]> git.proxmox.com Git - qemu.git/blob - block/qcow2-cluster.c
smc91c111: Fix receive starvation
[qemu.git] / block / qcow2-cluster.c
1 /*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include <zlib.h>
26
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "trace.h"
31
32 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
33 bool exact_size)
34 {
35 BDRVQcowState *s = bs->opaque;
36 int new_l1_size2, ret, i;
37 uint64_t *new_l1_table;
38 int64_t old_l1_table_offset, old_l1_size;
39 int64_t new_l1_table_offset, new_l1_size;
40 uint8_t data[12];
41
42 if (min_size <= s->l1_size)
43 return 0;
44
45 if (exact_size) {
46 new_l1_size = min_size;
47 } else {
48 /* Bump size up to reduce the number of times we have to grow */
49 new_l1_size = s->l1_size;
50 if (new_l1_size == 0) {
51 new_l1_size = 1;
52 }
53 while (min_size > new_l1_size) {
54 new_l1_size = (new_l1_size * 3 + 1) / 2;
55 }
56 }
57
58 if (new_l1_size > INT_MAX) {
59 return -EFBIG;
60 }
61
62 #ifdef DEBUG_ALLOC2
63 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
64 s->l1_size, new_l1_size);
65 #endif
66
67 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
68 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
69 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
70
71 /* write new table (align to cluster) */
72 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
73 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
74 if (new_l1_table_offset < 0) {
75 g_free(new_l1_table);
76 return new_l1_table_offset;
77 }
78
79 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
80 if (ret < 0) {
81 goto fail;
82 }
83
84 /* the L1 position has not yet been updated, so these clusters must
85 * indeed be completely free */
86 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
87 new_l1_size2);
88 if (ret < 0) {
89 goto fail;
90 }
91
92 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
93 for(i = 0; i < s->l1_size; i++)
94 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
95 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
96 if (ret < 0)
97 goto fail;
98 for(i = 0; i < s->l1_size; i++)
99 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
100
101 /* set new table */
102 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
103 cpu_to_be32w((uint32_t*)data, new_l1_size);
104 stq_be_p(data + 4, new_l1_table_offset);
105 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
106 if (ret < 0) {
107 goto fail;
108 }
109 g_free(s->l1_table);
110 old_l1_table_offset = s->l1_table_offset;
111 s->l1_table_offset = new_l1_table_offset;
112 s->l1_table = new_l1_table;
113 old_l1_size = s->l1_size;
114 s->l1_size = new_l1_size;
115 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
116 QCOW2_DISCARD_OTHER);
117 return 0;
118 fail:
119 g_free(new_l1_table);
120 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
121 QCOW2_DISCARD_OTHER);
122 return ret;
123 }
124
125 /*
126 * l2_load
127 *
128 * Loads a L2 table into memory. If the table is in the cache, the cache
129 * is used; otherwise the L2 table is loaded from the image file.
130 *
131 * Returns a pointer to the L2 table on success, or NULL if the read from
132 * the image file failed.
133 */
134
135 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
136 uint64_t **l2_table)
137 {
138 BDRVQcowState *s = bs->opaque;
139 int ret;
140
141 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
142
143 return ret;
144 }
145
146 /*
147 * Writes one sector of the L1 table to the disk (can't update single entries
148 * and we really don't want bdrv_pread to perform a read-modify-write)
149 */
150 #define L1_ENTRIES_PER_SECTOR (512 / 8)
151 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
152 {
153 BDRVQcowState *s = bs->opaque;
154 uint64_t buf[L1_ENTRIES_PER_SECTOR];
155 int l1_start_index;
156 int i, ret;
157
158 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
159 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
160 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
161 }
162
163 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
164 s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
165 if (ret < 0) {
166 return ret;
167 }
168
169 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
170 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
171 buf, sizeof(buf));
172 if (ret < 0) {
173 return ret;
174 }
175
176 return 0;
177 }
178
179 /*
180 * l2_allocate
181 *
182 * Allocate a new l2 entry in the file. If l1_index points to an already
183 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
184 * table) copy the contents of the old L2 table into the newly allocated one.
185 * Otherwise the new table is initialized with zeros.
186 *
187 */
188
189 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
190 {
191 BDRVQcowState *s = bs->opaque;
192 uint64_t old_l2_offset;
193 uint64_t *l2_table = NULL;
194 int64_t l2_offset;
195 int ret;
196
197 old_l2_offset = s->l1_table[l1_index];
198
199 trace_qcow2_l2_allocate(bs, l1_index);
200
201 /* allocate a new l2 entry */
202
203 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
204 if (l2_offset < 0) {
205 ret = l2_offset;
206 goto fail;
207 }
208
209 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
210 if (ret < 0) {
211 goto fail;
212 }
213
214 /* allocate a new entry in the l2 cache */
215
216 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
217 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
218 if (ret < 0) {
219 goto fail;
220 }
221
222 l2_table = *table;
223
224 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
225 /* if there was no old l2 table, clear the new table */
226 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
227 } else {
228 uint64_t* old_table;
229
230 /* if there was an old l2 table, read it from the disk */
231 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
232 ret = qcow2_cache_get(bs, s->l2_table_cache,
233 old_l2_offset & L1E_OFFSET_MASK,
234 (void**) &old_table);
235 if (ret < 0) {
236 goto fail;
237 }
238
239 memcpy(l2_table, old_table, s->cluster_size);
240
241 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
242 if (ret < 0) {
243 goto fail;
244 }
245 }
246
247 /* write the l2 table to the file */
248 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
249
250 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
251 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
252 ret = qcow2_cache_flush(bs, s->l2_table_cache);
253 if (ret < 0) {
254 goto fail;
255 }
256
257 /* update the L1 entry */
258 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
259 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
260 ret = qcow2_write_l1_entry(bs, l1_index);
261 if (ret < 0) {
262 goto fail;
263 }
264
265 *table = l2_table;
266 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
267 return 0;
268
269 fail:
270 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
271 if (l2_table != NULL) {
272 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
273 }
274 s->l1_table[l1_index] = old_l2_offset;
275 if (l2_offset > 0) {
276 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
277 QCOW2_DISCARD_ALWAYS);
278 }
279 return ret;
280 }
281
282 /*
283 * Checks how many clusters in a given L2 table are contiguous in the image
284 * file. As soon as one of the flags in the bitmask stop_flags changes compared
285 * to the first cluster, the search is stopped and the cluster is not counted
286 * as contiguous. (This allows it, for example, to stop at the first compressed
287 * cluster which may require a different handling)
288 */
289 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
290 uint64_t *l2_table, uint64_t stop_flags)
291 {
292 int i;
293 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW2_CLUSTER_COMPRESSED;
294 uint64_t first_entry = be64_to_cpu(l2_table[0]);
295 uint64_t offset = first_entry & mask;
296
297 if (!offset)
298 return 0;
299
300 assert(qcow2_get_cluster_type(first_entry) != QCOW2_CLUSTER_COMPRESSED);
301
302 for (i = 0; i < nb_clusters; i++) {
303 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
304 if (offset + (uint64_t) i * cluster_size != l2_entry) {
305 break;
306 }
307 }
308
309 return i;
310 }
311
312 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
313 {
314 int i;
315
316 for (i = 0; i < nb_clusters; i++) {
317 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
318
319 if (type != QCOW2_CLUSTER_UNALLOCATED) {
320 break;
321 }
322 }
323
324 return i;
325 }
326
327 /* The crypt function is compatible with the linux cryptoloop
328 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
329 supported */
330 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
331 uint8_t *out_buf, const uint8_t *in_buf,
332 int nb_sectors, int enc,
333 const AES_KEY *key)
334 {
335 union {
336 uint64_t ll[2];
337 uint8_t b[16];
338 } ivec;
339 int i;
340
341 for(i = 0; i < nb_sectors; i++) {
342 ivec.ll[0] = cpu_to_le64(sector_num);
343 ivec.ll[1] = 0;
344 AES_cbc_encrypt(in_buf, out_buf, 512, key,
345 ivec.b, enc);
346 sector_num++;
347 in_buf += 512;
348 out_buf += 512;
349 }
350 }
351
352 static int coroutine_fn copy_sectors(BlockDriverState *bs,
353 uint64_t start_sect,
354 uint64_t cluster_offset,
355 int n_start, int n_end)
356 {
357 BDRVQcowState *s = bs->opaque;
358 QEMUIOVector qiov;
359 struct iovec iov;
360 int n, ret;
361
362 /*
363 * If this is the last cluster and it is only partially used, we must only
364 * copy until the end of the image, or bdrv_check_request will fail for the
365 * bdrv_read/write calls below.
366 */
367 if (start_sect + n_end > bs->total_sectors) {
368 n_end = bs->total_sectors - start_sect;
369 }
370
371 n = n_end - n_start;
372 if (n <= 0) {
373 return 0;
374 }
375
376 iov.iov_len = n * BDRV_SECTOR_SIZE;
377 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
378
379 qemu_iovec_init_external(&qiov, &iov, 1);
380
381 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
382
383 /* Call .bdrv_co_readv() directly instead of using the public block-layer
384 * interface. This avoids double I/O throttling and request tracking,
385 * which can lead to deadlock when block layer copy-on-read is enabled.
386 */
387 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
388 if (ret < 0) {
389 goto out;
390 }
391
392 if (s->crypt_method) {
393 qcow2_encrypt_sectors(s, start_sect + n_start,
394 iov.iov_base, iov.iov_base, n, 1,
395 &s->aes_encrypt_key);
396 }
397
398 ret = qcow2_pre_write_overlap_check(bs, 0,
399 cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE);
400 if (ret < 0) {
401 goto out;
402 }
403
404 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
405 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
406 if (ret < 0) {
407 goto out;
408 }
409
410 ret = 0;
411 out:
412 qemu_vfree(iov.iov_base);
413 return ret;
414 }
415
416
417 /*
418 * get_cluster_offset
419 *
420 * For a given offset of the disk image, find the cluster offset in
421 * qcow2 file. The offset is stored in *cluster_offset.
422 *
423 * on entry, *num is the number of contiguous sectors we'd like to
424 * access following offset.
425 *
426 * on exit, *num is the number of contiguous sectors we can read.
427 *
428 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
429 * cases.
430 */
431 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
432 int *num, uint64_t *cluster_offset)
433 {
434 BDRVQcowState *s = bs->opaque;
435 unsigned int l2_index;
436 uint64_t l1_index, l2_offset, *l2_table;
437 int l1_bits, c;
438 unsigned int index_in_cluster, nb_clusters;
439 uint64_t nb_available, nb_needed;
440 int ret;
441
442 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
443 nb_needed = *num + index_in_cluster;
444
445 l1_bits = s->l2_bits + s->cluster_bits;
446
447 /* compute how many bytes there are between the offset and
448 * the end of the l1 entry
449 */
450
451 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
452
453 /* compute the number of available sectors */
454
455 nb_available = (nb_available >> 9) + index_in_cluster;
456
457 if (nb_needed > nb_available) {
458 nb_needed = nb_available;
459 }
460
461 *cluster_offset = 0;
462
463 /* seek the the l2 offset in the l1 table */
464
465 l1_index = offset >> l1_bits;
466 if (l1_index >= s->l1_size) {
467 ret = QCOW2_CLUSTER_UNALLOCATED;
468 goto out;
469 }
470
471 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
472 if (!l2_offset) {
473 ret = QCOW2_CLUSTER_UNALLOCATED;
474 goto out;
475 }
476
477 /* load the l2 table in memory */
478
479 ret = l2_load(bs, l2_offset, &l2_table);
480 if (ret < 0) {
481 return ret;
482 }
483
484 /* find the cluster offset for the given disk offset */
485
486 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
487 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
488 nb_clusters = size_to_clusters(s, nb_needed << 9);
489
490 ret = qcow2_get_cluster_type(*cluster_offset);
491 switch (ret) {
492 case QCOW2_CLUSTER_COMPRESSED:
493 /* Compressed clusters can only be processed one by one */
494 c = 1;
495 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
496 break;
497 case QCOW2_CLUSTER_ZERO:
498 if (s->qcow_version < 3) {
499 return -EIO;
500 }
501 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
502 &l2_table[l2_index], QCOW_OFLAG_ZERO);
503 *cluster_offset = 0;
504 break;
505 case QCOW2_CLUSTER_UNALLOCATED:
506 /* how many empty clusters ? */
507 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
508 *cluster_offset = 0;
509 break;
510 case QCOW2_CLUSTER_NORMAL:
511 /* how many allocated clusters ? */
512 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
513 &l2_table[l2_index], QCOW_OFLAG_ZERO);
514 *cluster_offset &= L2E_OFFSET_MASK;
515 break;
516 default:
517 abort();
518 }
519
520 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
521
522 nb_available = (c * s->cluster_sectors);
523
524 out:
525 if (nb_available > nb_needed)
526 nb_available = nb_needed;
527
528 *num = nb_available - index_in_cluster;
529
530 return ret;
531 }
532
533 /*
534 * get_cluster_table
535 *
536 * for a given disk offset, load (and allocate if needed)
537 * the l2 table.
538 *
539 * the l2 table offset in the qcow2 file and the cluster index
540 * in the l2 table are given to the caller.
541 *
542 * Returns 0 on success, -errno in failure case
543 */
544 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
545 uint64_t **new_l2_table,
546 int *new_l2_index)
547 {
548 BDRVQcowState *s = bs->opaque;
549 unsigned int l2_index;
550 uint64_t l1_index, l2_offset;
551 uint64_t *l2_table = NULL;
552 int ret;
553
554 /* seek the the l2 offset in the l1 table */
555
556 l1_index = offset >> (s->l2_bits + s->cluster_bits);
557 if (l1_index >= s->l1_size) {
558 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
559 if (ret < 0) {
560 return ret;
561 }
562 }
563
564 assert(l1_index < s->l1_size);
565 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
566
567 /* seek the l2 table of the given l2 offset */
568
569 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
570 /* load the l2 table in memory */
571 ret = l2_load(bs, l2_offset, &l2_table);
572 if (ret < 0) {
573 return ret;
574 }
575 } else {
576 /* First allocate a new L2 table (and do COW if needed) */
577 ret = l2_allocate(bs, l1_index, &l2_table);
578 if (ret < 0) {
579 return ret;
580 }
581
582 /* Then decrease the refcount of the old table */
583 if (l2_offset) {
584 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
585 QCOW2_DISCARD_OTHER);
586 }
587 }
588
589 /* find the cluster offset for the given disk offset */
590
591 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
592
593 *new_l2_table = l2_table;
594 *new_l2_index = l2_index;
595
596 return 0;
597 }
598
599 /*
600 * alloc_compressed_cluster_offset
601 *
602 * For a given offset of the disk image, return cluster offset in
603 * qcow2 file.
604 *
605 * If the offset is not found, allocate a new compressed cluster.
606 *
607 * Return the cluster offset if successful,
608 * Return 0, otherwise.
609 *
610 */
611
612 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
613 uint64_t offset,
614 int compressed_size)
615 {
616 BDRVQcowState *s = bs->opaque;
617 int l2_index, ret;
618 uint64_t *l2_table;
619 int64_t cluster_offset;
620 int nb_csectors;
621
622 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
623 if (ret < 0) {
624 return 0;
625 }
626
627 /* Compression can't overwrite anything. Fail if the cluster was already
628 * allocated. */
629 cluster_offset = be64_to_cpu(l2_table[l2_index]);
630 if (cluster_offset & L2E_OFFSET_MASK) {
631 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
632 return 0;
633 }
634
635 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
636 if (cluster_offset < 0) {
637 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
638 return 0;
639 }
640
641 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
642 (cluster_offset >> 9);
643
644 cluster_offset |= QCOW_OFLAG_COMPRESSED |
645 ((uint64_t)nb_csectors << s->csize_shift);
646
647 /* update L2 table */
648
649 /* compressed clusters never have the copied flag */
650
651 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
652 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
653 l2_table[l2_index] = cpu_to_be64(cluster_offset);
654 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
655 if (ret < 0) {
656 return 0;
657 }
658
659 return cluster_offset;
660 }
661
662 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
663 {
664 BDRVQcowState *s = bs->opaque;
665 int ret;
666
667 if (r->nb_sectors == 0) {
668 return 0;
669 }
670
671 qemu_co_mutex_unlock(&s->lock);
672 ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
673 r->offset / BDRV_SECTOR_SIZE,
674 r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
675 qemu_co_mutex_lock(&s->lock);
676
677 if (ret < 0) {
678 return ret;
679 }
680
681 /*
682 * Before we update the L2 table to actually point to the new cluster, we
683 * need to be sure that the refcounts have been increased and COW was
684 * handled.
685 */
686 qcow2_cache_depends_on_flush(s->l2_table_cache);
687
688 return 0;
689 }
690
691 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
692 {
693 BDRVQcowState *s = bs->opaque;
694 int i, j = 0, l2_index, ret;
695 uint64_t *old_cluster, *l2_table;
696 uint64_t cluster_offset = m->alloc_offset;
697
698 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
699 assert(m->nb_clusters > 0);
700
701 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
702
703 /* copy content of unmodified sectors */
704 ret = perform_cow(bs, m, &m->cow_start);
705 if (ret < 0) {
706 goto err;
707 }
708
709 ret = perform_cow(bs, m, &m->cow_end);
710 if (ret < 0) {
711 goto err;
712 }
713
714 /* Update L2 table. */
715 if (s->use_lazy_refcounts) {
716 qcow2_mark_dirty(bs);
717 }
718 if (qcow2_need_accurate_refcounts(s)) {
719 qcow2_cache_set_dependency(bs, s->l2_table_cache,
720 s->refcount_block_cache);
721 }
722
723 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
724 if (ret < 0) {
725 goto err;
726 }
727 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
728
729 assert(l2_index + m->nb_clusters <= s->l2_size);
730 for (i = 0; i < m->nb_clusters; i++) {
731 /* if two concurrent writes happen to the same unallocated cluster
732 * each write allocates separate cluster and writes data concurrently.
733 * The first one to complete updates l2 table with pointer to its
734 * cluster the second one has to do RMW (which is done above by
735 * copy_sectors()), update l2 table with its cluster pointer and free
736 * old cluster. This is what this loop does */
737 if(l2_table[l2_index + i] != 0)
738 old_cluster[j++] = l2_table[l2_index + i];
739
740 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
741 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
742 }
743
744
745 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
746 if (ret < 0) {
747 goto err;
748 }
749
750 /*
751 * If this was a COW, we need to decrease the refcount of the old cluster.
752 * Also flush bs->file to get the right order for L2 and refcount update.
753 *
754 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
755 * clusters), the next write will reuse them anyway.
756 */
757 if (j != 0) {
758 for (i = 0; i < j; i++) {
759 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
760 QCOW2_DISCARD_NEVER);
761 }
762 }
763
764 ret = 0;
765 err:
766 g_free(old_cluster);
767 return ret;
768 }
769
770 /*
771 * Returns the number of contiguous clusters that can be used for an allocating
772 * write, but require COW to be performed (this includes yet unallocated space,
773 * which must copy from the backing file)
774 */
775 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
776 uint64_t *l2_table, int l2_index)
777 {
778 int i;
779
780 for (i = 0; i < nb_clusters; i++) {
781 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
782 int cluster_type = qcow2_get_cluster_type(l2_entry);
783
784 switch(cluster_type) {
785 case QCOW2_CLUSTER_NORMAL:
786 if (l2_entry & QCOW_OFLAG_COPIED) {
787 goto out;
788 }
789 break;
790 case QCOW2_CLUSTER_UNALLOCATED:
791 case QCOW2_CLUSTER_COMPRESSED:
792 case QCOW2_CLUSTER_ZERO:
793 break;
794 default:
795 abort();
796 }
797 }
798
799 out:
800 assert(i <= nb_clusters);
801 return i;
802 }
803
804 /*
805 * Check if there already is an AIO write request in flight which allocates
806 * the same cluster. In this case we need to wait until the previous
807 * request has completed and updated the L2 table accordingly.
808 *
809 * Returns:
810 * 0 if there was no dependency. *cur_bytes indicates the number of
811 * bytes from guest_offset that can be read before the next
812 * dependency must be processed (or the request is complete)
813 *
814 * -EAGAIN if we had to wait for another request, previously gathered
815 * information on cluster allocation may be invalid now. The caller
816 * must start over anyway, so consider *cur_bytes undefined.
817 */
818 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
819 uint64_t *cur_bytes, QCowL2Meta **m)
820 {
821 BDRVQcowState *s = bs->opaque;
822 QCowL2Meta *old_alloc;
823 uint64_t bytes = *cur_bytes;
824
825 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
826
827 uint64_t start = guest_offset;
828 uint64_t end = start + bytes;
829 uint64_t old_start = l2meta_cow_start(old_alloc);
830 uint64_t old_end = l2meta_cow_end(old_alloc);
831
832 if (end <= old_start || start >= old_end) {
833 /* No intersection */
834 } else {
835 if (start < old_start) {
836 /* Stop at the start of a running allocation */
837 bytes = old_start - start;
838 } else {
839 bytes = 0;
840 }
841
842 /* Stop if already an l2meta exists. After yielding, it wouldn't
843 * be valid any more, so we'd have to clean up the old L2Metas
844 * and deal with requests depending on them before starting to
845 * gather new ones. Not worth the trouble. */
846 if (bytes == 0 && *m) {
847 *cur_bytes = 0;
848 return 0;
849 }
850
851 if (bytes == 0) {
852 /* Wait for the dependency to complete. We need to recheck
853 * the free/allocated clusters when we continue. */
854 qemu_co_mutex_unlock(&s->lock);
855 qemu_co_queue_wait(&old_alloc->dependent_requests);
856 qemu_co_mutex_lock(&s->lock);
857 return -EAGAIN;
858 }
859 }
860 }
861
862 /* Make sure that existing clusters and new allocations are only used up to
863 * the next dependency if we shortened the request above */
864 *cur_bytes = bytes;
865
866 return 0;
867 }
868
869 /*
870 * Checks how many already allocated clusters that don't require a copy on
871 * write there are at the given guest_offset (up to *bytes). If
872 * *host_offset is not zero, only physically contiguous clusters beginning at
873 * this host offset are counted.
874 *
875 * Note that guest_offset may not be cluster aligned. In this case, the
876 * returned *host_offset points to exact byte referenced by guest_offset and
877 * therefore isn't cluster aligned as well.
878 *
879 * Returns:
880 * 0: if no allocated clusters are available at the given offset.
881 * *bytes is normally unchanged. It is set to 0 if the cluster
882 * is allocated and doesn't need COW, but doesn't have the right
883 * physical offset.
884 *
885 * 1: if allocated clusters that don't require a COW are available at
886 * the requested offset. *bytes may have decreased and describes
887 * the length of the area that can be written to.
888 *
889 * -errno: in error cases
890 */
891 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
892 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
893 {
894 BDRVQcowState *s = bs->opaque;
895 int l2_index;
896 uint64_t cluster_offset;
897 uint64_t *l2_table;
898 unsigned int nb_clusters;
899 unsigned int keep_clusters;
900 int ret, pret;
901
902 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
903 *bytes);
904
905 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset)
906 == offset_into_cluster(s, *host_offset));
907
908 /*
909 * Calculate the number of clusters to look for. We stop at L2 table
910 * boundaries to keep things simple.
911 */
912 nb_clusters =
913 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
914
915 l2_index = offset_to_l2_index(s, guest_offset);
916 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
917
918 /* Find L2 entry for the first involved cluster */
919 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
920 if (ret < 0) {
921 return ret;
922 }
923
924 cluster_offset = be64_to_cpu(l2_table[l2_index]);
925
926 /* Check how many clusters are already allocated and don't need COW */
927 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
928 && (cluster_offset & QCOW_OFLAG_COPIED))
929 {
930 /* If a specific host_offset is required, check it */
931 bool offset_matches =
932 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
933
934 if (*host_offset != 0 && !offset_matches) {
935 *bytes = 0;
936 ret = 0;
937 goto out;
938 }
939
940 /* We keep all QCOW_OFLAG_COPIED clusters */
941 keep_clusters =
942 count_contiguous_clusters(nb_clusters, s->cluster_size,
943 &l2_table[l2_index],
944 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
945 assert(keep_clusters <= nb_clusters);
946
947 *bytes = MIN(*bytes,
948 keep_clusters * s->cluster_size
949 - offset_into_cluster(s, guest_offset));
950
951 ret = 1;
952 } else {
953 ret = 0;
954 }
955
956 /* Cleanup */
957 out:
958 pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
959 if (pret < 0) {
960 return pret;
961 }
962
963 /* Only return a host offset if we actually made progress. Otherwise we
964 * would make requirements for handle_alloc() that it can't fulfill */
965 if (ret) {
966 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
967 + offset_into_cluster(s, guest_offset);
968 }
969
970 return ret;
971 }
972
973 /*
974 * Allocates new clusters for the given guest_offset.
975 *
976 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
977 * contain the number of clusters that have been allocated and are contiguous
978 * in the image file.
979 *
980 * If *host_offset is non-zero, it specifies the offset in the image file at
981 * which the new clusters must start. *nb_clusters can be 0 on return in this
982 * case if the cluster at host_offset is already in use. If *host_offset is
983 * zero, the clusters can be allocated anywhere in the image file.
984 *
985 * *host_offset is updated to contain the offset into the image file at which
986 * the first allocated cluster starts.
987 *
988 * Return 0 on success and -errno in error cases. -EAGAIN means that the
989 * function has been waiting for another request and the allocation must be
990 * restarted, but the whole request should not be failed.
991 */
992 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
993 uint64_t *host_offset, unsigned int *nb_clusters)
994 {
995 BDRVQcowState *s = bs->opaque;
996
997 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
998 *host_offset, *nb_clusters);
999
1000 /* Allocate new clusters */
1001 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1002 if (*host_offset == 0) {
1003 int64_t cluster_offset =
1004 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1005 if (cluster_offset < 0) {
1006 return cluster_offset;
1007 }
1008 *host_offset = cluster_offset;
1009 return 0;
1010 } else {
1011 int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1012 if (ret < 0) {
1013 return ret;
1014 }
1015 *nb_clusters = ret;
1016 return 0;
1017 }
1018 }
1019
1020 /*
1021 * Allocates new clusters for an area that either is yet unallocated or needs a
1022 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1023 * the new allocation can match the specified host offset.
1024 *
1025 * Note that guest_offset may not be cluster aligned. In this case, the
1026 * returned *host_offset points to exact byte referenced by guest_offset and
1027 * therefore isn't cluster aligned as well.
1028 *
1029 * Returns:
1030 * 0: if no clusters could be allocated. *bytes is set to 0,
1031 * *host_offset is left unchanged.
1032 *
1033 * 1: if new clusters were allocated. *bytes may be decreased if the
1034 * new allocation doesn't cover all of the requested area.
1035 * *host_offset is updated to contain the host offset of the first
1036 * newly allocated cluster.
1037 *
1038 * -errno: in error cases
1039 */
1040 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1041 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1042 {
1043 BDRVQcowState *s = bs->opaque;
1044 int l2_index;
1045 uint64_t *l2_table;
1046 uint64_t entry;
1047 unsigned int nb_clusters;
1048 int ret;
1049
1050 uint64_t alloc_cluster_offset;
1051
1052 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1053 *bytes);
1054 assert(*bytes > 0);
1055
1056 /*
1057 * Calculate the number of clusters to look for. We stop at L2 table
1058 * boundaries to keep things simple.
1059 */
1060 nb_clusters =
1061 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1062
1063 l2_index = offset_to_l2_index(s, guest_offset);
1064 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1065
1066 /* Find L2 entry for the first involved cluster */
1067 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1068 if (ret < 0) {
1069 return ret;
1070 }
1071
1072 entry = be64_to_cpu(l2_table[l2_index]);
1073
1074 /* For the moment, overwrite compressed clusters one by one */
1075 if (entry & QCOW_OFLAG_COMPRESSED) {
1076 nb_clusters = 1;
1077 } else {
1078 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1079 }
1080
1081 /* This function is only called when there were no non-COW clusters, so if
1082 * we can't find any unallocated or COW clusters either, something is
1083 * wrong with our code. */
1084 assert(nb_clusters > 0);
1085
1086 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1087 if (ret < 0) {
1088 return ret;
1089 }
1090
1091 /* Allocate, if necessary at a given offset in the image file */
1092 alloc_cluster_offset = start_of_cluster(s, *host_offset);
1093 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1094 &nb_clusters);
1095 if (ret < 0) {
1096 goto fail;
1097 }
1098
1099 /* Can't extend contiguous allocation */
1100 if (nb_clusters == 0) {
1101 *bytes = 0;
1102 return 0;
1103 }
1104
1105 /*
1106 * Save info needed for meta data update.
1107 *
1108 * requested_sectors: Number of sectors from the start of the first
1109 * newly allocated cluster to the end of the (possibly shortened
1110 * before) write request.
1111 *
1112 * avail_sectors: Number of sectors from the start of the first
1113 * newly allocated to the end of the last newly allocated cluster.
1114 *
1115 * nb_sectors: The number of sectors from the start of the first
1116 * newly allocated cluster to the end of the area that the write
1117 * request actually writes to (excluding COW at the end)
1118 */
1119 int requested_sectors =
1120 (*bytes + offset_into_cluster(s, guest_offset))
1121 >> BDRV_SECTOR_BITS;
1122 int avail_sectors = nb_clusters
1123 << (s->cluster_bits - BDRV_SECTOR_BITS);
1124 int alloc_n_start = offset_into_cluster(s, guest_offset)
1125 >> BDRV_SECTOR_BITS;
1126 int nb_sectors = MIN(requested_sectors, avail_sectors);
1127 QCowL2Meta *old_m = *m;
1128
1129 *m = g_malloc0(sizeof(**m));
1130
1131 **m = (QCowL2Meta) {
1132 .next = old_m,
1133
1134 .alloc_offset = alloc_cluster_offset,
1135 .offset = start_of_cluster(s, guest_offset),
1136 .nb_clusters = nb_clusters,
1137 .nb_available = nb_sectors,
1138
1139 .cow_start = {
1140 .offset = 0,
1141 .nb_sectors = alloc_n_start,
1142 },
1143 .cow_end = {
1144 .offset = nb_sectors * BDRV_SECTOR_SIZE,
1145 .nb_sectors = avail_sectors - nb_sectors,
1146 },
1147 };
1148 qemu_co_queue_init(&(*m)->dependent_requests);
1149 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1150
1151 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1152 *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE)
1153 - offset_into_cluster(s, guest_offset));
1154 assert(*bytes != 0);
1155
1156 return 1;
1157
1158 fail:
1159 if (*m && (*m)->nb_clusters > 0) {
1160 QLIST_REMOVE(*m, next_in_flight);
1161 }
1162 return ret;
1163 }
1164
1165 /*
1166 * alloc_cluster_offset
1167 *
1168 * For a given offset on the virtual disk, find the cluster offset in qcow2
1169 * file. If the offset is not found, allocate a new cluster.
1170 *
1171 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1172 * other fields in m are meaningless.
1173 *
1174 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1175 * contiguous clusters that have been allocated. In this case, the other
1176 * fields of m are valid and contain information about the first allocated
1177 * cluster.
1178 *
1179 * If the request conflicts with another write request in flight, the coroutine
1180 * is queued and will be reentered when the dependency has completed.
1181 *
1182 * Return 0 on success and -errno in error cases
1183 */
1184 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1185 int n_start, int n_end, int *num, uint64_t *host_offset, QCowL2Meta **m)
1186 {
1187 BDRVQcowState *s = bs->opaque;
1188 uint64_t start, remaining;
1189 uint64_t cluster_offset;
1190 uint64_t cur_bytes;
1191 int ret;
1192
1193 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset,
1194 n_start, n_end);
1195
1196 assert(n_start * BDRV_SECTOR_SIZE == offset_into_cluster(s, offset));
1197 offset = start_of_cluster(s, offset);
1198
1199 again:
1200 start = offset + (n_start << BDRV_SECTOR_BITS);
1201 remaining = (n_end - n_start) << BDRV_SECTOR_BITS;
1202 cluster_offset = 0;
1203 *host_offset = 0;
1204 cur_bytes = 0;
1205 *m = NULL;
1206
1207 while (true) {
1208
1209 if (!*host_offset) {
1210 *host_offset = start_of_cluster(s, cluster_offset);
1211 }
1212
1213 assert(remaining >= cur_bytes);
1214
1215 start += cur_bytes;
1216 remaining -= cur_bytes;
1217 cluster_offset += cur_bytes;
1218
1219 if (remaining == 0) {
1220 break;
1221 }
1222
1223 cur_bytes = remaining;
1224
1225 /*
1226 * Now start gathering as many contiguous clusters as possible:
1227 *
1228 * 1. Check for overlaps with in-flight allocations
1229 *
1230 * a) Overlap not in the first cluster -> shorten this request and
1231 * let the caller handle the rest in its next loop iteration.
1232 *
1233 * b) Real overlaps of two requests. Yield and restart the search
1234 * for contiguous clusters (the situation could have changed
1235 * while we were sleeping)
1236 *
1237 * c) TODO: Request starts in the same cluster as the in-flight
1238 * allocation ends. Shorten the COW of the in-fight allocation,
1239 * set cluster_offset to write to the same cluster and set up
1240 * the right synchronisation between the in-flight request and
1241 * the new one.
1242 */
1243 ret = handle_dependencies(bs, start, &cur_bytes, m);
1244 if (ret == -EAGAIN) {
1245 /* Currently handle_dependencies() doesn't yield if we already had
1246 * an allocation. If it did, we would have to clean up the L2Meta
1247 * structs before starting over. */
1248 assert(*m == NULL);
1249 goto again;
1250 } else if (ret < 0) {
1251 return ret;
1252 } else if (cur_bytes == 0) {
1253 break;
1254 } else {
1255 /* handle_dependencies() may have decreased cur_bytes (shortened
1256 * the allocations below) so that the next dependency is processed
1257 * correctly during the next loop iteration. */
1258 }
1259
1260 /*
1261 * 2. Count contiguous COPIED clusters.
1262 */
1263 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1264 if (ret < 0) {
1265 return ret;
1266 } else if (ret) {
1267 continue;
1268 } else if (cur_bytes == 0) {
1269 break;
1270 }
1271
1272 /*
1273 * 3. If the request still hasn't completed, allocate new clusters,
1274 * considering any cluster_offset of steps 1c or 2.
1275 */
1276 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1277 if (ret < 0) {
1278 return ret;
1279 } else if (ret) {
1280 continue;
1281 } else {
1282 assert(cur_bytes == 0);
1283 break;
1284 }
1285 }
1286
1287 *num = (n_end - n_start) - (remaining >> BDRV_SECTOR_BITS);
1288 assert(*num > 0);
1289 assert(*host_offset != 0);
1290
1291 return 0;
1292 }
1293
1294 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1295 const uint8_t *buf, int buf_size)
1296 {
1297 z_stream strm1, *strm = &strm1;
1298 int ret, out_len;
1299
1300 memset(strm, 0, sizeof(*strm));
1301
1302 strm->next_in = (uint8_t *)buf;
1303 strm->avail_in = buf_size;
1304 strm->next_out = out_buf;
1305 strm->avail_out = out_buf_size;
1306
1307 ret = inflateInit2(strm, -12);
1308 if (ret != Z_OK)
1309 return -1;
1310 ret = inflate(strm, Z_FINISH);
1311 out_len = strm->next_out - out_buf;
1312 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1313 out_len != out_buf_size) {
1314 inflateEnd(strm);
1315 return -1;
1316 }
1317 inflateEnd(strm);
1318 return 0;
1319 }
1320
1321 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1322 {
1323 BDRVQcowState *s = bs->opaque;
1324 int ret, csize, nb_csectors, sector_offset;
1325 uint64_t coffset;
1326
1327 coffset = cluster_offset & s->cluster_offset_mask;
1328 if (s->cluster_cache_offset != coffset) {
1329 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1330 sector_offset = coffset & 511;
1331 csize = nb_csectors * 512 - sector_offset;
1332 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1333 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
1334 if (ret < 0) {
1335 return ret;
1336 }
1337 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1338 s->cluster_data + sector_offset, csize) < 0) {
1339 return -EIO;
1340 }
1341 s->cluster_cache_offset = coffset;
1342 }
1343 return 0;
1344 }
1345
1346 /*
1347 * This discards as many clusters of nb_clusters as possible at once (i.e.
1348 * all clusters in the same L2 table) and returns the number of discarded
1349 * clusters.
1350 */
1351 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1352 unsigned int nb_clusters, enum qcow2_discard_type type)
1353 {
1354 BDRVQcowState *s = bs->opaque;
1355 uint64_t *l2_table;
1356 int l2_index;
1357 int ret;
1358 int i;
1359
1360 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1361 if (ret < 0) {
1362 return ret;
1363 }
1364
1365 /* Limit nb_clusters to one L2 table */
1366 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1367
1368 for (i = 0; i < nb_clusters; i++) {
1369 uint64_t old_offset;
1370
1371 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1372 if ((old_offset & L2E_OFFSET_MASK) == 0) {
1373 continue;
1374 }
1375
1376 /* First remove L2 entries */
1377 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1378 l2_table[l2_index + i] = cpu_to_be64(0);
1379
1380 /* Then decrease the refcount */
1381 qcow2_free_any_clusters(bs, old_offset, 1, type);
1382 }
1383
1384 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1385 if (ret < 0) {
1386 return ret;
1387 }
1388
1389 return nb_clusters;
1390 }
1391
1392 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1393 int nb_sectors, enum qcow2_discard_type type)
1394 {
1395 BDRVQcowState *s = bs->opaque;
1396 uint64_t end_offset;
1397 unsigned int nb_clusters;
1398 int ret;
1399
1400 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1401
1402 /* Round start up and end down */
1403 offset = align_offset(offset, s->cluster_size);
1404 end_offset &= ~(s->cluster_size - 1);
1405
1406 if (offset > end_offset) {
1407 return 0;
1408 }
1409
1410 nb_clusters = size_to_clusters(s, end_offset - offset);
1411
1412 s->cache_discards = true;
1413
1414 /* Each L2 table is handled by its own loop iteration */
1415 while (nb_clusters > 0) {
1416 ret = discard_single_l2(bs, offset, nb_clusters, type);
1417 if (ret < 0) {
1418 goto fail;
1419 }
1420
1421 nb_clusters -= ret;
1422 offset += (ret * s->cluster_size);
1423 }
1424
1425 ret = 0;
1426 fail:
1427 s->cache_discards = false;
1428 qcow2_process_discards(bs, ret);
1429
1430 return ret;
1431 }
1432
1433 /*
1434 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1435 * all clusters in the same L2 table) and returns the number of zeroed
1436 * clusters.
1437 */
1438 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1439 unsigned int nb_clusters)
1440 {
1441 BDRVQcowState *s = bs->opaque;
1442 uint64_t *l2_table;
1443 int l2_index;
1444 int ret;
1445 int i;
1446
1447 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1448 if (ret < 0) {
1449 return ret;
1450 }
1451
1452 /* Limit nb_clusters to one L2 table */
1453 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1454
1455 for (i = 0; i < nb_clusters; i++) {
1456 uint64_t old_offset;
1457
1458 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1459
1460 /* Update L2 entries */
1461 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1462 if (old_offset & QCOW_OFLAG_COMPRESSED) {
1463 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1464 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1465 } else {
1466 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1467 }
1468 }
1469
1470 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1471 if (ret < 0) {
1472 return ret;
1473 }
1474
1475 return nb_clusters;
1476 }
1477
1478 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1479 {
1480 BDRVQcowState *s = bs->opaque;
1481 unsigned int nb_clusters;
1482 int ret;
1483
1484 /* The zero flag is only supported by version 3 and newer */
1485 if (s->qcow_version < 3) {
1486 return -ENOTSUP;
1487 }
1488
1489 /* Each L2 table is handled by its own loop iteration */
1490 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1491
1492 s->cache_discards = true;
1493
1494 while (nb_clusters > 0) {
1495 ret = zero_single_l2(bs, offset, nb_clusters);
1496 if (ret < 0) {
1497 goto fail;
1498 }
1499
1500 nb_clusters -= ret;
1501 offset += (ret * s->cluster_size);
1502 }
1503
1504 ret = 0;
1505 fail:
1506 s->cache_discards = false;
1507 qcow2_process_discards(bs, ret);
1508
1509 return ret;
1510 }
1511
1512 /*
1513 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1514 * non-backed non-pre-allocated zero clusters).
1515 *
1516 * expanded_clusters is a bitmap where every bit corresponds to one cluster in
1517 * the image file; a bit gets set if the corresponding cluster has been used for
1518 * zero expansion (i.e., has been filled with zeroes and is referenced from an
1519 * L2 table). nb_clusters contains the total cluster count of the image file,
1520 * i.e., the number of bits in expanded_clusters.
1521 */
1522 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1523 int l1_size, uint8_t **expanded_clusters,
1524 uint64_t *nb_clusters)
1525 {
1526 BDRVQcowState *s = bs->opaque;
1527 bool is_active_l1 = (l1_table == s->l1_table);
1528 uint64_t *l2_table = NULL;
1529 int ret;
1530 int i, j;
1531
1532 if (!is_active_l1) {
1533 /* inactive L2 tables require a buffer to be stored in when loading
1534 * them from disk */
1535 l2_table = qemu_blockalign(bs, s->cluster_size);
1536 }
1537
1538 for (i = 0; i < l1_size; i++) {
1539 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1540 bool l2_dirty = false;
1541
1542 if (!l2_offset) {
1543 /* unallocated */
1544 continue;
1545 }
1546
1547 if (is_active_l1) {
1548 /* get active L2 tables from cache */
1549 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1550 (void **)&l2_table);
1551 } else {
1552 /* load inactive L2 tables from disk */
1553 ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1554 (void *)l2_table, s->cluster_sectors);
1555 }
1556 if (ret < 0) {
1557 goto fail;
1558 }
1559
1560 for (j = 0; j < s->l2_size; j++) {
1561 uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1562 int64_t offset = l2_entry & L2E_OFFSET_MASK, cluster_index;
1563 int cluster_type = qcow2_get_cluster_type(l2_entry);
1564 bool preallocated = offset != 0;
1565
1566 if (cluster_type == QCOW2_CLUSTER_NORMAL) {
1567 cluster_index = offset >> s->cluster_bits;
1568 assert((cluster_index >= 0) && (cluster_index < *nb_clusters));
1569 if ((*expanded_clusters)[cluster_index / 8] &
1570 (1 << (cluster_index % 8))) {
1571 /* Probably a shared L2 table; this cluster was a zero
1572 * cluster which has been expanded, its refcount
1573 * therefore most likely requires an update. */
1574 ret = qcow2_update_cluster_refcount(bs, cluster_index, 1,
1575 QCOW2_DISCARD_NEVER);
1576 if (ret < 0) {
1577 goto fail;
1578 }
1579 /* Since we just increased the refcount, the COPIED flag may
1580 * no longer be set. */
1581 l2_table[j] = cpu_to_be64(l2_entry & ~QCOW_OFLAG_COPIED);
1582 l2_dirty = true;
1583 }
1584 continue;
1585 }
1586 else if (qcow2_get_cluster_type(l2_entry) != QCOW2_CLUSTER_ZERO) {
1587 continue;
1588 }
1589
1590 if (!preallocated) {
1591 if (!bs->backing_hd) {
1592 /* not backed; therefore we can simply deallocate the
1593 * cluster */
1594 l2_table[j] = 0;
1595 l2_dirty = true;
1596 continue;
1597 }
1598
1599 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1600 if (offset < 0) {
1601 ret = offset;
1602 goto fail;
1603 }
1604 }
1605
1606 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
1607 if (ret < 0) {
1608 if (!preallocated) {
1609 qcow2_free_clusters(bs, offset, s->cluster_size,
1610 QCOW2_DISCARD_ALWAYS);
1611 }
1612 goto fail;
1613 }
1614
1615 ret = bdrv_write_zeroes(bs->file, offset / BDRV_SECTOR_SIZE,
1616 s->cluster_sectors);
1617 if (ret < 0) {
1618 if (!preallocated) {
1619 qcow2_free_clusters(bs, offset, s->cluster_size,
1620 QCOW2_DISCARD_ALWAYS);
1621 }
1622 goto fail;
1623 }
1624
1625 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1626 l2_dirty = true;
1627
1628 cluster_index = offset >> s->cluster_bits;
1629
1630 if (cluster_index >= *nb_clusters) {
1631 uint64_t old_bitmap_size = (*nb_clusters + 7) / 8;
1632 uint64_t new_bitmap_size;
1633 /* The offset may lie beyond the old end of the underlying image
1634 * file for growable files only */
1635 assert(bs->file->growable);
1636 *nb_clusters = size_to_clusters(s, bs->file->total_sectors *
1637 BDRV_SECTOR_SIZE);
1638 new_bitmap_size = (*nb_clusters + 7) / 8;
1639 *expanded_clusters = g_realloc(*expanded_clusters,
1640 new_bitmap_size);
1641 /* clear the newly allocated space */
1642 memset(&(*expanded_clusters)[old_bitmap_size], 0,
1643 new_bitmap_size - old_bitmap_size);
1644 }
1645
1646 assert((cluster_index >= 0) && (cluster_index < *nb_clusters));
1647 (*expanded_clusters)[cluster_index / 8] |= 1 << (cluster_index % 8);
1648 }
1649
1650 if (is_active_l1) {
1651 if (l2_dirty) {
1652 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1653 qcow2_cache_depends_on_flush(s->l2_table_cache);
1654 }
1655 ret = qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
1656 if (ret < 0) {
1657 l2_table = NULL;
1658 goto fail;
1659 }
1660 } else {
1661 if (l2_dirty) {
1662 ret = qcow2_pre_write_overlap_check(bs,
1663 QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
1664 s->cluster_size);
1665 if (ret < 0) {
1666 goto fail;
1667 }
1668
1669 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1670 (void *)l2_table, s->cluster_sectors);
1671 if (ret < 0) {
1672 goto fail;
1673 }
1674 }
1675 }
1676 }
1677
1678 ret = 0;
1679
1680 fail:
1681 if (l2_table) {
1682 if (!is_active_l1) {
1683 qemu_vfree(l2_table);
1684 } else {
1685 if (ret < 0) {
1686 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
1687 } else {
1688 ret = qcow2_cache_put(bs, s->l2_table_cache,
1689 (void **)&l2_table);
1690 }
1691 }
1692 }
1693 return ret;
1694 }
1695
1696 /*
1697 * For backed images, expands all zero clusters on the image. For non-backed
1698 * images, deallocates all non-pre-allocated zero clusters (and claims the
1699 * allocation for pre-allocated ones). This is important for downgrading to a
1700 * qcow2 version which doesn't yet support metadata zero clusters.
1701 */
1702 int qcow2_expand_zero_clusters(BlockDriverState *bs)
1703 {
1704 BDRVQcowState *s = bs->opaque;
1705 uint64_t *l1_table = NULL;
1706 uint64_t nb_clusters;
1707 uint8_t *expanded_clusters;
1708 int ret;
1709 int i, j;
1710
1711 nb_clusters = size_to_clusters(s, bs->file->total_sectors *
1712 BDRV_SECTOR_SIZE);
1713 expanded_clusters = g_malloc0((nb_clusters + 7) / 8);
1714
1715 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
1716 &expanded_clusters, &nb_clusters);
1717 if (ret < 0) {
1718 goto fail;
1719 }
1720
1721 /* Inactive L1 tables may point to active L2 tables - therefore it is
1722 * necessary to flush the L2 table cache before trying to access the L2
1723 * tables pointed to by inactive L1 entries (else we might try to expand
1724 * zero clusters that have already been expanded); furthermore, it is also
1725 * necessary to empty the L2 table cache, since it may contain tables which
1726 * are now going to be modified directly on disk, bypassing the cache.
1727 * qcow2_cache_empty() does both for us. */
1728 ret = qcow2_cache_empty(bs, s->l2_table_cache);
1729 if (ret < 0) {
1730 goto fail;
1731 }
1732
1733 for (i = 0; i < s->nb_snapshots; i++) {
1734 int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) +
1735 BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE;
1736
1737 l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
1738
1739 ret = bdrv_read(bs->file, s->snapshots[i].l1_table_offset /
1740 BDRV_SECTOR_SIZE, (void *)l1_table, l1_sectors);
1741 if (ret < 0) {
1742 goto fail;
1743 }
1744
1745 for (j = 0; j < s->snapshots[i].l1_size; j++) {
1746 be64_to_cpus(&l1_table[j]);
1747 }
1748
1749 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
1750 &expanded_clusters, &nb_clusters);
1751 if (ret < 0) {
1752 goto fail;
1753 }
1754 }
1755
1756 ret = 0;
1757
1758 fail:
1759 g_free(expanded_clusters);
1760 g_free(l1_table);
1761 return ret;
1762 }