]> git.proxmox.com Git - qemu.git/blob - cpu-all.h
Merge remote branch 'origin/master' into pci
[qemu.git] / cpu-all.h
1 /*
2 * defines common to all virtual CPUs
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #ifndef CPU_ALL_H
20 #define CPU_ALL_H
21
22 #include "qemu-common.h"
23 #include "cpu-common.h"
24
25 /* some important defines:
26 *
27 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
28 * memory accesses.
29 *
30 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
31 * otherwise little endian.
32 *
33 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
34 *
35 * TARGET_WORDS_BIGENDIAN : same for target cpu
36 */
37
38 #include "softfloat.h"
39
40 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
41 #define BSWAP_NEEDED
42 #endif
43
44 #ifdef BSWAP_NEEDED
45
46 static inline uint16_t tswap16(uint16_t s)
47 {
48 return bswap16(s);
49 }
50
51 static inline uint32_t tswap32(uint32_t s)
52 {
53 return bswap32(s);
54 }
55
56 static inline uint64_t tswap64(uint64_t s)
57 {
58 return bswap64(s);
59 }
60
61 static inline void tswap16s(uint16_t *s)
62 {
63 *s = bswap16(*s);
64 }
65
66 static inline void tswap32s(uint32_t *s)
67 {
68 *s = bswap32(*s);
69 }
70
71 static inline void tswap64s(uint64_t *s)
72 {
73 *s = bswap64(*s);
74 }
75
76 #else
77
78 static inline uint16_t tswap16(uint16_t s)
79 {
80 return s;
81 }
82
83 static inline uint32_t tswap32(uint32_t s)
84 {
85 return s;
86 }
87
88 static inline uint64_t tswap64(uint64_t s)
89 {
90 return s;
91 }
92
93 static inline void tswap16s(uint16_t *s)
94 {
95 }
96
97 static inline void tswap32s(uint32_t *s)
98 {
99 }
100
101 static inline void tswap64s(uint64_t *s)
102 {
103 }
104
105 #endif
106
107 #if TARGET_LONG_SIZE == 4
108 #define tswapl(s) tswap32(s)
109 #define tswapls(s) tswap32s((uint32_t *)(s))
110 #define bswaptls(s) bswap32s(s)
111 #else
112 #define tswapl(s) tswap64(s)
113 #define tswapls(s) tswap64s((uint64_t *)(s))
114 #define bswaptls(s) bswap64s(s)
115 #endif
116
117 typedef union {
118 float32 f;
119 uint32_t l;
120 } CPU_FloatU;
121
122 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
123 endian ! */
124 typedef union {
125 float64 d;
126 #if defined(HOST_WORDS_BIGENDIAN) \
127 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
128 struct {
129 uint32_t upper;
130 uint32_t lower;
131 } l;
132 #else
133 struct {
134 uint32_t lower;
135 uint32_t upper;
136 } l;
137 #endif
138 uint64_t ll;
139 } CPU_DoubleU;
140
141 #if defined(FLOATX80)
142 typedef union {
143 floatx80 d;
144 struct {
145 uint64_t lower;
146 uint16_t upper;
147 } l;
148 } CPU_LDoubleU;
149 #endif
150
151 #if defined(CONFIG_SOFTFLOAT)
152 typedef union {
153 float128 q;
154 #if defined(HOST_WORDS_BIGENDIAN)
155 struct {
156 uint32_t upmost;
157 uint32_t upper;
158 uint32_t lower;
159 uint32_t lowest;
160 } l;
161 struct {
162 uint64_t upper;
163 uint64_t lower;
164 } ll;
165 #else
166 struct {
167 uint32_t lowest;
168 uint32_t lower;
169 uint32_t upper;
170 uint32_t upmost;
171 } l;
172 struct {
173 uint64_t lower;
174 uint64_t upper;
175 } ll;
176 #endif
177 } CPU_QuadU;
178 #endif
179
180 /* CPU memory access without any memory or io remapping */
181
182 /*
183 * the generic syntax for the memory accesses is:
184 *
185 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
186 *
187 * store: st{type}{size}{endian}_{access_type}(ptr, val)
188 *
189 * type is:
190 * (empty): integer access
191 * f : float access
192 *
193 * sign is:
194 * (empty): for floats or 32 bit size
195 * u : unsigned
196 * s : signed
197 *
198 * size is:
199 * b: 8 bits
200 * w: 16 bits
201 * l: 32 bits
202 * q: 64 bits
203 *
204 * endian is:
205 * (empty): target cpu endianness or 8 bit access
206 * r : reversed target cpu endianness (not implemented yet)
207 * be : big endian (not implemented yet)
208 * le : little endian (not implemented yet)
209 *
210 * access_type is:
211 * raw : host memory access
212 * user : user mode access using soft MMU
213 * kernel : kernel mode access using soft MMU
214 */
215 static inline int ldub_p(const void *ptr)
216 {
217 return *(uint8_t *)ptr;
218 }
219
220 static inline int ldsb_p(const void *ptr)
221 {
222 return *(int8_t *)ptr;
223 }
224
225 static inline void stb_p(void *ptr, int v)
226 {
227 *(uint8_t *)ptr = v;
228 }
229
230 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
231 kernel handles unaligned load/stores may give better results, but
232 it is a system wide setting : bad */
233 #if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
234
235 /* conservative code for little endian unaligned accesses */
236 static inline int lduw_le_p(const void *ptr)
237 {
238 #ifdef _ARCH_PPC
239 int val;
240 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
241 return val;
242 #else
243 const uint8_t *p = ptr;
244 return p[0] | (p[1] << 8);
245 #endif
246 }
247
248 static inline int ldsw_le_p(const void *ptr)
249 {
250 #ifdef _ARCH_PPC
251 int val;
252 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
253 return (int16_t)val;
254 #else
255 const uint8_t *p = ptr;
256 return (int16_t)(p[0] | (p[1] << 8));
257 #endif
258 }
259
260 static inline int ldl_le_p(const void *ptr)
261 {
262 #ifdef _ARCH_PPC
263 int val;
264 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
265 return val;
266 #else
267 const uint8_t *p = ptr;
268 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
269 #endif
270 }
271
272 static inline uint64_t ldq_le_p(const void *ptr)
273 {
274 const uint8_t *p = ptr;
275 uint32_t v1, v2;
276 v1 = ldl_le_p(p);
277 v2 = ldl_le_p(p + 4);
278 return v1 | ((uint64_t)v2 << 32);
279 }
280
281 static inline void stw_le_p(void *ptr, int v)
282 {
283 #ifdef _ARCH_PPC
284 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
285 #else
286 uint8_t *p = ptr;
287 p[0] = v;
288 p[1] = v >> 8;
289 #endif
290 }
291
292 static inline void stl_le_p(void *ptr, int v)
293 {
294 #ifdef _ARCH_PPC
295 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
296 #else
297 uint8_t *p = ptr;
298 p[0] = v;
299 p[1] = v >> 8;
300 p[2] = v >> 16;
301 p[3] = v >> 24;
302 #endif
303 }
304
305 static inline void stq_le_p(void *ptr, uint64_t v)
306 {
307 uint8_t *p = ptr;
308 stl_le_p(p, (uint32_t)v);
309 stl_le_p(p + 4, v >> 32);
310 }
311
312 /* float access */
313
314 static inline float32 ldfl_le_p(const void *ptr)
315 {
316 union {
317 float32 f;
318 uint32_t i;
319 } u;
320 u.i = ldl_le_p(ptr);
321 return u.f;
322 }
323
324 static inline void stfl_le_p(void *ptr, float32 v)
325 {
326 union {
327 float32 f;
328 uint32_t i;
329 } u;
330 u.f = v;
331 stl_le_p(ptr, u.i);
332 }
333
334 static inline float64 ldfq_le_p(const void *ptr)
335 {
336 CPU_DoubleU u;
337 u.l.lower = ldl_le_p(ptr);
338 u.l.upper = ldl_le_p(ptr + 4);
339 return u.d;
340 }
341
342 static inline void stfq_le_p(void *ptr, float64 v)
343 {
344 CPU_DoubleU u;
345 u.d = v;
346 stl_le_p(ptr, u.l.lower);
347 stl_le_p(ptr + 4, u.l.upper);
348 }
349
350 #else
351
352 static inline int lduw_le_p(const void *ptr)
353 {
354 return *(uint16_t *)ptr;
355 }
356
357 static inline int ldsw_le_p(const void *ptr)
358 {
359 return *(int16_t *)ptr;
360 }
361
362 static inline int ldl_le_p(const void *ptr)
363 {
364 return *(uint32_t *)ptr;
365 }
366
367 static inline uint64_t ldq_le_p(const void *ptr)
368 {
369 return *(uint64_t *)ptr;
370 }
371
372 static inline void stw_le_p(void *ptr, int v)
373 {
374 *(uint16_t *)ptr = v;
375 }
376
377 static inline void stl_le_p(void *ptr, int v)
378 {
379 *(uint32_t *)ptr = v;
380 }
381
382 static inline void stq_le_p(void *ptr, uint64_t v)
383 {
384 *(uint64_t *)ptr = v;
385 }
386
387 /* float access */
388
389 static inline float32 ldfl_le_p(const void *ptr)
390 {
391 return *(float32 *)ptr;
392 }
393
394 static inline float64 ldfq_le_p(const void *ptr)
395 {
396 return *(float64 *)ptr;
397 }
398
399 static inline void stfl_le_p(void *ptr, float32 v)
400 {
401 *(float32 *)ptr = v;
402 }
403
404 static inline void stfq_le_p(void *ptr, float64 v)
405 {
406 *(float64 *)ptr = v;
407 }
408 #endif
409
410 #if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
411
412 static inline int lduw_be_p(const void *ptr)
413 {
414 #if defined(__i386__)
415 int val;
416 asm volatile ("movzwl %1, %0\n"
417 "xchgb %b0, %h0\n"
418 : "=q" (val)
419 : "m" (*(uint16_t *)ptr));
420 return val;
421 #else
422 const uint8_t *b = ptr;
423 return ((b[0] << 8) | b[1]);
424 #endif
425 }
426
427 static inline int ldsw_be_p(const void *ptr)
428 {
429 #if defined(__i386__)
430 int val;
431 asm volatile ("movzwl %1, %0\n"
432 "xchgb %b0, %h0\n"
433 : "=q" (val)
434 : "m" (*(uint16_t *)ptr));
435 return (int16_t)val;
436 #else
437 const uint8_t *b = ptr;
438 return (int16_t)((b[0] << 8) | b[1]);
439 #endif
440 }
441
442 static inline int ldl_be_p(const void *ptr)
443 {
444 #if defined(__i386__) || defined(__x86_64__)
445 int val;
446 asm volatile ("movl %1, %0\n"
447 "bswap %0\n"
448 : "=r" (val)
449 : "m" (*(uint32_t *)ptr));
450 return val;
451 #else
452 const uint8_t *b = ptr;
453 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
454 #endif
455 }
456
457 static inline uint64_t ldq_be_p(const void *ptr)
458 {
459 uint32_t a,b;
460 a = ldl_be_p(ptr);
461 b = ldl_be_p((uint8_t *)ptr + 4);
462 return (((uint64_t)a<<32)|b);
463 }
464
465 static inline void stw_be_p(void *ptr, int v)
466 {
467 #if defined(__i386__)
468 asm volatile ("xchgb %b0, %h0\n"
469 "movw %w0, %1\n"
470 : "=q" (v)
471 : "m" (*(uint16_t *)ptr), "0" (v));
472 #else
473 uint8_t *d = (uint8_t *) ptr;
474 d[0] = v >> 8;
475 d[1] = v;
476 #endif
477 }
478
479 static inline void stl_be_p(void *ptr, int v)
480 {
481 #if defined(__i386__) || defined(__x86_64__)
482 asm volatile ("bswap %0\n"
483 "movl %0, %1\n"
484 : "=r" (v)
485 : "m" (*(uint32_t *)ptr), "0" (v));
486 #else
487 uint8_t *d = (uint8_t *) ptr;
488 d[0] = v >> 24;
489 d[1] = v >> 16;
490 d[2] = v >> 8;
491 d[3] = v;
492 #endif
493 }
494
495 static inline void stq_be_p(void *ptr, uint64_t v)
496 {
497 stl_be_p(ptr, v >> 32);
498 stl_be_p((uint8_t *)ptr + 4, v);
499 }
500
501 /* float access */
502
503 static inline float32 ldfl_be_p(const void *ptr)
504 {
505 union {
506 float32 f;
507 uint32_t i;
508 } u;
509 u.i = ldl_be_p(ptr);
510 return u.f;
511 }
512
513 static inline void stfl_be_p(void *ptr, float32 v)
514 {
515 union {
516 float32 f;
517 uint32_t i;
518 } u;
519 u.f = v;
520 stl_be_p(ptr, u.i);
521 }
522
523 static inline float64 ldfq_be_p(const void *ptr)
524 {
525 CPU_DoubleU u;
526 u.l.upper = ldl_be_p(ptr);
527 u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
528 return u.d;
529 }
530
531 static inline void stfq_be_p(void *ptr, float64 v)
532 {
533 CPU_DoubleU u;
534 u.d = v;
535 stl_be_p(ptr, u.l.upper);
536 stl_be_p((uint8_t *)ptr + 4, u.l.lower);
537 }
538
539 #else
540
541 static inline int lduw_be_p(const void *ptr)
542 {
543 return *(uint16_t *)ptr;
544 }
545
546 static inline int ldsw_be_p(const void *ptr)
547 {
548 return *(int16_t *)ptr;
549 }
550
551 static inline int ldl_be_p(const void *ptr)
552 {
553 return *(uint32_t *)ptr;
554 }
555
556 static inline uint64_t ldq_be_p(const void *ptr)
557 {
558 return *(uint64_t *)ptr;
559 }
560
561 static inline void stw_be_p(void *ptr, int v)
562 {
563 *(uint16_t *)ptr = v;
564 }
565
566 static inline void stl_be_p(void *ptr, int v)
567 {
568 *(uint32_t *)ptr = v;
569 }
570
571 static inline void stq_be_p(void *ptr, uint64_t v)
572 {
573 *(uint64_t *)ptr = v;
574 }
575
576 /* float access */
577
578 static inline float32 ldfl_be_p(const void *ptr)
579 {
580 return *(float32 *)ptr;
581 }
582
583 static inline float64 ldfq_be_p(const void *ptr)
584 {
585 return *(float64 *)ptr;
586 }
587
588 static inline void stfl_be_p(void *ptr, float32 v)
589 {
590 *(float32 *)ptr = v;
591 }
592
593 static inline void stfq_be_p(void *ptr, float64 v)
594 {
595 *(float64 *)ptr = v;
596 }
597
598 #endif
599
600 /* target CPU memory access functions */
601 #if defined(TARGET_WORDS_BIGENDIAN)
602 #define lduw_p(p) lduw_be_p(p)
603 #define ldsw_p(p) ldsw_be_p(p)
604 #define ldl_p(p) ldl_be_p(p)
605 #define ldq_p(p) ldq_be_p(p)
606 #define ldfl_p(p) ldfl_be_p(p)
607 #define ldfq_p(p) ldfq_be_p(p)
608 #define stw_p(p, v) stw_be_p(p, v)
609 #define stl_p(p, v) stl_be_p(p, v)
610 #define stq_p(p, v) stq_be_p(p, v)
611 #define stfl_p(p, v) stfl_be_p(p, v)
612 #define stfq_p(p, v) stfq_be_p(p, v)
613 #else
614 #define lduw_p(p) lduw_le_p(p)
615 #define ldsw_p(p) ldsw_le_p(p)
616 #define ldl_p(p) ldl_le_p(p)
617 #define ldq_p(p) ldq_le_p(p)
618 #define ldfl_p(p) ldfl_le_p(p)
619 #define ldfq_p(p) ldfq_le_p(p)
620 #define stw_p(p, v) stw_le_p(p, v)
621 #define stl_p(p, v) stl_le_p(p, v)
622 #define stq_p(p, v) stq_le_p(p, v)
623 #define stfl_p(p, v) stfl_le_p(p, v)
624 #define stfq_p(p, v) stfq_le_p(p, v)
625 #endif
626
627 /* MMU memory access macros */
628
629 #if defined(CONFIG_USER_ONLY)
630 #include <assert.h>
631 #include "qemu-types.h"
632
633 /* On some host systems the guest address space is reserved on the host.
634 * This allows the guest address space to be offset to a convenient location.
635 */
636 #if defined(CONFIG_USE_GUEST_BASE)
637 extern unsigned long guest_base;
638 extern int have_guest_base;
639 extern unsigned long reserved_va;
640 #define GUEST_BASE guest_base
641 #define RESERVED_VA reserved_va
642 #else
643 #define GUEST_BASE 0ul
644 #define RESERVED_VA 0ul
645 #endif
646
647 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
648 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
649
650 #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
651 #define h2g_valid(x) 1
652 #else
653 #define h2g_valid(x) ({ \
654 unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
655 __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \
656 })
657 #endif
658
659 #define h2g(x) ({ \
660 unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
661 /* Check if given address fits target address space */ \
662 assert(h2g_valid(x)); \
663 (abi_ulong)__ret; \
664 })
665
666 #define saddr(x) g2h(x)
667 #define laddr(x) g2h(x)
668
669 #else /* !CONFIG_USER_ONLY */
670 /* NOTE: we use double casts if pointers and target_ulong have
671 different sizes */
672 #define saddr(x) (uint8_t *)(long)(x)
673 #define laddr(x) (uint8_t *)(long)(x)
674 #endif
675
676 #define ldub_raw(p) ldub_p(laddr((p)))
677 #define ldsb_raw(p) ldsb_p(laddr((p)))
678 #define lduw_raw(p) lduw_p(laddr((p)))
679 #define ldsw_raw(p) ldsw_p(laddr((p)))
680 #define ldl_raw(p) ldl_p(laddr((p)))
681 #define ldq_raw(p) ldq_p(laddr((p)))
682 #define ldfl_raw(p) ldfl_p(laddr((p)))
683 #define ldfq_raw(p) ldfq_p(laddr((p)))
684 #define stb_raw(p, v) stb_p(saddr((p)), v)
685 #define stw_raw(p, v) stw_p(saddr((p)), v)
686 #define stl_raw(p, v) stl_p(saddr((p)), v)
687 #define stq_raw(p, v) stq_p(saddr((p)), v)
688 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
689 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
690
691
692 #if defined(CONFIG_USER_ONLY)
693
694 /* if user mode, no other memory access functions */
695 #define ldub(p) ldub_raw(p)
696 #define ldsb(p) ldsb_raw(p)
697 #define lduw(p) lduw_raw(p)
698 #define ldsw(p) ldsw_raw(p)
699 #define ldl(p) ldl_raw(p)
700 #define ldq(p) ldq_raw(p)
701 #define ldfl(p) ldfl_raw(p)
702 #define ldfq(p) ldfq_raw(p)
703 #define stb(p, v) stb_raw(p, v)
704 #define stw(p, v) stw_raw(p, v)
705 #define stl(p, v) stl_raw(p, v)
706 #define stq(p, v) stq_raw(p, v)
707 #define stfl(p, v) stfl_raw(p, v)
708 #define stfq(p, v) stfq_raw(p, v)
709
710 #define ldub_code(p) ldub_raw(p)
711 #define ldsb_code(p) ldsb_raw(p)
712 #define lduw_code(p) lduw_raw(p)
713 #define ldsw_code(p) ldsw_raw(p)
714 #define ldl_code(p) ldl_raw(p)
715 #define ldq_code(p) ldq_raw(p)
716
717 #define ldub_kernel(p) ldub_raw(p)
718 #define ldsb_kernel(p) ldsb_raw(p)
719 #define lduw_kernel(p) lduw_raw(p)
720 #define ldsw_kernel(p) ldsw_raw(p)
721 #define ldl_kernel(p) ldl_raw(p)
722 #define ldq_kernel(p) ldq_raw(p)
723 #define ldfl_kernel(p) ldfl_raw(p)
724 #define ldfq_kernel(p) ldfq_raw(p)
725 #define stb_kernel(p, v) stb_raw(p, v)
726 #define stw_kernel(p, v) stw_raw(p, v)
727 #define stl_kernel(p, v) stl_raw(p, v)
728 #define stq_kernel(p, v) stq_raw(p, v)
729 #define stfl_kernel(p, v) stfl_raw(p, v)
730 #define stfq_kernel(p, vt) stfq_raw(p, v)
731
732 #endif /* defined(CONFIG_USER_ONLY) */
733
734 /* page related stuff */
735
736 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
737 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
738 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
739
740 /* ??? These should be the larger of unsigned long and target_ulong. */
741 extern unsigned long qemu_real_host_page_size;
742 extern unsigned long qemu_host_page_bits;
743 extern unsigned long qemu_host_page_size;
744 extern unsigned long qemu_host_page_mask;
745
746 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
747
748 /* same as PROT_xxx */
749 #define PAGE_READ 0x0001
750 #define PAGE_WRITE 0x0002
751 #define PAGE_EXEC 0x0004
752 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
753 #define PAGE_VALID 0x0008
754 /* original state of the write flag (used when tracking self-modifying
755 code */
756 #define PAGE_WRITE_ORG 0x0010
757 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
758 /* FIXME: Code that sets/uses this is broken and needs to go away. */
759 #define PAGE_RESERVED 0x0020
760 #endif
761
762 #if defined(CONFIG_USER_ONLY)
763 void page_dump(FILE *f);
764
765 typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
766 abi_ulong, unsigned long);
767 int walk_memory_regions(void *, walk_memory_regions_fn);
768
769 int page_get_flags(target_ulong address);
770 void page_set_flags(target_ulong start, target_ulong end, int flags);
771 int page_check_range(target_ulong start, target_ulong len, int flags);
772 #endif
773
774 CPUState *cpu_copy(CPUState *env);
775 CPUState *qemu_get_cpu(int cpu);
776
777 #define CPU_DUMP_CODE 0x00010000
778
779 void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
780 int flags);
781 void cpu_dump_statistics(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
782 int flags);
783
784 void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
785 GCC_FMT_ATTR(2, 3);
786 extern CPUState *first_cpu;
787 extern CPUState *cpu_single_env;
788
789 #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
790 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
791 #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
792 #define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
793 #define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
794 #define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
795 #define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
796 #define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
797 #define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
798 #define CPU_INTERRUPT_INIT 0x400 /* INIT pending. */
799 #define CPU_INTERRUPT_SIPI 0x800 /* SIPI pending. */
800 #define CPU_INTERRUPT_MCE 0x1000 /* (x86 only) MCE pending. */
801
802 #ifndef CONFIG_USER_ONLY
803 typedef void (*CPUInterruptHandler)(CPUState *, int);
804
805 extern CPUInterruptHandler cpu_interrupt_handler;
806
807 static inline void cpu_interrupt(CPUState *s, int mask)
808 {
809 cpu_interrupt_handler(s, mask);
810 }
811 #else /* USER_ONLY */
812 void cpu_interrupt(CPUState *env, int mask);
813 #endif /* USER_ONLY */
814
815 void cpu_reset_interrupt(CPUState *env, int mask);
816
817 void cpu_exit(CPUState *s);
818
819 int qemu_cpu_has_work(CPUState *env);
820
821 /* Breakpoint/watchpoint flags */
822 #define BP_MEM_READ 0x01
823 #define BP_MEM_WRITE 0x02
824 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
825 #define BP_STOP_BEFORE_ACCESS 0x04
826 #define BP_WATCHPOINT_HIT 0x08
827 #define BP_GDB 0x10
828 #define BP_CPU 0x20
829
830 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
831 CPUBreakpoint **breakpoint);
832 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
833 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
834 void cpu_breakpoint_remove_all(CPUState *env, int mask);
835 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
836 int flags, CPUWatchpoint **watchpoint);
837 int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
838 target_ulong len, int flags);
839 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
840 void cpu_watchpoint_remove_all(CPUState *env, int mask);
841
842 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
843 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
844 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
845
846 void cpu_single_step(CPUState *env, int enabled);
847 void cpu_reset(CPUState *s);
848 int cpu_is_stopped(CPUState *env);
849 void run_on_cpu(CPUState *env, void (*func)(void *data), void *data);
850
851 #define CPU_LOG_TB_OUT_ASM (1 << 0)
852 #define CPU_LOG_TB_IN_ASM (1 << 1)
853 #define CPU_LOG_TB_OP (1 << 2)
854 #define CPU_LOG_TB_OP_OPT (1 << 3)
855 #define CPU_LOG_INT (1 << 4)
856 #define CPU_LOG_EXEC (1 << 5)
857 #define CPU_LOG_PCALL (1 << 6)
858 #define CPU_LOG_IOPORT (1 << 7)
859 #define CPU_LOG_TB_CPU (1 << 8)
860 #define CPU_LOG_RESET (1 << 9)
861
862 /* define log items */
863 typedef struct CPULogItem {
864 int mask;
865 const char *name;
866 const char *help;
867 } CPULogItem;
868
869 extern const CPULogItem cpu_log_items[];
870
871 void cpu_set_log(int log_flags);
872 void cpu_set_log_filename(const char *filename);
873 int cpu_str_to_log_mask(const char *str);
874
875 #if !defined(CONFIG_USER_ONLY)
876
877 /* Return the physical page corresponding to a virtual one. Use it
878 only for debugging because no protection checks are done. Return -1
879 if no page found. */
880 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
881
882 /* memory API */
883
884 extern int phys_ram_fd;
885 extern ram_addr_t ram_size;
886
887 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
888 #define RAM_PREALLOC_MASK (1 << 0)
889
890 typedef struct RAMBlock {
891 uint8_t *host;
892 ram_addr_t offset;
893 ram_addr_t length;
894 uint32_t flags;
895 char idstr[256];
896 QLIST_ENTRY(RAMBlock) next;
897 #if defined(__linux__) && !defined(TARGET_S390X)
898 int fd;
899 #endif
900 } RAMBlock;
901
902 typedef struct RAMList {
903 uint8_t *phys_dirty;
904 QLIST_HEAD(ram, RAMBlock) blocks;
905 } RAMList;
906 extern RAMList ram_list;
907
908 extern const char *mem_path;
909 extern int mem_prealloc;
910
911 /* physical memory access */
912
913 /* MMIO pages are identified by a combination of an IO device index and
914 3 flags. The ROMD code stores the page ram offset in iotlb entry,
915 so only a limited number of ids are avaiable. */
916
917 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
918
919 /* Flags stored in the low bits of the TLB virtual address. These are
920 defined so that fast path ram access is all zeros. */
921 /* Zero if TLB entry is valid. */
922 #define TLB_INVALID_MASK (1 << 3)
923 /* Set if TLB entry references a clean RAM page. The iotlb entry will
924 contain the page physical address. */
925 #define TLB_NOTDIRTY (1 << 4)
926 /* Set if TLB entry is an IO callback. */
927 #define TLB_MMIO (1 << 5)
928
929 #define VGA_DIRTY_FLAG 0x01
930 #define CODE_DIRTY_FLAG 0x02
931 #define MIGRATION_DIRTY_FLAG 0x08
932
933 /* read dirty bit (return 0 or 1) */
934 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
935 {
936 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
937 }
938
939 static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr)
940 {
941 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS];
942 }
943
944 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
945 int dirty_flags)
946 {
947 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
948 }
949
950 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
951 {
952 ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
953 }
954
955 static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr,
956 int dirty_flags)
957 {
958 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags;
959 }
960
961 static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start,
962 int length,
963 int dirty_flags)
964 {
965 int i, mask, len;
966 uint8_t *p;
967
968 len = length >> TARGET_PAGE_BITS;
969 mask = ~dirty_flags;
970 p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS);
971 for (i = 0; i < len; i++) {
972 p[i] &= mask;
973 }
974 }
975
976 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
977 int dirty_flags);
978 void cpu_tlb_update_dirty(CPUState *env);
979
980 int cpu_physical_memory_set_dirty_tracking(int enable);
981
982 int cpu_physical_memory_get_dirty_tracking(void);
983
984 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
985 target_phys_addr_t end_addr);
986
987 int cpu_physical_log_start(target_phys_addr_t start_addr,
988 ram_addr_t size);
989
990 int cpu_physical_log_stop(target_phys_addr_t start_addr,
991 ram_addr_t size);
992
993 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
994 #endif /* !CONFIG_USER_ONLY */
995
996 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
997 uint8_t *buf, int len, int is_write);
998
999 #endif /* CPU_ALL_H */