]> git.proxmox.com Git - qemu.git/blob - block/qed.c
hw/i386/Makefile.obj: use $(PYTHON) to run .py scripts consistently
[qemu.git] / block / qed.c
1 /*
2 * QEMU Enhanced Disk Format
3 *
4 * Copyright IBM, Corp. 2010
5 *
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
12 *
13 */
14
15 #include "qemu/timer.h"
16 #include "trace.h"
17 #include "qed.h"
18 #include "qapi/qmp/qerror.h"
19 #include "migration/migration.h"
20
21 static void qed_aio_cancel(BlockDriverAIOCB *blockacb)
22 {
23 QEDAIOCB *acb = (QEDAIOCB *)blockacb;
24 bool finished = false;
25
26 /* Wait for the request to finish */
27 acb->finished = &finished;
28 while (!finished) {
29 qemu_aio_wait();
30 }
31 }
32
33 static const AIOCBInfo qed_aiocb_info = {
34 .aiocb_size = sizeof(QEDAIOCB),
35 .cancel = qed_aio_cancel,
36 };
37
38 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
39 const char *filename)
40 {
41 const QEDHeader *header = (const QEDHeader *)buf;
42
43 if (buf_size < sizeof(*header)) {
44 return 0;
45 }
46 if (le32_to_cpu(header->magic) != QED_MAGIC) {
47 return 0;
48 }
49 return 100;
50 }
51
52 /**
53 * Check whether an image format is raw
54 *
55 * @fmt: Backing file format, may be NULL
56 */
57 static bool qed_fmt_is_raw(const char *fmt)
58 {
59 return fmt && strcmp(fmt, "raw") == 0;
60 }
61
62 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
63 {
64 cpu->magic = le32_to_cpu(le->magic);
65 cpu->cluster_size = le32_to_cpu(le->cluster_size);
66 cpu->table_size = le32_to_cpu(le->table_size);
67 cpu->header_size = le32_to_cpu(le->header_size);
68 cpu->features = le64_to_cpu(le->features);
69 cpu->compat_features = le64_to_cpu(le->compat_features);
70 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
71 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
72 cpu->image_size = le64_to_cpu(le->image_size);
73 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
74 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
75 }
76
77 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
78 {
79 le->magic = cpu_to_le32(cpu->magic);
80 le->cluster_size = cpu_to_le32(cpu->cluster_size);
81 le->table_size = cpu_to_le32(cpu->table_size);
82 le->header_size = cpu_to_le32(cpu->header_size);
83 le->features = cpu_to_le64(cpu->features);
84 le->compat_features = cpu_to_le64(cpu->compat_features);
85 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
86 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
87 le->image_size = cpu_to_le64(cpu->image_size);
88 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
89 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
90 }
91
92 int qed_write_header_sync(BDRVQEDState *s)
93 {
94 QEDHeader le;
95 int ret;
96
97 qed_header_cpu_to_le(&s->header, &le);
98 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
99 if (ret != sizeof(le)) {
100 return ret;
101 }
102 return 0;
103 }
104
105 typedef struct {
106 GenericCB gencb;
107 BDRVQEDState *s;
108 struct iovec iov;
109 QEMUIOVector qiov;
110 int nsectors;
111 uint8_t *buf;
112 } QEDWriteHeaderCB;
113
114 static void qed_write_header_cb(void *opaque, int ret)
115 {
116 QEDWriteHeaderCB *write_header_cb = opaque;
117
118 qemu_vfree(write_header_cb->buf);
119 gencb_complete(write_header_cb, ret);
120 }
121
122 static void qed_write_header_read_cb(void *opaque, int ret)
123 {
124 QEDWriteHeaderCB *write_header_cb = opaque;
125 BDRVQEDState *s = write_header_cb->s;
126
127 if (ret) {
128 qed_write_header_cb(write_header_cb, ret);
129 return;
130 }
131
132 /* Update header */
133 qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
134
135 bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
136 write_header_cb->nsectors, qed_write_header_cb,
137 write_header_cb);
138 }
139
140 /**
141 * Update header in-place (does not rewrite backing filename or other strings)
142 *
143 * This function only updates known header fields in-place and does not affect
144 * extra data after the QED header.
145 */
146 static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb,
147 void *opaque)
148 {
149 /* We must write full sectors for O_DIRECT but cannot necessarily generate
150 * the data following the header if an unrecognized compat feature is
151 * active. Therefore, first read the sectors containing the header, update
152 * them, and write back.
153 */
154
155 int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
156 BDRV_SECTOR_SIZE;
157 size_t len = nsectors * BDRV_SECTOR_SIZE;
158 QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
159 cb, opaque);
160
161 write_header_cb->s = s;
162 write_header_cb->nsectors = nsectors;
163 write_header_cb->buf = qemu_blockalign(s->bs, len);
164 write_header_cb->iov.iov_base = write_header_cb->buf;
165 write_header_cb->iov.iov_len = len;
166 qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
167
168 bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
169 qed_write_header_read_cb, write_header_cb);
170 }
171
172 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
173 {
174 uint64_t table_entries;
175 uint64_t l2_size;
176
177 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
178 l2_size = table_entries * cluster_size;
179
180 return l2_size * table_entries;
181 }
182
183 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
184 {
185 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
186 cluster_size > QED_MAX_CLUSTER_SIZE) {
187 return false;
188 }
189 if (cluster_size & (cluster_size - 1)) {
190 return false; /* not power of 2 */
191 }
192 return true;
193 }
194
195 static bool qed_is_table_size_valid(uint32_t table_size)
196 {
197 if (table_size < QED_MIN_TABLE_SIZE ||
198 table_size > QED_MAX_TABLE_SIZE) {
199 return false;
200 }
201 if (table_size & (table_size - 1)) {
202 return false; /* not power of 2 */
203 }
204 return true;
205 }
206
207 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
208 uint32_t table_size)
209 {
210 if (image_size % BDRV_SECTOR_SIZE != 0) {
211 return false; /* not multiple of sector size */
212 }
213 if (image_size > qed_max_image_size(cluster_size, table_size)) {
214 return false; /* image is too large */
215 }
216 return true;
217 }
218
219 /**
220 * Read a string of known length from the image file
221 *
222 * @file: Image file
223 * @offset: File offset to start of string, in bytes
224 * @n: String length in bytes
225 * @buf: Destination buffer
226 * @buflen: Destination buffer length in bytes
227 * @ret: 0 on success, -errno on failure
228 *
229 * The string is NUL-terminated.
230 */
231 static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
232 char *buf, size_t buflen)
233 {
234 int ret;
235 if (n >= buflen) {
236 return -EINVAL;
237 }
238 ret = bdrv_pread(file, offset, buf, n);
239 if (ret < 0) {
240 return ret;
241 }
242 buf[n] = '\0';
243 return 0;
244 }
245
246 /**
247 * Allocate new clusters
248 *
249 * @s: QED state
250 * @n: Number of contiguous clusters to allocate
251 * @ret: Offset of first allocated cluster
252 *
253 * This function only produces the offset where the new clusters should be
254 * written. It updates BDRVQEDState but does not make any changes to the image
255 * file.
256 */
257 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
258 {
259 uint64_t offset = s->file_size;
260 s->file_size += n * s->header.cluster_size;
261 return offset;
262 }
263
264 QEDTable *qed_alloc_table(BDRVQEDState *s)
265 {
266 /* Honor O_DIRECT memory alignment requirements */
267 return qemu_blockalign(s->bs,
268 s->header.cluster_size * s->header.table_size);
269 }
270
271 /**
272 * Allocate a new zeroed L2 table
273 */
274 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
275 {
276 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
277
278 l2_table->table = qed_alloc_table(s);
279 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
280
281 memset(l2_table->table->offsets, 0,
282 s->header.cluster_size * s->header.table_size);
283 return l2_table;
284 }
285
286 static void qed_aio_next_io(void *opaque, int ret);
287
288 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
289 {
290 assert(!s->allocating_write_reqs_plugged);
291
292 s->allocating_write_reqs_plugged = true;
293 }
294
295 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
296 {
297 QEDAIOCB *acb;
298
299 assert(s->allocating_write_reqs_plugged);
300
301 s->allocating_write_reqs_plugged = false;
302
303 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
304 if (acb) {
305 qed_aio_next_io(acb, 0);
306 }
307 }
308
309 static void qed_finish_clear_need_check(void *opaque, int ret)
310 {
311 /* Do nothing */
312 }
313
314 static void qed_flush_after_clear_need_check(void *opaque, int ret)
315 {
316 BDRVQEDState *s = opaque;
317
318 bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
319
320 /* No need to wait until flush completes */
321 qed_unplug_allocating_write_reqs(s);
322 }
323
324 static void qed_clear_need_check(void *opaque, int ret)
325 {
326 BDRVQEDState *s = opaque;
327
328 if (ret) {
329 qed_unplug_allocating_write_reqs(s);
330 return;
331 }
332
333 s->header.features &= ~QED_F_NEED_CHECK;
334 qed_write_header(s, qed_flush_after_clear_need_check, s);
335 }
336
337 static void qed_need_check_timer_cb(void *opaque)
338 {
339 BDRVQEDState *s = opaque;
340
341 /* The timer should only fire when allocating writes have drained */
342 assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
343
344 trace_qed_need_check_timer_cb(s);
345
346 qed_plug_allocating_write_reqs(s);
347
348 /* Ensure writes are on disk before clearing flag */
349 bdrv_aio_flush(s->bs, qed_clear_need_check, s);
350 }
351
352 static void qed_start_need_check_timer(BDRVQEDState *s)
353 {
354 trace_qed_start_need_check_timer(s);
355
356 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
357 * migration.
358 */
359 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
360 get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
361 }
362
363 /* It's okay to call this multiple times or when no timer is started */
364 static void qed_cancel_need_check_timer(BDRVQEDState *s)
365 {
366 trace_qed_cancel_need_check_timer(s);
367 timer_del(s->need_check_timer);
368 }
369
370 static void bdrv_qed_rebind(BlockDriverState *bs)
371 {
372 BDRVQEDState *s = bs->opaque;
373 s->bs = bs;
374 }
375
376 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
377 Error **errp)
378 {
379 BDRVQEDState *s = bs->opaque;
380 QEDHeader le_header;
381 int64_t file_size;
382 int ret;
383
384 s->bs = bs;
385 QSIMPLEQ_INIT(&s->allocating_write_reqs);
386
387 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
388 if (ret < 0) {
389 return ret;
390 }
391 qed_header_le_to_cpu(&le_header, &s->header);
392
393 if (s->header.magic != QED_MAGIC) {
394 return -EMEDIUMTYPE;
395 }
396 if (s->header.features & ~QED_FEATURE_MASK) {
397 /* image uses unsupported feature bits */
398 char buf[64];
399 snprintf(buf, sizeof(buf), "%" PRIx64,
400 s->header.features & ~QED_FEATURE_MASK);
401 qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
402 bs->device_name, "QED", buf);
403 return -ENOTSUP;
404 }
405 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
406 return -EINVAL;
407 }
408
409 /* Round down file size to the last cluster */
410 file_size = bdrv_getlength(bs->file);
411 if (file_size < 0) {
412 return file_size;
413 }
414 s->file_size = qed_start_of_cluster(s, file_size);
415
416 if (!qed_is_table_size_valid(s->header.table_size)) {
417 return -EINVAL;
418 }
419 if (!qed_is_image_size_valid(s->header.image_size,
420 s->header.cluster_size,
421 s->header.table_size)) {
422 return -EINVAL;
423 }
424 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
425 return -EINVAL;
426 }
427
428 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
429 sizeof(uint64_t);
430 s->l2_shift = ffs(s->header.cluster_size) - 1;
431 s->l2_mask = s->table_nelems - 1;
432 s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1;
433
434 if ((s->header.features & QED_F_BACKING_FILE)) {
435 if ((uint64_t)s->header.backing_filename_offset +
436 s->header.backing_filename_size >
437 s->header.cluster_size * s->header.header_size) {
438 return -EINVAL;
439 }
440
441 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
442 s->header.backing_filename_size, bs->backing_file,
443 sizeof(bs->backing_file));
444 if (ret < 0) {
445 return ret;
446 }
447
448 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
449 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
450 }
451 }
452
453 /* Reset unknown autoclear feature bits. This is a backwards
454 * compatibility mechanism that allows images to be opened by older
455 * programs, which "knock out" unknown feature bits. When an image is
456 * opened by a newer program again it can detect that the autoclear
457 * feature is no longer valid.
458 */
459 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
460 !bdrv_is_read_only(bs->file) && !(flags & BDRV_O_INCOMING)) {
461 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
462
463 ret = qed_write_header_sync(s);
464 if (ret) {
465 return ret;
466 }
467
468 /* From here on only known autoclear feature bits are valid */
469 bdrv_flush(bs->file);
470 }
471
472 s->l1_table = qed_alloc_table(s);
473 qed_init_l2_cache(&s->l2_cache);
474
475 ret = qed_read_l1_table_sync(s);
476 if (ret) {
477 goto out;
478 }
479
480 /* If image was not closed cleanly, check consistency */
481 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
482 /* Read-only images cannot be fixed. There is no risk of corruption
483 * since write operations are not possible. Therefore, allow
484 * potentially inconsistent images to be opened read-only. This can
485 * aid data recovery from an otherwise inconsistent image.
486 */
487 if (!bdrv_is_read_only(bs->file) &&
488 !(flags & BDRV_O_INCOMING)) {
489 BdrvCheckResult result = {0};
490
491 ret = qed_check(s, &result, true);
492 if (ret) {
493 goto out;
494 }
495 }
496 }
497
498 s->need_check_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
499 qed_need_check_timer_cb, s);
500
501 out:
502 if (ret) {
503 qed_free_l2_cache(&s->l2_cache);
504 qemu_vfree(s->l1_table);
505 }
506 return ret;
507 }
508
509 /* We have nothing to do for QED reopen, stubs just return
510 * success */
511 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
512 BlockReopenQueue *queue, Error **errp)
513 {
514 return 0;
515 }
516
517 static void bdrv_qed_close(BlockDriverState *bs)
518 {
519 BDRVQEDState *s = bs->opaque;
520
521 qed_cancel_need_check_timer(s);
522 timer_free(s->need_check_timer);
523
524 /* Ensure writes reach stable storage */
525 bdrv_flush(bs->file);
526
527 /* Clean shutdown, no check required on next open */
528 if (s->header.features & QED_F_NEED_CHECK) {
529 s->header.features &= ~QED_F_NEED_CHECK;
530 qed_write_header_sync(s);
531 }
532
533 qed_free_l2_cache(&s->l2_cache);
534 qemu_vfree(s->l1_table);
535 }
536
537 static int qed_create(const char *filename, uint32_t cluster_size,
538 uint64_t image_size, uint32_t table_size,
539 const char *backing_file, const char *backing_fmt)
540 {
541 QEDHeader header = {
542 .magic = QED_MAGIC,
543 .cluster_size = cluster_size,
544 .table_size = table_size,
545 .header_size = 1,
546 .features = 0,
547 .compat_features = 0,
548 .l1_table_offset = cluster_size,
549 .image_size = image_size,
550 };
551 QEDHeader le_header;
552 uint8_t *l1_table = NULL;
553 size_t l1_size = header.cluster_size * header.table_size;
554 Error *local_err = NULL;
555 int ret = 0;
556 BlockDriverState *bs = NULL;
557
558 ret = bdrv_create_file(filename, NULL, &local_err);
559 if (ret < 0) {
560 qerror_report_err(local_err);
561 error_free(local_err);
562 return ret;
563 }
564
565 ret = bdrv_file_open(&bs, filename, NULL, BDRV_O_RDWR | BDRV_O_CACHE_WB,
566 &local_err);
567 if (ret < 0) {
568 qerror_report_err(local_err);
569 error_free(local_err);
570 return ret;
571 }
572
573 /* File must start empty and grow, check truncate is supported */
574 ret = bdrv_truncate(bs, 0);
575 if (ret < 0) {
576 goto out;
577 }
578
579 if (backing_file) {
580 header.features |= QED_F_BACKING_FILE;
581 header.backing_filename_offset = sizeof(le_header);
582 header.backing_filename_size = strlen(backing_file);
583
584 if (qed_fmt_is_raw(backing_fmt)) {
585 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
586 }
587 }
588
589 qed_header_cpu_to_le(&header, &le_header);
590 ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
591 if (ret < 0) {
592 goto out;
593 }
594 ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
595 header.backing_filename_size);
596 if (ret < 0) {
597 goto out;
598 }
599
600 l1_table = g_malloc0(l1_size);
601 ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
602 if (ret < 0) {
603 goto out;
604 }
605
606 ret = 0; /* success */
607 out:
608 g_free(l1_table);
609 bdrv_unref(bs);
610 return ret;
611 }
612
613 static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options,
614 Error **errp)
615 {
616 uint64_t image_size = 0;
617 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
618 uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
619 const char *backing_file = NULL;
620 const char *backing_fmt = NULL;
621
622 while (options && options->name) {
623 if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
624 image_size = options->value.n;
625 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
626 backing_file = options->value.s;
627 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
628 backing_fmt = options->value.s;
629 } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
630 if (options->value.n) {
631 cluster_size = options->value.n;
632 }
633 } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) {
634 if (options->value.n) {
635 table_size = options->value.n;
636 }
637 }
638 options++;
639 }
640
641 if (!qed_is_cluster_size_valid(cluster_size)) {
642 fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n",
643 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
644 return -EINVAL;
645 }
646 if (!qed_is_table_size_valid(table_size)) {
647 fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n",
648 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
649 return -EINVAL;
650 }
651 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
652 fprintf(stderr, "QED image size must be a non-zero multiple of "
653 "cluster size and less than %" PRIu64 " bytes\n",
654 qed_max_image_size(cluster_size, table_size));
655 return -EINVAL;
656 }
657
658 return qed_create(filename, cluster_size, image_size, table_size,
659 backing_file, backing_fmt);
660 }
661
662 typedef struct {
663 BlockDriverState *bs;
664 Coroutine *co;
665 uint64_t pos;
666 int64_t status;
667 int *pnum;
668 } QEDIsAllocatedCB;
669
670 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
671 {
672 QEDIsAllocatedCB *cb = opaque;
673 BDRVQEDState *s = cb->bs->opaque;
674 *cb->pnum = len / BDRV_SECTOR_SIZE;
675 switch (ret) {
676 case QED_CLUSTER_FOUND:
677 offset |= qed_offset_into_cluster(s, cb->pos);
678 cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset;
679 break;
680 case QED_CLUSTER_ZERO:
681 cb->status = BDRV_BLOCK_ZERO;
682 break;
683 case QED_CLUSTER_L2:
684 case QED_CLUSTER_L1:
685 cb->status = 0;
686 break;
687 default:
688 assert(ret < 0);
689 cb->status = ret;
690 break;
691 }
692
693 if (cb->co) {
694 qemu_coroutine_enter(cb->co, NULL);
695 }
696 }
697
698 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs,
699 int64_t sector_num,
700 int nb_sectors, int *pnum)
701 {
702 BDRVQEDState *s = bs->opaque;
703 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
704 QEDIsAllocatedCB cb = {
705 .bs = bs,
706 .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE,
707 .status = BDRV_BLOCK_OFFSET_MASK,
708 .pnum = pnum,
709 };
710 QEDRequest request = { .l2_table = NULL };
711
712 qed_find_cluster(s, &request, cb.pos, len, qed_is_allocated_cb, &cb);
713
714 /* Now sleep if the callback wasn't invoked immediately */
715 while (cb.status == BDRV_BLOCK_OFFSET_MASK) {
716 cb.co = qemu_coroutine_self();
717 qemu_coroutine_yield();
718 }
719
720 qed_unref_l2_cache_entry(request.l2_table);
721
722 return cb.status;
723 }
724
725 static int bdrv_qed_make_empty(BlockDriverState *bs)
726 {
727 return -ENOTSUP;
728 }
729
730 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
731 {
732 return acb->common.bs->opaque;
733 }
734
735 /**
736 * Read from the backing file or zero-fill if no backing file
737 *
738 * @s: QED state
739 * @pos: Byte position in device
740 * @qiov: Destination I/O vector
741 * @cb: Completion function
742 * @opaque: User data for completion function
743 *
744 * This function reads qiov->size bytes starting at pos from the backing file.
745 * If there is no backing file then zeroes are read.
746 */
747 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
748 QEMUIOVector *qiov,
749 BlockDriverCompletionFunc *cb, void *opaque)
750 {
751 uint64_t backing_length = 0;
752 size_t size;
753
754 /* If there is a backing file, get its length. Treat the absence of a
755 * backing file like a zero length backing file.
756 */
757 if (s->bs->backing_hd) {
758 int64_t l = bdrv_getlength(s->bs->backing_hd);
759 if (l < 0) {
760 cb(opaque, l);
761 return;
762 }
763 backing_length = l;
764 }
765
766 /* Zero all sectors if reading beyond the end of the backing file */
767 if (pos >= backing_length ||
768 pos + qiov->size > backing_length) {
769 qemu_iovec_memset(qiov, 0, 0, qiov->size);
770 }
771
772 /* Complete now if there are no backing file sectors to read */
773 if (pos >= backing_length) {
774 cb(opaque, 0);
775 return;
776 }
777
778 /* If the read straddles the end of the backing file, shorten it */
779 size = MIN((uint64_t)backing_length - pos, qiov->size);
780
781 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
782 bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
783 qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
784 }
785
786 typedef struct {
787 GenericCB gencb;
788 BDRVQEDState *s;
789 QEMUIOVector qiov;
790 struct iovec iov;
791 uint64_t offset;
792 } CopyFromBackingFileCB;
793
794 static void qed_copy_from_backing_file_cb(void *opaque, int ret)
795 {
796 CopyFromBackingFileCB *copy_cb = opaque;
797 qemu_vfree(copy_cb->iov.iov_base);
798 gencb_complete(&copy_cb->gencb, ret);
799 }
800
801 static void qed_copy_from_backing_file_write(void *opaque, int ret)
802 {
803 CopyFromBackingFileCB *copy_cb = opaque;
804 BDRVQEDState *s = copy_cb->s;
805
806 if (ret) {
807 qed_copy_from_backing_file_cb(copy_cb, ret);
808 return;
809 }
810
811 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
812 bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
813 &copy_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE,
814 qed_copy_from_backing_file_cb, copy_cb);
815 }
816
817 /**
818 * Copy data from backing file into the image
819 *
820 * @s: QED state
821 * @pos: Byte position in device
822 * @len: Number of bytes
823 * @offset: Byte offset in image file
824 * @cb: Completion function
825 * @opaque: User data for completion function
826 */
827 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
828 uint64_t len, uint64_t offset,
829 BlockDriverCompletionFunc *cb,
830 void *opaque)
831 {
832 CopyFromBackingFileCB *copy_cb;
833
834 /* Skip copy entirely if there is no work to do */
835 if (len == 0) {
836 cb(opaque, 0);
837 return;
838 }
839
840 copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
841 copy_cb->s = s;
842 copy_cb->offset = offset;
843 copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
844 copy_cb->iov.iov_len = len;
845 qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
846
847 qed_read_backing_file(s, pos, &copy_cb->qiov,
848 qed_copy_from_backing_file_write, copy_cb);
849 }
850
851 /**
852 * Link one or more contiguous clusters into a table
853 *
854 * @s: QED state
855 * @table: L2 table
856 * @index: First cluster index
857 * @n: Number of contiguous clusters
858 * @cluster: First cluster offset
859 *
860 * The cluster offset may be an allocated byte offset in the image file, the
861 * zero cluster marker, or the unallocated cluster marker.
862 */
863 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
864 unsigned int n, uint64_t cluster)
865 {
866 int i;
867 for (i = index; i < index + n; i++) {
868 table->offsets[i] = cluster;
869 if (!qed_offset_is_unalloc_cluster(cluster) &&
870 !qed_offset_is_zero_cluster(cluster)) {
871 cluster += s->header.cluster_size;
872 }
873 }
874 }
875
876 static void qed_aio_complete_bh(void *opaque)
877 {
878 QEDAIOCB *acb = opaque;
879 BlockDriverCompletionFunc *cb = acb->common.cb;
880 void *user_opaque = acb->common.opaque;
881 int ret = acb->bh_ret;
882 bool *finished = acb->finished;
883
884 qemu_bh_delete(acb->bh);
885 qemu_aio_release(acb);
886
887 /* Invoke callback */
888 cb(user_opaque, ret);
889
890 /* Signal cancel completion */
891 if (finished) {
892 *finished = true;
893 }
894 }
895
896 static void qed_aio_complete(QEDAIOCB *acb, int ret)
897 {
898 BDRVQEDState *s = acb_to_s(acb);
899
900 trace_qed_aio_complete(s, acb, ret);
901
902 /* Free resources */
903 qemu_iovec_destroy(&acb->cur_qiov);
904 qed_unref_l2_cache_entry(acb->request.l2_table);
905
906 /* Free the buffer we may have allocated for zero writes */
907 if (acb->flags & QED_AIOCB_ZERO) {
908 qemu_vfree(acb->qiov->iov[0].iov_base);
909 acb->qiov->iov[0].iov_base = NULL;
910 }
911
912 /* Arrange for a bh to invoke the completion function */
913 acb->bh_ret = ret;
914 acb->bh = qemu_bh_new(qed_aio_complete_bh, acb);
915 qemu_bh_schedule(acb->bh);
916
917 /* Start next allocating write request waiting behind this one. Note that
918 * requests enqueue themselves when they first hit an unallocated cluster
919 * but they wait until the entire request is finished before waking up the
920 * next request in the queue. This ensures that we don't cycle through
921 * requests multiple times but rather finish one at a time completely.
922 */
923 if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
924 QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
925 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
926 if (acb) {
927 qed_aio_next_io(acb, 0);
928 } else if (s->header.features & QED_F_NEED_CHECK) {
929 qed_start_need_check_timer(s);
930 }
931 }
932 }
933
934 /**
935 * Commit the current L2 table to the cache
936 */
937 static void qed_commit_l2_update(void *opaque, int ret)
938 {
939 QEDAIOCB *acb = opaque;
940 BDRVQEDState *s = acb_to_s(acb);
941 CachedL2Table *l2_table = acb->request.l2_table;
942 uint64_t l2_offset = l2_table->offset;
943
944 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
945
946 /* This is guaranteed to succeed because we just committed the entry to the
947 * cache.
948 */
949 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
950 assert(acb->request.l2_table != NULL);
951
952 qed_aio_next_io(opaque, ret);
953 }
954
955 /**
956 * Update L1 table with new L2 table offset and write it out
957 */
958 static void qed_aio_write_l1_update(void *opaque, int ret)
959 {
960 QEDAIOCB *acb = opaque;
961 BDRVQEDState *s = acb_to_s(acb);
962 int index;
963
964 if (ret) {
965 qed_aio_complete(acb, ret);
966 return;
967 }
968
969 index = qed_l1_index(s, acb->cur_pos);
970 s->l1_table->offsets[index] = acb->request.l2_table->offset;
971
972 qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
973 }
974
975 /**
976 * Update L2 table with new cluster offsets and write them out
977 */
978 static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset)
979 {
980 BDRVQEDState *s = acb_to_s(acb);
981 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
982 int index;
983
984 if (ret) {
985 goto err;
986 }
987
988 if (need_alloc) {
989 qed_unref_l2_cache_entry(acb->request.l2_table);
990 acb->request.l2_table = qed_new_l2_table(s);
991 }
992
993 index = qed_l2_index(s, acb->cur_pos);
994 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
995 offset);
996
997 if (need_alloc) {
998 /* Write out the whole new L2 table */
999 qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
1000 qed_aio_write_l1_update, acb);
1001 } else {
1002 /* Write out only the updated part of the L2 table */
1003 qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
1004 qed_aio_next_io, acb);
1005 }
1006 return;
1007
1008 err:
1009 qed_aio_complete(acb, ret);
1010 }
1011
1012 static void qed_aio_write_l2_update_cb(void *opaque, int ret)
1013 {
1014 QEDAIOCB *acb = opaque;
1015 qed_aio_write_l2_update(acb, ret, acb->cur_cluster);
1016 }
1017
1018 /**
1019 * Flush new data clusters before updating the L2 table
1020 *
1021 * This flush is necessary when a backing file is in use. A crash during an
1022 * allocating write could result in empty clusters in the image. If the write
1023 * only touched a subregion of the cluster, then backing image sectors have
1024 * been lost in the untouched region. The solution is to flush after writing a
1025 * new data cluster and before updating the L2 table.
1026 */
1027 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
1028 {
1029 QEDAIOCB *acb = opaque;
1030 BDRVQEDState *s = acb_to_s(acb);
1031
1032 if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update_cb, opaque)) {
1033 qed_aio_complete(acb, -EIO);
1034 }
1035 }
1036
1037 /**
1038 * Write data to the image file
1039 */
1040 static void qed_aio_write_main(void *opaque, int ret)
1041 {
1042 QEDAIOCB *acb = opaque;
1043 BDRVQEDState *s = acb_to_s(acb);
1044 uint64_t offset = acb->cur_cluster +
1045 qed_offset_into_cluster(s, acb->cur_pos);
1046 BlockDriverCompletionFunc *next_fn;
1047
1048 trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1049
1050 if (ret) {
1051 qed_aio_complete(acb, ret);
1052 return;
1053 }
1054
1055 if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1056 next_fn = qed_aio_next_io;
1057 } else {
1058 if (s->bs->backing_hd) {
1059 next_fn = qed_aio_write_flush_before_l2_update;
1060 } else {
1061 next_fn = qed_aio_write_l2_update_cb;
1062 }
1063 }
1064
1065 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1066 bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1067 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1068 next_fn, acb);
1069 }
1070
1071 /**
1072 * Populate back untouched region of new data cluster
1073 */
1074 static void qed_aio_write_postfill(void *opaque, int ret)
1075 {
1076 QEDAIOCB *acb = opaque;
1077 BDRVQEDState *s = acb_to_s(acb);
1078 uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1079 uint64_t len =
1080 qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1081 uint64_t offset = acb->cur_cluster +
1082 qed_offset_into_cluster(s, acb->cur_pos) +
1083 acb->cur_qiov.size;
1084
1085 if (ret) {
1086 qed_aio_complete(acb, ret);
1087 return;
1088 }
1089
1090 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1091 qed_copy_from_backing_file(s, start, len, offset,
1092 qed_aio_write_main, acb);
1093 }
1094
1095 /**
1096 * Populate front untouched region of new data cluster
1097 */
1098 static void qed_aio_write_prefill(void *opaque, int ret)
1099 {
1100 QEDAIOCB *acb = opaque;
1101 BDRVQEDState *s = acb_to_s(acb);
1102 uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1103 uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1104
1105 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1106 qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1107 qed_aio_write_postfill, acb);
1108 }
1109
1110 /**
1111 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1112 */
1113 static bool qed_should_set_need_check(BDRVQEDState *s)
1114 {
1115 /* The flush before L2 update path ensures consistency */
1116 if (s->bs->backing_hd) {
1117 return false;
1118 }
1119
1120 return !(s->header.features & QED_F_NEED_CHECK);
1121 }
1122
1123 static void qed_aio_write_zero_cluster(void *opaque, int ret)
1124 {
1125 QEDAIOCB *acb = opaque;
1126
1127 if (ret) {
1128 qed_aio_complete(acb, ret);
1129 return;
1130 }
1131
1132 qed_aio_write_l2_update(acb, 0, 1);
1133 }
1134
1135 /**
1136 * Write new data cluster
1137 *
1138 * @acb: Write request
1139 * @len: Length in bytes
1140 *
1141 * This path is taken when writing to previously unallocated clusters.
1142 */
1143 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1144 {
1145 BDRVQEDState *s = acb_to_s(acb);
1146 BlockDriverCompletionFunc *cb;
1147
1148 /* Cancel timer when the first allocating request comes in */
1149 if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1150 qed_cancel_need_check_timer(s);
1151 }
1152
1153 /* Freeze this request if another allocating write is in progress */
1154 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1155 QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1156 }
1157 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1158 s->allocating_write_reqs_plugged) {
1159 return; /* wait for existing request to finish */
1160 }
1161
1162 acb->cur_nclusters = qed_bytes_to_clusters(s,
1163 qed_offset_into_cluster(s, acb->cur_pos) + len);
1164 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1165
1166 if (acb->flags & QED_AIOCB_ZERO) {
1167 /* Skip ahead if the clusters are already zero */
1168 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1169 qed_aio_next_io(acb, 0);
1170 return;
1171 }
1172
1173 cb = qed_aio_write_zero_cluster;
1174 } else {
1175 cb = qed_aio_write_prefill;
1176 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1177 }
1178
1179 if (qed_should_set_need_check(s)) {
1180 s->header.features |= QED_F_NEED_CHECK;
1181 qed_write_header(s, cb, acb);
1182 } else {
1183 cb(acb, 0);
1184 }
1185 }
1186
1187 /**
1188 * Write data cluster in place
1189 *
1190 * @acb: Write request
1191 * @offset: Cluster offset in bytes
1192 * @len: Length in bytes
1193 *
1194 * This path is taken when writing to already allocated clusters.
1195 */
1196 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1197 {
1198 /* Allocate buffer for zero writes */
1199 if (acb->flags & QED_AIOCB_ZERO) {
1200 struct iovec *iov = acb->qiov->iov;
1201
1202 if (!iov->iov_base) {
1203 iov->iov_base = qemu_blockalign(acb->common.bs, iov->iov_len);
1204 memset(iov->iov_base, 0, iov->iov_len);
1205 }
1206 }
1207
1208 /* Calculate the I/O vector */
1209 acb->cur_cluster = offset;
1210 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1211
1212 /* Do the actual write */
1213 qed_aio_write_main(acb, 0);
1214 }
1215
1216 /**
1217 * Write data cluster
1218 *
1219 * @opaque: Write request
1220 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1221 * or -errno
1222 * @offset: Cluster offset in bytes
1223 * @len: Length in bytes
1224 *
1225 * Callback from qed_find_cluster().
1226 */
1227 static void qed_aio_write_data(void *opaque, int ret,
1228 uint64_t offset, size_t len)
1229 {
1230 QEDAIOCB *acb = opaque;
1231
1232 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1233
1234 acb->find_cluster_ret = ret;
1235
1236 switch (ret) {
1237 case QED_CLUSTER_FOUND:
1238 qed_aio_write_inplace(acb, offset, len);
1239 break;
1240
1241 case QED_CLUSTER_L2:
1242 case QED_CLUSTER_L1:
1243 case QED_CLUSTER_ZERO:
1244 qed_aio_write_alloc(acb, len);
1245 break;
1246
1247 default:
1248 qed_aio_complete(acb, ret);
1249 break;
1250 }
1251 }
1252
1253 /**
1254 * Read data cluster
1255 *
1256 * @opaque: Read request
1257 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1258 * or -errno
1259 * @offset: Cluster offset in bytes
1260 * @len: Length in bytes
1261 *
1262 * Callback from qed_find_cluster().
1263 */
1264 static void qed_aio_read_data(void *opaque, int ret,
1265 uint64_t offset, size_t len)
1266 {
1267 QEDAIOCB *acb = opaque;
1268 BDRVQEDState *s = acb_to_s(acb);
1269 BlockDriverState *bs = acb->common.bs;
1270
1271 /* Adjust offset into cluster */
1272 offset += qed_offset_into_cluster(s, acb->cur_pos);
1273
1274 trace_qed_aio_read_data(s, acb, ret, offset, len);
1275
1276 if (ret < 0) {
1277 goto err;
1278 }
1279
1280 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1281
1282 /* Handle zero cluster and backing file reads */
1283 if (ret == QED_CLUSTER_ZERO) {
1284 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1285 qed_aio_next_io(acb, 0);
1286 return;
1287 } else if (ret != QED_CLUSTER_FOUND) {
1288 qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1289 qed_aio_next_io, acb);
1290 return;
1291 }
1292
1293 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1294 bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1295 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1296 qed_aio_next_io, acb);
1297 return;
1298
1299 err:
1300 qed_aio_complete(acb, ret);
1301 }
1302
1303 /**
1304 * Begin next I/O or complete the request
1305 */
1306 static void qed_aio_next_io(void *opaque, int ret)
1307 {
1308 QEDAIOCB *acb = opaque;
1309 BDRVQEDState *s = acb_to_s(acb);
1310 QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ?
1311 qed_aio_write_data : qed_aio_read_data;
1312
1313 trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1314
1315 /* Handle I/O error */
1316 if (ret) {
1317 qed_aio_complete(acb, ret);
1318 return;
1319 }
1320
1321 acb->qiov_offset += acb->cur_qiov.size;
1322 acb->cur_pos += acb->cur_qiov.size;
1323 qemu_iovec_reset(&acb->cur_qiov);
1324
1325 /* Complete request */
1326 if (acb->cur_pos >= acb->end_pos) {
1327 qed_aio_complete(acb, 0);
1328 return;
1329 }
1330
1331 /* Find next cluster and start I/O */
1332 qed_find_cluster(s, &acb->request,
1333 acb->cur_pos, acb->end_pos - acb->cur_pos,
1334 io_fn, acb);
1335 }
1336
1337 static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs,
1338 int64_t sector_num,
1339 QEMUIOVector *qiov, int nb_sectors,
1340 BlockDriverCompletionFunc *cb,
1341 void *opaque, int flags)
1342 {
1343 QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque);
1344
1345 trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1346 opaque, flags);
1347
1348 acb->flags = flags;
1349 acb->finished = NULL;
1350 acb->qiov = qiov;
1351 acb->qiov_offset = 0;
1352 acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1353 acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1354 acb->request.l2_table = NULL;
1355 qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1356
1357 /* Start request */
1358 qed_aio_next_io(acb, 0);
1359 return &acb->common;
1360 }
1361
1362 static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1363 int64_t sector_num,
1364 QEMUIOVector *qiov, int nb_sectors,
1365 BlockDriverCompletionFunc *cb,
1366 void *opaque)
1367 {
1368 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1369 }
1370
1371 static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1372 int64_t sector_num,
1373 QEMUIOVector *qiov, int nb_sectors,
1374 BlockDriverCompletionFunc *cb,
1375 void *opaque)
1376 {
1377 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb,
1378 opaque, QED_AIOCB_WRITE);
1379 }
1380
1381 typedef struct {
1382 Coroutine *co;
1383 int ret;
1384 bool done;
1385 } QEDWriteZeroesCB;
1386
1387 static void coroutine_fn qed_co_write_zeroes_cb(void *opaque, int ret)
1388 {
1389 QEDWriteZeroesCB *cb = opaque;
1390
1391 cb->done = true;
1392 cb->ret = ret;
1393 if (cb->co) {
1394 qemu_coroutine_enter(cb->co, NULL);
1395 }
1396 }
1397
1398 static int coroutine_fn bdrv_qed_co_write_zeroes(BlockDriverState *bs,
1399 int64_t sector_num,
1400 int nb_sectors)
1401 {
1402 BlockDriverAIOCB *blockacb;
1403 BDRVQEDState *s = bs->opaque;
1404 QEDWriteZeroesCB cb = { .done = false };
1405 QEMUIOVector qiov;
1406 struct iovec iov;
1407
1408 /* Refuse if there are untouched backing file sectors */
1409 if (bs->backing_hd) {
1410 if (qed_offset_into_cluster(s, sector_num * BDRV_SECTOR_SIZE) != 0) {
1411 return -ENOTSUP;
1412 }
1413 if (qed_offset_into_cluster(s, nb_sectors * BDRV_SECTOR_SIZE) != 0) {
1414 return -ENOTSUP;
1415 }
1416 }
1417
1418 /* Zero writes start without an I/O buffer. If a buffer becomes necessary
1419 * then it will be allocated during request processing.
1420 */
1421 iov.iov_base = NULL,
1422 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1423
1424 qemu_iovec_init_external(&qiov, &iov, 1);
1425 blockacb = qed_aio_setup(bs, sector_num, &qiov, nb_sectors,
1426 qed_co_write_zeroes_cb, &cb,
1427 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1428 if (!blockacb) {
1429 return -EIO;
1430 }
1431 if (!cb.done) {
1432 cb.co = qemu_coroutine_self();
1433 qemu_coroutine_yield();
1434 }
1435 assert(cb.done);
1436 return cb.ret;
1437 }
1438
1439 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1440 {
1441 BDRVQEDState *s = bs->opaque;
1442 uint64_t old_image_size;
1443 int ret;
1444
1445 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1446 s->header.table_size)) {
1447 return -EINVAL;
1448 }
1449
1450 /* Shrinking is currently not supported */
1451 if ((uint64_t)offset < s->header.image_size) {
1452 return -ENOTSUP;
1453 }
1454
1455 old_image_size = s->header.image_size;
1456 s->header.image_size = offset;
1457 ret = qed_write_header_sync(s);
1458 if (ret < 0) {
1459 s->header.image_size = old_image_size;
1460 }
1461 return ret;
1462 }
1463
1464 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1465 {
1466 BDRVQEDState *s = bs->opaque;
1467 return s->header.image_size;
1468 }
1469
1470 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1471 {
1472 BDRVQEDState *s = bs->opaque;
1473
1474 memset(bdi, 0, sizeof(*bdi));
1475 bdi->cluster_size = s->header.cluster_size;
1476 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1477 return 0;
1478 }
1479
1480 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1481 const char *backing_file,
1482 const char *backing_fmt)
1483 {
1484 BDRVQEDState *s = bs->opaque;
1485 QEDHeader new_header, le_header;
1486 void *buffer;
1487 size_t buffer_len, backing_file_len;
1488 int ret;
1489
1490 /* Refuse to set backing filename if unknown compat feature bits are
1491 * active. If the image uses an unknown compat feature then we may not
1492 * know the layout of data following the header structure and cannot safely
1493 * add a new string.
1494 */
1495 if (backing_file && (s->header.compat_features &
1496 ~QED_COMPAT_FEATURE_MASK)) {
1497 return -ENOTSUP;
1498 }
1499
1500 memcpy(&new_header, &s->header, sizeof(new_header));
1501
1502 new_header.features &= ~(QED_F_BACKING_FILE |
1503 QED_F_BACKING_FORMAT_NO_PROBE);
1504
1505 /* Adjust feature flags */
1506 if (backing_file) {
1507 new_header.features |= QED_F_BACKING_FILE;
1508
1509 if (qed_fmt_is_raw(backing_fmt)) {
1510 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1511 }
1512 }
1513
1514 /* Calculate new header size */
1515 backing_file_len = 0;
1516
1517 if (backing_file) {
1518 backing_file_len = strlen(backing_file);
1519 }
1520
1521 buffer_len = sizeof(new_header);
1522 new_header.backing_filename_offset = buffer_len;
1523 new_header.backing_filename_size = backing_file_len;
1524 buffer_len += backing_file_len;
1525
1526 /* Make sure we can rewrite header without failing */
1527 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1528 return -ENOSPC;
1529 }
1530
1531 /* Prepare new header */
1532 buffer = g_malloc(buffer_len);
1533
1534 qed_header_cpu_to_le(&new_header, &le_header);
1535 memcpy(buffer, &le_header, sizeof(le_header));
1536 buffer_len = sizeof(le_header);
1537
1538 if (backing_file) {
1539 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1540 buffer_len += backing_file_len;
1541 }
1542
1543 /* Write new header */
1544 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1545 g_free(buffer);
1546 if (ret == 0) {
1547 memcpy(&s->header, &new_header, sizeof(new_header));
1548 }
1549 return ret;
1550 }
1551
1552 static void bdrv_qed_invalidate_cache(BlockDriverState *bs)
1553 {
1554 BDRVQEDState *s = bs->opaque;
1555
1556 bdrv_qed_close(bs);
1557 memset(s, 0, sizeof(BDRVQEDState));
1558 bdrv_qed_open(bs, NULL, bs->open_flags, NULL);
1559 }
1560
1561 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1562 BdrvCheckMode fix)
1563 {
1564 BDRVQEDState *s = bs->opaque;
1565
1566 return qed_check(s, result, !!fix);
1567 }
1568
1569 static QEMUOptionParameter qed_create_options[] = {
1570 {
1571 .name = BLOCK_OPT_SIZE,
1572 .type = OPT_SIZE,
1573 .help = "Virtual disk size (in bytes)"
1574 }, {
1575 .name = BLOCK_OPT_BACKING_FILE,
1576 .type = OPT_STRING,
1577 .help = "File name of a base image"
1578 }, {
1579 .name = BLOCK_OPT_BACKING_FMT,
1580 .type = OPT_STRING,
1581 .help = "Image format of the base image"
1582 }, {
1583 .name = BLOCK_OPT_CLUSTER_SIZE,
1584 .type = OPT_SIZE,
1585 .help = "Cluster size (in bytes)",
1586 .value = { .n = QED_DEFAULT_CLUSTER_SIZE },
1587 }, {
1588 .name = BLOCK_OPT_TABLE_SIZE,
1589 .type = OPT_SIZE,
1590 .help = "L1/L2 table size (in clusters)"
1591 },
1592 { /* end of list */ }
1593 };
1594
1595 static BlockDriver bdrv_qed = {
1596 .format_name = "qed",
1597 .instance_size = sizeof(BDRVQEDState),
1598 .create_options = qed_create_options,
1599
1600 .bdrv_probe = bdrv_qed_probe,
1601 .bdrv_rebind = bdrv_qed_rebind,
1602 .bdrv_open = bdrv_qed_open,
1603 .bdrv_close = bdrv_qed_close,
1604 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1605 .bdrv_create = bdrv_qed_create,
1606 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1607 .bdrv_co_get_block_status = bdrv_qed_co_get_block_status,
1608 .bdrv_make_empty = bdrv_qed_make_empty,
1609 .bdrv_aio_readv = bdrv_qed_aio_readv,
1610 .bdrv_aio_writev = bdrv_qed_aio_writev,
1611 .bdrv_co_write_zeroes = bdrv_qed_co_write_zeroes,
1612 .bdrv_truncate = bdrv_qed_truncate,
1613 .bdrv_getlength = bdrv_qed_getlength,
1614 .bdrv_get_info = bdrv_qed_get_info,
1615 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1616 .bdrv_invalidate_cache = bdrv_qed_invalidate_cache,
1617 .bdrv_check = bdrv_qed_check,
1618 };
1619
1620 static void bdrv_qed_init(void)
1621 {
1622 bdrv_register(&bdrv_qed);
1623 }
1624
1625 block_init(bdrv_qed_init);