { FDRIVE_DRV_144, 21, 83, 1, FDRIVE_RATE_500K, },
2241 { FDRIVE_DRV_144, 22, 80, 1, FDRIVE_RATE_500K, },
2242 { FDRIVE_DRV_144, 23, 80, 1, FDRIVE_RATE_500K, },
2243 { FDRIVE_DRV_144, 24, 80, 1, FDRIVE_RATE_500K, },
2244 /* 2.88 MB 3"1/2 floppy disks */
2245 { FDRIVE_DRV_288, 36, 80, 1, FDRIVE_RATE_1M, },
2246 { FDRIVE_DRV_288, 39, 80, 1, FDRIVE_RATE_1M, },
2247 { FDRIVE_DRV_288, 40, 80, 1, FDRIVE_RATE_1M, },
2248 { FDRIVE_DRV_288, 44, 80, 1, FDRIVE_RATE_1M, },
2249 { FDRIVE_DRV_288, 48, 80, 1, FDRIVE_RATE_1M, },
2250 /* 720 kB 3"1/2 floppy disks */
2251 { FDRIVE_DRV_144, 9, 80, 1, FDRIVE_RATE_250K, },
2252 { FDRIVE_DRV_144, 10, 80, 1, FDRIVE_RATE_250K, },
2253 { FDRIVE_DRV_144, 10, 82, 1, FDRIVE_RATE_250K, },
2254 { FDRIVE_DRV_144, 10, 83, 1, FDRIVE_RATE_250K, },
2255 { FDRIVE_DRV_144, 13, 80, 1, FDRIVE_RATE_250K, },
2256 { FDRIVE_DRV_144, 14, 80, 1, FDRIVE_RATE_250K, },
2257 /* 1.2 MB 5"1/4 floppy disks */
2258 { FDRIVE_DRV_120, 15, 80, 1, FDRIVE_RATE_500K, },
2259 { FDRIVE_DRV_120, 18, 80, 1, FDRIVE_RATE_500K, },
2260 { FDRIVE_DRV_120, 18, 82, 1, FDRIVE_RATE_500K, },
2261 { FDRIVE_DRV_120, 18, 83, 1, FDRIVE_RATE_500K, },
2262 { FDRIVE_DRV_120, 20, 80, 1, FDRIVE_RATE_500K, },
2263 /* 720 kB 5"1/4 floppy disks */
2264 { FDRIVE_DRV_120, 9, 80, 1, FDRIVE_RATE_250K, },
2265 { FDRIVE_DRV_120, 11, 80, 1, FDRIVE_RATE_250K, },
2266 /* 360 kB 5"1/4 floppy disks */
2267 { FDRIVE_DRV_120, 9, 40, 1, FDRIVE_RATE_300K, },
2268 { FDRIVE_DRV_120, 9, 40, 0, FDRIVE_RATE_300K, },
2269 { FDRIVE_DRV_120, 10, 41, 1, FDRIVE_RATE_300K, },
2270 { FDRIVE_DRV_120, 10, 42, 1, FDRIVE_RATE_300K, },
2271 /* 320 kB 5"1/4 floppy disks */
2272 { FDRIVE_DRV_120, 8, 40, 1, FDRIVE_RATE_250K, },
2273 { FDRIVE_DRV_120, 8, 40, 0, FDRIVE_RATE_250K, },
2274 /* 360 kB must match 5"1/4 better than 3"1/2... */
2275 { FDRIVE_DRV_144, 9, 80, 0, FDRIVE_RATE_250K, },
2276 /* end */
2277 { FDRIVE_DRV_NONE, -1, -1, 0, 0, },
2278 };
2279
2280 void bdrv_get_floppy_geometry_hint(BlockDriverState *bs, int *nb_heads,
2281 int *max_track, int *last_sect,
2282 FDriveType drive_in, FDriveType *drive,
2283 FDriveRate *rate)
2284 {
2285 const FDFormat *parse;
2286 uint64_t nb_sectors, size;
2287 int i, first_match, match;
2288
2289 bdrv_get_geometry_hint(bs, nb_heads, max_track, last_sect);
2290 if (*nb_heads != 0 && *max_track != 0 && *last_sect != 0) {
2291 /* User defined disk */
2292 *rate = FDRIVE_RATE_500K;
2293 } else {
2294 bdrv_get_geometry(bs, &nb_sectors);
2295 match = -1;
2296 first_match = -1;
2297 for (i = 0; ; i++) {
2298 parse = &fd_formats[i];
2299 if (parse->drive == FDRIVE_DRV_NONE) {
2300 break;
2301 }
2302 if (drive_in == parse->drive ||
2303 drive_in == FDRIVE_DRV_NONE) {
2304 size = (parse->max_head + 1) * parse->max_track *
2305 parse->last_sect;
2306 if (nb_sectors == size) {
2307 match = i;
2308 break;
2309 }
2310 if (first_match == -1) {
2311 first_match = i;
2312 }
2313 }
2314 }
2315 if (match == -1) {
2316 if (first_match == -1) {
2317 match = 1;
2318 } else {
2319 match = first_match;
2320 }
2321 parse = &fd_formats[match];
2322 }
2323 *nb_heads = parse->max_head + 1;
2324 *max_track = parse->max_track;
2325 *last_sect = parse->last_sect;
2326 *drive = parse->drive;
2327 *rate = parse->rate;
2328 }
2329 }
2330
2331 int bdrv_get_translation_hint(BlockDriverState *bs)
2332 {
2333 return bs->translation;
2334 }
2335
2336 void bdrv_set_on_error(BlockDriverState *bs, BlockErrorAction on_read_error,
2337 BlockErrorAction on_write_error)
2338 {
2339 bs->on_read_error = on_read_error;
2340 bs->on_write_error = on_write_error;
2341 }
2342
2343 BlockErrorAction bdrv_get_on_error(BlockDriverState *bs, int is_read)
2344 {
2345 return is_read ? bs->on_read_error : bs->on_write_error;
2346 }
2347
2348 int bdrv_is_read_only(BlockDriverState *bs)
2349 {
2350 return bs->read_only;
2351 }
2352
2353 int bdrv_is_sg(BlockDriverState *bs)
2354 {
2355 return bs->sg;
2356 }
2357
2358 int bdrv_enable_write_cache(BlockDriverState *bs)
2359 {
2360 return bs->enable_write_cache;
2361 }
2362
2363 int bdrv_is_encrypted(BlockDriverState *bs)
2364 {
2365 if (bs->backing_hd && bs->backing_hd->encrypted)
2366 return 1;
2367 return bs->encrypted;
2368 }
2369
2370 int bdrv_key_required(BlockDriverState *bs)
2371 {
2372 BlockDriverState *backing_hd = bs->backing_hd;
2373
2374 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2375 return 1;
2376 return (bs->encrypted && !bs->valid_key);
2377 }
2378
2379 int bdrv_set_key(BlockDriverState *bs, const char *key)
2380 {
2381 int ret;
2382 if (bs->backing_hd && bs->backing_hd->encrypted) {
2383 ret = bdrv_set_key(bs->backing_hd, key);
2384 if (ret < 0)
2385 return ret;
2386 if (!bs->encrypted)
2387 return 0;
2388 }
2389 if (!bs->encrypted) {
2390 return -EINVAL;
2391 } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2392 return -ENOMEDIUM;
2393 }
2394 ret = bs->drv->bdrv_set_key(bs, key);
2395 if (ret < 0) {
2396 bs->valid_key = 0;
2397 } else if (!bs->valid_key) {
2398 bs->valid_key = 1;
2399 /* call the change callback now, we skipped it on open */
2400 bdrv_dev_change_media_cb(bs, true);
2401 }
2402 return ret;
2403 }
2404
2405 void bdrv_get_format(BlockDriverState *bs, char *buf, int buf_size)
2406 {
2407 if (!bs->drv) {
2408 buf[0] = '\0';
2409 } else {
2410 pstrcpy(buf, buf_size, bs->drv->format_name);
2411 }
2412 }
2413
2414 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2415 void *opaque)
2416 {
2417 BlockDriver *drv;
2418
2419 QLIST_FOREACH(drv, &bdrv_drivers, list) {
2420 it(opaque, drv->format_name);
2421 }
2422 }
2423
2424 BlockDriverState *bdrv_find(const char *name)
2425 {
2426 BlockDriverState *bs;
2427
2428 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2429 if (!strcmp(name, bs->device_name)) {
2430 return bs;
2431 }
2432 }
2433 return NULL;
2434 }
2435
2436 BlockDriverState *bdrv_next(BlockDriverState *bs)
2437 {
2438 if (!bs) {
2439 return QTAILQ_FIRST(&bdrv_states);
2440 }
2441 return QTAILQ_NEXT(bs, list);
2442 }
2443
2444 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2445 {
2446 BlockDriverState *bs;
2447
2448 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2449 it(opaque, bs);
2450 }
2451 }
2452
2453 const char *bdrv_get_device_name(BlockDriverState *bs)
2454 {
2455 return bs->device_name;
2456 }
2457
2458 void bdrv_flush_all(void)
2459 {
2460 BlockDriverState *bs;
2461
2462 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2463 bdrv_flush(bs);
2464 }
2465 }
2466
2467 int bdrv_has_zero_init(BlockDriverState *bs)
2468 {
2469 assert(bs->drv);
2470
2471 if (bs->drv->bdrv_has_zero_init) {
2472 return bs->drv->bdrv_has_zero_init(bs);
2473 }
2474
2475 return 1;
2476 }
2477
2478 typedef struct BdrvCoIsAllocatedData {
2479 BlockDriverState *bs;
2480 int64_t sector_num;
2481 int nb_sectors;
2482 int *pnum;
2483 int ret;
2484 bool done;
2485 } BdrvCoIsAllocatedData;
2486
2487 /*
2488 * Returns true iff the specified sector is present in the disk image. Drivers
2489 * not implementing the functionality are assumed to not support backing files,
2490 * hence all their sectors are reported as allocated.
2491 *
2492 * If 'sector_num' is beyond the end of the disk image the return value is 0
2493 * and 'pnum' is set to 0.
2494 *
2495 * 'pnum' is set to the number of sectors (including and immediately following
2496 * the specified sector) that are known to be in the same
2497 * allocated/unallocated state.
2498 *
2499 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
2500 * beyond the end of the disk image it will be clamped.
2501 */
2502 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2503 int nb_sectors, int *pnum)
2504 {
2505 int64_t n;
2506
2507 if (sector_num >= bs->total_sectors) {
2508 *pnum = 0;
2509 return 0;
2510 }
2511
2512 n = bs->total_sectors - sector_num;
2513 if (n < nb_sectors) {
2514 nb_sectors = n;
2515 }
2516
2517 if (!bs->drv->bdrv_co_is_allocated) {
2518 *pnum = nb_sectors;
2519 return 1;
2520 }
2521
2522 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2523 }
2524
2525 /* Coroutine wrapper for bdrv_is_allocated() */
2526 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2527 {
2528 BdrvCoIsAllocatedData *data = opaque;
2529 BlockDriverState *bs = data->bs;
2530
2531 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2532 data->pnum);
2533 data->done = true;
2534 }
2535
2536 /*
2537 * Synchronous wrapper around bdrv_co_is_allocated().
2538 *
2539 * See bdrv_co_is_allocated() for details.
2540 */
2541 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2542 int *pnum)
2543 {
2544 Coroutine *co;
2545 BdrvCoIsAllocatedData data = {
2546 .bs = bs,
2547 .sector_num = sector_num,
2548 .nb_sectors = nb_sectors,
2549 .pnum = pnum,
2550 .done = false,
2551 };
2552
2553 co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2554 qemu_coroutine_enter(co, &data);
2555 while (!data.done) {
2556 qemu_aio_wait();
2557 }
2558 return data.ret;
2559 }
2560
2561 BlockInfoList *qmp_query_block(Error **errp)
2562 {
2563 BlockInfoList *head = NULL, *cur_item = NULL;
2564 BlockDriverState *bs;
2565
2566 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2567 BlockInfoList *info = g_malloc0(sizeof(*info));
2568
2569 info->value = g_malloc0(sizeof(*info->value));
2570 info->value->device = g_strdup(bs->device_name);
2571 info->value->type = g_strdup("unknown");
2572 info->value->locked = bdrv_dev_is_medium_locked(bs);
2573 info->value->removable = bdrv_dev_has_removable_media(bs);
2574
2575 if (bdrv_dev_has_removable_media(bs)) {
2576 info->value->has_tray_open = true;
2577 info->value->tray_open = bdrv_dev_is_tray_open(bs);
2578 }
2579
2580 if (bdrv_iostatus_is_enabled(bs)) {
2581 info->value->has_io_status = true;
2582 info->value->io_status = bs->iostatus;
2583 }
2584
2585 if (bs->drv) {
2586 info->value->has_inserted = true;
2587 info->value->inserted = g_malloc0(sizeof(*info->value->inserted));
2588 info->value->inserted->file = g_strdup(bs->filename);
2589 info->value->inserted->ro = bs->read_only;
2590 info->value->inserted->drv = g_strdup(bs->drv->format_name);
2591 info->value->inserted->encrypted = bs->encrypted;
2592 if (bs->backing_file[0]) {
2593 info->value->inserted->has_backing_file = true;
2594 info->value->inserted->backing_file = g_strdup(bs->backing_file);
2595 }
2596
2597 if (bs->io_limits_enabled) {
2598 info->value->inserted->bps =
2599 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2600 info->value->inserted->bps_rd =
2601 bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2602 info->value->inserted->bps_wr =
2603 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2604 info->value->inserted->iops =
2605 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2606 info->value->inserted->iops_rd =
2607 bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2608 info->value->inserted->iops_wr =
2609 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2610 }
2611 }
2612
2613 /* XXX: waiting for the qapi to support GSList */
2614 if (!cur_item) {
2615 head = cur_item = info;
2616 } else {
2617 cur_item->next = info;
2618 cur_item = info;
2619 }
2620 }
2621
2622 return head;
2623 }
2624
2625 /* Consider exposing this as a full fledged QMP command */
2626 static BlockStats *qmp_query_blockstat(const BlockDriverState *bs, Error **errp)
2627 {
2628 BlockStats *s;
2629
2630 s = g_malloc0(sizeof(*s));
2631
2632 if (bs->device_name[0]) {
2633 s->has_device = true;
2634 s->device = g_strdup(bs->device_name);
2635 }
2636
2637 s->stats = g_malloc0(sizeof(*s->stats));
2638 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2639 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2640 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2641 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2642 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2643 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2644 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2645 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2646 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2647
2648 if (bs->file) {
2649 s->has_parent = true;
2650 s->parent = qmp_query_blockstat(bs->file, NULL);
2651 }
2652
2653 return s;
2654 }
2655
2656 BlockStatsList *qmp_query_blockstats(Error **errp)
2657 {
2658 BlockStatsList *head = NULL, *cur_item = NULL;
2659 BlockDriverState *bs;
2660
2661 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2662 BlockStatsList *info = g_malloc0(sizeof(*info));
2663 info->value = qmp_query_blockstat(bs, NULL);
2664
2665 /* XXX: waiting for the qapi to support GSList */
2666 if (!cur_item) {
2667 head = cur_item = info;
2668 } else {
2669 cur_item->next = info;
2670 cur_item = info;
2671 }
2672 }
2673
2674 return head;
2675 }
2676
2677 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
2678 {
2679 if (bs->backing_hd && bs->backing_hd->encrypted)
2680 return bs->backing_file;
2681 else if (bs->encrypted)
2682 return bs->filename;
2683 else
2684 return NULL;
2685 }
2686
2687 void bdrv_get_backing_filename(BlockDriverState *bs,
2688 char *filename, int filename_size)
2689 {
2690 pstrcpy(filename, filename_size, bs->backing_file);
2691 }
2692
2693 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
2694 const uint8_t *buf, int nb_sectors)
2695 {
2696 BlockDriver *drv = bs->drv;
2697 if (!drv)
2698 return -ENOMEDIUM;
2699 if (!drv->bdrv_write_compressed)
2700 return -ENOTSUP;
2701 if (bdrv_check_request(bs, sector_num, nb_sectors))
2702 return -EIO;
2703
2704 if (bs->dirty_bitmap) {
2705 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2706 }
2707
2708 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
2709 }
2710
2711 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
2712 {
2713 BlockDriver *drv = bs->drv;
2714 if (!drv)
2715 return -ENOMEDIUM;
2716 if (!drv->bdrv_get_info)
2717 return -ENOTSUP;
2718 memset(bdi, 0, sizeof(*bdi));
2719 return drv->bdrv_get_info(bs, bdi);
2720 }
2721
2722 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2723 int64_t pos, int size)
2724 {
2725 BlockDriver *drv = bs->drv;
2726 if (!drv)
2727 return -ENOMEDIUM;
2728 if (drv->bdrv_save_vmstate)
2729 return drv->bdrv_save_vmstate(bs, buf, pos, size);
2730 if (bs->file)
2731 return bdrv_save_vmstate(bs->file, buf, pos, size);
2732 return -ENOTSUP;
2733 }
2734
2735 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2736 int64_t pos, int size)
2737 {
2738 BlockDriver *drv = bs->drv;
2739 if (!drv)
2740 return -ENOMEDIUM;
2741 if (drv->bdrv_load_vmstate)
2742 return drv->bdrv_load_vmstate(bs, buf, pos, size);
2743 if (bs->file)
2744 return bdrv_load_vmstate(bs->file, buf, pos, size);
2745 return -ENOTSUP;
2746 }
2747
2748 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
2749 {
2750 BlockDriver *drv = bs->drv;
2751
2752 if (!drv || !drv->bdrv_debug_event) {
2753 return;
2754 }
2755
2756 return drv->bdrv_debug_event(bs, event);
2757
2758 }
2759
2760 /**************************************************************/
2761 /* handling of snapshots */
2762
2763 int bdrv_can_snapshot(BlockDriverState *bs)
2764 {
2765 BlockDriver *drv = bs->drv;
2766 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2767 return 0;
2768 }
2769
2770 if (!drv->bdrv_snapshot_create) {
2771 if (bs->file != NULL) {
2772 return bdrv_can_snapshot(bs->file);
2773 }
2774 return 0;
2775 }
2776
2777 return 1;
2778 }
2779
2780 int bdrv_is_snapshot(BlockDriverState *bs)
2781 {
2782 return !!(bs->open_flags & BDRV_O_SNAPSHOT);
2783 }
2784
2785 BlockDriverState *bdrv_snapshots(void)
2786 {
2787 BlockDriverState *bs;
2788
2789 if (bs_snapshots) {
2790 return bs_snapshots;
2791 }
2792
2793 bs = NULL;
2794 while ((bs = bdrv_next(bs))) {
2795 if (bdrv_can_snapshot(bs)) {
2796 bs_snapshots = bs;
2797 return bs;
2798 }
2799 }
2800 return NULL;
2801 }
2802
2803 int bdrv_snapshot_create(BlockDriverState *bs,
2804 QEMUSnapshotInfo *sn_info)
2805 {
2806 BlockDriver *drv = bs->drv;
2807 if (!drv)
2808 return -ENOMEDIUM;
2809 if (drv->bdrv_snapshot_create)
2810 return drv->bdrv_snapshot_create(bs, sn_info);
2811 if (bs->file)
2812 return bdrv_snapshot_create(bs->file, sn_info);
2813 return -ENOTSUP;
2814 }
2815
2816 int bdrv_snapshot_goto(BlockDriverState *bs,
2817 const char *snapshot_id)
2818 {
2819 BlockDriver *drv = bs->drv;
2820 int ret, open_ret;
2821
2822 if (!drv)
2823 return -ENOMEDIUM;
2824 if (drv->bdrv_snapshot_goto)
2825 return drv->bdrv_snapshot_goto(bs, snapshot_id);
2826
2827 if (bs->file) {
2828 drv->bdrv_close(bs);
2829 ret = bdrv_snapshot_goto(bs->file, snapshot_id);
2830 open_ret = drv->bdrv_open(bs, bs->open_flags);
2831 if (open_ret < 0) {
2832 bdrv_delete(bs->file);
2833 bs->drv = NULL;
2834 return open_ret;
2835 }
2836 return ret;
2837 }
2838
2839 return -ENOTSUP;
2840 }
2841
2842 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
2843 {
2844 BlockDriver *drv = bs->drv;
2845 if (!drv)
2846 return -ENOMEDIUM;
2847 if (drv->bdrv_snapshot_delete)
2848 return drv->bdrv_snapshot_delete(bs, snapshot_id);
2849 if (bs->file)
2850 return bdrv_snapshot_delete(bs->file, snapshot_id);
2851 return -ENOTSUP;
2852 }
2853
2854 int bdrv_snapshot_list(BlockDriverState *bs,
2855 QEMUSnapshotInfo **psn_info)
2856 {
2857 BlockDriver *drv = bs->drv;
2858 if (!drv)
2859 return -ENOMEDIUM;
2860 if (drv->bdrv_snapshot_list)
2861 return drv->bdrv_snapshot_list(bs, psn_info);
2862 if (bs->file)
2863 return bdrv_snapshot_list(bs->file, psn_info);
2864 return -ENOTSUP;
2865 }
2866
2867 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
2868 const char *snapshot_name)
2869 {
2870 BlockDriver *drv = bs->drv;
2871 if (!drv) {
2872 return -ENOMEDIUM;
2873 }
2874 if (!bs->read_only) {
2875 return -EINVAL;
2876 }
2877 if (drv->bdrv_snapshot_load_tmp) {
2878 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
2879 }
2880 return -ENOTSUP;
2881 }
2882
2883 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
2884 const char *backing_file)
2885 {
2886 if (!bs->drv) {
2887 return NULL;
2888 }
2889
2890 if (bs->backing_hd) {
2891 if (strcmp(bs->backing_file, backing_file) == 0) {
2892 return bs->backing_hd;
2893 } else {
2894 return bdrv_find_backing_image(bs->backing_hd, backing_file);
2895 }
2896 }
2897
2898 return NULL;
2899 }
2900
2901 #define NB_SUFFIXES 4
2902
2903 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
2904 {
2905 static const char suffixes[NB_SUFFIXES] = "KMGT";
2906 int64_t base;
2907 int i;
2908
2909 if (size <= 999) {
2910 snprintf(buf, buf_size, "%" PRId64, size);
2911 } else {
2912 base = 1024;
2913 for(i = 0; i < NB_SUFFIXES; i++) {
2914 if (size < (10 * base)) {
2915 snprintf(buf, buf_size, "%0.1f%c",
2916 (double)size / base,
2917 suffixes[i]);
2918 break;
2919 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
2920 snprintf(buf, buf_size, "%" PRId64 "%c",
2921 ((size + (base >> 1)) / base),
2922 suffixes[i]);
2923 break;
2924 }
2925 base = base * 1024;
2926 }
2927 }
2928 return buf;
2929 }
2930
2931 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
2932 {
2933 char buf1[128], date_buf[128], clock_buf[128];
2934 #ifdef _WIN32
2935 struct tm *ptm;
2936 #else
2937 struct tm tm;
2938 #endif
2939 time_t ti;
2940 int64_t secs;
2941
2942 if (!sn) {
2943 snprintf(buf, buf_size,
2944 "%-10s%-20s%7s%20s%15s",
2945 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
2946 } else {
2947 ti = sn->date_sec;
2948 #ifdef _WIN32
2949 ptm = localtime(&ti);
2950 strftime(date_buf, sizeof(date_buf),
2951 "%Y-%m-%d %H:%M:%S", ptm);
2952 #else
2953 localtime_r(&ti, &tm);
2954 strftime(date_buf, sizeof(date_buf),
2955 "%Y-%m-%d %H:%M:%S", &tm);
2956 #endif
2957 secs = sn->vm_clock_nsec / 1000000000;
2958 snprintf(clock_buf, sizeof(clock_buf),
2959 "%02d:%02d:%02d.%03d",
2960 (int)(secs / 3600),
2961 (int)((secs / 60) % 60),
2962 (int)(secs % 60),
2963 (int)((sn->vm_clock_nsec / 1000000) % 1000));
2964 snprintf(buf, buf_size,
2965 "%-10s%-20s%7s%20s%15s",
2966 sn->id_str, sn->name,
2967 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
2968 date_buf,
2969 clock_buf);
2970 }
2971 return buf;
2972 }
2973
2974 /**************************************************************/
2975 /* async I/Os */
2976
2977 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
2978 QEMUIOVector *qiov, int nb_sectors,
2979 BlockDriverCompletionFunc *cb, void *opaque)
2980 {
2981 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
2982
2983 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
2984 cb, opaque, false);
2985 }
2986
2987 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
2988 QEMUIOVector *qiov, int nb_sectors,
2989 BlockDriverCompletionFunc *cb, void *opaque)
2990 {
2991 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
2992
2993 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
2994 cb, opaque, true);
2995 }
2996
2997
2998 typedef struct MultiwriteCB {
2999 int error;
3000 int num_requests;
3001 int num_callbacks;
3002 struct {
3003 BlockDriverCompletionFunc *cb;
3004 void *opaque;
3005 QEMUIOVector *free_qiov;
3006 } callbacks[];
3007 } MultiwriteCB;
3008
3009 static void multiwrite_user_cb(MultiwriteCB *mcb)
3010 {
3011 int i;
3012
3013 for (i = 0; i < mcb->num_callbacks; i++) {
3014 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
3015 if (mcb->callbacks[i].free_qiov) {
3016 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
3017 }
3018 g_free(mcb->callbacks[i].free_qiov);
3019 }
3020 }
3021
3022 static void multiwrite_cb(void *opaque, int ret)
3023 {
3024 MultiwriteCB *mcb = opaque;
3025
3026 trace_multiwrite_cb(mcb, ret);
3027
3028 if (ret < 0 && !mcb->error) {
3029 mcb->error = ret;
3030 }
3031
3032 mcb->num_requests--;
3033 if (mcb->num_requests == 0) {
3034 multiwrite_user_cb(mcb);
3035 g_free(mcb);
3036 }
3037 }
3038
3039 static int multiwrite_req_compare(const void *a, const void *b)
3040 {
3041 const BlockRequest *req1 = a, *req2 = b;
3042
3043 /*
3044 * Note that we can't simply subtract req2->sector from req1->sector
3045 * here as that could overflow the return value.
3046 */
3047 if (req1->sector > req2->sector) {
3048 return 1;
3049 } else if (req1->sector < req2->sector) {
3050 return -1;
3051 } else {
3052 return 0;
3053 }
3054 }
3055
3056 /*
3057 * Takes a bunch of requests and tries to merge them. Returns the number of
3058 * requests that remain after merging.
3059 */
3060 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
3061 int num_reqs, MultiwriteCB *mcb)
3062 {
3063 int i, outidx;
3064
3065 // Sort requests by start sector
3066 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
3067
3068 // Check if adjacent requests touch the same clusters. If so, combine them,
3069 // filling up gaps with zero sectors.
3070 outidx = 0;
3071 for (i = 1; i < num_reqs; i++) {
3072 int merge = 0;
3073 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
3074
3075 // Handle exactly sequential writes and overlapping writes.
3076 if (reqs[i].sector <= oldreq_last) {
3077 merge = 1;
3078 }
3079
3080 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
3081 merge = 0;
3082 }
3083
3084 if (merge) {
3085 size_t size;
3086 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
3087 qemu_iovec_init(qiov,
3088 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
3089
3090 // Add the first request to the merged one. If the requests are
3091 // overlapping, drop the last sectors of the first request.
3092 size = (reqs[i].sector - reqs[outidx].sector) << 9;
3093 qemu_iovec_concat(qiov, reqs[outidx].qiov, size);
3094
3095 // We should need to add any zeros between the two requests
3096 assert (reqs[i].sector <= oldreq_last);
3097
3098 // Add the second request
3099 qemu_iovec_concat(qiov, reqs[i].qiov, reqs[i].qiov->size);
3100
3101 reqs[outidx].nb_sectors = qiov->size >> 9;
3102 reqs[outidx].qiov = qiov;
3103
3104 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
3105 } else {
3106 outidx++;
3107 reqs[outidx].sector = reqs[i].sector;
3108 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
3109 reqs[outidx].qiov = reqs[i].qiov;
3110 }
3111 }
3112
3113 return outidx + 1;
3114 }
3115
3116 /*
3117 * Submit multiple AIO write requests at once.
3118 *
3119 * On success, the function returns 0 and all requests in the reqs array have
3120 * been submitted. In error case this function returns -1, and any of the
3121 * requests may or may not be submitted yet. In particular, this means that the
3122 * callback will be called for some of the requests, for others it won't. The
3123 * caller must check the error field of the BlockRequest to wait for the right
3124 * callbacks (if error != 0, no callback will be called).
3125 *
3126 * The implementation may modify the contents of the reqs array, e.g. to merge
3127 * requests. However, the fields opaque and error are left unmodified as they
3128 * are used to signal failure for a single request to the caller.
3129 */
3130 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3131 {
3132 MultiwriteCB *mcb;
3133 int i;
3134
3135 /* don't submit writes if we don't have a medium */
3136 if (bs->drv == NULL) {
3137 for (i = 0; i < num_reqs; i++) {
3138 reqs[i].error = -ENOMEDIUM;
3139 }
3140 return -1;
3141 }
3142
3143 if (num_reqs == 0) {
3144 return 0;
3145 }
3146
3147 // Create MultiwriteCB structure
3148 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3149 mcb->num_requests = 0;
3150 mcb->num_callbacks = num_reqs;
3151
3152 for (i = 0; i < num_reqs; i++) {
3153 mcb->callbacks[i].cb = reqs[i].cb;
3154 mcb->callbacks[i].opaque = reqs[i].opaque;
3155 }
3156
3157 // Check for mergable requests
3158 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3159
3160 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3161
3162 /* Run the aio requests. */
3163 mcb->num_requests = num_reqs;
3164 for (i = 0; i < num_reqs; i++) {
3165 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3166 reqs[i].nb_sectors, multiwrite_cb, mcb);
3167 }
3168
3169 return 0;
3170 }
3171
3172 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3173 {
3174 acb->pool->cancel(acb);
3175 }
3176
3177 /* block I/O throttling */
3178 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3179 bool is_write, double elapsed_time, uint64_t *wait)
3180 {
3181 uint64_t bps_limit = 0;
3182 double bytes_limit, bytes_base, bytes_res;
3183 double slice_time, wait_time;
3184
3185 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3186 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3187 } else if (bs->io_limits.bps[is_write]) {
3188 bps_limit = bs->io_limits.bps[is_write];
3189 } else {
3190 if (wait) {
3191 *wait = 0;
3192 }
3193
3194 return false;
3195 }
3196
3197 slice_time = bs->slice_end - bs->slice_start;
3198 slice_time /= (NANOSECONDS_PER_SECOND);
3199 bytes_limit = bps_limit * slice_time;
3200 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
3201 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3202 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
3203 }
3204
3205 /* bytes_base: the bytes of data which have been read/written; and
3206 * it is obtained from the history statistic info.
3207 * bytes_res: the remaining bytes of data which need to be read/written.
3208 * (bytes_base + bytes_res) / bps_limit: used to calcuate
3209 * the total time for completing reading/writting all data.
3210 */
3211 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3212
3213 if (bytes_base + bytes_res <= bytes_limit) {
3214 if (wait) {
3215 *wait = 0;
3216 }
3217
3218 return false;
3219 }
3220
3221 /* Calc approx time to dispatch */
3222 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3223
3224 /* When the I/O rate at runtime exceeds the limits,
3225 * bs->slice_end need to be extended in order that the current statistic
3226 * info can be kept until the timer fire, so it is increased and tuned
3227 * based on the result of experiment.
3228 */
3229 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3230 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3231 if (wait) {
3232 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3233 }
3234
3235 return true;
3236 }
3237
3238 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3239 double elapsed_time, uint64_t *wait)
3240 {
3241 uint64_t iops_limit = 0;
3242 double ios_limit, ios_base;
3243 double slice_time, wait_time;
3244
3245 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3246 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3247 } else if (bs->io_limits.iops[is_write]) {
3248 iops_limit = bs->io_limits.iops[is_write];
3249 } else {
3250 if (wait) {
3251 *wait = 0;
3252 }
3253
3254 return false;
3255 }
3256
3257 slice_time = bs->slice_end - bs->slice_start;
3258 slice_time /= (NANOSECONDS_PER_SECOND);
3259 ios_limit = iops_limit * slice_time;
3260 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3261 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3262 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3263 }
3264
3265 if (ios_base + 1 <= ios_limit) {
3266 if (wait) {
3267 *wait = 0;
3268 }
3269
3270 return false;
3271 }
3272
3273 /* Calc approx time to dispatch */
3274 wait_time = (ios_base + 1) / iops_limit;
3275 if (wait_time > elapsed_time) {
3276 wait_time = wait_time - elapsed_time;
3277 } else {
3278 wait_time = 0;
3279 }
3280
3281 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3282 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3283 if (wait) {
3284 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3285 }
3286
3287 return true;
3288 }
3289
3290 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3291 bool is_write, int64_t *wait)
3292 {
3293 int64_t now, max_wait;
3294 uint64_t bps_wait = 0, iops_wait = 0;
3295 double elapsed_time;
3296 int bps_ret, iops_ret;
3297
3298 now = qemu_get_clock_ns(vm_clock);
3299 if ((bs->slice_start < now)
3300 && (bs->slice_end > now)) {
3301 bs->slice_end = now + bs->slice_time;
3302 } else {
3303 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
3304 bs->slice_start = now;
3305 bs->slice_end = now + bs->slice_time;
3306
3307 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write];
3308 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3309
3310 bs->io_base.ios[is_write] = bs->nr_ops[is_write];
3311 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write];
3312 }
3313
3314 elapsed_time = now - bs->slice_start;
3315 elapsed_time /= (NANOSECONDS_PER_SECOND);
3316
3317 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors,
3318 is_write, elapsed_time, &bps_wait);
3319 iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3320 elapsed_time, &iops_wait);
3321 if (bps_ret || iops_ret) {
3322 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3323 if (wait) {
3324 *wait = max_wait;
3325 }
3326
3327 now = qemu_get_clock_ns(vm_clock);
3328 if (bs->slice_end < now + max_wait) {
3329 bs->slice_end = now + max_wait;
3330 }
3331
3332 return true;
3333 }
3334
3335 if (wait) {
3336 *wait = 0;
3337 }
3338
3339 return false;
3340 }
3341
3342 /**************************************************************/
3343 /* async block device emulation */
3344
3345 typedef struct BlockDriverAIOCBSync {
3346 BlockDriverAIOCB common;
3347 QEMUBH *bh;
3348 int ret;
3349 /* vector translation state */
3350 QEMUIOVector *qiov;
3351 uint8_t *bounce;
3352 int is_write;
3353 } BlockDriverAIOCBSync;
3354
3355 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3356 {
3357 BlockDriverAIOCBSync *acb =
3358 container_of(blockacb, BlockDriverAIOCBSync, common);
3359 qemu_bh_delete(acb->bh);
3360 acb->bh = NULL;
3361 qemu_aio_release(acb);
3362 }
3363
3364 static AIOPool bdrv_em_aio_pool = {
3365 .aiocb_size = sizeof(BlockDriverAIOCBSync),
3366 .cancel = bdrv_aio_cancel_em,
3367 };
3368
3369 static void bdrv_aio_bh_cb(void *opaque)
3370 {
3371 BlockDriverAIOCBSync *acb = opaque;
3372
3373 if (!acb->is_write)
3374 qemu_iovec_from_buffer(acb->qiov, acb->bounce, acb->qiov->size);
3375 qemu_vfree(acb->bounce);
3376 acb->common.cb(acb->common.opaque, acb->ret);
3377 qemu_bh_delete(acb->bh);
3378 acb->bh = NULL;
3379 qemu_aio_release(acb);
3380 }
3381
3382 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3383 int64_t sector_num,
3384 QEMUIOVector *qiov,
3385 int nb_sectors,
3386 BlockDriverCompletionFunc *cb,
3387 void *opaque,
3388 int is_write)
3389
3390 {
3391 BlockDriverAIOCBSync *acb;
3392
3393 acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque);
3394 acb->is_write = is_write;
3395 acb->qiov = qiov;
3396 acb->bounce = qemu_blockalign(bs, qiov->size);
3397 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3398
3399 if (is_write) {
3400 qemu_iovec_to_buffer(acb->qiov, acb->bounce);
3401 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3402 } else {
3403 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3404 }
3405
3406 qemu_bh_schedule(acb->bh);
3407
3408 return &acb->common;
3409 }
3410
3411 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3412 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3413 BlockDriverCompletionFunc *cb, void *opaque)
3414 {
3415 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3416 }
3417
3418 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3419 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3420 BlockDriverCompletionFunc *cb, void *opaque)
3421 {
3422 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3423 }
3424
3425
3426 typedef struct BlockDriverAIOCBCoroutine {
3427 BlockDriverAIOCB common;
3428 BlockRequest req;
3429 bool is_write;
3430 QEMUBH* bh;
3431 } BlockDriverAIOCBCoroutine;
3432
3433 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3434 {
3435 qemu_aio_flush();
3436 }
3437
3438 static AIOPool bdrv_em_co_aio_pool = {
3439 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine),
3440 .cancel = bdrv_aio_co_cancel_em,
3441 };
3442
3443 static void bdrv_co_em_bh(void *opaque)
3444 {
3445 BlockDriverAIOCBCoroutine *acb = opaque;
3446
3447 acb->common.cb(acb->common.opaque, acb->req.error);
3448 qemu_bh_delete(acb->bh);
3449 qemu_aio_release(acb);
3450 }
3451
3452 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3453 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3454 {
3455 BlockDriverAIOCBCoroutine *acb = opaque;
3456 BlockDriverState *bs = acb->common.bs;
3457
3458 if (!acb->is_write) {
3459 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3460 acb->req.nb_sectors, acb->req.qiov, 0);
3461 } else {
3462 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3463 acb->req.nb_sectors, acb->req.qiov, 0);
3464 }
3465
3466 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3467 qemu_bh_schedule(acb->bh);
3468 }
3469
3470 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3471 int64_t sector_num,
3472 QEMUIOVector *qiov,
3473 int nb_sectors,
3474 BlockDriverCompletionFunc *cb,
3475 void *opaque,
3476 bool is_write)
3477 {
3478 Coroutine *co;
3479 BlockDriverAIOCBCoroutine *acb;
3480
3481 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3482 acb->req.sector = sector_num;
3483 acb->req.nb_sectors = nb_sectors;
3484 acb->req.qiov = qiov;
3485 acb->is_write = is_write;
3486
3487 co = qemu_coroutine_create(bdrv_co_do_rw);
3488 qemu_coroutine_enter(co, acb);
3489
3490 return &acb->common;
3491 }
3492
3493 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3494 {
3495 BlockDriverAIOCBCoroutine *acb = opaque;
3496 BlockDriverState *bs = acb->common.bs;
3497
3498 acb->req.error = bdrv_co_flush(bs);
3499 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3500 qemu_bh_schedule(acb->bh);
3501 }
3502
3503 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3504 BlockDriverCompletionFunc *cb, void *opaque)
3505 {
3506 trace_bdrv_aio_flush(bs, opaque);
3507
3508 Coroutine *co;
3509 BlockDriverAIOCBCoroutine *acb;
3510
3511 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3512 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3513 qemu_coroutine_enter(co, acb);
3514
3515 return &acb->common;
3516 }
3517
3518 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3519 {
3520 BlockDriverAIOCBCoroutine *acb = opaque;
3521 BlockDriverState *bs = acb->common.bs;
3522
3523 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3524 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3525 qemu_bh_schedule(acb->bh);
3526 }
3527
3528 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3529 int64_t sector_num, int nb_sectors,
3530 BlockDriverCompletionFunc *cb, void *opaque)
3531 {
3532 Coroutine *co;
3533 BlockDriverAIOCBCoroutine *acb;
3534
3535 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3536
3537 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3538 acb->req.sector = sector_num;
3539 acb->req.nb_sectors = nb_sectors;
3540 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3541 qemu_coroutine_enter(co, acb);
3542
3543 return &acb->common;
3544 }
3545
3546 void bdrv_init(void)
3547 {
3548 module_call_init(MODULE_INIT_BLOCK);
3549 }
3550
3551 void bdrv_init_with_whitelist(void)
3552 {
3553 use_bdrv_whitelist = 1;
3554 bdrv_init();
3555 }
3556
3557 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs,
3558 BlockDriverCompletionFunc *cb, void *opaque)
3559 {
3560 BlockDriverAIOCB *acb;
3561
3562 if (pool->free_aiocb) {
3563 acb = pool->free_aiocb;
3564 pool->free_aiocb = acb->next;
3565 } else {
3566 acb = g_malloc0(pool->aiocb_size);
3567 acb->pool = pool;
3568 }
3569 acb->bs = bs;
3570 acb->cb = cb;
3571 acb->opaque = opaque;
3572 return acb;
3573 }
3574
3575 void qemu_aio_release(void *p)
3576 {
3577 BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p;
3578 AIOPool *pool = acb->pool;
3579 acb->next = pool->free_aiocb;
3580 pool->free_aiocb = acb;
3581 }
3582
3583 /**************************************************************/
3584 /* Coroutine block device emulation */
3585
3586 typedef struct CoroutineIOCompletion {
3587 Coroutine *coroutine;
3588 int ret;
3589 } CoroutineIOCompletion;
3590
3591 static void bdrv_co_io_em_complete(void *opaque, int ret)
3592 {
3593 CoroutineIOCompletion *co = opaque;
3594
3595 co->ret = ret;
3596 qemu_coroutine_enter(co->coroutine, NULL);
3597 }
3598
3599 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
3600 int nb_sectors, QEMUIOVector *iov,
3601 bool is_write)
3602 {
3603 CoroutineIOCompletion co = {
3604 .coroutine = qemu_coroutine_self(),
3605 };
3606 BlockDriverAIOCB *acb;
3607
3608 if (is_write) {
3609 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
3610 bdrv_co_io_em_complete, &co);
3611 } else {
3612 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
3613 bdrv_co_io_em_complete, &co);
3614 }
3615
3616 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
3617 if (!acb) {
3618 return -EIO;
3619 }
3620 qemu_coroutine_yield();
3621
3622 return co.ret;
3623 }
3624
3625 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
3626 int64_t sector_num, int nb_sectors,
3627 QEMUIOVector *iov)
3628 {
3629 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
3630 }
3631
3632 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
3633 int64_t sector_num, int nb_sectors,
3634 QEMUIOVector *iov)
3635 {
3636 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
3637 }
3638
3639 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
3640 {
3641 RwCo *rwco = opaque;
3642
3643 rwco->ret = bdrv_co_flush(rwco->bs);
3644 }
3645
3646 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
3647 {
3648 int ret;
3649
3650 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3651 return 0;
3652 }
3653
3654 /* Write back cached data to the OS even with cache=unsafe */
3655 if (bs->drv->bdrv_co_flush_to_os) {
3656 ret = bs->drv->bdrv_co_flush_to_os(bs);
3657 if (ret < 0) {
3658 return ret;
3659 }
3660 }
3661
3662 /* But don't actually force it to the disk with cache=unsafe */
3663 if (bs->open_flags & BDRV_O_NO_FLUSH) {
3664 return 0;
3665 }
3666
3667 if (bs->drv->bdrv_co_flush_to_disk) {
3668 ret = bs->drv->bdrv_co_flush_to_disk(bs);
3669 } else if (bs->drv->bdrv_aio_flush) {
3670 BlockDriverAIOCB *acb;
3671 CoroutineIOCompletion co = {
3672 .coroutine = qemu_coroutine_self(),
3673 };
3674
3675 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3676 if (acb == NULL) {
3677 ret = -EIO;
3678 } else {
3679 qemu_coroutine_yield();
3680 ret = co.ret;
3681 }
3682 } else {
3683 /*
3684 * Some block drivers always operate in either writethrough or unsafe
3685 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3686 * know how the server works (because the behaviour is hardcoded or
3687 * depends on server-side configuration), so we can't ensure that
3688 * everything is safe on disk. Returning an error doesn't work because
3689 * that would break guests even if the server operates in writethrough
3690 * mode.
3691 *
3692 * Let's hope the user knows what he's doing.
3693 */
3694 ret = 0;
3695 }
3696 if (ret < 0) {
3697 return ret;
3698 }
3699
3700 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
3701 * in the case of cache=unsafe, so there are no useless flushes.
3702 */
3703 return bdrv_co_flush(bs->file);
3704 }
3705
3706 void bdrv_invalidate_cache(BlockDriverState *bs)
3707 {
3708 if (bs->drv && bs->drv->bdrv_invalidate_cache) {
3709 bs->drv->bdrv_invalidate_cache(bs);
3710 }
3711 }
3712
3713 void bdrv_invalidate_cache_all(void)
3714 {
3715 BlockDriverState *bs;
3716
3717 QTAILQ_FOREACH(bs, &bdrv_states, list) {
3718 bdrv_invalidate_cache(bs);
3719 }
3720 }
3721
3722 void bdrv_clear_incoming_migration_all(void)
3723 {
3724 BlockDriverState *bs;
3725
3726 QTAILQ_FOREACH(bs, &bdrv_states, list) {
3727 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING);
3728 }
3729 }
3730
3731 int bdrv_flush(BlockDriverState *bs)
3732 {
3733 Coroutine *co;
3734 RwCo rwco = {
3735 .bs = bs,
3736 .ret = NOT_DONE,
3737 };
3738
3739 if (qemu_in_coroutine()) {
3740 /* Fast-path if already in coroutine context */
3741 bdrv_flush_co_entry(&rwco);
3742 } else {
3743 co = qemu_coroutine_create(bdrv_flush_co_entry);
3744 qemu_coroutine_enter(co, &rwco);
3745 while (rwco.ret == NOT_DONE) {
3746 qemu_aio_wait();
3747 }
3748 }
3749
3750 return rwco.ret;
3751 }
3752
3753 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
3754 {
3755 RwCo *rwco = opaque;
3756
3757 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
3758 }
3759
3760 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
3761 int nb_sectors)
3762 {
3763 if (!bs->drv) {
3764 return -ENOMEDIUM;
3765 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
3766 return -EIO;
3767 } else if (bs->read_only) {
3768 return -EROFS;
3769 } else if (bs->drv->bdrv_co_discard) {
3770 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
3771 } else if (bs->drv->bdrv_aio_discard) {
3772 BlockDriverAIOCB *acb;
3773 CoroutineIOCompletion co = {
3774 .coroutine = qemu_coroutine_self(),
3775 };
3776
3777 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
3778 bdrv_co_io_em_complete, &co);
3779 if (acb == NULL) {
3780 return -EIO;
3781 } else {
3782 qemu_coroutine_yield();
3783 return co.ret;
3784 }
3785 } else {
3786 return 0;
3787 }
3788 }
3789
3790 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
3791 {
3792 Coroutine *co;
3793 RwCo rwco = {
3794 .bs = bs,
3795 .sector_num = sector_num,
3796 .nb_sectors = nb_sectors,
3797 .ret = NOT_DONE,
3798 };
3799
3800 if (qemu_in_coroutine()) {
3801 /* Fast-path if already in coroutine context */
3802 bdrv_discard_co_entry(&rwco);
3803 } else {
3804 co = qemu_coroutine_create(bdrv_discard_co_entry);
3805 qemu_coroutine_enter(co, &rwco);
3806 while (rwco.ret == NOT_DONE) {
3807 qemu_aio_wait();
3808 }
3809 }
3810
3811 return rwco.ret;
3812 }
3813
3814 /**************************************************************/
3815 /* removable device support */
3816
3817 /**
3818 * Return TRUE if the media is present
3819 */
3820 int bdrv_is_inserted(BlockDriverState *bs)
3821 {
3822 BlockDriver *drv = bs->drv;
3823
3824 if (!drv)
3825 return 0;
3826 if (!drv->bdrv_is_inserted)
3827 return 1;
3828 return drv->bdrv_is_inserted(bs);
3829 }
3830
3831 /**
3832 * Return whether the media changed since the last call to this
3833 * function, or -ENOTSUP if we don't know. Most drivers don't know.
3834 */
3835 int bdrv_media_changed(BlockDriverState *bs)
3836 {
3837 BlockDriver *drv = bs->drv;
3838
3839 if (drv && drv->bdrv_media_changed) {
3840 return drv->bdrv_media_changed(bs);
3841 }
3842 return -ENOTSUP;
3843 }
3844
3845 /**
3846 * If eject_flag is TRUE, eject the media. Otherwise, close the tray
3847 */
3848 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
3849 {
3850 BlockDriver *drv = bs->drv;
3851
3852 if (drv && drv->bdrv_eject) {
3853 drv->bdrv_eject(bs, eject_flag);
3854 }
3855
3856 if (bs->device_name[0] != '\0') {
3857 bdrv_emit_qmp_eject_event(bs, eject_flag);
3858 }
3859 }
3860
3861 /**
3862 * Lock or unlock the media (if it is locked, the user won't be able
3863 * to eject it manually).
3864 */
3865 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
3866 {
3867 BlockDriver *drv = bs->drv;
3868
3869 trace_bdrv_lock_medium(bs, locked);
3870
3871 if (drv && drv->bdrv_lock_medium) {
3872 drv->bdrv_lock_medium(bs, locked);
3873 }
3874 }
3875
3876 /* needed for generic scsi interface */
3877
3878 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
3879 {
3880 BlockDriver *drv = bs->drv;
3881
3882 if (drv && drv->bdrv_ioctl)
3883 return drv->bdrv_ioctl(bs, req, buf);
3884 return -ENOTSUP;
3885 }
3886
3887 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
3888 unsigned long int req, void *buf,
3889 BlockDriverCompletionFunc *cb, void *opaque)
3890 {
3891 BlockDriver *drv = bs->drv;
3892
3893 if (drv && drv->bdrv_aio_ioctl)
3894 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
3895 return NULL;
3896 }
3897
3898 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
3899 {
3900 bs->buffer_alignment = align;
3901 }
3902
3903 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3904 {
3905 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
3906 }
3907
3908 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable)
3909 {
3910 int64_t bitmap_size;
3911
3912 bs->dirty_count = 0;
3913 if (enable) {
3914 if (!bs->dirty_bitmap) {
3915 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) +
3916 BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG - 1;
3917 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG;
3918
3919 bs->dirty_bitmap = g_new0(unsigned long, bitmap_size);
3920 }
3921 } else {
3922 if (bs->dirty_bitmap) {
3923 g_free(bs->dirty_bitmap);
3924 bs->dirty_bitmap = NULL;
3925 }
3926 }
3927 }
3928
3929 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
3930 {
3931 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
3932
3933 if (bs->dirty_bitmap &&
3934 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) {
3935 return !!(bs->dirty_bitmap[chunk / (sizeof(unsigned long) * 8)] &
3936 (1UL << (chunk % (sizeof(unsigned long) * 8))));
3937 } else {
3938 return 0;
3939 }
3940 }
3941
3942 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
3943 int nr_sectors)
3944 {
3945 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0);
3946 }
3947
3948 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
3949 {
3950 return bs->dirty_count;
3951 }
3952
3953 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
3954 {
3955 assert(bs->in_use != in_use);
3956 bs->in_use = in_use;
3957 }
3958
3959 int bdrv_in_use(BlockDriverState *bs)
3960 {
3961 return bs->in_use;
3962 }
3963
3964 void bdrv_iostatus_enable(BlockDriverState *bs)
3965 {
3966 bs->iostatus_enabled = true;
3967 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
3968 }
3969
3970 /* The I/O status is only enabled if the drive explicitly
3971 * enables it _and_ the VM is configured to stop on errors */
3972 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
3973 {
3974 return (bs->iostatus_enabled &&
3975 (bs->on_write_error == BLOCK_ERR_STOP_ENOSPC ||
3976 bs->on_write_error == BLOCK_ERR_STOP_ANY ||
3977 bs->on_read_error == BLOCK_ERR_STOP_ANY));
3978 }
3979
3980 void bdrv_iostatus_disable(BlockDriverState *bs)
3981 {
3982 bs->iostatus_enabled = false;
3983 }
3984
3985 void bdrv_iostatus_reset(BlockDriverState *bs)
3986 {
3987 if (bdrv_iostatus_is_enabled(bs)) {
3988 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
3989 }
3990 }
3991
3992 /* XXX: Today this is set by device models because it makes the implementation
3993 quite simple. However, the block layer knows about the error, so it's
3994 possible to implement this without device models being involved */
3995 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
3996 {
3997 if (bdrv_iostatus_is_enabled(bs) &&
3998 bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
3999 assert(error >= 0);
4000 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
4001 BLOCK_DEVICE_IO_STATUS_FAILED;
4002 }
4003 }
4004
4005 void
4006 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
4007 enum BlockAcctType type)
4008 {
4009 assert(type < BDRV_MAX_IOTYPE);
4010
4011 cookie->bytes = bytes;
4012 cookie->start_time_ns = get_clock();
4013 cookie->type = type;
4014 }
4015
4016 void
4017 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
4018 {
4019 assert(cookie->type < BDRV_MAX_IOTYPE);
4020
4021 bs->nr_bytes[cookie->type] += cookie->bytes;
4022 bs->nr_ops[cookie->type]++;
4023 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
4024 }
4025
4026 int bdrv_img_create(const char *filename, const char *fmt,
4027 const char *base_filename, const char *base_fmt,
4028 char *options, uint64_t img_size, int flags)
4029 {
4030 QEMUOptionParameter *param = NULL, *create_options = NULL;
4031 QEMUOptionParameter *backing_fmt, *backing_file, *size;
4032 BlockDriverState *bs = NULL;
4033 BlockDriver *drv, *proto_drv;
4034 BlockDriver *backing_drv = NULL;
4035 int ret = 0;
4036
4037 /* Find driver and parse its options */
4038 drv = bdrv_find_format(fmt);
4039 if (!drv) {
4040 error_report("Unknown file format '%s'", fmt);
4041 ret = -EINVAL;
4042 goto out;
4043 }
4044
4045 proto_drv = bdrv_find_protocol(filename);
4046 if (!proto_drv) {
4047 error_report("Unknown protocol '%s'", filename);
4048 ret = -EINVAL;
4049 goto out;
4050 }
4051
4052 create_options = append_option_parameters(create_options,
4053 drv->create_options);
4054 create_options = append_option_parameters(create_options,
4055 proto_drv->create_options);
4056
4057 /* Create parameter list with default values */
4058 param = parse_option_parameters("", create_options, param);
4059
4060 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
4061
4062 /* Parse -o options */
4063 if (options) {
4064 param = parse_option_parameters(options, create_options, param);
4065 if (param == NULL) {
4066 error_report("Invalid options for file format '%s'.", fmt);
4067 ret = -EINVAL;
4068 goto out;
4069 }
4070 }
4071
4072 if (base_filename) {
4073 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
4074 base_filename)) {
4075 error_report("Backing file not supported for file format '%s'",
4076 fmt);
4077 ret = -EINVAL;
4078 goto out;
4079 }
4080 }
4081
4082 if (base_fmt) {
4083 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
4084 error_report("Backing file format not supported for file "
4085 "format '%s'", fmt);
4086 ret = -EINVAL;
4087 goto out;
4088 }
4089 }
4090
4091 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
4092 if (backing_file && backing_file->value.s) {
4093 if (!strcmp(filename, backing_file->value.s)) {
4094 error_report("Error: Trying to create an image with the "
4095 "same filename as the backing file");
4096 ret = -EINVAL;
4097 goto out;
4098 }
4099 }
4100
4101 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
4102 if (backing_fmt && backing_fmt->value.s) {
4103 backing_drv = bdrv_find_format(backing_fmt->value.s);
4104 if (!backing_drv) {
4105 error_report("Unknown backing file format '%s'",
4106 backing_fmt->value.s);
4107 ret = -EINVAL;
4108 goto out;
4109 }
4110 }
4111
4112 // The size for the image must always be specified, with one exception:
4113 // If we are using a backing file, we can obtain the size from there
4114 size = get_option_parameter(param, BLOCK_OPT_SIZE);
4115 if (size && size->value.n == -1) {
4116 if (backing_file && backing_file->value.s) {
4117 uint64_t size;
4118 char buf[32];
4119 int back_flags;
4120
4121 /* backing files always opened read-only */
4122 back_flags =
4123 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
4124
4125 bs = bdrv_new("");
4126
4127 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv);
4128 if (ret < 0) {
4129 error_report("Could not open '%s'", backing_file->value.s);
4130 goto out;
4131 }
4132 bdrv_get_geometry(bs, &size);
4133 size *= 512;
4134
4135 snprintf(buf, sizeof(buf), "%" PRId64, size);
4136 set_option_parameter(param, BLOCK_OPT_SIZE, buf);
4137 } else {
4138 error_report("Image creation needs a size parameter");
4139 ret = -EINVAL;
4140 goto out;
4141 }
4142 }
4143
4144 printf("Formatting '%s', fmt=%s ", filename, fmt);
4145 print_option_parameters(param);
4146 puts("");
4147
4148 ret = bdrv_create(drv, filename, param);
4149
4150 if (ret < 0) {
4151 if (ret == -ENOTSUP) {
4152 error_report("Formatting or formatting option not supported for "
4153 "file format '%s'", fmt);
4154 } else if (ret == -EFBIG) {
4155 error_report("The image size is too large for file format '%s'",
4156 fmt);
4157 } else {
4158 error_report("%s: error while creating %s: %s", filename, fmt,
4159 strerror(-ret));
4160 }
4161 }
4162
4163 out:
4164 free_option_parameters(create_options);
4165 free_option_parameters(param);
4166
4167 if (bs) {
4168 bdrv_delete(bs);
4169 }
4170
4171 return ret;
4172 }
4173
4174 void *block_job_create(const BlockJobType *job_type, BlockDriverState *bs,
4175 int64_t speed, BlockDriverCompletionFunc *cb,
4176 void *opaque, Error **errp)
4177 {
4178 BlockJob *job;
4179
4180 if (bs->job || bdrv_in_use(bs)) {
4181 error_set(errp, QERR_DEVICE_IN_USE, bdrv_get_device_name(bs));
4182 return NULL;
4183 }
4184 bdrv_set_in_use(bs, 1);
4185
4186 job = g_malloc0(job_type->instance_size);
4187 job->job_type = job_type;
4188 job->bs = bs;
4189 job->cb = cb;
4190 job->opaque = opaque;
4191 job->busy = true;
4192 bs->job = job;
4193
4194 /* Only set speed when necessary to avoid NotSupported error */
4195 if (speed != 0) {
4196 Error *local_err = NULL;
4197
4198 block_job_set_speed(job, speed, &local_err);
4199 if (error_is_set(&local_err)) {
4200 bs->job = NULL;
4201 g_free(job);
4202 bdrv_set_in_use(bs, 0);
4203 error_propagate(errp, local_err);
4204 return NULL;
4205 }
4206 }
4207 return job;
4208 }
4209
4210 void block_job_complete(BlockJob *job, int ret)
4211 {
4212 BlockDriverState *bs = job->bs;
4213
4214 assert(bs->job == job);
4215 job->cb(job->opaque, ret);
4216 bs->job = NULL;
4217 g_free(job);
4218 bdrv_set_in_use(bs, 0);
4219 }
4220
4221 void block_job_set_speed(BlockJob *job, int64_t speed, Error **errp)
4222 {
4223 Error *local_err = NULL;
4224
4225 if (!job->job_type->set_speed) {
4226 error_set(errp, QERR_NOT_SUPPORTED);
4227 return;
4228 }
4229 job->job_type->set_speed(job, speed, &local_err);
4230 if (error_is_set(&local_err)) {
4231 error_propagate(errp, local_err);
4232 return;
4233 }
4234
4235 job->speed = speed;
4236 }
4237
4238 void block_job_cancel(BlockJob *job)
4239 {
4240 job->cancelled = true;
4241 if (job->co && !job->busy) {
4242 qemu_coroutine_enter(job->co, NULL);
4243 }
4244 }
4245
4246 bool block_job_is_cancelled(BlockJob *job)
4247 {
4248 return job->cancelled;
4249 }
4250
4251 struct BlockCancelData {
4252 BlockJob *job;
4253 BlockDriverCompletionFunc *cb;
4254 void *opaque;
4255 bool cancelled;
4256 int ret;
4257 };
4258
4259 static void block_job_cancel_cb(void *opaque, int ret)
4260 {
4261 struct BlockCancelData *data = opaque;
4262
4263 data->cancelled = block_job_is_cancelled(data->job);
4264 data->ret = ret;
4265 data->cb(data->opaque, ret);
4266 }
4267
4268 int block_job_cancel_sync(BlockJob *job)
4269 {
4270 struct BlockCancelData data;
4271 BlockDriverState *bs = job->bs;
4272
4273 assert(bs->job == job);
4274
4275 /* Set up our own callback to store the result and chain to
4276 * the original callback.
4277 */
4278 data.job = job;
4279 data.cb = job->cb;
4280 data.opaque = job->opaque;
4281 data.ret = -EINPROGRESS;
4282 job->cb = block_job_cancel_cb;
4283 job->opaque = &data;
4284 block_job_cancel(job);
4285 while (data.ret == -EINPROGRESS) {
4286 qemu_aio_wait();
4287 }
4288 return (data.cancelled && data.ret == 0) ? -ECANCELED : data.ret;
4289 }
4290
4291 void block_job_sleep_ns(BlockJob *job, QEMUClock *clock, int64_t ns)
4292 {
4293 /* Check cancellation *before* setting busy = false, too! */
4294 if (!block_job_is_cancelled(job)) {
4295 job->busy = false;
4296 co_sleep_ns(clock, ns);
4297 job->busy = true;
4298 }
4299 }