]> git.proxmox.com Git - qemu.git/blob - cpu-all.h
qemu-char: Print strerror message on failure
[qemu.git] / cpu-all.h
1 /*
2 * defines common to all virtual CPUs
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #ifndef CPU_ALL_H
20 #define CPU_ALL_H
21
22 #include "qemu-common.h"
23 #include "cpu-common.h"
24
25 /* some important defines:
26 *
27 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
28 * memory accesses.
29 *
30 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
31 * otherwise little endian.
32 *
33 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
34 *
35 * TARGET_WORDS_BIGENDIAN : same for target cpu
36 */
37
38 #include "softfloat.h"
39
40 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
41 #define BSWAP_NEEDED
42 #endif
43
44 #ifdef BSWAP_NEEDED
45
46 static inline uint16_t tswap16(uint16_t s)
47 {
48 return bswap16(s);
49 }
50
51 static inline uint32_t tswap32(uint32_t s)
52 {
53 return bswap32(s);
54 }
55
56 static inline uint64_t tswap64(uint64_t s)
57 {
58 return bswap64(s);
59 }
60
61 static inline void tswap16s(uint16_t *s)
62 {
63 *s = bswap16(*s);
64 }
65
66 static inline void tswap32s(uint32_t *s)
67 {
68 *s = bswap32(*s);
69 }
70
71 static inline void tswap64s(uint64_t *s)
72 {
73 *s = bswap64(*s);
74 }
75
76 #else
77
78 static inline uint16_t tswap16(uint16_t s)
79 {
80 return s;
81 }
82
83 static inline uint32_t tswap32(uint32_t s)
84 {
85 return s;
86 }
87
88 static inline uint64_t tswap64(uint64_t s)
89 {
90 return s;
91 }
92
93 static inline void tswap16s(uint16_t *s)
94 {
95 }
96
97 static inline void tswap32s(uint32_t *s)
98 {
99 }
100
101 static inline void tswap64s(uint64_t *s)
102 {
103 }
104
105 #endif
106
107 #if TARGET_LONG_SIZE == 4
108 #define tswapl(s) tswap32(s)
109 #define tswapls(s) tswap32s((uint32_t *)(s))
110 #define bswaptls(s) bswap32s(s)
111 #else
112 #define tswapl(s) tswap64(s)
113 #define tswapls(s) tswap64s((uint64_t *)(s))
114 #define bswaptls(s) bswap64s(s)
115 #endif
116
117 typedef union {
118 float32 f;
119 uint32_t l;
120 } CPU_FloatU;
121
122 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
123 endian ! */
124 typedef union {
125 float64 d;
126 #if defined(HOST_WORDS_BIGENDIAN)
127 struct {
128 uint32_t upper;
129 uint32_t lower;
130 } l;
131 #else
132 struct {
133 uint32_t lower;
134 uint32_t upper;
135 } l;
136 #endif
137 uint64_t ll;
138 } CPU_DoubleU;
139
140 typedef union {
141 floatx80 d;
142 struct {
143 uint64_t lower;
144 uint16_t upper;
145 } l;
146 } CPU_LDoubleU;
147
148 typedef union {
149 float128 q;
150 #if defined(HOST_WORDS_BIGENDIAN)
151 struct {
152 uint32_t upmost;
153 uint32_t upper;
154 uint32_t lower;
155 uint32_t lowest;
156 } l;
157 struct {
158 uint64_t upper;
159 uint64_t lower;
160 } ll;
161 #else
162 struct {
163 uint32_t lowest;
164 uint32_t lower;
165 uint32_t upper;
166 uint32_t upmost;
167 } l;
168 struct {
169 uint64_t lower;
170 uint64_t upper;
171 } ll;
172 #endif
173 } CPU_QuadU;
174
175 /* CPU memory access without any memory or io remapping */
176
177 /*
178 * the generic syntax for the memory accesses is:
179 *
180 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
181 *
182 * store: st{type}{size}{endian}_{access_type}(ptr, val)
183 *
184 * type is:
185 * (empty): integer access
186 * f : float access
187 *
188 * sign is:
189 * (empty): for floats or 32 bit size
190 * u : unsigned
191 * s : signed
192 *
193 * size is:
194 * b: 8 bits
195 * w: 16 bits
196 * l: 32 bits
197 * q: 64 bits
198 *
199 * endian is:
200 * (empty): target cpu endianness or 8 bit access
201 * r : reversed target cpu endianness (not implemented yet)
202 * be : big endian (not implemented yet)
203 * le : little endian (not implemented yet)
204 *
205 * access_type is:
206 * raw : host memory access
207 * user : user mode access using soft MMU
208 * kernel : kernel mode access using soft MMU
209 */
210 static inline int ldub_p(const void *ptr)
211 {
212 return *(uint8_t *)ptr;
213 }
214
215 static inline int ldsb_p(const void *ptr)
216 {
217 return *(int8_t *)ptr;
218 }
219
220 static inline void stb_p(void *ptr, int v)
221 {
222 *(uint8_t *)ptr = v;
223 }
224
225 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
226 kernel handles unaligned load/stores may give better results, but
227 it is a system wide setting : bad */
228 #if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
229
230 /* conservative code for little endian unaligned accesses */
231 static inline int lduw_le_p(const void *ptr)
232 {
233 #ifdef _ARCH_PPC
234 int val;
235 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
236 return val;
237 #else
238 const uint8_t *p = ptr;
239 return p[0] | (p[1] << 8);
240 #endif
241 }
242
243 static inline int ldsw_le_p(const void *ptr)
244 {
245 #ifdef _ARCH_PPC
246 int val;
247 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
248 return (int16_t)val;
249 #else
250 const uint8_t *p = ptr;
251 return (int16_t)(p[0] | (p[1] << 8));
252 #endif
253 }
254
255 static inline int ldl_le_p(const void *ptr)
256 {
257 #ifdef _ARCH_PPC
258 int val;
259 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
260 return val;
261 #else
262 const uint8_t *p = ptr;
263 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
264 #endif
265 }
266
267 static inline uint64_t ldq_le_p(const void *ptr)
268 {
269 const uint8_t *p = ptr;
270 uint32_t v1, v2;
271 v1 = ldl_le_p(p);
272 v2 = ldl_le_p(p + 4);
273 return v1 | ((uint64_t)v2 << 32);
274 }
275
276 static inline void stw_le_p(void *ptr, int v)
277 {
278 #ifdef _ARCH_PPC
279 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
280 #else
281 uint8_t *p = ptr;
282 p[0] = v;
283 p[1] = v >> 8;
284 #endif
285 }
286
287 static inline void stl_le_p(void *ptr, int v)
288 {
289 #ifdef _ARCH_PPC
290 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
291 #else
292 uint8_t *p = ptr;
293 p[0] = v;
294 p[1] = v >> 8;
295 p[2] = v >> 16;
296 p[3] = v >> 24;
297 #endif
298 }
299
300 static inline void stq_le_p(void *ptr, uint64_t v)
301 {
302 uint8_t *p = ptr;
303 stl_le_p(p, (uint32_t)v);
304 stl_le_p(p + 4, v >> 32);
305 }
306
307 /* float access */
308
309 static inline float32 ldfl_le_p(const void *ptr)
310 {
311 union {
312 float32 f;
313 uint32_t i;
314 } u;
315 u.i = ldl_le_p(ptr);
316 return u.f;
317 }
318
319 static inline void stfl_le_p(void *ptr, float32 v)
320 {
321 union {
322 float32 f;
323 uint32_t i;
324 } u;
325 u.f = v;
326 stl_le_p(ptr, u.i);
327 }
328
329 static inline float64 ldfq_le_p(const void *ptr)
330 {
331 CPU_DoubleU u;
332 u.l.lower = ldl_le_p(ptr);
333 u.l.upper = ldl_le_p(ptr + 4);
334 return u.d;
335 }
336
337 static inline void stfq_le_p(void *ptr, float64 v)
338 {
339 CPU_DoubleU u;
340 u.d = v;
341 stl_le_p(ptr, u.l.lower);
342 stl_le_p(ptr + 4, u.l.upper);
343 }
344
345 #else
346
347 static inline int lduw_le_p(const void *ptr)
348 {
349 return *(uint16_t *)ptr;
350 }
351
352 static inline int ldsw_le_p(const void *ptr)
353 {
354 return *(int16_t *)ptr;
355 }
356
357 static inline int ldl_le_p(const void *ptr)
358 {
359 return *(uint32_t *)ptr;
360 }
361
362 static inline uint64_t ldq_le_p(const void *ptr)
363 {
364 return *(uint64_t *)ptr;
365 }
366
367 static inline void stw_le_p(void *ptr, int v)
368 {
369 *(uint16_t *)ptr = v;
370 }
371
372 static inline void stl_le_p(void *ptr, int v)
373 {
374 *(uint32_t *)ptr = v;
375 }
376
377 static inline void stq_le_p(void *ptr, uint64_t v)
378 {
379 *(uint64_t *)ptr = v;
380 }
381
382 /* float access */
383
384 static inline float32 ldfl_le_p(const void *ptr)
385 {
386 return *(float32 *)ptr;
387 }
388
389 static inline float64 ldfq_le_p(const void *ptr)
390 {
391 return *(float64 *)ptr;
392 }
393
394 static inline void stfl_le_p(void *ptr, float32 v)
395 {
396 *(float32 *)ptr = v;
397 }
398
399 static inline void stfq_le_p(void *ptr, float64 v)
400 {
401 *(float64 *)ptr = v;
402 }
403 #endif
404
405 #if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
406
407 static inline int lduw_be_p(const void *ptr)
408 {
409 #if defined(__i386__)
410 int val;
411 asm volatile ("movzwl %1, %0\n"
412 "xchgb %b0, %h0\n"
413 : "=q" (val)
414 : "m" (*(uint16_t *)ptr));
415 return val;
416 #else
417 const uint8_t *b = ptr;
418 return ((b[0] << 8) | b[1]);
419 #endif
420 }
421
422 static inline int ldsw_be_p(const void *ptr)
423 {
424 #if defined(__i386__)
425 int val;
426 asm volatile ("movzwl %1, %0\n"
427 "xchgb %b0, %h0\n"
428 : "=q" (val)
429 : "m" (*(uint16_t *)ptr));
430 return (int16_t)val;
431 #else
432 const uint8_t *b = ptr;
433 return (int16_t)((b[0] << 8) | b[1]);
434 #endif
435 }
436
437 static inline int ldl_be_p(const void *ptr)
438 {
439 #if defined(__i386__) || defined(__x86_64__)
440 int val;
441 asm volatile ("movl %1, %0\n"
442 "bswap %0\n"
443 : "=r" (val)
444 : "m" (*(uint32_t *)ptr));
445 return val;
446 #else
447 const uint8_t *b = ptr;
448 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
449 #endif
450 }
451
452 static inline uint64_t ldq_be_p(const void *ptr)
453 {
454 uint32_t a,b;
455 a = ldl_be_p(ptr);
456 b = ldl_be_p((uint8_t *)ptr + 4);
457 return (((uint64_t)a<<32)|b);
458 }
459
460 static inline void stw_be_p(void *ptr, int v)
461 {
462 #if defined(__i386__)
463 asm volatile ("xchgb %b0, %h0\n"
464 "movw %w0, %1\n"
465 : "=q" (v)
466 : "m" (*(uint16_t *)ptr), "0" (v));
467 #else
468 uint8_t *d = (uint8_t *) ptr;
469 d[0] = v >> 8;
470 d[1] = v;
471 #endif
472 }
473
474 static inline void stl_be_p(void *ptr, int v)
475 {
476 #if defined(__i386__) || defined(__x86_64__)
477 asm volatile ("bswap %0\n"
478 "movl %0, %1\n"
479 : "=r" (v)
480 : "m" (*(uint32_t *)ptr), "0" (v));
481 #else
482 uint8_t *d = (uint8_t *) ptr;
483 d[0] = v >> 24;
484 d[1] = v >> 16;
485 d[2] = v >> 8;
486 d[3] = v;
487 #endif
488 }
489
490 static inline void stq_be_p(void *ptr, uint64_t v)
491 {
492 stl_be_p(ptr, v >> 32);
493 stl_be_p((uint8_t *)ptr + 4, v);
494 }
495
496 /* float access */
497
498 static inline float32 ldfl_be_p(const void *ptr)
499 {
500 union {
501 float32 f;
502 uint32_t i;
503 } u;
504 u.i = ldl_be_p(ptr);
505 return u.f;
506 }
507
508 static inline void stfl_be_p(void *ptr, float32 v)
509 {
510 union {
511 float32 f;
512 uint32_t i;
513 } u;
514 u.f = v;
515 stl_be_p(ptr, u.i);
516 }
517
518 static inline float64 ldfq_be_p(const void *ptr)
519 {
520 CPU_DoubleU u;
521 u.l.upper = ldl_be_p(ptr);
522 u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
523 return u.d;
524 }
525
526 static inline void stfq_be_p(void *ptr, float64 v)
527 {
528 CPU_DoubleU u;
529 u.d = v;
530 stl_be_p(ptr, u.l.upper);
531 stl_be_p((uint8_t *)ptr + 4, u.l.lower);
532 }
533
534 #else
535
536 static inline int lduw_be_p(const void *ptr)
537 {
538 return *(uint16_t *)ptr;
539 }
540
541 static inline int ldsw_be_p(const void *ptr)
542 {
543 return *(int16_t *)ptr;
544 }
545
546 static inline int ldl_be_p(const void *ptr)
547 {
548 return *(uint32_t *)ptr;
549 }
550
551 static inline uint64_t ldq_be_p(const void *ptr)
552 {
553 return *(uint64_t *)ptr;
554 }
555
556 static inline void stw_be_p(void *ptr, int v)
557 {
558 *(uint16_t *)ptr = v;
559 }
560
561 static inline void stl_be_p(void *ptr, int v)
562 {
563 *(uint32_t *)ptr = v;
564 }
565
566 static inline void stq_be_p(void *ptr, uint64_t v)
567 {
568 *(uint64_t *)ptr = v;
569 }
570
571 /* float access */
572
573 static inline float32 ldfl_be_p(const void *ptr)
574 {
575 return *(float32 *)ptr;
576 }
577
578 static inline float64 ldfq_be_p(const void *ptr)
579 {
580 return *(float64 *)ptr;
581 }
582
583 static inline void stfl_be_p(void *ptr, float32 v)
584 {
585 *(float32 *)ptr = v;
586 }
587
588 static inline void stfq_be_p(void *ptr, float64 v)
589 {
590 *(float64 *)ptr = v;
591 }
592
593 #endif
594
595 /* target CPU memory access functions */
596 #if defined(TARGET_WORDS_BIGENDIAN)
597 #define lduw_p(p) lduw_be_p(p)
598 #define ldsw_p(p) ldsw_be_p(p)
599 #define ldl_p(p) ldl_be_p(p)
600 #define ldq_p(p) ldq_be_p(p)
601 #define ldfl_p(p) ldfl_be_p(p)
602 #define ldfq_p(p) ldfq_be_p(p)
603 #define stw_p(p, v) stw_be_p(p, v)
604 #define stl_p(p, v) stl_be_p(p, v)
605 #define stq_p(p, v) stq_be_p(p, v)
606 #define stfl_p(p, v) stfl_be_p(p, v)
607 #define stfq_p(p, v) stfq_be_p(p, v)
608 #else
609 #define lduw_p(p) lduw_le_p(p)
610 #define ldsw_p(p) ldsw_le_p(p)
611 #define ldl_p(p) ldl_le_p(p)
612 #define ldq_p(p) ldq_le_p(p)
613 #define ldfl_p(p) ldfl_le_p(p)
614 #define ldfq_p(p) ldfq_le_p(p)
615 #define stw_p(p, v) stw_le_p(p, v)
616 #define stl_p(p, v) stl_le_p(p, v)
617 #define stq_p(p, v) stq_le_p(p, v)
618 #define stfl_p(p, v) stfl_le_p(p, v)
619 #define stfq_p(p, v) stfq_le_p(p, v)
620 #endif
621
622 /* MMU memory access macros */
623
624 #if defined(CONFIG_USER_ONLY)
625 #include <assert.h>
626 #include "qemu-types.h"
627
628 /* On some host systems the guest address space is reserved on the host.
629 * This allows the guest address space to be offset to a convenient location.
630 */
631 #if defined(CONFIG_USE_GUEST_BASE)
632 extern unsigned long guest_base;
633 extern int have_guest_base;
634 extern unsigned long reserved_va;
635 #define GUEST_BASE guest_base
636 #define RESERVED_VA reserved_va
637 #else
638 #define GUEST_BASE 0ul
639 #define RESERVED_VA 0ul
640 #endif
641
642 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
643 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
644
645 #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
646 #define h2g_valid(x) 1
647 #else
648 #define h2g_valid(x) ({ \
649 unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
650 __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \
651 })
652 #endif
653
654 #define h2g(x) ({ \
655 unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
656 /* Check if given address fits target address space */ \
657 assert(h2g_valid(x)); \
658 (abi_ulong)__ret; \
659 })
660
661 #define saddr(x) g2h(x)
662 #define laddr(x) g2h(x)
663
664 #else /* !CONFIG_USER_ONLY */
665 /* NOTE: we use double casts if pointers and target_ulong have
666 different sizes */
667 #define saddr(x) (uint8_t *)(long)(x)
668 #define laddr(x) (uint8_t *)(long)(x)
669 #endif
670
671 #define ldub_raw(p) ldub_p(laddr((p)))
672 #define ldsb_raw(p) ldsb_p(laddr((p)))
673 #define lduw_raw(p) lduw_p(laddr((p)))
674 #define ldsw_raw(p) ldsw_p(laddr((p)))
675 #define ldl_raw(p) ldl_p(laddr((p)))
676 #define ldq_raw(p) ldq_p(laddr((p)))
677 #define ldfl_raw(p) ldfl_p(laddr((p)))
678 #define ldfq_raw(p) ldfq_p(laddr((p)))
679 #define stb_raw(p, v) stb_p(saddr((p)), v)
680 #define stw_raw(p, v) stw_p(saddr((p)), v)
681 #define stl_raw(p, v) stl_p(saddr((p)), v)
682 #define stq_raw(p, v) stq_p(saddr((p)), v)
683 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
684 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
685
686
687 #if defined(CONFIG_USER_ONLY)
688
689 /* if user mode, no other memory access functions */
690 #define ldub(p) ldub_raw(p)
691 #define ldsb(p) ldsb_raw(p)
692 #define lduw(p) lduw_raw(p)
693 #define ldsw(p) ldsw_raw(p)
694 #define ldl(p) ldl_raw(p)
695 #define ldq(p) ldq_raw(p)
696 #define ldfl(p) ldfl_raw(p)
697 #define ldfq(p) ldfq_raw(p)
698 #define stb(p, v) stb_raw(p, v)
699 #define stw(p, v) stw_raw(p, v)
700 #define stl(p, v) stl_raw(p, v)
701 #define stq(p, v) stq_raw(p, v)
702 #define stfl(p, v) stfl_raw(p, v)
703 #define stfq(p, v) stfq_raw(p, v)
704
705 #define ldub_code(p) ldub_raw(p)
706 #define ldsb_code(p) ldsb_raw(p)
707 #define lduw_code(p) lduw_raw(p)
708 #define ldsw_code(p) ldsw_raw(p)
709 #define ldl_code(p) ldl_raw(p)
710 #define ldq_code(p) ldq_raw(p)
711
712 #define ldub_kernel(p) ldub_raw(p)
713 #define ldsb_kernel(p) ldsb_raw(p)
714 #define lduw_kernel(p) lduw_raw(p)
715 #define ldsw_kernel(p) ldsw_raw(p)
716 #define ldl_kernel(p) ldl_raw(p)
717 #define ldq_kernel(p) ldq_raw(p)
718 #define ldfl_kernel(p) ldfl_raw(p)
719 #define ldfq_kernel(p) ldfq_raw(p)
720 #define stb_kernel(p, v) stb_raw(p, v)
721 #define stw_kernel(p, v) stw_raw(p, v)
722 #define stl_kernel(p, v) stl_raw(p, v)
723 #define stq_kernel(p, v) stq_raw(p, v)
724 #define stfl_kernel(p, v) stfl_raw(p, v)
725 #define stfq_kernel(p, vt) stfq_raw(p, v)
726
727 #endif /* defined(CONFIG_USER_ONLY) */
728
729 /* page related stuff */
730
731 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
732 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
733 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
734
735 /* ??? These should be the larger of unsigned long and target_ulong. */
736 extern unsigned long qemu_real_host_page_size;
737 extern unsigned long qemu_host_page_bits;
738 extern unsigned long qemu_host_page_size;
739 extern unsigned long qemu_host_page_mask;
740
741 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
742
743 /* same as PROT_xxx */
744 #define PAGE_READ 0x0001
745 #define PAGE_WRITE 0x0002
746 #define PAGE_EXEC 0x0004
747 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
748 #define PAGE_VALID 0x0008
749 /* original state of the write flag (used when tracking self-modifying
750 code */
751 #define PAGE_WRITE_ORG 0x0010
752 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
753 /* FIXME: Code that sets/uses this is broken and needs to go away. */
754 #define PAGE_RESERVED 0x0020
755 #endif
756
757 #if defined(CONFIG_USER_ONLY)
758 void page_dump(FILE *f);
759
760 typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
761 abi_ulong, unsigned long);
762 int walk_memory_regions(void *, walk_memory_regions_fn);
763
764 int page_get_flags(target_ulong address);
765 void page_set_flags(target_ulong start, target_ulong end, int flags);
766 int page_check_range(target_ulong start, target_ulong len, int flags);
767 #endif
768
769 CPUState *cpu_copy(CPUState *env);
770 CPUState *qemu_get_cpu(int cpu);
771
772 #define CPU_DUMP_CODE 0x00010000
773
774 void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
775 int flags);
776 void cpu_dump_statistics(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
777 int flags);
778
779 void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
780 GCC_FMT_ATTR(2, 3);
781 extern CPUState *first_cpu;
782 extern CPUState *cpu_single_env;
783
784 /* Flags for use in ENV->INTERRUPT_PENDING.
785
786 The numbers assigned here are non-sequential in order to preserve
787 binary compatibility with the vmstate dump. Bit 0 (0x0001) was
788 previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
789 the vmstate dump. */
790
791 /* External hardware interrupt pending. This is typically used for
792 interrupts from devices. */
793 #define CPU_INTERRUPT_HARD 0x0002
794
795 /* Exit the current TB. This is typically used when some system-level device
796 makes some change to the memory mapping. E.g. the a20 line change. */
797 #define CPU_INTERRUPT_EXITTB 0x0004
798
799 /* Halt the CPU. */
800 #define CPU_INTERRUPT_HALT 0x0020
801
802 /* Debug event pending. */
803 #define CPU_INTERRUPT_DEBUG 0x0080
804
805 /* Several target-specific external hardware interrupts. Each target/cpu.h
806 should define proper names based on these defines. */
807 #define CPU_INTERRUPT_TGT_EXT_0 0x0008
808 #define CPU_INTERRUPT_TGT_EXT_1 0x0010
809 #define CPU_INTERRUPT_TGT_EXT_2 0x0040
810 #define CPU_INTERRUPT_TGT_EXT_3 0x0200
811 #define CPU_INTERRUPT_TGT_EXT_4 0x1000
812
813 /* Several target-specific internal interrupts. These differ from the
814 preceeding target-specific interrupts in that they are intended to
815 originate from within the cpu itself, typically in response to some
816 instruction being executed. These, therefore, are not masked while
817 single-stepping within the debugger. */
818 #define CPU_INTERRUPT_TGT_INT_0 0x0100
819 #define CPU_INTERRUPT_TGT_INT_1 0x0400
820 #define CPU_INTERRUPT_TGT_INT_2 0x0800
821
822 /* First unused bit: 0x2000. */
823
824 /* The set of all bits that should be masked when single-stepping. */
825 #define CPU_INTERRUPT_SSTEP_MASK \
826 (CPU_INTERRUPT_HARD \
827 | CPU_INTERRUPT_TGT_EXT_0 \
828 | CPU_INTERRUPT_TGT_EXT_1 \
829 | CPU_INTERRUPT_TGT_EXT_2 \
830 | CPU_INTERRUPT_TGT_EXT_3 \
831 | CPU_INTERRUPT_TGT_EXT_4)
832
833 #ifndef CONFIG_USER_ONLY
834 typedef void (*CPUInterruptHandler)(CPUState *, int);
835
836 extern CPUInterruptHandler cpu_interrupt_handler;
837
838 static inline void cpu_interrupt(CPUState *s, int mask)
839 {
840 cpu_interrupt_handler(s, mask);
841 }
842 #else /* USER_ONLY */
843 void cpu_interrupt(CPUState *env, int mask);
844 #endif /* USER_ONLY */
845
846 void cpu_reset_interrupt(CPUState *env, int mask);
847
848 void cpu_exit(CPUState *s);
849
850 bool qemu_cpu_has_work(CPUState *env);
851
852 /* Breakpoint/watchpoint flags */
853 #define BP_MEM_READ 0x01
854 #define BP_MEM_WRITE 0x02
855 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
856 #define BP_STOP_BEFORE_ACCESS 0x04
857 #define BP_WATCHPOINT_HIT 0x08
858 #define BP_GDB 0x10
859 #define BP_CPU 0x20
860
861 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
862 CPUBreakpoint **breakpoint);
863 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
864 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
865 void cpu_breakpoint_remove_all(CPUState *env, int mask);
866 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
867 int flags, CPUWatchpoint **watchpoint);
868 int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
869 target_ulong len, int flags);
870 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
871 void cpu_watchpoint_remove_all(CPUState *env, int mask);
872
873 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
874 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
875 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
876
877 void cpu_single_step(CPUState *env, int enabled);
878 void cpu_reset(CPUState *s);
879 int cpu_is_stopped(CPUState *env);
880 void run_on_cpu(CPUState *env, void (*func)(void *data), void *data);
881
882 #define CPU_LOG_TB_OUT_ASM (1 << 0)
883 #define CPU_LOG_TB_IN_ASM (1 << 1)
884 #define CPU_LOG_TB_OP (1 << 2)
885 #define CPU_LOG_TB_OP_OPT (1 << 3)
886 #define CPU_LOG_INT (1 << 4)
887 #define CPU_LOG_EXEC (1 << 5)
888 #define CPU_LOG_PCALL (1 << 6)
889 #define CPU_LOG_IOPORT (1 << 7)
890 #define CPU_LOG_TB_CPU (1 << 8)
891 #define CPU_LOG_RESET (1 << 9)
892
893 /* define log items */
894 typedef struct CPULogItem {
895 int mask;
896 const char *name;
897 const char *help;
898 } CPULogItem;
899
900 extern const CPULogItem cpu_log_items[];
901
902 void cpu_set_log(int log_flags);
903 void cpu_set_log_filename(const char *filename);
904 int cpu_str_to_log_mask(const char *str);
905
906 #if !defined(CONFIG_USER_ONLY)
907
908 /* Return the physical page corresponding to a virtual one. Use it
909 only for debugging because no protection checks are done. Return -1
910 if no page found. */
911 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
912
913 /* memory API */
914
915 extern int phys_ram_fd;
916 extern ram_addr_t ram_size;
917
918 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
919 #define RAM_PREALLOC_MASK (1 << 0)
920
921 typedef struct RAMBlock {
922 uint8_t *host;
923 ram_addr_t offset;
924 ram_addr_t length;
925 uint32_t flags;
926 char idstr[256];
927 QLIST_ENTRY(RAMBlock) next;
928 #if defined(__linux__) && !defined(TARGET_S390X)
929 int fd;
930 #endif
931 } RAMBlock;
932
933 typedef struct RAMList {
934 uint8_t *phys_dirty;
935 QLIST_HEAD(ram, RAMBlock) blocks;
936 } RAMList;
937 extern RAMList ram_list;
938
939 extern const char *mem_path;
940 extern int mem_prealloc;
941
942 /* physical memory access */
943
944 /* MMIO pages are identified by a combination of an IO device index and
945 3 flags. The ROMD code stores the page ram offset in iotlb entry,
946 so only a limited number of ids are avaiable. */
947
948 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
949
950 /* Flags stored in the low bits of the TLB virtual address. These are
951 defined so that fast path ram access is all zeros. */
952 /* Zero if TLB entry is valid. */
953 #define TLB_INVALID_MASK (1 << 3)
954 /* Set if TLB entry references a clean RAM page. The iotlb entry will
955 contain the page physical address. */
956 #define TLB_NOTDIRTY (1 << 4)
957 /* Set if TLB entry is an IO callback. */
958 #define TLB_MMIO (1 << 5)
959
960 #define VGA_DIRTY_FLAG 0x01
961 #define CODE_DIRTY_FLAG 0x02
962 #define MIGRATION_DIRTY_FLAG 0x08
963
964 /* read dirty bit (return 0 or 1) */
965 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
966 {
967 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
968 }
969
970 static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr)
971 {
972 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS];
973 }
974
975 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
976 int dirty_flags)
977 {
978 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
979 }
980
981 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
982 {
983 ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
984 }
985
986 static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr,
987 int dirty_flags)
988 {
989 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags;
990 }
991
992 static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start,
993 int length,
994 int dirty_flags)
995 {
996 int i, mask, len;
997 uint8_t *p;
998
999 len = length >> TARGET_PAGE_BITS;
1000 mask = ~dirty_flags;
1001 p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS);
1002 for (i = 0; i < len; i++) {
1003 p[i] &= mask;
1004 }
1005 }
1006
1007 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1008 int dirty_flags);
1009 void cpu_tlb_update_dirty(CPUState *env);
1010
1011 int cpu_physical_memory_set_dirty_tracking(int enable);
1012
1013 int cpu_physical_memory_get_dirty_tracking(void);
1014
1015 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1016 target_phys_addr_t end_addr);
1017
1018 int cpu_physical_log_start(target_phys_addr_t start_addr,
1019 ram_addr_t size);
1020
1021 int cpu_physical_log_stop(target_phys_addr_t start_addr,
1022 ram_addr_t size);
1023
1024 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
1025 #endif /* !CONFIG_USER_ONLY */
1026
1027 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
1028 uint8_t *buf, int len, int is_write);
1029
1030 #endif /* CPU_ALL_H */