]> git.proxmox.com Git - qemu.git/blob - cpus.c
Fix chrdev return value conversion
[qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
27
28 #include "monitor.h"
29 #include "sysemu.h"
30 #include "gdbstub.h"
31 #include "dma.h"
32 #include "kvm.h"
33
34 #include "qemu-thread.h"
35 #include "cpus.h"
36
37 #ifndef _WIN32
38 #include "compatfd.h"
39 #endif
40
41 #ifdef SIGRTMIN
42 #define SIG_IPI (SIGRTMIN+4)
43 #else
44 #define SIG_IPI SIGUSR1
45 #endif
46
47 #ifdef CONFIG_LINUX
48
49 #include <sys/prctl.h>
50
51 #ifndef PR_MCE_KILL
52 #define PR_MCE_KILL 33
53 #endif
54
55 #ifndef PR_MCE_KILL_SET
56 #define PR_MCE_KILL_SET 1
57 #endif
58
59 #ifndef PR_MCE_KILL_EARLY
60 #define PR_MCE_KILL_EARLY 1
61 #endif
62
63 #endif /* CONFIG_LINUX */
64
65 static CPUState *next_cpu;
66
67 /***********************************************************/
68 void hw_error(const char *fmt, ...)
69 {
70 va_list ap;
71 CPUState *env;
72
73 va_start(ap, fmt);
74 fprintf(stderr, "qemu: hardware error: ");
75 vfprintf(stderr, fmt, ap);
76 fprintf(stderr, "\n");
77 for(env = first_cpu; env != NULL; env = env->next_cpu) {
78 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
79 #ifdef TARGET_I386
80 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
81 #else
82 cpu_dump_state(env, stderr, fprintf, 0);
83 #endif
84 }
85 va_end(ap);
86 abort();
87 }
88
89 void cpu_synchronize_all_states(void)
90 {
91 CPUState *cpu;
92
93 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
94 cpu_synchronize_state(cpu);
95 }
96 }
97
98 void cpu_synchronize_all_post_reset(void)
99 {
100 CPUState *cpu;
101
102 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
103 cpu_synchronize_post_reset(cpu);
104 }
105 }
106
107 void cpu_synchronize_all_post_init(void)
108 {
109 CPUState *cpu;
110
111 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
112 cpu_synchronize_post_init(cpu);
113 }
114 }
115
116 int cpu_is_stopped(CPUState *env)
117 {
118 return !vm_running || env->stopped;
119 }
120
121 static void do_vm_stop(int reason)
122 {
123 if (vm_running) {
124 cpu_disable_ticks();
125 vm_running = 0;
126 pause_all_vcpus();
127 vm_state_notify(0, reason);
128 qemu_aio_flush();
129 bdrv_flush_all();
130 monitor_protocol_event(QEVENT_STOP, NULL);
131 }
132 }
133
134 static int cpu_can_run(CPUState *env)
135 {
136 if (env->stop) {
137 return 0;
138 }
139 if (env->stopped || !vm_running) {
140 return 0;
141 }
142 return 1;
143 }
144
145 static bool cpu_thread_is_idle(CPUState *env)
146 {
147 if (env->stop || env->queued_work_first) {
148 return false;
149 }
150 if (env->stopped || !vm_running) {
151 return true;
152 }
153 if (!env->halted || qemu_cpu_has_work(env) ||
154 (kvm_enabled() && kvm_irqchip_in_kernel())) {
155 return false;
156 }
157 return true;
158 }
159
160 bool all_cpu_threads_idle(void)
161 {
162 CPUState *env;
163
164 for (env = first_cpu; env != NULL; env = env->next_cpu) {
165 if (!cpu_thread_is_idle(env)) {
166 return false;
167 }
168 }
169 return true;
170 }
171
172 static void cpu_handle_guest_debug(CPUState *env)
173 {
174 gdb_set_stop_cpu(env);
175 qemu_system_debug_request();
176 #ifdef CONFIG_IOTHREAD
177 env->stopped = 1;
178 #endif
179 }
180
181 #ifdef CONFIG_IOTHREAD
182 static void cpu_signal(int sig)
183 {
184 if (cpu_single_env) {
185 cpu_exit(cpu_single_env);
186 }
187 exit_request = 1;
188 }
189 #endif
190
191 #ifdef CONFIG_LINUX
192 static void sigbus_reraise(void)
193 {
194 sigset_t set;
195 struct sigaction action;
196
197 memset(&action, 0, sizeof(action));
198 action.sa_handler = SIG_DFL;
199 if (!sigaction(SIGBUS, &action, NULL)) {
200 raise(SIGBUS);
201 sigemptyset(&set);
202 sigaddset(&set, SIGBUS);
203 sigprocmask(SIG_UNBLOCK, &set, NULL);
204 }
205 perror("Failed to re-raise SIGBUS!\n");
206 abort();
207 }
208
209 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
210 void *ctx)
211 {
212 if (kvm_on_sigbus(siginfo->ssi_code,
213 (void *)(intptr_t)siginfo->ssi_addr)) {
214 sigbus_reraise();
215 }
216 }
217
218 static void qemu_init_sigbus(void)
219 {
220 struct sigaction action;
221
222 memset(&action, 0, sizeof(action));
223 action.sa_flags = SA_SIGINFO;
224 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
225 sigaction(SIGBUS, &action, NULL);
226
227 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
228 }
229
230 static void qemu_kvm_eat_signals(CPUState *env)
231 {
232 struct timespec ts = { 0, 0 };
233 siginfo_t siginfo;
234 sigset_t waitset;
235 sigset_t chkset;
236 int r;
237
238 sigemptyset(&waitset);
239 sigaddset(&waitset, SIG_IPI);
240 sigaddset(&waitset, SIGBUS);
241
242 do {
243 r = sigtimedwait(&waitset, &siginfo, &ts);
244 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
245 perror("sigtimedwait");
246 exit(1);
247 }
248
249 switch (r) {
250 case SIGBUS:
251 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
252 sigbus_reraise();
253 }
254 break;
255 default:
256 break;
257 }
258
259 r = sigpending(&chkset);
260 if (r == -1) {
261 perror("sigpending");
262 exit(1);
263 }
264 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
265
266 #ifndef CONFIG_IOTHREAD
267 if (sigismember(&chkset, SIGIO) || sigismember(&chkset, SIGALRM)) {
268 qemu_notify_event();
269 }
270 #endif
271 }
272
273 #else /* !CONFIG_LINUX */
274
275 static void qemu_init_sigbus(void)
276 {
277 }
278
279 static void qemu_kvm_eat_signals(CPUState *env)
280 {
281 }
282 #endif /* !CONFIG_LINUX */
283
284 #ifndef _WIN32
285 static int io_thread_fd = -1;
286
287 static void qemu_event_increment(void)
288 {
289 /* Write 8 bytes to be compatible with eventfd. */
290 static const uint64_t val = 1;
291 ssize_t ret;
292
293 if (io_thread_fd == -1) {
294 return;
295 }
296 do {
297 ret = write(io_thread_fd, &val, sizeof(val));
298 } while (ret < 0 && errno == EINTR);
299
300 /* EAGAIN is fine, a read must be pending. */
301 if (ret < 0 && errno != EAGAIN) {
302 fprintf(stderr, "qemu_event_increment: write() failed: %s\n",
303 strerror(errno));
304 exit (1);
305 }
306 }
307
308 static void qemu_event_read(void *opaque)
309 {
310 int fd = (intptr_t)opaque;
311 ssize_t len;
312 char buffer[512];
313
314 /* Drain the notify pipe. For eventfd, only 8 bytes will be read. */
315 do {
316 len = read(fd, buffer, sizeof(buffer));
317 } while ((len == -1 && errno == EINTR) || len == sizeof(buffer));
318 }
319
320 static int qemu_event_init(void)
321 {
322 int err;
323 int fds[2];
324
325 err = qemu_eventfd(fds);
326 if (err == -1) {
327 return -errno;
328 }
329 err = fcntl_setfl(fds[0], O_NONBLOCK);
330 if (err < 0) {
331 goto fail;
332 }
333 err = fcntl_setfl(fds[1], O_NONBLOCK);
334 if (err < 0) {
335 goto fail;
336 }
337 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
338 (void *)(intptr_t)fds[0]);
339
340 io_thread_fd = fds[1];
341 return 0;
342
343 fail:
344 close(fds[0]);
345 close(fds[1]);
346 return err;
347 }
348
349 static void dummy_signal(int sig)
350 {
351 }
352
353 /* If we have signalfd, we mask out the signals we want to handle and then
354 * use signalfd to listen for them. We rely on whatever the current signal
355 * handler is to dispatch the signals when we receive them.
356 */
357 static void sigfd_handler(void *opaque)
358 {
359 int fd = (intptr_t)opaque;
360 struct qemu_signalfd_siginfo info;
361 struct sigaction action;
362 ssize_t len;
363
364 while (1) {
365 do {
366 len = read(fd, &info, sizeof(info));
367 } while (len == -1 && errno == EINTR);
368
369 if (len == -1 && errno == EAGAIN) {
370 break;
371 }
372
373 if (len != sizeof(info)) {
374 printf("read from sigfd returned %zd: %m\n", len);
375 return;
376 }
377
378 sigaction(info.ssi_signo, NULL, &action);
379 if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) {
380 action.sa_sigaction(info.ssi_signo,
381 (siginfo_t *)&info, NULL);
382 } else if (action.sa_handler) {
383 action.sa_handler(info.ssi_signo);
384 }
385 }
386 }
387
388 static int qemu_signal_init(void)
389 {
390 int sigfd;
391 sigset_t set;
392
393 #ifdef CONFIG_IOTHREAD
394 /* SIGUSR2 used by posix-aio-compat.c */
395 sigemptyset(&set);
396 sigaddset(&set, SIGUSR2);
397 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
398
399 /*
400 * SIG_IPI must be blocked in the main thread and must not be caught
401 * by sigwait() in the signal thread. Otherwise, the cpu thread will
402 * not catch it reliably.
403 */
404 sigemptyset(&set);
405 sigaddset(&set, SIG_IPI);
406 pthread_sigmask(SIG_BLOCK, &set, NULL);
407
408 sigemptyset(&set);
409 sigaddset(&set, SIGIO);
410 sigaddset(&set, SIGALRM);
411 sigaddset(&set, SIGBUS);
412 #else
413 sigemptyset(&set);
414 sigaddset(&set, SIGBUS);
415 if (kvm_enabled()) {
416 /*
417 * We need to process timer signals synchronously to avoid a race
418 * between exit_request check and KVM vcpu entry.
419 */
420 sigaddset(&set, SIGIO);
421 sigaddset(&set, SIGALRM);
422 }
423 #endif
424 pthread_sigmask(SIG_BLOCK, &set, NULL);
425
426 sigfd = qemu_signalfd(&set);
427 if (sigfd == -1) {
428 fprintf(stderr, "failed to create signalfd\n");
429 return -errno;
430 }
431
432 fcntl_setfl(sigfd, O_NONBLOCK);
433
434 qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
435 (void *)(intptr_t)sigfd);
436
437 return 0;
438 }
439
440 static void qemu_kvm_init_cpu_signals(CPUState *env)
441 {
442 int r;
443 sigset_t set;
444 struct sigaction sigact;
445
446 memset(&sigact, 0, sizeof(sigact));
447 sigact.sa_handler = dummy_signal;
448 sigaction(SIG_IPI, &sigact, NULL);
449
450 #ifdef CONFIG_IOTHREAD
451 pthread_sigmask(SIG_BLOCK, NULL, &set);
452 sigdelset(&set, SIG_IPI);
453 sigdelset(&set, SIGBUS);
454 r = kvm_set_signal_mask(env, &set);
455 if (r) {
456 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
457 exit(1);
458 }
459 #else
460 sigemptyset(&set);
461 sigaddset(&set, SIG_IPI);
462 sigaddset(&set, SIGIO);
463 sigaddset(&set, SIGALRM);
464 pthread_sigmask(SIG_BLOCK, &set, NULL);
465
466 pthread_sigmask(SIG_BLOCK, NULL, &set);
467 sigdelset(&set, SIGIO);
468 sigdelset(&set, SIGALRM);
469 #endif
470 sigdelset(&set, SIG_IPI);
471 sigdelset(&set, SIGBUS);
472 r = kvm_set_signal_mask(env, &set);
473 if (r) {
474 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
475 exit(1);
476 }
477 }
478
479 static void qemu_tcg_init_cpu_signals(void)
480 {
481 #ifdef CONFIG_IOTHREAD
482 sigset_t set;
483 struct sigaction sigact;
484
485 memset(&sigact, 0, sizeof(sigact));
486 sigact.sa_handler = cpu_signal;
487 sigaction(SIG_IPI, &sigact, NULL);
488
489 sigemptyset(&set);
490 sigaddset(&set, SIG_IPI);
491 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
492 #endif
493 }
494
495 #else /* _WIN32 */
496
497 HANDLE qemu_event_handle;
498
499 static void dummy_event_handler(void *opaque)
500 {
501 }
502
503 static int qemu_event_init(void)
504 {
505 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
506 if (!qemu_event_handle) {
507 fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
508 return -1;
509 }
510 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
511 return 0;
512 }
513
514 static void qemu_event_increment(void)
515 {
516 if (!SetEvent(qemu_event_handle)) {
517 fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
518 GetLastError());
519 exit (1);
520 }
521 }
522
523 static int qemu_signal_init(void)
524 {
525 return 0;
526 }
527
528 static void qemu_kvm_init_cpu_signals(CPUState *env)
529 {
530 abort();
531 }
532
533 static void qemu_tcg_init_cpu_signals(void)
534 {
535 }
536 #endif /* _WIN32 */
537
538 #ifndef CONFIG_IOTHREAD
539 int qemu_init_main_loop(void)
540 {
541 int ret;
542
543 ret = qemu_signal_init();
544 if (ret) {
545 return ret;
546 }
547
548 qemu_init_sigbus();
549
550 return qemu_event_init();
551 }
552
553 void qemu_main_loop_start(void)
554 {
555 }
556
557 void qemu_init_vcpu(void *_env)
558 {
559 CPUState *env = _env;
560 int r;
561
562 env->nr_cores = smp_cores;
563 env->nr_threads = smp_threads;
564
565 if (kvm_enabled()) {
566 r = kvm_init_vcpu(env);
567 if (r < 0) {
568 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
569 exit(1);
570 }
571 qemu_kvm_init_cpu_signals(env);
572 } else {
573 qemu_tcg_init_cpu_signals();
574 }
575 }
576
577 int qemu_cpu_is_self(void *env)
578 {
579 return 1;
580 }
581
582 void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
583 {
584 func(data);
585 }
586
587 void resume_all_vcpus(void)
588 {
589 }
590
591 void pause_all_vcpus(void)
592 {
593 }
594
595 void qemu_cpu_kick(void *env)
596 {
597 }
598
599 void qemu_cpu_kick_self(void)
600 {
601 #ifndef _WIN32
602 assert(cpu_single_env);
603
604 raise(SIG_IPI);
605 #else
606 abort();
607 #endif
608 }
609
610 void qemu_notify_event(void)
611 {
612 CPUState *env = cpu_single_env;
613
614 qemu_event_increment ();
615 if (env) {
616 cpu_exit(env);
617 }
618 if (next_cpu && env != next_cpu) {
619 cpu_exit(next_cpu);
620 }
621 exit_request = 1;
622 }
623
624 void qemu_mutex_lock_iothread(void) {}
625 void qemu_mutex_unlock_iothread(void) {}
626
627 void cpu_stop_current(void)
628 {
629 }
630
631 void vm_stop(int reason)
632 {
633 do_vm_stop(reason);
634 }
635
636 #else /* CONFIG_IOTHREAD */
637
638 QemuMutex qemu_global_mutex;
639 static QemuCond qemu_io_proceeded_cond;
640 static bool iothread_requesting_mutex;
641
642 static QemuThread io_thread;
643
644 static QemuThread *tcg_cpu_thread;
645 static QemuCond *tcg_halt_cond;
646
647 static int qemu_system_ready;
648 /* cpu creation */
649 static QemuCond qemu_cpu_cond;
650 /* system init */
651 static QemuCond qemu_system_cond;
652 static QemuCond qemu_pause_cond;
653 static QemuCond qemu_work_cond;
654
655 int qemu_init_main_loop(void)
656 {
657 int ret;
658
659 qemu_init_sigbus();
660
661 ret = qemu_signal_init();
662 if (ret) {
663 return ret;
664 }
665
666 /* Note eventfd must be drained before signalfd handlers run */
667 ret = qemu_event_init();
668 if (ret) {
669 return ret;
670 }
671
672 qemu_cond_init(&qemu_cpu_cond);
673 qemu_cond_init(&qemu_system_cond);
674 qemu_cond_init(&qemu_pause_cond);
675 qemu_cond_init(&qemu_work_cond);
676 qemu_cond_init(&qemu_io_proceeded_cond);
677 qemu_mutex_init(&qemu_global_mutex);
678 qemu_mutex_lock(&qemu_global_mutex);
679
680 qemu_thread_get_self(&io_thread);
681
682 return 0;
683 }
684
685 void qemu_main_loop_start(void)
686 {
687 qemu_system_ready = 1;
688 qemu_cond_broadcast(&qemu_system_cond);
689 }
690
691 void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
692 {
693 struct qemu_work_item wi;
694
695 if (qemu_cpu_is_self(env)) {
696 func(data);
697 return;
698 }
699
700 wi.func = func;
701 wi.data = data;
702 if (!env->queued_work_first) {
703 env->queued_work_first = &wi;
704 } else {
705 env->queued_work_last->next = &wi;
706 }
707 env->queued_work_last = &wi;
708 wi.next = NULL;
709 wi.done = false;
710
711 qemu_cpu_kick(env);
712 while (!wi.done) {
713 CPUState *self_env = cpu_single_env;
714
715 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
716 cpu_single_env = self_env;
717 }
718 }
719
720 static void flush_queued_work(CPUState *env)
721 {
722 struct qemu_work_item *wi;
723
724 if (!env->queued_work_first) {
725 return;
726 }
727
728 while ((wi = env->queued_work_first)) {
729 env->queued_work_first = wi->next;
730 wi->func(wi->data);
731 wi->done = true;
732 }
733 env->queued_work_last = NULL;
734 qemu_cond_broadcast(&qemu_work_cond);
735 }
736
737 static void qemu_wait_io_event_common(CPUState *env)
738 {
739 if (env->stop) {
740 env->stop = 0;
741 env->stopped = 1;
742 qemu_cond_signal(&qemu_pause_cond);
743 }
744 flush_queued_work(env);
745 env->thread_kicked = false;
746 }
747
748 static void qemu_tcg_wait_io_event(void)
749 {
750 CPUState *env;
751
752 while (all_cpu_threads_idle()) {
753 /* Start accounting real time to the virtual clock if the CPUs
754 are idle. */
755 qemu_clock_warp(vm_clock);
756 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
757 }
758
759 while (iothread_requesting_mutex) {
760 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
761 }
762
763 for (env = first_cpu; env != NULL; env = env->next_cpu) {
764 qemu_wait_io_event_common(env);
765 }
766 }
767
768 static void qemu_kvm_wait_io_event(CPUState *env)
769 {
770 while (cpu_thread_is_idle(env)) {
771 qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
772 }
773
774 qemu_kvm_eat_signals(env);
775 qemu_wait_io_event_common(env);
776 }
777
778 static void *qemu_kvm_cpu_thread_fn(void *arg)
779 {
780 CPUState *env = arg;
781 int r;
782
783 qemu_mutex_lock(&qemu_global_mutex);
784 qemu_thread_get_self(env->thread);
785 env->thread_id = qemu_get_thread_id();
786
787 r = kvm_init_vcpu(env);
788 if (r < 0) {
789 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
790 exit(1);
791 }
792
793 qemu_kvm_init_cpu_signals(env);
794
795 /* signal CPU creation */
796 env->created = 1;
797 qemu_cond_signal(&qemu_cpu_cond);
798
799 /* and wait for machine initialization */
800 while (!qemu_system_ready) {
801 qemu_cond_wait(&qemu_system_cond, &qemu_global_mutex);
802 }
803
804 while (1) {
805 if (cpu_can_run(env)) {
806 r = kvm_cpu_exec(env);
807 if (r == EXCP_DEBUG) {
808 cpu_handle_guest_debug(env);
809 }
810 }
811 qemu_kvm_wait_io_event(env);
812 }
813
814 return NULL;
815 }
816
817 static void *qemu_tcg_cpu_thread_fn(void *arg)
818 {
819 CPUState *env = arg;
820
821 qemu_tcg_init_cpu_signals();
822 qemu_thread_get_self(env->thread);
823
824 /* signal CPU creation */
825 qemu_mutex_lock(&qemu_global_mutex);
826 for (env = first_cpu; env != NULL; env = env->next_cpu) {
827 env->thread_id = qemu_get_thread_id();
828 env->created = 1;
829 }
830 qemu_cond_signal(&qemu_cpu_cond);
831
832 /* and wait for machine initialization */
833 while (!qemu_system_ready) {
834 qemu_cond_wait(&qemu_system_cond, &qemu_global_mutex);
835 }
836
837 while (1) {
838 cpu_exec_all();
839 if (use_icount && qemu_next_icount_deadline() <= 0) {
840 qemu_notify_event();
841 }
842 qemu_tcg_wait_io_event();
843 }
844
845 return NULL;
846 }
847
848 static void qemu_cpu_kick_thread(CPUState *env)
849 {
850 #ifndef _WIN32
851 int err;
852
853 err = pthread_kill(env->thread->thread, SIG_IPI);
854 if (err) {
855 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
856 exit(1);
857 }
858 #else /* _WIN32 */
859 if (!qemu_cpu_is_self(env)) {
860 SuspendThread(env->thread->thread);
861 cpu_signal(0);
862 ResumeThread(env->thread->thread);
863 }
864 #endif
865 }
866
867 void qemu_cpu_kick(void *_env)
868 {
869 CPUState *env = _env;
870
871 qemu_cond_broadcast(env->halt_cond);
872 if (!env->thread_kicked) {
873 qemu_cpu_kick_thread(env);
874 env->thread_kicked = true;
875 }
876 }
877
878 void qemu_cpu_kick_self(void)
879 {
880 #ifndef _WIN32
881 assert(cpu_single_env);
882
883 if (!cpu_single_env->thread_kicked) {
884 qemu_cpu_kick_thread(cpu_single_env);
885 cpu_single_env->thread_kicked = true;
886 }
887 #else
888 abort();
889 #endif
890 }
891
892 int qemu_cpu_is_self(void *_env)
893 {
894 CPUState *env = _env;
895
896 return qemu_thread_is_self(env->thread);
897 }
898
899 void qemu_mutex_lock_iothread(void)
900 {
901 if (kvm_enabled()) {
902 qemu_mutex_lock(&qemu_global_mutex);
903 } else {
904 iothread_requesting_mutex = true;
905 if (qemu_mutex_trylock(&qemu_global_mutex)) {
906 qemu_cpu_kick_thread(first_cpu);
907 qemu_mutex_lock(&qemu_global_mutex);
908 }
909 iothread_requesting_mutex = false;
910 qemu_cond_broadcast(&qemu_io_proceeded_cond);
911 }
912 }
913
914 void qemu_mutex_unlock_iothread(void)
915 {
916 qemu_mutex_unlock(&qemu_global_mutex);
917 }
918
919 static int all_vcpus_paused(void)
920 {
921 CPUState *penv = first_cpu;
922
923 while (penv) {
924 if (!penv->stopped) {
925 return 0;
926 }
927 penv = (CPUState *)penv->next_cpu;
928 }
929
930 return 1;
931 }
932
933 void pause_all_vcpus(void)
934 {
935 CPUState *penv = first_cpu;
936
937 while (penv) {
938 penv->stop = 1;
939 qemu_cpu_kick(penv);
940 penv = (CPUState *)penv->next_cpu;
941 }
942
943 while (!all_vcpus_paused()) {
944 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
945 penv = first_cpu;
946 while (penv) {
947 qemu_cpu_kick(penv);
948 penv = (CPUState *)penv->next_cpu;
949 }
950 }
951 }
952
953 void resume_all_vcpus(void)
954 {
955 CPUState *penv = first_cpu;
956
957 while (penv) {
958 penv->stop = 0;
959 penv->stopped = 0;
960 qemu_cpu_kick(penv);
961 penv = (CPUState *)penv->next_cpu;
962 }
963 }
964
965 static void qemu_tcg_init_vcpu(void *_env)
966 {
967 CPUState *env = _env;
968
969 /* share a single thread for all cpus with TCG */
970 if (!tcg_cpu_thread) {
971 env->thread = qemu_mallocz(sizeof(QemuThread));
972 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
973 qemu_cond_init(env->halt_cond);
974 qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env);
975 while (env->created == 0) {
976 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
977 }
978 tcg_cpu_thread = env->thread;
979 tcg_halt_cond = env->halt_cond;
980 } else {
981 env->thread = tcg_cpu_thread;
982 env->halt_cond = tcg_halt_cond;
983 }
984 }
985
986 static void qemu_kvm_start_vcpu(CPUState *env)
987 {
988 env->thread = qemu_mallocz(sizeof(QemuThread));
989 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
990 qemu_cond_init(env->halt_cond);
991 qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env);
992 while (env->created == 0) {
993 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
994 }
995 }
996
997 void qemu_init_vcpu(void *_env)
998 {
999 CPUState *env = _env;
1000
1001 env->nr_cores = smp_cores;
1002 env->nr_threads = smp_threads;
1003 if (kvm_enabled()) {
1004 qemu_kvm_start_vcpu(env);
1005 } else {
1006 qemu_tcg_init_vcpu(env);
1007 }
1008 }
1009
1010 void qemu_notify_event(void)
1011 {
1012 qemu_event_increment();
1013 }
1014
1015 void cpu_stop_current(void)
1016 {
1017 if (cpu_single_env) {
1018 cpu_single_env->stop = 0;
1019 cpu_single_env->stopped = 1;
1020 cpu_exit(cpu_single_env);
1021 qemu_cond_signal(&qemu_pause_cond);
1022 }
1023 }
1024
1025 void vm_stop(int reason)
1026 {
1027 if (!qemu_thread_is_self(&io_thread)) {
1028 qemu_system_vmstop_request(reason);
1029 /*
1030 * FIXME: should not return to device code in case
1031 * vm_stop() has been requested.
1032 */
1033 cpu_stop_current();
1034 return;
1035 }
1036 do_vm_stop(reason);
1037 }
1038
1039 #endif
1040
1041 static int tcg_cpu_exec(CPUState *env)
1042 {
1043 int ret;
1044 #ifdef CONFIG_PROFILER
1045 int64_t ti;
1046 #endif
1047
1048 #ifdef CONFIG_PROFILER
1049 ti = profile_getclock();
1050 #endif
1051 if (use_icount) {
1052 int64_t count;
1053 int decr;
1054 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1055 env->icount_decr.u16.low = 0;
1056 env->icount_extra = 0;
1057 count = qemu_icount_round(qemu_next_icount_deadline());
1058 qemu_icount += count;
1059 decr = (count > 0xffff) ? 0xffff : count;
1060 count -= decr;
1061 env->icount_decr.u16.low = decr;
1062 env->icount_extra = count;
1063 }
1064 ret = cpu_exec(env);
1065 #ifdef CONFIG_PROFILER
1066 qemu_time += profile_getclock() - ti;
1067 #endif
1068 if (use_icount) {
1069 /* Fold pending instructions back into the
1070 instruction counter, and clear the interrupt flag. */
1071 qemu_icount -= (env->icount_decr.u16.low
1072 + env->icount_extra);
1073 env->icount_decr.u32 = 0;
1074 env->icount_extra = 0;
1075 }
1076 return ret;
1077 }
1078
1079 bool cpu_exec_all(void)
1080 {
1081 int r;
1082
1083 /* Account partial waits to the vm_clock. */
1084 qemu_clock_warp(vm_clock);
1085
1086 if (next_cpu == NULL) {
1087 next_cpu = first_cpu;
1088 }
1089 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1090 CPUState *env = next_cpu;
1091
1092 qemu_clock_enable(vm_clock,
1093 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1094
1095 #ifndef CONFIG_IOTHREAD
1096 if (qemu_alarm_pending()) {
1097 break;
1098 }
1099 #endif
1100 if (cpu_can_run(env)) {
1101 if (kvm_enabled()) {
1102 r = kvm_cpu_exec(env);
1103 qemu_kvm_eat_signals(env);
1104 } else {
1105 r = tcg_cpu_exec(env);
1106 }
1107 if (r == EXCP_DEBUG) {
1108 cpu_handle_guest_debug(env);
1109 break;
1110 }
1111 } else if (env->stop || env->stopped) {
1112 break;
1113 }
1114 }
1115 exit_request = 0;
1116 return !all_cpu_threads_idle();
1117 }
1118
1119 void set_numa_modes(void)
1120 {
1121 CPUState *env;
1122 int i;
1123
1124 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1125 for (i = 0; i < nb_numa_nodes; i++) {
1126 if (node_cpumask[i] & (1 << env->cpu_index)) {
1127 env->numa_node = i;
1128 }
1129 }
1130 }
1131 }
1132
1133 void set_cpu_log(const char *optarg)
1134 {
1135 int mask;
1136 const CPULogItem *item;
1137
1138 mask = cpu_str_to_log_mask(optarg);
1139 if (!mask) {
1140 printf("Log items (comma separated):\n");
1141 for (item = cpu_log_items; item->mask != 0; item++) {
1142 printf("%-10s %s\n", item->name, item->help);
1143 }
1144 exit(1);
1145 }
1146 cpu_set_log(mask);
1147 }
1148
1149 void set_cpu_log_filename(const char *optarg)
1150 {
1151 cpu_set_log_filename(optarg);
1152 }
1153
1154 /* Return the virtual CPU time, based on the instruction counter. */
1155 int64_t cpu_get_icount(void)
1156 {
1157 int64_t icount;
1158 CPUState *env = cpu_single_env;;
1159
1160 icount = qemu_icount;
1161 if (env) {
1162 if (!can_do_io(env)) {
1163 fprintf(stderr, "Bad clock read\n");
1164 }
1165 icount -= (env->icount_decr.u16.low + env->icount_extra);
1166 }
1167 return qemu_icount_bias + (icount << icount_time_shift);
1168 }
1169
1170 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1171 {
1172 /* XXX: implement xxx_cpu_list for targets that still miss it */
1173 #if defined(cpu_list_id)
1174 cpu_list_id(f, cpu_fprintf, optarg);
1175 #elif defined(cpu_list)
1176 cpu_list(f, cpu_fprintf); /* deprecated */
1177 #endif
1178 }