]> git.proxmox.com Git - qemu.git/blob - cpu-all.h
MIPS disas support
[qemu.git] / cpu-all.h
1 /*
2 * defines common to all virtual CPUs
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #ifndef CPU_ALL_H
21 #define CPU_ALL_H
22
23 #if defined(__arm__) || defined(__sparc__)
24 #define WORDS_ALIGNED
25 #endif
26
27 /* some important defines:
28 *
29 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30 * memory accesses.
31 *
32 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33 * otherwise little endian.
34 *
35 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36 *
37 * TARGET_WORDS_BIGENDIAN : same for target cpu
38 */
39
40 #include "bswap.h"
41
42 #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
43 #define BSWAP_NEEDED
44 #endif
45
46 #ifdef BSWAP_NEEDED
47
48 static inline uint16_t tswap16(uint16_t s)
49 {
50 return bswap16(s);
51 }
52
53 static inline uint32_t tswap32(uint32_t s)
54 {
55 return bswap32(s);
56 }
57
58 static inline uint64_t tswap64(uint64_t s)
59 {
60 return bswap64(s);
61 }
62
63 static inline void tswap16s(uint16_t *s)
64 {
65 *s = bswap16(*s);
66 }
67
68 static inline void tswap32s(uint32_t *s)
69 {
70 *s = bswap32(*s);
71 }
72
73 static inline void tswap64s(uint64_t *s)
74 {
75 *s = bswap64(*s);
76 }
77
78 #else
79
80 static inline uint16_t tswap16(uint16_t s)
81 {
82 return s;
83 }
84
85 static inline uint32_t tswap32(uint32_t s)
86 {
87 return s;
88 }
89
90 static inline uint64_t tswap64(uint64_t s)
91 {
92 return s;
93 }
94
95 static inline void tswap16s(uint16_t *s)
96 {
97 }
98
99 static inline void tswap32s(uint32_t *s)
100 {
101 }
102
103 static inline void tswap64s(uint64_t *s)
104 {
105 }
106
107 #endif
108
109 #if TARGET_LONG_SIZE == 4
110 #define tswapl(s) tswap32(s)
111 #define tswapls(s) tswap32s((uint32_t *)(s))
112 #define bswaptls(s) bswap32s(s)
113 #else
114 #define tswapl(s) tswap64(s)
115 #define tswapls(s) tswap64s((uint64_t *)(s))
116 #define bswaptls(s) bswap64s(s)
117 #endif
118
119 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
120 endian ! */
121 typedef union {
122 float64 d;
123 #if defined(WORDS_BIGENDIAN) \
124 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
125 struct {
126 uint32_t upper;
127 uint32_t lower;
128 } l;
129 #else
130 struct {
131 uint32_t lower;
132 uint32_t upper;
133 } l;
134 #endif
135 uint64_t ll;
136 } CPU_DoubleU;
137
138 /* CPU memory access without any memory or io remapping */
139
140 /*
141 * the generic syntax for the memory accesses is:
142 *
143 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
144 *
145 * store: st{type}{size}{endian}_{access_type}(ptr, val)
146 *
147 * type is:
148 * (empty): integer access
149 * f : float access
150 *
151 * sign is:
152 * (empty): for floats or 32 bit size
153 * u : unsigned
154 * s : signed
155 *
156 * size is:
157 * b: 8 bits
158 * w: 16 bits
159 * l: 32 bits
160 * q: 64 bits
161 *
162 * endian is:
163 * (empty): target cpu endianness or 8 bit access
164 * r : reversed target cpu endianness (not implemented yet)
165 * be : big endian (not implemented yet)
166 * le : little endian (not implemented yet)
167 *
168 * access_type is:
169 * raw : host memory access
170 * user : user mode access using soft MMU
171 * kernel : kernel mode access using soft MMU
172 */
173 static inline int ldub_p(void *ptr)
174 {
175 return *(uint8_t *)ptr;
176 }
177
178 static inline int ldsb_p(void *ptr)
179 {
180 return *(int8_t *)ptr;
181 }
182
183 static inline void stb_p(void *ptr, int v)
184 {
185 *(uint8_t *)ptr = v;
186 }
187
188 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
189 kernel handles unaligned load/stores may give better results, but
190 it is a system wide setting : bad */
191 #if !defined(TARGET_WORDS_BIGENDIAN) && (defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED))
192
193 /* conservative code for little endian unaligned accesses */
194 static inline int lduw_p(void *ptr)
195 {
196 #ifdef __powerpc__
197 int val;
198 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
199 return val;
200 #else
201 uint8_t *p = ptr;
202 return p[0] | (p[1] << 8);
203 #endif
204 }
205
206 static inline int ldsw_p(void *ptr)
207 {
208 #ifdef __powerpc__
209 int val;
210 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
211 return (int16_t)val;
212 #else
213 uint8_t *p = ptr;
214 return (int16_t)(p[0] | (p[1] << 8));
215 #endif
216 }
217
218 static inline int ldl_p(void *ptr)
219 {
220 #ifdef __powerpc__
221 int val;
222 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
223 return val;
224 #else
225 uint8_t *p = ptr;
226 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
227 #endif
228 }
229
230 static inline uint64_t ldq_p(void *ptr)
231 {
232 uint8_t *p = ptr;
233 uint32_t v1, v2;
234 v1 = ldl_p(p);
235 v2 = ldl_p(p + 4);
236 return v1 | ((uint64_t)v2 << 32);
237 }
238
239 static inline void stw_p(void *ptr, int v)
240 {
241 #ifdef __powerpc__
242 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
243 #else
244 uint8_t *p = ptr;
245 p[0] = v;
246 p[1] = v >> 8;
247 #endif
248 }
249
250 static inline void stl_p(void *ptr, int v)
251 {
252 #ifdef __powerpc__
253 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
254 #else
255 uint8_t *p = ptr;
256 p[0] = v;
257 p[1] = v >> 8;
258 p[2] = v >> 16;
259 p[3] = v >> 24;
260 #endif
261 }
262
263 static inline void stq_p(void *ptr, uint64_t v)
264 {
265 uint8_t *p = ptr;
266 stl_p(p, (uint32_t)v);
267 stl_p(p + 4, v >> 32);
268 }
269
270 /* float access */
271
272 static inline float32 ldfl_p(void *ptr)
273 {
274 union {
275 float32 f;
276 uint32_t i;
277 } u;
278 u.i = ldl_p(ptr);
279 return u.f;
280 }
281
282 static inline void stfl_p(void *ptr, float32 v)
283 {
284 union {
285 float32 f;
286 uint32_t i;
287 } u;
288 u.f = v;
289 stl_p(ptr, u.i);
290 }
291
292 static inline float64 ldfq_p(void *ptr)
293 {
294 CPU_DoubleU u;
295 u.l.lower = ldl_p(ptr);
296 u.l.upper = ldl_p(ptr + 4);
297 return u.d;
298 }
299
300 static inline void stfq_p(void *ptr, float64 v)
301 {
302 CPU_DoubleU u;
303 u.d = v;
304 stl_p(ptr, u.l.lower);
305 stl_p(ptr + 4, u.l.upper);
306 }
307
308 #elif defined(TARGET_WORDS_BIGENDIAN) && (!defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED))
309
310 static inline int lduw_p(void *ptr)
311 {
312 #if defined(__i386__)
313 int val;
314 asm volatile ("movzwl %1, %0\n"
315 "xchgb %b0, %h0\n"
316 : "=q" (val)
317 : "m" (*(uint16_t *)ptr));
318 return val;
319 #else
320 uint8_t *b = (uint8_t *) ptr;
321 return ((b[0] << 8) | b[1]);
322 #endif
323 }
324
325 static inline int ldsw_p(void *ptr)
326 {
327 #if defined(__i386__)
328 int val;
329 asm volatile ("movzwl %1, %0\n"
330 "xchgb %b0, %h0\n"
331 : "=q" (val)
332 : "m" (*(uint16_t *)ptr));
333 return (int16_t)val;
334 #else
335 uint8_t *b = (uint8_t *) ptr;
336 return (int16_t)((b[0] << 8) | b[1]);
337 #endif
338 }
339
340 static inline int ldl_p(void *ptr)
341 {
342 #if defined(__i386__) || defined(__x86_64__)
343 int val;
344 asm volatile ("movl %1, %0\n"
345 "bswap %0\n"
346 : "=r" (val)
347 : "m" (*(uint32_t *)ptr));
348 return val;
349 #else
350 uint8_t *b = (uint8_t *) ptr;
351 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
352 #endif
353 }
354
355 static inline uint64_t ldq_p(void *ptr)
356 {
357 uint32_t a,b;
358 a = ldl_p(ptr);
359 b = ldl_p(ptr+4);
360 return (((uint64_t)a<<32)|b);
361 }
362
363 static inline void stw_p(void *ptr, int v)
364 {
365 #if defined(__i386__)
366 asm volatile ("xchgb %b0, %h0\n"
367 "movw %w0, %1\n"
368 : "=q" (v)
369 : "m" (*(uint16_t *)ptr), "0" (v));
370 #else
371 uint8_t *d = (uint8_t *) ptr;
372 d[0] = v >> 8;
373 d[1] = v;
374 #endif
375 }
376
377 static inline void stl_p(void *ptr, int v)
378 {
379 #if defined(__i386__) || defined(__x86_64__)
380 asm volatile ("bswap %0\n"
381 "movl %0, %1\n"
382 : "=r" (v)
383 : "m" (*(uint32_t *)ptr), "0" (v));
384 #else
385 uint8_t *d = (uint8_t *) ptr;
386 d[0] = v >> 24;
387 d[1] = v >> 16;
388 d[2] = v >> 8;
389 d[3] = v;
390 #endif
391 }
392
393 static inline void stq_p(void *ptr, uint64_t v)
394 {
395 stl_p(ptr, v >> 32);
396 stl_p(ptr + 4, v);
397 }
398
399 /* float access */
400
401 static inline float32 ldfl_p(void *ptr)
402 {
403 union {
404 float32 f;
405 uint32_t i;
406 } u;
407 u.i = ldl_p(ptr);
408 return u.f;
409 }
410
411 static inline void stfl_p(void *ptr, float32 v)
412 {
413 union {
414 float32 f;
415 uint32_t i;
416 } u;
417 u.f = v;
418 stl_p(ptr, u.i);
419 }
420
421 static inline float64 ldfq_p(void *ptr)
422 {
423 CPU_DoubleU u;
424 u.l.upper = ldl_p(ptr);
425 u.l.lower = ldl_p(ptr + 4);
426 return u.d;
427 }
428
429 static inline void stfq_p(void *ptr, float64 v)
430 {
431 CPU_DoubleU u;
432 u.d = v;
433 stl_p(ptr, u.l.upper);
434 stl_p(ptr + 4, u.l.lower);
435 }
436
437 #else
438
439 static inline int lduw_p(void *ptr)
440 {
441 return *(uint16_t *)ptr;
442 }
443
444 static inline int ldsw_p(void *ptr)
445 {
446 return *(int16_t *)ptr;
447 }
448
449 static inline int ldl_p(void *ptr)
450 {
451 return *(uint32_t *)ptr;
452 }
453
454 static inline uint64_t ldq_p(void *ptr)
455 {
456 return *(uint64_t *)ptr;
457 }
458
459 static inline void stw_p(void *ptr, int v)
460 {
461 *(uint16_t *)ptr = v;
462 }
463
464 static inline void stl_p(void *ptr, int v)
465 {
466 *(uint32_t *)ptr = v;
467 }
468
469 static inline void stq_p(void *ptr, uint64_t v)
470 {
471 *(uint64_t *)ptr = v;
472 }
473
474 /* float access */
475
476 static inline float32 ldfl_p(void *ptr)
477 {
478 return *(float32 *)ptr;
479 }
480
481 static inline float64 ldfq_p(void *ptr)
482 {
483 return *(float64 *)ptr;
484 }
485
486 static inline void stfl_p(void *ptr, float32 v)
487 {
488 *(float32 *)ptr = v;
489 }
490
491 static inline void stfq_p(void *ptr, float64 v)
492 {
493 *(float64 *)ptr = v;
494 }
495 #endif
496
497 /* MMU memory access macros */
498
499 /* NOTE: we use double casts if pointers and target_ulong have
500 different sizes */
501 #define ldub_raw(p) ldub_p((uint8_t *)(long)(p))
502 #define ldsb_raw(p) ldsb_p((uint8_t *)(long)(p))
503 #define lduw_raw(p) lduw_p((uint8_t *)(long)(p))
504 #define ldsw_raw(p) ldsw_p((uint8_t *)(long)(p))
505 #define ldl_raw(p) ldl_p((uint8_t *)(long)(p))
506 #define ldq_raw(p) ldq_p((uint8_t *)(long)(p))
507 #define ldfl_raw(p) ldfl_p((uint8_t *)(long)(p))
508 #define ldfq_raw(p) ldfq_p((uint8_t *)(long)(p))
509 #define stb_raw(p, v) stb_p((uint8_t *)(long)(p), v)
510 #define stw_raw(p, v) stw_p((uint8_t *)(long)(p), v)
511 #define stl_raw(p, v) stl_p((uint8_t *)(long)(p), v)
512 #define stq_raw(p, v) stq_p((uint8_t *)(long)(p), v)
513 #define stfl_raw(p, v) stfl_p((uint8_t *)(long)(p), v)
514 #define stfq_raw(p, v) stfq_p((uint8_t *)(long)(p), v)
515
516
517 #if defined(CONFIG_USER_ONLY)
518
519 /* if user mode, no other memory access functions */
520 #define ldub(p) ldub_raw(p)
521 #define ldsb(p) ldsb_raw(p)
522 #define lduw(p) lduw_raw(p)
523 #define ldsw(p) ldsw_raw(p)
524 #define ldl(p) ldl_raw(p)
525 #define ldq(p) ldq_raw(p)
526 #define ldfl(p) ldfl_raw(p)
527 #define ldfq(p) ldfq_raw(p)
528 #define stb(p, v) stb_raw(p, v)
529 #define stw(p, v) stw_raw(p, v)
530 #define stl(p, v) stl_raw(p, v)
531 #define stq(p, v) stq_raw(p, v)
532 #define stfl(p, v) stfl_raw(p, v)
533 #define stfq(p, v) stfq_raw(p, v)
534
535 #define ldub_code(p) ldub_raw(p)
536 #define ldsb_code(p) ldsb_raw(p)
537 #define lduw_code(p) lduw_raw(p)
538 #define ldsw_code(p) ldsw_raw(p)
539 #define ldl_code(p) ldl_raw(p)
540
541 #define ldub_kernel(p) ldub_raw(p)
542 #define ldsb_kernel(p) ldsb_raw(p)
543 #define lduw_kernel(p) lduw_raw(p)
544 #define ldsw_kernel(p) ldsw_raw(p)
545 #define ldl_kernel(p) ldl_raw(p)
546 #define ldfl_kernel(p) ldfl_raw(p)
547 #define ldfq_kernel(p) ldfq_raw(p)
548 #define stb_kernel(p, v) stb_raw(p, v)
549 #define stw_kernel(p, v) stw_raw(p, v)
550 #define stl_kernel(p, v) stl_raw(p, v)
551 #define stq_kernel(p, v) stq_raw(p, v)
552 #define stfl_kernel(p, v) stfl_raw(p, v)
553 #define stfq_kernel(p, vt) stfq_raw(p, v)
554
555 #endif /* defined(CONFIG_USER_ONLY) */
556
557 /* page related stuff */
558
559 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
560 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
561 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
562
563 extern unsigned long qemu_real_host_page_size;
564 extern unsigned long qemu_host_page_bits;
565 extern unsigned long qemu_host_page_size;
566 extern unsigned long qemu_host_page_mask;
567
568 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
569
570 /* same as PROT_xxx */
571 #define PAGE_READ 0x0001
572 #define PAGE_WRITE 0x0002
573 #define PAGE_EXEC 0x0004
574 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
575 #define PAGE_VALID 0x0008
576 /* original state of the write flag (used when tracking self-modifying
577 code */
578 #define PAGE_WRITE_ORG 0x0010
579
580 void page_dump(FILE *f);
581 int page_get_flags(unsigned long address);
582 void page_set_flags(unsigned long start, unsigned long end, int flags);
583 void page_unprotect_range(uint8_t *data, unsigned long data_size);
584
585 #define SINGLE_CPU_DEFINES
586 #ifdef SINGLE_CPU_DEFINES
587
588 #if defined(TARGET_I386)
589
590 #define CPUState CPUX86State
591 #define cpu_init cpu_x86_init
592 #define cpu_exec cpu_x86_exec
593 #define cpu_gen_code cpu_x86_gen_code
594 #define cpu_signal_handler cpu_x86_signal_handler
595
596 #elif defined(TARGET_ARM)
597
598 #define CPUState CPUARMState
599 #define cpu_init cpu_arm_init
600 #define cpu_exec cpu_arm_exec
601 #define cpu_gen_code cpu_arm_gen_code
602 #define cpu_signal_handler cpu_arm_signal_handler
603
604 #elif defined(TARGET_SPARC)
605
606 #define CPUState CPUSPARCState
607 #define cpu_init cpu_sparc_init
608 #define cpu_exec cpu_sparc_exec
609 #define cpu_gen_code cpu_sparc_gen_code
610 #define cpu_signal_handler cpu_sparc_signal_handler
611
612 #elif defined(TARGET_PPC)
613
614 #define CPUState CPUPPCState
615 #define cpu_init cpu_ppc_init
616 #define cpu_exec cpu_ppc_exec
617 #define cpu_gen_code cpu_ppc_gen_code
618 #define cpu_signal_handler cpu_ppc_signal_handler
619
620 #else
621
622 #error unsupported target CPU
623
624 #endif
625
626 #endif /* SINGLE_CPU_DEFINES */
627
628 void cpu_dump_state(CPUState *env, FILE *f,
629 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
630 int flags);
631
632 void cpu_abort(CPUState *env, const char *fmt, ...);
633 extern CPUState *cpu_single_env;
634 extern int code_copy_enabled;
635
636 #define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
637 #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
638 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
639 #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
640 void cpu_interrupt(CPUState *s, int mask);
641 void cpu_reset_interrupt(CPUState *env, int mask);
642
643 int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
644 int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
645 void cpu_single_step(CPUState *env, int enabled);
646 void cpu_reset(CPUState *s);
647
648 /* Return the physical page corresponding to a virtual one. Use it
649 only for debugging because no protection checks are done. Return -1
650 if no page found. */
651 target_ulong cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
652
653 #define CPU_LOG_TB_OUT_ASM (1 << 0)
654 #define CPU_LOG_TB_IN_ASM (1 << 1)
655 #define CPU_LOG_TB_OP (1 << 2)
656 #define CPU_LOG_TB_OP_OPT (1 << 3)
657 #define CPU_LOG_INT (1 << 4)
658 #define CPU_LOG_EXEC (1 << 5)
659 #define CPU_LOG_PCALL (1 << 6)
660 #define CPU_LOG_IOPORT (1 << 7)
661 #define CPU_LOG_TB_CPU (1 << 8)
662
663 /* define log items */
664 typedef struct CPULogItem {
665 int mask;
666 const char *name;
667 const char *help;
668 } CPULogItem;
669
670 extern CPULogItem cpu_log_items[];
671
672 void cpu_set_log(int log_flags);
673 void cpu_set_log_filename(const char *filename);
674 int cpu_str_to_log_mask(const char *str);
675
676 /* IO ports API */
677
678 /* NOTE: as these functions may be even used when there is an isa
679 brige on non x86 targets, we always defined them */
680 #ifndef NO_CPU_IO_DEFS
681 void cpu_outb(CPUState *env, int addr, int val);
682 void cpu_outw(CPUState *env, int addr, int val);
683 void cpu_outl(CPUState *env, int addr, int val);
684 int cpu_inb(CPUState *env, int addr);
685 int cpu_inw(CPUState *env, int addr);
686 int cpu_inl(CPUState *env, int addr);
687 #endif
688
689 /* memory API */
690
691 extern int phys_ram_size;
692 extern int phys_ram_fd;
693 extern uint8_t *phys_ram_base;
694 extern uint8_t *phys_ram_dirty;
695
696 /* physical memory access */
697 #define IO_MEM_NB_ENTRIES 256
698 #define TLB_INVALID_MASK (1 << 3)
699 #define IO_MEM_SHIFT 4
700
701 #define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
702 #define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
703 #define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
704 #define IO_MEM_CODE (3 << IO_MEM_SHIFT) /* used internally, never use directly */
705 #define IO_MEM_NOTDIRTY (4 << IO_MEM_SHIFT) /* used internally, never use directly */
706
707 typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
708 typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
709
710 void cpu_register_physical_memory(target_phys_addr_t start_addr,
711 unsigned long size,
712 unsigned long phys_offset);
713 int cpu_register_io_memory(int io_index,
714 CPUReadMemoryFunc **mem_read,
715 CPUWriteMemoryFunc **mem_write,
716 void *opaque);
717 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
718 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
719
720 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
721 int len, int is_write);
722 static inline void cpu_physical_memory_read(target_phys_addr_t addr,
723 uint8_t *buf, int len)
724 {
725 cpu_physical_memory_rw(addr, buf, len, 0);
726 }
727 static inline void cpu_physical_memory_write(target_phys_addr_t addr,
728 const uint8_t *buf, int len)
729 {
730 cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
731 }
732 uint32_t ldl_phys(target_phys_addr_t addr);
733 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
734 void stl_phys(target_phys_addr_t addr, uint32_t val);
735
736 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
737 uint8_t *buf, int len, int is_write);
738
739 #define VGA_DIRTY_FLAG 0x01
740
741 /* read dirty bit (return 0 or 1) */
742 static inline int cpu_physical_memory_is_dirty(target_ulong addr)
743 {
744 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
745 }
746
747 static inline int cpu_physical_memory_get_dirty(target_ulong addr,
748 int dirty_flags)
749 {
750 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
751 }
752
753 static inline void cpu_physical_memory_set_dirty(target_ulong addr)
754 {
755 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
756 }
757
758 void cpu_physical_memory_reset_dirty(target_ulong start, target_ulong end,
759 int dirty_flags);
760
761 void dump_exec_info(FILE *f,
762 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
763
764 #endif /* CPU_ALL_H */