]> git.proxmox.com Git - qemu.git/blob - cpu-exec.c
lm32: add Milkymist VGAFB support
[qemu.git] / cpu-exec.c
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #include "exec.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "kvm.h"
24 #include "qemu-barrier.h"
25
26 #if !defined(CONFIG_SOFTMMU)
27 #undef EAX
28 #undef ECX
29 #undef EDX
30 #undef EBX
31 #undef ESP
32 #undef EBP
33 #undef ESI
34 #undef EDI
35 #undef EIP
36 #include <signal.h>
37 #ifdef __linux__
38 #include <sys/ucontext.h>
39 #endif
40 #endif
41
42 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
43 // Work around ugly bugs in glibc that mangle global register contents
44 #undef env
45 #define env cpu_single_env
46 #endif
47
48 int tb_invalidated_flag;
49
50 //#define CONFIG_DEBUG_EXEC
51 //#define DEBUG_SIGNAL
52
53 int qemu_cpu_has_work(CPUState *env)
54 {
55 return cpu_has_work(env);
56 }
57
58 void cpu_loop_exit(void)
59 {
60 env->current_tb = NULL;
61 longjmp(env->jmp_env, 1);
62 }
63
64 /* exit the current TB from a signal handler. The host registers are
65 restored in a state compatible with the CPU emulator
66 */
67 void cpu_resume_from_signal(CPUState *env1, void *puc)
68 {
69 #if !defined(CONFIG_SOFTMMU)
70 #ifdef __linux__
71 struct ucontext *uc = puc;
72 #elif defined(__OpenBSD__)
73 struct sigcontext *uc = puc;
74 #endif
75 #endif
76
77 env = env1;
78
79 /* XXX: restore cpu registers saved in host registers */
80
81 #if !defined(CONFIG_SOFTMMU)
82 if (puc) {
83 /* XXX: use siglongjmp ? */
84 #ifdef __linux__
85 #ifdef __ia64
86 sigprocmask(SIG_SETMASK, (sigset_t *)&uc->uc_sigmask, NULL);
87 #else
88 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
89 #endif
90 #elif defined(__OpenBSD__)
91 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
92 #endif
93 }
94 #endif
95 env->exception_index = -1;
96 longjmp(env->jmp_env, 1);
97 }
98
99 /* Execute the code without caching the generated code. An interpreter
100 could be used if available. */
101 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
102 {
103 unsigned long next_tb;
104 TranslationBlock *tb;
105
106 /* Should never happen.
107 We only end up here when an existing TB is too long. */
108 if (max_cycles > CF_COUNT_MASK)
109 max_cycles = CF_COUNT_MASK;
110
111 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
112 max_cycles);
113 env->current_tb = tb;
114 /* execute the generated code */
115 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
116 env->current_tb = NULL;
117
118 if ((next_tb & 3) == 2) {
119 /* Restore PC. This may happen if async event occurs before
120 the TB starts executing. */
121 cpu_pc_from_tb(env, tb);
122 }
123 tb_phys_invalidate(tb, -1);
124 tb_free(tb);
125 }
126
127 static TranslationBlock *tb_find_slow(target_ulong pc,
128 target_ulong cs_base,
129 uint64_t flags)
130 {
131 TranslationBlock *tb, **ptb1;
132 unsigned int h;
133 tb_page_addr_t phys_pc, phys_page1, phys_page2;
134 target_ulong virt_page2;
135
136 tb_invalidated_flag = 0;
137
138 /* find translated block using physical mappings */
139 phys_pc = get_page_addr_code(env, pc);
140 phys_page1 = phys_pc & TARGET_PAGE_MASK;
141 phys_page2 = -1;
142 h = tb_phys_hash_func(phys_pc);
143 ptb1 = &tb_phys_hash[h];
144 for(;;) {
145 tb = *ptb1;
146 if (!tb)
147 goto not_found;
148 if (tb->pc == pc &&
149 tb->page_addr[0] == phys_page1 &&
150 tb->cs_base == cs_base &&
151 tb->flags == flags) {
152 /* check next page if needed */
153 if (tb->page_addr[1] != -1) {
154 virt_page2 = (pc & TARGET_PAGE_MASK) +
155 TARGET_PAGE_SIZE;
156 phys_page2 = get_page_addr_code(env, virt_page2);
157 if (tb->page_addr[1] == phys_page2)
158 goto found;
159 } else {
160 goto found;
161 }
162 }
163 ptb1 = &tb->phys_hash_next;
164 }
165 not_found:
166 /* if no translated code available, then translate it now */
167 tb = tb_gen_code(env, pc, cs_base, flags, 0);
168
169 found:
170 /* Move the last found TB to the head of the list */
171 if (likely(*ptb1)) {
172 *ptb1 = tb->phys_hash_next;
173 tb->phys_hash_next = tb_phys_hash[h];
174 tb_phys_hash[h] = tb;
175 }
176 /* we add the TB in the virtual pc hash table */
177 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
178 return tb;
179 }
180
181 static inline TranslationBlock *tb_find_fast(void)
182 {
183 TranslationBlock *tb;
184 target_ulong cs_base, pc;
185 int flags;
186
187 /* we record a subset of the CPU state. It will
188 always be the same before a given translated block
189 is executed. */
190 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
191 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
192 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
193 tb->flags != flags)) {
194 tb = tb_find_slow(pc, cs_base, flags);
195 }
196 return tb;
197 }
198
199 static CPUDebugExcpHandler *debug_excp_handler;
200
201 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
202 {
203 CPUDebugExcpHandler *old_handler = debug_excp_handler;
204
205 debug_excp_handler = handler;
206 return old_handler;
207 }
208
209 static void cpu_handle_debug_exception(CPUState *env)
210 {
211 CPUWatchpoint *wp;
212
213 if (!env->watchpoint_hit) {
214 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
215 wp->flags &= ~BP_WATCHPOINT_HIT;
216 }
217 }
218 if (debug_excp_handler) {
219 debug_excp_handler(env);
220 }
221 }
222
223 /* main execution loop */
224
225 volatile sig_atomic_t exit_request;
226
227 int cpu_exec(CPUState *env1)
228 {
229 volatile host_reg_t saved_env_reg;
230 int ret, interrupt_request;
231 TranslationBlock *tb;
232 uint8_t *tc_ptr;
233 unsigned long next_tb;
234
235 if (env1->halted) {
236 if (!cpu_has_work(env1)) {
237 return EXCP_HALTED;
238 }
239
240 env1->halted = 0;
241 }
242
243 cpu_single_env = env1;
244
245 /* the access to env below is actually saving the global register's
246 value, so that files not including target-xyz/exec.h are free to
247 use it. */
248 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg) != sizeof (env));
249 saved_env_reg = (host_reg_t) env;
250 barrier();
251 env = env1;
252
253 if (unlikely(exit_request)) {
254 env->exit_request = 1;
255 }
256
257 #if defined(TARGET_I386)
258 /* put eflags in CPU temporary format */
259 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
260 DF = 1 - (2 * ((env->eflags >> 10) & 1));
261 CC_OP = CC_OP_EFLAGS;
262 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
263 #elif defined(TARGET_SPARC)
264 #elif defined(TARGET_M68K)
265 env->cc_op = CC_OP_FLAGS;
266 env->cc_dest = env->sr & 0xf;
267 env->cc_x = (env->sr >> 4) & 1;
268 #elif defined(TARGET_ALPHA)
269 #elif defined(TARGET_ARM)
270 #elif defined(TARGET_PPC)
271 #elif defined(TARGET_LM32)
272 #elif defined(TARGET_MICROBLAZE)
273 #elif defined(TARGET_MIPS)
274 #elif defined(TARGET_SH4)
275 #elif defined(TARGET_CRIS)
276 #elif defined(TARGET_S390X)
277 /* XXXXX */
278 #else
279 #error unsupported target CPU
280 #endif
281 env->exception_index = -1;
282
283 /* prepare setjmp context for exception handling */
284 for(;;) {
285 if (setjmp(env->jmp_env) == 0) {
286 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
287 #undef env
288 env = cpu_single_env;
289 #define env cpu_single_env
290 #endif
291 /* if an exception is pending, we execute it here */
292 if (env->exception_index >= 0) {
293 if (env->exception_index >= EXCP_INTERRUPT) {
294 /* exit request from the cpu execution loop */
295 ret = env->exception_index;
296 if (ret == EXCP_DEBUG) {
297 cpu_handle_debug_exception(env);
298 }
299 break;
300 } else {
301 #if defined(CONFIG_USER_ONLY)
302 /* if user mode only, we simulate a fake exception
303 which will be handled outside the cpu execution
304 loop */
305 #if defined(TARGET_I386)
306 do_interrupt_user(env->exception_index,
307 env->exception_is_int,
308 env->error_code,
309 env->exception_next_eip);
310 /* successfully delivered */
311 env->old_exception = -1;
312 #endif
313 ret = env->exception_index;
314 break;
315 #else
316 #if defined(TARGET_I386)
317 /* simulate a real cpu exception. On i386, it can
318 trigger new exceptions, but we do not handle
319 double or triple faults yet. */
320 do_interrupt(env->exception_index,
321 env->exception_is_int,
322 env->error_code,
323 env->exception_next_eip, 0);
324 /* successfully delivered */
325 env->old_exception = -1;
326 #elif defined(TARGET_PPC)
327 do_interrupt(env);
328 #elif defined(TARGET_LM32)
329 do_interrupt(env);
330 #elif defined(TARGET_MICROBLAZE)
331 do_interrupt(env);
332 #elif defined(TARGET_MIPS)
333 do_interrupt(env);
334 #elif defined(TARGET_SPARC)
335 do_interrupt(env);
336 #elif defined(TARGET_ARM)
337 do_interrupt(env);
338 #elif defined(TARGET_SH4)
339 do_interrupt(env);
340 #elif defined(TARGET_ALPHA)
341 do_interrupt(env);
342 #elif defined(TARGET_CRIS)
343 do_interrupt(env);
344 #elif defined(TARGET_M68K)
345 do_interrupt(0);
346 #endif
347 env->exception_index = -1;
348 #endif
349 }
350 }
351
352 next_tb = 0; /* force lookup of first TB */
353 for(;;) {
354 interrupt_request = env->interrupt_request;
355 if (unlikely(interrupt_request)) {
356 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
357 /* Mask out external interrupts for this step. */
358 interrupt_request &= ~(CPU_INTERRUPT_HARD |
359 CPU_INTERRUPT_FIQ |
360 CPU_INTERRUPT_SMI |
361 CPU_INTERRUPT_NMI);
362 }
363 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
364 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
365 env->exception_index = EXCP_DEBUG;
366 cpu_loop_exit();
367 }
368 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
369 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
370 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32)
371 if (interrupt_request & CPU_INTERRUPT_HALT) {
372 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
373 env->halted = 1;
374 env->exception_index = EXCP_HLT;
375 cpu_loop_exit();
376 }
377 #endif
378 #if defined(TARGET_I386)
379 if (interrupt_request & CPU_INTERRUPT_INIT) {
380 svm_check_intercept(SVM_EXIT_INIT);
381 do_cpu_init(env);
382 env->exception_index = EXCP_HALTED;
383 cpu_loop_exit();
384 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
385 do_cpu_sipi(env);
386 } else if (env->hflags2 & HF2_GIF_MASK) {
387 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
388 !(env->hflags & HF_SMM_MASK)) {
389 svm_check_intercept(SVM_EXIT_SMI);
390 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
391 do_smm_enter();
392 next_tb = 0;
393 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
394 !(env->hflags2 & HF2_NMI_MASK)) {
395 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
396 env->hflags2 |= HF2_NMI_MASK;
397 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
398 next_tb = 0;
399 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
400 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
401 do_interrupt(EXCP12_MCHK, 0, 0, 0, 0);
402 next_tb = 0;
403 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
404 (((env->hflags2 & HF2_VINTR_MASK) &&
405 (env->hflags2 & HF2_HIF_MASK)) ||
406 (!(env->hflags2 & HF2_VINTR_MASK) &&
407 (env->eflags & IF_MASK &&
408 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
409 int intno;
410 svm_check_intercept(SVM_EXIT_INTR);
411 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
412 intno = cpu_get_pic_interrupt(env);
413 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
414 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
415 #undef env
416 env = cpu_single_env;
417 #define env cpu_single_env
418 #endif
419 do_interrupt(intno, 0, 0, 0, 1);
420 /* ensure that no TB jump will be modified as
421 the program flow was changed */
422 next_tb = 0;
423 #if !defined(CONFIG_USER_ONLY)
424 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
425 (env->eflags & IF_MASK) &&
426 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
427 int intno;
428 /* FIXME: this should respect TPR */
429 svm_check_intercept(SVM_EXIT_VINTR);
430 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
431 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
432 do_interrupt(intno, 0, 0, 0, 1);
433 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
434 next_tb = 0;
435 #endif
436 }
437 }
438 #elif defined(TARGET_PPC)
439 #if 0
440 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
441 cpu_reset(env);
442 }
443 #endif
444 if (interrupt_request & CPU_INTERRUPT_HARD) {
445 ppc_hw_interrupt(env);
446 if (env->pending_interrupts == 0)
447 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
448 next_tb = 0;
449 }
450 #elif defined(TARGET_LM32)
451 if ((interrupt_request & CPU_INTERRUPT_HARD)
452 && (env->ie & IE_IE)) {
453 env->exception_index = EXCP_IRQ;
454 do_interrupt(env);
455 next_tb = 0;
456 }
457 #elif defined(TARGET_MICROBLAZE)
458 if ((interrupt_request & CPU_INTERRUPT_HARD)
459 && (env->sregs[SR_MSR] & MSR_IE)
460 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
461 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
462 env->exception_index = EXCP_IRQ;
463 do_interrupt(env);
464 next_tb = 0;
465 }
466 #elif defined(TARGET_MIPS)
467 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
468 cpu_mips_hw_interrupts_pending(env)) {
469 /* Raise it */
470 env->exception_index = EXCP_EXT_INTERRUPT;
471 env->error_code = 0;
472 do_interrupt(env);
473 next_tb = 0;
474 }
475 #elif defined(TARGET_SPARC)
476 if (interrupt_request & CPU_INTERRUPT_HARD) {
477 if (cpu_interrupts_enabled(env) &&
478 env->interrupt_index > 0) {
479 int pil = env->interrupt_index & 0xf;
480 int type = env->interrupt_index & 0xf0;
481
482 if (((type == TT_EXTINT) &&
483 cpu_pil_allowed(env, pil)) ||
484 type != TT_EXTINT) {
485 env->exception_index = env->interrupt_index;
486 do_interrupt(env);
487 next_tb = 0;
488 }
489 }
490 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
491 //do_interrupt(0, 0, 0, 0, 0);
492 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
493 }
494 #elif defined(TARGET_ARM)
495 if (interrupt_request & CPU_INTERRUPT_FIQ
496 && !(env->uncached_cpsr & CPSR_F)) {
497 env->exception_index = EXCP_FIQ;
498 do_interrupt(env);
499 next_tb = 0;
500 }
501 /* ARMv7-M interrupt return works by loading a magic value
502 into the PC. On real hardware the load causes the
503 return to occur. The qemu implementation performs the
504 jump normally, then does the exception return when the
505 CPU tries to execute code at the magic address.
506 This will cause the magic PC value to be pushed to
507 the stack if an interrupt occured at the wrong time.
508 We avoid this by disabling interrupts when
509 pc contains a magic address. */
510 if (interrupt_request & CPU_INTERRUPT_HARD
511 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
512 || !(env->uncached_cpsr & CPSR_I))) {
513 env->exception_index = EXCP_IRQ;
514 do_interrupt(env);
515 next_tb = 0;
516 }
517 #elif defined(TARGET_SH4)
518 if (interrupt_request & CPU_INTERRUPT_HARD) {
519 do_interrupt(env);
520 next_tb = 0;
521 }
522 #elif defined(TARGET_ALPHA)
523 if (interrupt_request & CPU_INTERRUPT_HARD) {
524 do_interrupt(env);
525 next_tb = 0;
526 }
527 #elif defined(TARGET_CRIS)
528 if (interrupt_request & CPU_INTERRUPT_HARD
529 && (env->pregs[PR_CCS] & I_FLAG)
530 && !env->locked_irq) {
531 env->exception_index = EXCP_IRQ;
532 do_interrupt(env);
533 next_tb = 0;
534 }
535 if (interrupt_request & CPU_INTERRUPT_NMI
536 && (env->pregs[PR_CCS] & M_FLAG)) {
537 env->exception_index = EXCP_NMI;
538 do_interrupt(env);
539 next_tb = 0;
540 }
541 #elif defined(TARGET_M68K)
542 if (interrupt_request & CPU_INTERRUPT_HARD
543 && ((env->sr & SR_I) >> SR_I_SHIFT)
544 < env->pending_level) {
545 /* Real hardware gets the interrupt vector via an
546 IACK cycle at this point. Current emulated
547 hardware doesn't rely on this, so we
548 provide/save the vector when the interrupt is
549 first signalled. */
550 env->exception_index = env->pending_vector;
551 do_interrupt(1);
552 next_tb = 0;
553 }
554 #endif
555 /* Don't use the cached interupt_request value,
556 do_interrupt may have updated the EXITTB flag. */
557 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
558 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
559 /* ensure that no TB jump will be modified as
560 the program flow was changed */
561 next_tb = 0;
562 }
563 }
564 if (unlikely(env->exit_request)) {
565 env->exit_request = 0;
566 env->exception_index = EXCP_INTERRUPT;
567 cpu_loop_exit();
568 }
569 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
570 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
571 /* restore flags in standard format */
572 #if defined(TARGET_I386)
573 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
574 log_cpu_state(env, X86_DUMP_CCOP);
575 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
576 #elif defined(TARGET_M68K)
577 cpu_m68k_flush_flags(env, env->cc_op);
578 env->cc_op = CC_OP_FLAGS;
579 env->sr = (env->sr & 0xffe0)
580 | env->cc_dest | (env->cc_x << 4);
581 log_cpu_state(env, 0);
582 #else
583 log_cpu_state(env, 0);
584 #endif
585 }
586 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
587 spin_lock(&tb_lock);
588 tb = tb_find_fast();
589 /* Note: we do it here to avoid a gcc bug on Mac OS X when
590 doing it in tb_find_slow */
591 if (tb_invalidated_flag) {
592 /* as some TB could have been invalidated because
593 of memory exceptions while generating the code, we
594 must recompute the hash index here */
595 next_tb = 0;
596 tb_invalidated_flag = 0;
597 }
598 #ifdef CONFIG_DEBUG_EXEC
599 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
600 (long)tb->tc_ptr, tb->pc,
601 lookup_symbol(tb->pc));
602 #endif
603 /* see if we can patch the calling TB. When the TB
604 spans two pages, we cannot safely do a direct
605 jump. */
606 if (next_tb != 0 && tb->page_addr[1] == -1) {
607 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
608 }
609 spin_unlock(&tb_lock);
610
611 /* cpu_interrupt might be called while translating the
612 TB, but before it is linked into a potentially
613 infinite loop and becomes env->current_tb. Avoid
614 starting execution if there is a pending interrupt. */
615 env->current_tb = tb;
616 barrier();
617 if (likely(!env->exit_request)) {
618 tc_ptr = tb->tc_ptr;
619 /* execute the generated code */
620 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
621 #undef env
622 env = cpu_single_env;
623 #define env cpu_single_env
624 #endif
625 next_tb = tcg_qemu_tb_exec(tc_ptr);
626 if ((next_tb & 3) == 2) {
627 /* Instruction counter expired. */
628 int insns_left;
629 tb = (TranslationBlock *)(long)(next_tb & ~3);
630 /* Restore PC. */
631 cpu_pc_from_tb(env, tb);
632 insns_left = env->icount_decr.u32;
633 if (env->icount_extra && insns_left >= 0) {
634 /* Refill decrementer and continue execution. */
635 env->icount_extra += insns_left;
636 if (env->icount_extra > 0xffff) {
637 insns_left = 0xffff;
638 } else {
639 insns_left = env->icount_extra;
640 }
641 env->icount_extra -= insns_left;
642 env->icount_decr.u16.low = insns_left;
643 } else {
644 if (insns_left > 0) {
645 /* Execute remaining instructions. */
646 cpu_exec_nocache(insns_left, tb);
647 }
648 env->exception_index = EXCP_INTERRUPT;
649 next_tb = 0;
650 cpu_loop_exit();
651 }
652 }
653 }
654 env->current_tb = NULL;
655 /* reset soft MMU for next block (it can currently
656 only be set by a memory fault) */
657 } /* for(;;) */
658 }
659 } /* for(;;) */
660
661
662 #if defined(TARGET_I386)
663 /* restore flags in standard format */
664 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
665 #elif defined(TARGET_ARM)
666 /* XXX: Save/restore host fpu exception state?. */
667 #elif defined(TARGET_SPARC)
668 #elif defined(TARGET_PPC)
669 #elif defined(TARGET_LM32)
670 #elif defined(TARGET_M68K)
671 cpu_m68k_flush_flags(env, env->cc_op);
672 env->cc_op = CC_OP_FLAGS;
673 env->sr = (env->sr & 0xffe0)
674 | env->cc_dest | (env->cc_x << 4);
675 #elif defined(TARGET_MICROBLAZE)
676 #elif defined(TARGET_MIPS)
677 #elif defined(TARGET_SH4)
678 #elif defined(TARGET_ALPHA)
679 #elif defined(TARGET_CRIS)
680 #elif defined(TARGET_S390X)
681 /* XXXXX */
682 #else
683 #error unsupported target CPU
684 #endif
685
686 /* restore global registers */
687 barrier();
688 env = (void *) saved_env_reg;
689
690 /* fail safe : never use cpu_single_env outside cpu_exec() */
691 cpu_single_env = NULL;
692 return ret;
693 }
694
695 /* must only be called from the generated code as an exception can be
696 generated */
697 void tb_invalidate_page_range(target_ulong start, target_ulong end)
698 {
699 /* XXX: cannot enable it yet because it yields to MMU exception
700 where NIP != read address on PowerPC */
701 #if 0
702 target_ulong phys_addr;
703 phys_addr = get_phys_addr_code(env, start);
704 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
705 #endif
706 }
707
708 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
709
710 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
711 {
712 CPUX86State *saved_env;
713
714 saved_env = env;
715 env = s;
716 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
717 selector &= 0xffff;
718 cpu_x86_load_seg_cache(env, seg_reg, selector,
719 (selector << 4), 0xffff, 0);
720 } else {
721 helper_load_seg(seg_reg, selector);
722 }
723 env = saved_env;
724 }
725
726 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
727 {
728 CPUX86State *saved_env;
729
730 saved_env = env;
731 env = s;
732
733 helper_fsave(ptr, data32);
734
735 env = saved_env;
736 }
737
738 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
739 {
740 CPUX86State *saved_env;
741
742 saved_env = env;
743 env = s;
744
745 helper_frstor(ptr, data32);
746
747 env = saved_env;
748 }
749
750 #endif /* TARGET_I386 */
751
752 #if !defined(CONFIG_SOFTMMU)
753
754 #if defined(TARGET_I386)
755 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
756 #else
757 #define EXCEPTION_ACTION cpu_loop_exit()
758 #endif
759
760 /* 'pc' is the host PC at which the exception was raised. 'address' is
761 the effective address of the memory exception. 'is_write' is 1 if a
762 write caused the exception and otherwise 0'. 'old_set' is the
763 signal set which should be restored */
764 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
765 int is_write, sigset_t *old_set,
766 void *puc)
767 {
768 TranslationBlock *tb;
769 int ret;
770
771 if (cpu_single_env)
772 env = cpu_single_env; /* XXX: find a correct solution for multithread */
773 #if defined(DEBUG_SIGNAL)
774 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
775 pc, address, is_write, *(unsigned long *)old_set);
776 #endif
777 /* XXX: locking issue */
778 if (is_write && page_unprotect(h2g(address), pc, puc)) {
779 return 1;
780 }
781
782 /* see if it is an MMU fault */
783 ret = cpu_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
784 if (ret < 0)
785 return 0; /* not an MMU fault */
786 if (ret == 0)
787 return 1; /* the MMU fault was handled without causing real CPU fault */
788 /* now we have a real cpu fault */
789 tb = tb_find_pc(pc);
790 if (tb) {
791 /* the PC is inside the translated code. It means that we have
792 a virtual CPU fault */
793 cpu_restore_state(tb, env, pc, puc);
794 }
795
796 /* we restore the process signal mask as the sigreturn should
797 do it (XXX: use sigsetjmp) */
798 sigprocmask(SIG_SETMASK, old_set, NULL);
799 EXCEPTION_ACTION;
800
801 /* never comes here */
802 return 1;
803 }
804
805 #if defined(__i386__)
806
807 #if defined(__APPLE__)
808 # include <sys/ucontext.h>
809
810 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
811 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
812 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
813 # define MASK_sig(context) ((context)->uc_sigmask)
814 #elif defined (__NetBSD__)
815 # include <ucontext.h>
816
817 # define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
818 # define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
819 # define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
820 # define MASK_sig(context) ((context)->uc_sigmask)
821 #elif defined (__FreeBSD__) || defined(__DragonFly__)
822 # include <ucontext.h>
823
824 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip))
825 # define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
826 # define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
827 # define MASK_sig(context) ((context)->uc_sigmask)
828 #elif defined(__OpenBSD__)
829 # define EIP_sig(context) ((context)->sc_eip)
830 # define TRAP_sig(context) ((context)->sc_trapno)
831 # define ERROR_sig(context) ((context)->sc_err)
832 # define MASK_sig(context) ((context)->sc_mask)
833 #else
834 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
835 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
836 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
837 # define MASK_sig(context) ((context)->uc_sigmask)
838 #endif
839
840 int cpu_signal_handler(int host_signum, void *pinfo,
841 void *puc)
842 {
843 siginfo_t *info = pinfo;
844 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
845 ucontext_t *uc = puc;
846 #elif defined(__OpenBSD__)
847 struct sigcontext *uc = puc;
848 #else
849 struct ucontext *uc = puc;
850 #endif
851 unsigned long pc;
852 int trapno;
853
854 #ifndef REG_EIP
855 /* for glibc 2.1 */
856 #define REG_EIP EIP
857 #define REG_ERR ERR
858 #define REG_TRAPNO TRAPNO
859 #endif
860 pc = EIP_sig(uc);
861 trapno = TRAP_sig(uc);
862 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
863 trapno == 0xe ?
864 (ERROR_sig(uc) >> 1) & 1 : 0,
865 &MASK_sig(uc), puc);
866 }
867
868 #elif defined(__x86_64__)
869
870 #ifdef __NetBSD__
871 #define PC_sig(context) _UC_MACHINE_PC(context)
872 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
873 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
874 #define MASK_sig(context) ((context)->uc_sigmask)
875 #elif defined(__OpenBSD__)
876 #define PC_sig(context) ((context)->sc_rip)
877 #define TRAP_sig(context) ((context)->sc_trapno)
878 #define ERROR_sig(context) ((context)->sc_err)
879 #define MASK_sig(context) ((context)->sc_mask)
880 #elif defined (__FreeBSD__) || defined(__DragonFly__)
881 #include <ucontext.h>
882
883 #define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip))
884 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
885 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
886 #define MASK_sig(context) ((context)->uc_sigmask)
887 #else
888 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
889 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
890 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
891 #define MASK_sig(context) ((context)->uc_sigmask)
892 #endif
893
894 int cpu_signal_handler(int host_signum, void *pinfo,
895 void *puc)
896 {
897 siginfo_t *info = pinfo;
898 unsigned long pc;
899 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
900 ucontext_t *uc = puc;
901 #elif defined(__OpenBSD__)
902 struct sigcontext *uc = puc;
903 #else
904 struct ucontext *uc = puc;
905 #endif
906
907 pc = PC_sig(uc);
908 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
909 TRAP_sig(uc) == 0xe ?
910 (ERROR_sig(uc) >> 1) & 1 : 0,
911 &MASK_sig(uc), puc);
912 }
913
914 #elif defined(_ARCH_PPC)
915
916 /***********************************************************************
917 * signal context platform-specific definitions
918 * From Wine
919 */
920 #ifdef linux
921 /* All Registers access - only for local access */
922 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
923 /* Gpr Registers access */
924 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
925 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
926 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
927 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
928 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
929 # define LR_sig(context) REG_sig(link, context) /* Link register */
930 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
931 /* Float Registers access */
932 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
933 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
934 /* Exception Registers access */
935 # define DAR_sig(context) REG_sig(dar, context)
936 # define DSISR_sig(context) REG_sig(dsisr, context)
937 # define TRAP_sig(context) REG_sig(trap, context)
938 #endif /* linux */
939
940 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
941 #include <ucontext.h>
942 # define IAR_sig(context) ((context)->uc_mcontext.mc_srr0)
943 # define MSR_sig(context) ((context)->uc_mcontext.mc_srr1)
944 # define CTR_sig(context) ((context)->uc_mcontext.mc_ctr)
945 # define XER_sig(context) ((context)->uc_mcontext.mc_xer)
946 # define LR_sig(context) ((context)->uc_mcontext.mc_lr)
947 # define CR_sig(context) ((context)->uc_mcontext.mc_cr)
948 /* Exception Registers access */
949 # define DAR_sig(context) ((context)->uc_mcontext.mc_dar)
950 # define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr)
951 # define TRAP_sig(context) ((context)->uc_mcontext.mc_exc)
952 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */
953
954 #ifdef __APPLE__
955 # include <sys/ucontext.h>
956 typedef struct ucontext SIGCONTEXT;
957 /* All Registers access - only for local access */
958 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
959 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
960 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
961 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
962 /* Gpr Registers access */
963 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
964 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
965 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
966 # define CTR_sig(context) REG_sig(ctr, context)
967 # define XER_sig(context) REG_sig(xer, context) /* Link register */
968 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
969 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
970 /* Float Registers access */
971 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
972 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
973 /* Exception Registers access */
974 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
975 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
976 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
977 #endif /* __APPLE__ */
978
979 int cpu_signal_handler(int host_signum, void *pinfo,
980 void *puc)
981 {
982 siginfo_t *info = pinfo;
983 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
984 ucontext_t *uc = puc;
985 #else
986 struct ucontext *uc = puc;
987 #endif
988 unsigned long pc;
989 int is_write;
990
991 pc = IAR_sig(uc);
992 is_write = 0;
993 #if 0
994 /* ppc 4xx case */
995 if (DSISR_sig(uc) & 0x00800000)
996 is_write = 1;
997 #else
998 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
999 is_write = 1;
1000 #endif
1001 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1002 is_write, &uc->uc_sigmask, puc);
1003 }
1004
1005 #elif defined(__alpha__)
1006
1007 int cpu_signal_handler(int host_signum, void *pinfo,
1008 void *puc)
1009 {
1010 siginfo_t *info = pinfo;
1011 struct ucontext *uc = puc;
1012 uint32_t *pc = uc->uc_mcontext.sc_pc;
1013 uint32_t insn = *pc;
1014 int is_write = 0;
1015
1016 /* XXX: need kernel patch to get write flag faster */
1017 switch (insn >> 26) {
1018 case 0x0d: // stw
1019 case 0x0e: // stb
1020 case 0x0f: // stq_u
1021 case 0x24: // stf
1022 case 0x25: // stg
1023 case 0x26: // sts
1024 case 0x27: // stt
1025 case 0x2c: // stl
1026 case 0x2d: // stq
1027 case 0x2e: // stl_c
1028 case 0x2f: // stq_c
1029 is_write = 1;
1030 }
1031
1032 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1033 is_write, &uc->uc_sigmask, puc);
1034 }
1035 #elif defined(__sparc__)
1036
1037 int cpu_signal_handler(int host_signum, void *pinfo,
1038 void *puc)
1039 {
1040 siginfo_t *info = pinfo;
1041 int is_write;
1042 uint32_t insn;
1043 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1044 uint32_t *regs = (uint32_t *)(info + 1);
1045 void *sigmask = (regs + 20);
1046 /* XXX: is there a standard glibc define ? */
1047 unsigned long pc = regs[1];
1048 #else
1049 #ifdef __linux__
1050 struct sigcontext *sc = puc;
1051 unsigned long pc = sc->sigc_regs.tpc;
1052 void *sigmask = (void *)sc->sigc_mask;
1053 #elif defined(__OpenBSD__)
1054 struct sigcontext *uc = puc;
1055 unsigned long pc = uc->sc_pc;
1056 void *sigmask = (void *)(long)uc->sc_mask;
1057 #endif
1058 #endif
1059
1060 /* XXX: need kernel patch to get write flag faster */
1061 is_write = 0;
1062 insn = *(uint32_t *)pc;
1063 if ((insn >> 30) == 3) {
1064 switch((insn >> 19) & 0x3f) {
1065 case 0x05: // stb
1066 case 0x15: // stba
1067 case 0x06: // sth
1068 case 0x16: // stha
1069 case 0x04: // st
1070 case 0x14: // sta
1071 case 0x07: // std
1072 case 0x17: // stda
1073 case 0x0e: // stx
1074 case 0x1e: // stxa
1075 case 0x24: // stf
1076 case 0x34: // stfa
1077 case 0x27: // stdf
1078 case 0x37: // stdfa
1079 case 0x26: // stqf
1080 case 0x36: // stqfa
1081 case 0x25: // stfsr
1082 case 0x3c: // casa
1083 case 0x3e: // casxa
1084 is_write = 1;
1085 break;
1086 }
1087 }
1088 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1089 is_write, sigmask, NULL);
1090 }
1091
1092 #elif defined(__arm__)
1093
1094 int cpu_signal_handler(int host_signum, void *pinfo,
1095 void *puc)
1096 {
1097 siginfo_t *info = pinfo;
1098 struct ucontext *uc = puc;
1099 unsigned long pc;
1100 int is_write;
1101
1102 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1103 pc = uc->uc_mcontext.gregs[R15];
1104 #else
1105 pc = uc->uc_mcontext.arm_pc;
1106 #endif
1107 /* XXX: compute is_write */
1108 is_write = 0;
1109 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1110 is_write,
1111 &uc->uc_sigmask, puc);
1112 }
1113
1114 #elif defined(__mc68000)
1115
1116 int cpu_signal_handler(int host_signum, void *pinfo,
1117 void *puc)
1118 {
1119 siginfo_t *info = pinfo;
1120 struct ucontext *uc = puc;
1121 unsigned long pc;
1122 int is_write;
1123
1124 pc = uc->uc_mcontext.gregs[16];
1125 /* XXX: compute is_write */
1126 is_write = 0;
1127 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1128 is_write,
1129 &uc->uc_sigmask, puc);
1130 }
1131
1132 #elif defined(__ia64)
1133
1134 #ifndef __ISR_VALID
1135 /* This ought to be in <bits/siginfo.h>... */
1136 # define __ISR_VALID 1
1137 #endif
1138
1139 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1140 {
1141 siginfo_t *info = pinfo;
1142 struct ucontext *uc = puc;
1143 unsigned long ip;
1144 int is_write = 0;
1145
1146 ip = uc->uc_mcontext.sc_ip;
1147 switch (host_signum) {
1148 case SIGILL:
1149 case SIGFPE:
1150 case SIGSEGV:
1151 case SIGBUS:
1152 case SIGTRAP:
1153 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1154 /* ISR.W (write-access) is bit 33: */
1155 is_write = (info->si_isr >> 33) & 1;
1156 break;
1157
1158 default:
1159 break;
1160 }
1161 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1162 is_write,
1163 (sigset_t *)&uc->uc_sigmask, puc);
1164 }
1165
1166 #elif defined(__s390__)
1167
1168 int cpu_signal_handler(int host_signum, void *pinfo,
1169 void *puc)
1170 {
1171 siginfo_t *info = pinfo;
1172 struct ucontext *uc = puc;
1173 unsigned long pc;
1174 uint16_t *pinsn;
1175 int is_write = 0;
1176
1177 pc = uc->uc_mcontext.psw.addr;
1178
1179 /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead
1180 of the normal 2 arguments. The 3rd argument contains the "int_code"
1181 from the hardware which does in fact contain the is_write value.
1182 The rt signal handler, as far as I can tell, does not give this value
1183 at all. Not that we could get to it from here even if it were. */
1184 /* ??? This is not even close to complete, since it ignores all
1185 of the read-modify-write instructions. */
1186 pinsn = (uint16_t *)pc;
1187 switch (pinsn[0] >> 8) {
1188 case 0x50: /* ST */
1189 case 0x42: /* STC */
1190 case 0x40: /* STH */
1191 is_write = 1;
1192 break;
1193 case 0xc4: /* RIL format insns */
1194 switch (pinsn[0] & 0xf) {
1195 case 0xf: /* STRL */
1196 case 0xb: /* STGRL */
1197 case 0x7: /* STHRL */
1198 is_write = 1;
1199 }
1200 break;
1201 case 0xe3: /* RXY format insns */
1202 switch (pinsn[2] & 0xff) {
1203 case 0x50: /* STY */
1204 case 0x24: /* STG */
1205 case 0x72: /* STCY */
1206 case 0x70: /* STHY */
1207 case 0x8e: /* STPQ */
1208 case 0x3f: /* STRVH */
1209 case 0x3e: /* STRV */
1210 case 0x2f: /* STRVG */
1211 is_write = 1;
1212 }
1213 break;
1214 }
1215 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1216 is_write, &uc->uc_sigmask, puc);
1217 }
1218
1219 #elif defined(__mips__)
1220
1221 int cpu_signal_handler(int host_signum, void *pinfo,
1222 void *puc)
1223 {
1224 siginfo_t *info = pinfo;
1225 struct ucontext *uc = puc;
1226 greg_t pc = uc->uc_mcontext.pc;
1227 int is_write;
1228
1229 /* XXX: compute is_write */
1230 is_write = 0;
1231 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1232 is_write, &uc->uc_sigmask, puc);
1233 }
1234
1235 #elif defined(__hppa__)
1236
1237 int cpu_signal_handler(int host_signum, void *pinfo,
1238 void *puc)
1239 {
1240 struct siginfo *info = pinfo;
1241 struct ucontext *uc = puc;
1242 unsigned long pc = uc->uc_mcontext.sc_iaoq[0];
1243 uint32_t insn = *(uint32_t *)pc;
1244 int is_write = 0;
1245
1246 /* XXX: need kernel patch to get write flag faster. */
1247 switch (insn >> 26) {
1248 case 0x1a: /* STW */
1249 case 0x19: /* STH */
1250 case 0x18: /* STB */
1251 case 0x1b: /* STWM */
1252 is_write = 1;
1253 break;
1254
1255 case 0x09: /* CSTWX, FSTWX, FSTWS */
1256 case 0x0b: /* CSTDX, FSTDX, FSTDS */
1257 /* Distinguish from coprocessor load ... */
1258 is_write = (insn >> 9) & 1;
1259 break;
1260
1261 case 0x03:
1262 switch ((insn >> 6) & 15) {
1263 case 0xa: /* STWS */
1264 case 0x9: /* STHS */
1265 case 0x8: /* STBS */
1266 case 0xe: /* STWAS */
1267 case 0xc: /* STBYS */
1268 is_write = 1;
1269 }
1270 break;
1271 }
1272
1273 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1274 is_write, &uc->uc_sigmask, puc);
1275 }
1276
1277 #else
1278
1279 #error host CPU specific signal handler needed
1280
1281 #endif
1282
1283 #endif /* !defined(CONFIG_SOFTMMU) */