]> git.proxmox.com Git - qemu.git/blob - cpu-all.h
kvm: Rework dirty bitmap synchronization
[qemu.git] / cpu-all.h
1 /*
2 * defines common to all virtual CPUs
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
19 */
20 #ifndef CPU_ALL_H
21 #define CPU_ALL_H
22
23 #include "qemu-common.h"
24 #include "cpu-common.h"
25
26 /* some important defines:
27 *
28 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
29 * memory accesses.
30 *
31 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
32 * otherwise little endian.
33 *
34 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
35 *
36 * TARGET_WORDS_BIGENDIAN : same for target cpu
37 */
38
39 #include "softfloat.h"
40
41 #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
42 #define BSWAP_NEEDED
43 #endif
44
45 #ifdef BSWAP_NEEDED
46
47 static inline uint16_t tswap16(uint16_t s)
48 {
49 return bswap16(s);
50 }
51
52 static inline uint32_t tswap32(uint32_t s)
53 {
54 return bswap32(s);
55 }
56
57 static inline uint64_t tswap64(uint64_t s)
58 {
59 return bswap64(s);
60 }
61
62 static inline void tswap16s(uint16_t *s)
63 {
64 *s = bswap16(*s);
65 }
66
67 static inline void tswap32s(uint32_t *s)
68 {
69 *s = bswap32(*s);
70 }
71
72 static inline void tswap64s(uint64_t *s)
73 {
74 *s = bswap64(*s);
75 }
76
77 #else
78
79 static inline uint16_t tswap16(uint16_t s)
80 {
81 return s;
82 }
83
84 static inline uint32_t tswap32(uint32_t s)
85 {
86 return s;
87 }
88
89 static inline uint64_t tswap64(uint64_t s)
90 {
91 return s;
92 }
93
94 static inline void tswap16s(uint16_t *s)
95 {
96 }
97
98 static inline void tswap32s(uint32_t *s)
99 {
100 }
101
102 static inline void tswap64s(uint64_t *s)
103 {
104 }
105
106 #endif
107
108 #if TARGET_LONG_SIZE == 4
109 #define tswapl(s) tswap32(s)
110 #define tswapls(s) tswap32s((uint32_t *)(s))
111 #define bswaptls(s) bswap32s(s)
112 #else
113 #define tswapl(s) tswap64(s)
114 #define tswapls(s) tswap64s((uint64_t *)(s))
115 #define bswaptls(s) bswap64s(s)
116 #endif
117
118 typedef union {
119 float32 f;
120 uint32_t l;
121 } CPU_FloatU;
122
123 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
124 endian ! */
125 typedef union {
126 float64 d;
127 #if defined(WORDS_BIGENDIAN) \
128 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
129 struct {
130 uint32_t upper;
131 uint32_t lower;
132 } l;
133 #else
134 struct {
135 uint32_t lower;
136 uint32_t upper;
137 } l;
138 #endif
139 uint64_t ll;
140 } CPU_DoubleU;
141
142 #ifdef TARGET_SPARC
143 typedef union {
144 float128 q;
145 #if defined(WORDS_BIGENDIAN) \
146 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
147 struct {
148 uint32_t upmost;
149 uint32_t upper;
150 uint32_t lower;
151 uint32_t lowest;
152 } l;
153 struct {
154 uint64_t upper;
155 uint64_t lower;
156 } ll;
157 #else
158 struct {
159 uint32_t lowest;
160 uint32_t lower;
161 uint32_t upper;
162 uint32_t upmost;
163 } l;
164 struct {
165 uint64_t lower;
166 uint64_t upper;
167 } ll;
168 #endif
169 } CPU_QuadU;
170 #endif
171
172 /* CPU memory access without any memory or io remapping */
173
174 /*
175 * the generic syntax for the memory accesses is:
176 *
177 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
178 *
179 * store: st{type}{size}{endian}_{access_type}(ptr, val)
180 *
181 * type is:
182 * (empty): integer access
183 * f : float access
184 *
185 * sign is:
186 * (empty): for floats or 32 bit size
187 * u : unsigned
188 * s : signed
189 *
190 * size is:
191 * b: 8 bits
192 * w: 16 bits
193 * l: 32 bits
194 * q: 64 bits
195 *
196 * endian is:
197 * (empty): target cpu endianness or 8 bit access
198 * r : reversed target cpu endianness (not implemented yet)
199 * be : big endian (not implemented yet)
200 * le : little endian (not implemented yet)
201 *
202 * access_type is:
203 * raw : host memory access
204 * user : user mode access using soft MMU
205 * kernel : kernel mode access using soft MMU
206 */
207 static inline int ldub_p(const void *ptr)
208 {
209 return *(uint8_t *)ptr;
210 }
211
212 static inline int ldsb_p(const void *ptr)
213 {
214 return *(int8_t *)ptr;
215 }
216
217 static inline void stb_p(void *ptr, int v)
218 {
219 *(uint8_t *)ptr = v;
220 }
221
222 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
223 kernel handles unaligned load/stores may give better results, but
224 it is a system wide setting : bad */
225 #if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
226
227 /* conservative code for little endian unaligned accesses */
228 static inline int lduw_le_p(const void *ptr)
229 {
230 #ifdef _ARCH_PPC
231 int val;
232 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
233 return val;
234 #else
235 const uint8_t *p = ptr;
236 return p[0] | (p[1] << 8);
237 #endif
238 }
239
240 static inline int ldsw_le_p(const void *ptr)
241 {
242 #ifdef _ARCH_PPC
243 int val;
244 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
245 return (int16_t)val;
246 #else
247 const uint8_t *p = ptr;
248 return (int16_t)(p[0] | (p[1] << 8));
249 #endif
250 }
251
252 static inline int ldl_le_p(const void *ptr)
253 {
254 #ifdef _ARCH_PPC
255 int val;
256 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
257 return val;
258 #else
259 const uint8_t *p = ptr;
260 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
261 #endif
262 }
263
264 static inline uint64_t ldq_le_p(const void *ptr)
265 {
266 const uint8_t *p = ptr;
267 uint32_t v1, v2;
268 v1 = ldl_le_p(p);
269 v2 = ldl_le_p(p + 4);
270 return v1 | ((uint64_t)v2 << 32);
271 }
272
273 static inline void stw_le_p(void *ptr, int v)
274 {
275 #ifdef _ARCH_PPC
276 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
277 #else
278 uint8_t *p = ptr;
279 p[0] = v;
280 p[1] = v >> 8;
281 #endif
282 }
283
284 static inline void stl_le_p(void *ptr, int v)
285 {
286 #ifdef _ARCH_PPC
287 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
288 #else
289 uint8_t *p = ptr;
290 p[0] = v;
291 p[1] = v >> 8;
292 p[2] = v >> 16;
293 p[3] = v >> 24;
294 #endif
295 }
296
297 static inline void stq_le_p(void *ptr, uint64_t v)
298 {
299 uint8_t *p = ptr;
300 stl_le_p(p, (uint32_t)v);
301 stl_le_p(p + 4, v >> 32);
302 }
303
304 /* float access */
305
306 static inline float32 ldfl_le_p(const void *ptr)
307 {
308 union {
309 float32 f;
310 uint32_t i;
311 } u;
312 u.i = ldl_le_p(ptr);
313 return u.f;
314 }
315
316 static inline void stfl_le_p(void *ptr, float32 v)
317 {
318 union {
319 float32 f;
320 uint32_t i;
321 } u;
322 u.f = v;
323 stl_le_p(ptr, u.i);
324 }
325
326 static inline float64 ldfq_le_p(const void *ptr)
327 {
328 CPU_DoubleU u;
329 u.l.lower = ldl_le_p(ptr);
330 u.l.upper = ldl_le_p(ptr + 4);
331 return u.d;
332 }
333
334 static inline void stfq_le_p(void *ptr, float64 v)
335 {
336 CPU_DoubleU u;
337 u.d = v;
338 stl_le_p(ptr, u.l.lower);
339 stl_le_p(ptr + 4, u.l.upper);
340 }
341
342 #else
343
344 static inline int lduw_le_p(const void *ptr)
345 {
346 return *(uint16_t *)ptr;
347 }
348
349 static inline int ldsw_le_p(const void *ptr)
350 {
351 return *(int16_t *)ptr;
352 }
353
354 static inline int ldl_le_p(const void *ptr)
355 {
356 return *(uint32_t *)ptr;
357 }
358
359 static inline uint64_t ldq_le_p(const void *ptr)
360 {
361 return *(uint64_t *)ptr;
362 }
363
364 static inline void stw_le_p(void *ptr, int v)
365 {
366 *(uint16_t *)ptr = v;
367 }
368
369 static inline void stl_le_p(void *ptr, int v)
370 {
371 *(uint32_t *)ptr = v;
372 }
373
374 static inline void stq_le_p(void *ptr, uint64_t v)
375 {
376 *(uint64_t *)ptr = v;
377 }
378
379 /* float access */
380
381 static inline float32 ldfl_le_p(const void *ptr)
382 {
383 return *(float32 *)ptr;
384 }
385
386 static inline float64 ldfq_le_p(const void *ptr)
387 {
388 return *(float64 *)ptr;
389 }
390
391 static inline void stfl_le_p(void *ptr, float32 v)
392 {
393 *(float32 *)ptr = v;
394 }
395
396 static inline void stfq_le_p(void *ptr, float64 v)
397 {
398 *(float64 *)ptr = v;
399 }
400 #endif
401
402 #if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
403
404 static inline int lduw_be_p(const void *ptr)
405 {
406 #if defined(__i386__)
407 int val;
408 asm volatile ("movzwl %1, %0\n"
409 "xchgb %b0, %h0\n"
410 : "=q" (val)
411 : "m" (*(uint16_t *)ptr));
412 return val;
413 #else
414 const uint8_t *b = ptr;
415 return ((b[0] << 8) | b[1]);
416 #endif
417 }
418
419 static inline int ldsw_be_p(const void *ptr)
420 {
421 #if defined(__i386__)
422 int val;
423 asm volatile ("movzwl %1, %0\n"
424 "xchgb %b0, %h0\n"
425 : "=q" (val)
426 : "m" (*(uint16_t *)ptr));
427 return (int16_t)val;
428 #else
429 const uint8_t *b = ptr;
430 return (int16_t)((b[0] << 8) | b[1]);
431 #endif
432 }
433
434 static inline int ldl_be_p(const void *ptr)
435 {
436 #if defined(__i386__) || defined(__x86_64__)
437 int val;
438 asm volatile ("movl %1, %0\n"
439 "bswap %0\n"
440 : "=r" (val)
441 : "m" (*(uint32_t *)ptr));
442 return val;
443 #else
444 const uint8_t *b = ptr;
445 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
446 #endif
447 }
448
449 static inline uint64_t ldq_be_p(const void *ptr)
450 {
451 uint32_t a,b;
452 a = ldl_be_p(ptr);
453 b = ldl_be_p((uint8_t *)ptr + 4);
454 return (((uint64_t)a<<32)|b);
455 }
456
457 static inline void stw_be_p(void *ptr, int v)
458 {
459 #if defined(__i386__)
460 asm volatile ("xchgb %b0, %h0\n"
461 "movw %w0, %1\n"
462 : "=q" (v)
463 : "m" (*(uint16_t *)ptr), "0" (v));
464 #else
465 uint8_t *d = (uint8_t *) ptr;
466 d[0] = v >> 8;
467 d[1] = v;
468 #endif
469 }
470
471 static inline void stl_be_p(void *ptr, int v)
472 {
473 #if defined(__i386__) || defined(__x86_64__)
474 asm volatile ("bswap %0\n"
475 "movl %0, %1\n"
476 : "=r" (v)
477 : "m" (*(uint32_t *)ptr), "0" (v));
478 #else
479 uint8_t *d = (uint8_t *) ptr;
480 d[0] = v >> 24;
481 d[1] = v >> 16;
482 d[2] = v >> 8;
483 d[3] = v;
484 #endif
485 }
486
487 static inline void stq_be_p(void *ptr, uint64_t v)
488 {
489 stl_be_p(ptr, v >> 32);
490 stl_be_p((uint8_t *)ptr + 4, v);
491 }
492
493 /* float access */
494
495 static inline float32 ldfl_be_p(const void *ptr)
496 {
497 union {
498 float32 f;
499 uint32_t i;
500 } u;
501 u.i = ldl_be_p(ptr);
502 return u.f;
503 }
504
505 static inline void stfl_be_p(void *ptr, float32 v)
506 {
507 union {
508 float32 f;
509 uint32_t i;
510 } u;
511 u.f = v;
512 stl_be_p(ptr, u.i);
513 }
514
515 static inline float64 ldfq_be_p(const void *ptr)
516 {
517 CPU_DoubleU u;
518 u.l.upper = ldl_be_p(ptr);
519 u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
520 return u.d;
521 }
522
523 static inline void stfq_be_p(void *ptr, float64 v)
524 {
525 CPU_DoubleU u;
526 u.d = v;
527 stl_be_p(ptr, u.l.upper);
528 stl_be_p((uint8_t *)ptr + 4, u.l.lower);
529 }
530
531 #else
532
533 static inline int lduw_be_p(const void *ptr)
534 {
535 return *(uint16_t *)ptr;
536 }
537
538 static inline int ldsw_be_p(const void *ptr)
539 {
540 return *(int16_t *)ptr;
541 }
542
543 static inline int ldl_be_p(const void *ptr)
544 {
545 return *(uint32_t *)ptr;
546 }
547
548 static inline uint64_t ldq_be_p(const void *ptr)
549 {
550 return *(uint64_t *)ptr;
551 }
552
553 static inline void stw_be_p(void *ptr, int v)
554 {
555 *(uint16_t *)ptr = v;
556 }
557
558 static inline void stl_be_p(void *ptr, int v)
559 {
560 *(uint32_t *)ptr = v;
561 }
562
563 static inline void stq_be_p(void *ptr, uint64_t v)
564 {
565 *(uint64_t *)ptr = v;
566 }
567
568 /* float access */
569
570 static inline float32 ldfl_be_p(const void *ptr)
571 {
572 return *(float32 *)ptr;
573 }
574
575 static inline float64 ldfq_be_p(const void *ptr)
576 {
577 return *(float64 *)ptr;
578 }
579
580 static inline void stfl_be_p(void *ptr, float32 v)
581 {
582 *(float32 *)ptr = v;
583 }
584
585 static inline void stfq_be_p(void *ptr, float64 v)
586 {
587 *(float64 *)ptr = v;
588 }
589
590 #endif
591
592 /* target CPU memory access functions */
593 #if defined(TARGET_WORDS_BIGENDIAN)
594 #define lduw_p(p) lduw_be_p(p)
595 #define ldsw_p(p) ldsw_be_p(p)
596 #define ldl_p(p) ldl_be_p(p)
597 #define ldq_p(p) ldq_be_p(p)
598 #define ldfl_p(p) ldfl_be_p(p)
599 #define ldfq_p(p) ldfq_be_p(p)
600 #define stw_p(p, v) stw_be_p(p, v)
601 #define stl_p(p, v) stl_be_p(p, v)
602 #define stq_p(p, v) stq_be_p(p, v)
603 #define stfl_p(p, v) stfl_be_p(p, v)
604 #define stfq_p(p, v) stfq_be_p(p, v)
605 #else
606 #define lduw_p(p) lduw_le_p(p)
607 #define ldsw_p(p) ldsw_le_p(p)
608 #define ldl_p(p) ldl_le_p(p)
609 #define ldq_p(p) ldq_le_p(p)
610 #define ldfl_p(p) ldfl_le_p(p)
611 #define ldfq_p(p) ldfq_le_p(p)
612 #define stw_p(p, v) stw_le_p(p, v)
613 #define stl_p(p, v) stl_le_p(p, v)
614 #define stq_p(p, v) stq_le_p(p, v)
615 #define stfl_p(p, v) stfl_le_p(p, v)
616 #define stfq_p(p, v) stfq_le_p(p, v)
617 #endif
618
619 /* MMU memory access macros */
620
621 #if defined(CONFIG_USER_ONLY)
622 #include <assert.h>
623 #include "qemu-types.h"
624
625 /* On some host systems the guest address space is reserved on the host.
626 * This allows the guest address space to be offset to a convenient location.
627 */
628 //#define GUEST_BASE 0x20000000
629 #define GUEST_BASE 0
630
631 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
632 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
633 #define h2g(x) ({ \
634 unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
635 /* Check if given address fits target address space */ \
636 assert(__ret == (abi_ulong)__ret); \
637 (abi_ulong)__ret; \
638 })
639 #define h2g_valid(x) ({ \
640 unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
641 (__guest == (abi_ulong)__guest); \
642 })
643
644 #define saddr(x) g2h(x)
645 #define laddr(x) g2h(x)
646
647 #else /* !CONFIG_USER_ONLY */
648 /* NOTE: we use double casts if pointers and target_ulong have
649 different sizes */
650 #define saddr(x) (uint8_t *)(long)(x)
651 #define laddr(x) (uint8_t *)(long)(x)
652 #endif
653
654 #define ldub_raw(p) ldub_p(laddr((p)))
655 #define ldsb_raw(p) ldsb_p(laddr((p)))
656 #define lduw_raw(p) lduw_p(laddr((p)))
657 #define ldsw_raw(p) ldsw_p(laddr((p)))
658 #define ldl_raw(p) ldl_p(laddr((p)))
659 #define ldq_raw(p) ldq_p(laddr((p)))
660 #define ldfl_raw(p) ldfl_p(laddr((p)))
661 #define ldfq_raw(p) ldfq_p(laddr((p)))
662 #define stb_raw(p, v) stb_p(saddr((p)), v)
663 #define stw_raw(p, v) stw_p(saddr((p)), v)
664 #define stl_raw(p, v) stl_p(saddr((p)), v)
665 #define stq_raw(p, v) stq_p(saddr((p)), v)
666 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
667 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
668
669
670 #if defined(CONFIG_USER_ONLY)
671
672 /* if user mode, no other memory access functions */
673 #define ldub(p) ldub_raw(p)
674 #define ldsb(p) ldsb_raw(p)
675 #define lduw(p) lduw_raw(p)
676 #define ldsw(p) ldsw_raw(p)
677 #define ldl(p) ldl_raw(p)
678 #define ldq(p) ldq_raw(p)
679 #define ldfl(p) ldfl_raw(p)
680 #define ldfq(p) ldfq_raw(p)
681 #define stb(p, v) stb_raw(p, v)
682 #define stw(p, v) stw_raw(p, v)
683 #define stl(p, v) stl_raw(p, v)
684 #define stq(p, v) stq_raw(p, v)
685 #define stfl(p, v) stfl_raw(p, v)
686 #define stfq(p, v) stfq_raw(p, v)
687
688 #define ldub_code(p) ldub_raw(p)
689 #define ldsb_code(p) ldsb_raw(p)
690 #define lduw_code(p) lduw_raw(p)
691 #define ldsw_code(p) ldsw_raw(p)
692 #define ldl_code(p) ldl_raw(p)
693 #define ldq_code(p) ldq_raw(p)
694
695 #define ldub_kernel(p) ldub_raw(p)
696 #define ldsb_kernel(p) ldsb_raw(p)
697 #define lduw_kernel(p) lduw_raw(p)
698 #define ldsw_kernel(p) ldsw_raw(p)
699 #define ldl_kernel(p) ldl_raw(p)
700 #define ldq_kernel(p) ldq_raw(p)
701 #define ldfl_kernel(p) ldfl_raw(p)
702 #define ldfq_kernel(p) ldfq_raw(p)
703 #define stb_kernel(p, v) stb_raw(p, v)
704 #define stw_kernel(p, v) stw_raw(p, v)
705 #define stl_kernel(p, v) stl_raw(p, v)
706 #define stq_kernel(p, v) stq_raw(p, v)
707 #define stfl_kernel(p, v) stfl_raw(p, v)
708 #define stfq_kernel(p, vt) stfq_raw(p, v)
709
710 #endif /* defined(CONFIG_USER_ONLY) */
711
712 /* page related stuff */
713
714 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
715 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
716 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
717
718 /* ??? These should be the larger of unsigned long and target_ulong. */
719 extern unsigned long qemu_real_host_page_size;
720 extern unsigned long qemu_host_page_bits;
721 extern unsigned long qemu_host_page_size;
722 extern unsigned long qemu_host_page_mask;
723
724 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
725
726 /* same as PROT_xxx */
727 #define PAGE_READ 0x0001
728 #define PAGE_WRITE 0x0002
729 #define PAGE_EXEC 0x0004
730 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
731 #define PAGE_VALID 0x0008
732 /* original state of the write flag (used when tracking self-modifying
733 code */
734 #define PAGE_WRITE_ORG 0x0010
735 #define PAGE_RESERVED 0x0020
736
737 void page_dump(FILE *f);
738 int page_get_flags(target_ulong address);
739 void page_set_flags(target_ulong start, target_ulong end, int flags);
740 int page_check_range(target_ulong start, target_ulong len, int flags);
741
742 void cpu_exec_init_all(unsigned long tb_size);
743 CPUState *cpu_copy(CPUState *env);
744
745 void cpu_dump_state(CPUState *env, FILE *f,
746 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
747 int flags);
748 void cpu_dump_statistics (CPUState *env, FILE *f,
749 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
750 int flags);
751
752 void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
753 __attribute__ ((__format__ (__printf__, 2, 3)));
754 extern CPUState *first_cpu;
755 extern CPUState *cpu_single_env;
756 extern int64_t qemu_icount;
757 extern int use_icount;
758
759 #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
760 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
761 #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
762 #define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
763 #define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
764 #define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
765 #define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
766 #define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
767 #define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
768
769 void cpu_interrupt(CPUState *s, int mask);
770 void cpu_reset_interrupt(CPUState *env, int mask);
771
772 void cpu_exit(CPUState *s);
773
774 int qemu_cpu_has_work(CPUState *env);
775
776 /* Breakpoint/watchpoint flags */
777 #define BP_MEM_READ 0x01
778 #define BP_MEM_WRITE 0x02
779 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
780 #define BP_STOP_BEFORE_ACCESS 0x04
781 #define BP_WATCHPOINT_HIT 0x08
782 #define BP_GDB 0x10
783 #define BP_CPU 0x20
784
785 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
786 CPUBreakpoint **breakpoint);
787 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
788 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
789 void cpu_breakpoint_remove_all(CPUState *env, int mask);
790 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
791 int flags, CPUWatchpoint **watchpoint);
792 int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
793 target_ulong len, int flags);
794 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
795 void cpu_watchpoint_remove_all(CPUState *env, int mask);
796
797 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
798 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
799 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
800
801 void cpu_single_step(CPUState *env, int enabled);
802 void cpu_reset(CPUState *s);
803
804 /* Return the physical page corresponding to a virtual one. Use it
805 only for debugging because no protection checks are done. Return -1
806 if no page found. */
807 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
808
809 #define CPU_LOG_TB_OUT_ASM (1 << 0)
810 #define CPU_LOG_TB_IN_ASM (1 << 1)
811 #define CPU_LOG_TB_OP (1 << 2)
812 #define CPU_LOG_TB_OP_OPT (1 << 3)
813 #define CPU_LOG_INT (1 << 4)
814 #define CPU_LOG_EXEC (1 << 5)
815 #define CPU_LOG_PCALL (1 << 6)
816 #define CPU_LOG_IOPORT (1 << 7)
817 #define CPU_LOG_TB_CPU (1 << 8)
818 #define CPU_LOG_RESET (1 << 9)
819
820 /* define log items */
821 typedef struct CPULogItem {
822 int mask;
823 const char *name;
824 const char *help;
825 } CPULogItem;
826
827 extern const CPULogItem cpu_log_items[];
828
829 void cpu_set_log(int log_flags);
830 void cpu_set_log_filename(const char *filename);
831 int cpu_str_to_log_mask(const char *str);
832
833 /* IO ports API */
834
835 /* NOTE: as these functions may be even used when there is an isa
836 brige on non x86 targets, we always defined them */
837 #ifndef NO_CPU_IO_DEFS
838 void cpu_outb(CPUState *env, int addr, int val);
839 void cpu_outw(CPUState *env, int addr, int val);
840 void cpu_outl(CPUState *env, int addr, int val);
841 int cpu_inb(CPUState *env, int addr);
842 int cpu_inw(CPUState *env, int addr);
843 int cpu_inl(CPUState *env, int addr);
844 #endif
845
846 /* memory API */
847
848 extern int phys_ram_fd;
849 extern uint8_t *phys_ram_dirty;
850 extern ram_addr_t ram_size;
851 extern ram_addr_t last_ram_offset;
852
853 /* physical memory access */
854
855 /* MMIO pages are identified by a combination of an IO device index and
856 3 flags. The ROMD code stores the page ram offset in iotlb entry,
857 so only a limited number of ids are avaiable. */
858
859 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
860
861 /* Flags stored in the low bits of the TLB virtual address. These are
862 defined so that fast path ram access is all zeros. */
863 /* Zero if TLB entry is valid. */
864 #define TLB_INVALID_MASK (1 << 3)
865 /* Set if TLB entry references a clean RAM page. The iotlb entry will
866 contain the page physical address. */
867 #define TLB_NOTDIRTY (1 << 4)
868 /* Set if TLB entry is an IO callback. */
869 #define TLB_MMIO (1 << 5)
870
871 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
872 uint8_t *buf, int len, int is_write);
873
874 #define VGA_DIRTY_FLAG 0x01
875 #define CODE_DIRTY_FLAG 0x02
876 #define KQEMU_DIRTY_FLAG 0x04
877 #define MIGRATION_DIRTY_FLAG 0x08
878
879 /* read dirty bit (return 0 or 1) */
880 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
881 {
882 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
883 }
884
885 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
886 int dirty_flags)
887 {
888 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
889 }
890
891 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
892 {
893 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
894 }
895
896 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
897 int dirty_flags);
898 void cpu_tlb_update_dirty(CPUState *env);
899
900 int cpu_physical_memory_set_dirty_tracking(int enable);
901
902 int cpu_physical_memory_get_dirty_tracking(void);
903
904 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
905 target_phys_addr_t end_addr);
906
907 void dump_exec_info(FILE *f,
908 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
909
910 /* Coalesced MMIO regions are areas where write operations can be reordered.
911 * This usually implies that write operations are side-effect free. This allows
912 * batching which can make a major impact on performance when using
913 * virtualization.
914 */
915 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
916
917 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
918
919 /*******************************************/
920 /* host CPU ticks (if available) */
921
922 #if defined(_ARCH_PPC)
923
924 static inline int64_t cpu_get_real_ticks(void)
925 {
926 int64_t retval;
927 #ifdef _ARCH_PPC64
928 /* This reads timebase in one 64bit go and includes Cell workaround from:
929 http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
930 */
931 __asm__ __volatile__ (
932 "mftb %0\n\t"
933 "cmpwi %0,0\n\t"
934 "beq- $-8"
935 : "=r" (retval));
936 #else
937 /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
938 unsigned long junk;
939 __asm__ __volatile__ (
940 "mftbu %1\n\t"
941 "mftb %L0\n\t"
942 "mftbu %0\n\t"
943 "cmpw %0,%1\n\t"
944 "bne $-16"
945 : "=r" (retval), "=r" (junk));
946 #endif
947 return retval;
948 }
949
950 #elif defined(__i386__)
951
952 static inline int64_t cpu_get_real_ticks(void)
953 {
954 int64_t val;
955 asm volatile ("rdtsc" : "=A" (val));
956 return val;
957 }
958
959 #elif defined(__x86_64__)
960
961 static inline int64_t cpu_get_real_ticks(void)
962 {
963 uint32_t low,high;
964 int64_t val;
965 asm volatile("rdtsc" : "=a" (low), "=d" (high));
966 val = high;
967 val <<= 32;
968 val |= low;
969 return val;
970 }
971
972 #elif defined(__hppa__)
973
974 static inline int64_t cpu_get_real_ticks(void)
975 {
976 int val;
977 asm volatile ("mfctl %%cr16, %0" : "=r"(val));
978 return val;
979 }
980
981 #elif defined(__ia64)
982
983 static inline int64_t cpu_get_real_ticks(void)
984 {
985 int64_t val;
986 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
987 return val;
988 }
989
990 #elif defined(__s390__)
991
992 static inline int64_t cpu_get_real_ticks(void)
993 {
994 int64_t val;
995 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
996 return val;
997 }
998
999 #elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
1000
1001 static inline int64_t cpu_get_real_ticks (void)
1002 {
1003 #if defined(_LP64)
1004 uint64_t rval;
1005 asm volatile("rd %%tick,%0" : "=r"(rval));
1006 return rval;
1007 #else
1008 union {
1009 uint64_t i64;
1010 struct {
1011 uint32_t high;
1012 uint32_t low;
1013 } i32;
1014 } rval;
1015 asm volatile("rd %%tick,%1; srlx %1,32,%0"
1016 : "=r"(rval.i32.high), "=r"(rval.i32.low));
1017 return rval.i64;
1018 #endif
1019 }
1020
1021 #elif defined(__mips__)
1022
1023 static inline int64_t cpu_get_real_ticks(void)
1024 {
1025 #if __mips_isa_rev >= 2
1026 uint32_t count;
1027 static uint32_t cyc_per_count = 0;
1028
1029 if (!cyc_per_count)
1030 __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1031
1032 __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1033 return (int64_t)(count * cyc_per_count);
1034 #else
1035 /* FIXME */
1036 static int64_t ticks = 0;
1037 return ticks++;
1038 #endif
1039 }
1040
1041 #else
1042 /* The host CPU doesn't have an easily accessible cycle counter.
1043 Just return a monotonically increasing value. This will be
1044 totally wrong, but hopefully better than nothing. */
1045 static inline int64_t cpu_get_real_ticks (void)
1046 {
1047 static int64_t ticks = 0;
1048 return ticks++;
1049 }
1050 #endif
1051
1052 /* profiling */
1053 #ifdef CONFIG_PROFILER
1054 static inline int64_t profile_getclock(void)
1055 {
1056 return cpu_get_real_ticks();
1057 }
1058
1059 extern int64_t kqemu_time, kqemu_time_start;
1060 extern int64_t qemu_time, qemu_time_start;
1061 extern int64_t tlb_flush_time;
1062 extern int64_t kqemu_exec_count;
1063 extern int64_t dev_time;
1064 extern int64_t kqemu_ret_int_count;
1065 extern int64_t kqemu_ret_excp_count;
1066 extern int64_t kqemu_ret_intr_count;
1067 #endif
1068
1069 #endif /* CPU_ALL_H */