]> git.proxmox.com Git - qemu.git/blob - cpus.c
Merge remote-tracking branch 'cohuck/virtio-ccw-upstr' into staging
[qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
27
28 #include "monitor/monitor.h"
29 #include "sysemu/sysemu.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/dma.h"
32 #include "sysemu/kvm.h"
33 #include "qmp-commands.h"
34
35 #include "qemu/thread.h"
36 #include "sysemu/cpus.h"
37 #include "sysemu/qtest.h"
38 #include "qemu/main-loop.h"
39 #include "qemu/bitmap.h"
40
41 #ifndef _WIN32
42 #include "qemu/compatfd.h"
43 #endif
44
45 #ifdef CONFIG_LINUX
46
47 #include <sys/prctl.h>
48
49 #ifndef PR_MCE_KILL
50 #define PR_MCE_KILL 33
51 #endif
52
53 #ifndef PR_MCE_KILL_SET
54 #define PR_MCE_KILL_SET 1
55 #endif
56
57 #ifndef PR_MCE_KILL_EARLY
58 #define PR_MCE_KILL_EARLY 1
59 #endif
60
61 #endif /* CONFIG_LINUX */
62
63 static CPUState *next_cpu;
64
65 static bool cpu_thread_is_idle(CPUState *cpu)
66 {
67 if (cpu->stop || cpu->queued_work_first) {
68 return false;
69 }
70 if (cpu->stopped || !runstate_is_running()) {
71 return true;
72 }
73 if (!cpu->halted || qemu_cpu_has_work(cpu) ||
74 kvm_halt_in_kernel()) {
75 return false;
76 }
77 return true;
78 }
79
80 static bool all_cpu_threads_idle(void)
81 {
82 CPUState *cpu;
83
84 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
85 if (!cpu_thread_is_idle(cpu)) {
86 return false;
87 }
88 }
89 return true;
90 }
91
92 /***********************************************************/
93 /* guest cycle counter */
94
95 /* Conversion factor from emulated instructions to virtual clock ticks. */
96 static int icount_time_shift;
97 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
98 #define MAX_ICOUNT_SHIFT 10
99 /* Compensate for varying guest execution speed. */
100 static int64_t qemu_icount_bias;
101 static QEMUTimer *icount_rt_timer;
102 static QEMUTimer *icount_vm_timer;
103 static QEMUTimer *icount_warp_timer;
104 static int64_t vm_clock_warp_start;
105 static int64_t qemu_icount;
106
107 typedef struct TimersState {
108 int64_t cpu_ticks_prev;
109 int64_t cpu_ticks_offset;
110 int64_t cpu_clock_offset;
111 int32_t cpu_ticks_enabled;
112 int64_t dummy;
113 } TimersState;
114
115 TimersState timers_state;
116
117 /* Return the virtual CPU time, based on the instruction counter. */
118 int64_t cpu_get_icount(void)
119 {
120 int64_t icount;
121 CPUState *cpu = current_cpu;
122
123 icount = qemu_icount;
124 if (cpu) {
125 CPUArchState *env = cpu->env_ptr;
126 if (!can_do_io(env)) {
127 fprintf(stderr, "Bad clock read\n");
128 }
129 icount -= (env->icount_decr.u16.low + env->icount_extra);
130 }
131 return qemu_icount_bias + (icount << icount_time_shift);
132 }
133
134 /* return the host CPU cycle counter and handle stop/restart */
135 int64_t cpu_get_ticks(void)
136 {
137 if (use_icount) {
138 return cpu_get_icount();
139 }
140 if (!timers_state.cpu_ticks_enabled) {
141 return timers_state.cpu_ticks_offset;
142 } else {
143 int64_t ticks;
144 ticks = cpu_get_real_ticks();
145 if (timers_state.cpu_ticks_prev > ticks) {
146 /* Note: non increasing ticks may happen if the host uses
147 software suspend */
148 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
149 }
150 timers_state.cpu_ticks_prev = ticks;
151 return ticks + timers_state.cpu_ticks_offset;
152 }
153 }
154
155 /* return the host CPU monotonic timer and handle stop/restart */
156 int64_t cpu_get_clock(void)
157 {
158 int64_t ti;
159 if (!timers_state.cpu_ticks_enabled) {
160 return timers_state.cpu_clock_offset;
161 } else {
162 ti = get_clock();
163 return ti + timers_state.cpu_clock_offset;
164 }
165 }
166
167 /* enable cpu_get_ticks() */
168 void cpu_enable_ticks(void)
169 {
170 if (!timers_state.cpu_ticks_enabled) {
171 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
172 timers_state.cpu_clock_offset -= get_clock();
173 timers_state.cpu_ticks_enabled = 1;
174 }
175 }
176
177 /* disable cpu_get_ticks() : the clock is stopped. You must not call
178 cpu_get_ticks() after that. */
179 void cpu_disable_ticks(void)
180 {
181 if (timers_state.cpu_ticks_enabled) {
182 timers_state.cpu_ticks_offset = cpu_get_ticks();
183 timers_state.cpu_clock_offset = cpu_get_clock();
184 timers_state.cpu_ticks_enabled = 0;
185 }
186 }
187
188 /* Correlation between real and virtual time is always going to be
189 fairly approximate, so ignore small variation.
190 When the guest is idle real and virtual time will be aligned in
191 the IO wait loop. */
192 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
193
194 static void icount_adjust(void)
195 {
196 int64_t cur_time;
197 int64_t cur_icount;
198 int64_t delta;
199 static int64_t last_delta;
200 /* If the VM is not running, then do nothing. */
201 if (!runstate_is_running()) {
202 return;
203 }
204 cur_time = cpu_get_clock();
205 cur_icount = qemu_get_clock_ns(vm_clock);
206 delta = cur_icount - cur_time;
207 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
208 if (delta > 0
209 && last_delta + ICOUNT_WOBBLE < delta * 2
210 && icount_time_shift > 0) {
211 /* The guest is getting too far ahead. Slow time down. */
212 icount_time_shift--;
213 }
214 if (delta < 0
215 && last_delta - ICOUNT_WOBBLE > delta * 2
216 && icount_time_shift < MAX_ICOUNT_SHIFT) {
217 /* The guest is getting too far behind. Speed time up. */
218 icount_time_shift++;
219 }
220 last_delta = delta;
221 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
222 }
223
224 static void icount_adjust_rt(void *opaque)
225 {
226 qemu_mod_timer(icount_rt_timer,
227 qemu_get_clock_ms(rt_clock) + 1000);
228 icount_adjust();
229 }
230
231 static void icount_adjust_vm(void *opaque)
232 {
233 qemu_mod_timer(icount_vm_timer,
234 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
235 icount_adjust();
236 }
237
238 static int64_t qemu_icount_round(int64_t count)
239 {
240 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
241 }
242
243 static void icount_warp_rt(void *opaque)
244 {
245 if (vm_clock_warp_start == -1) {
246 return;
247 }
248
249 if (runstate_is_running()) {
250 int64_t clock = qemu_get_clock_ns(rt_clock);
251 int64_t warp_delta = clock - vm_clock_warp_start;
252 if (use_icount == 1) {
253 qemu_icount_bias += warp_delta;
254 } else {
255 /*
256 * In adaptive mode, do not let the vm_clock run too
257 * far ahead of real time.
258 */
259 int64_t cur_time = cpu_get_clock();
260 int64_t cur_icount = qemu_get_clock_ns(vm_clock);
261 int64_t delta = cur_time - cur_icount;
262 qemu_icount_bias += MIN(warp_delta, delta);
263 }
264 if (qemu_clock_expired(vm_clock)) {
265 qemu_notify_event();
266 }
267 }
268 vm_clock_warp_start = -1;
269 }
270
271 void qtest_clock_warp(int64_t dest)
272 {
273 int64_t clock = qemu_get_clock_ns(vm_clock);
274 assert(qtest_enabled());
275 while (clock < dest) {
276 int64_t deadline = qemu_clock_deadline(vm_clock);
277 int64_t warp = MIN(dest - clock, deadline);
278 qemu_icount_bias += warp;
279 qemu_run_timers(vm_clock);
280 clock = qemu_get_clock_ns(vm_clock);
281 }
282 qemu_notify_event();
283 }
284
285 void qemu_clock_warp(QEMUClock *clock)
286 {
287 int64_t deadline;
288
289 /*
290 * There are too many global variables to make the "warp" behavior
291 * applicable to other clocks. But a clock argument removes the
292 * need for if statements all over the place.
293 */
294 if (clock != vm_clock || !use_icount) {
295 return;
296 }
297
298 /*
299 * If the CPUs have been sleeping, advance the vm_clock timer now. This
300 * ensures that the deadline for the timer is computed correctly below.
301 * This also makes sure that the insn counter is synchronized before the
302 * CPU starts running, in case the CPU is woken by an event other than
303 * the earliest vm_clock timer.
304 */
305 icount_warp_rt(NULL);
306 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
307 qemu_del_timer(icount_warp_timer);
308 return;
309 }
310
311 if (qtest_enabled()) {
312 /* When testing, qtest commands advance icount. */
313 return;
314 }
315
316 vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
317 deadline = qemu_clock_deadline(vm_clock);
318 if (deadline > 0) {
319 /*
320 * Ensure the vm_clock proceeds even when the virtual CPU goes to
321 * sleep. Otherwise, the CPU might be waiting for a future timer
322 * interrupt to wake it up, but the interrupt never comes because
323 * the vCPU isn't running any insns and thus doesn't advance the
324 * vm_clock.
325 *
326 * An extreme solution for this problem would be to never let VCPUs
327 * sleep in icount mode if there is a pending vm_clock timer; rather
328 * time could just advance to the next vm_clock event. Instead, we
329 * do stop VCPUs and only advance vm_clock after some "real" time,
330 * (related to the time left until the next event) has passed. This
331 * rt_clock timer will do this. This avoids that the warps are too
332 * visible externally---for example, you will not be sending network
333 * packets continuously instead of every 100ms.
334 */
335 qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
336 } else {
337 qemu_notify_event();
338 }
339 }
340
341 static const VMStateDescription vmstate_timers = {
342 .name = "timer",
343 .version_id = 2,
344 .minimum_version_id = 1,
345 .minimum_version_id_old = 1,
346 .fields = (VMStateField[]) {
347 VMSTATE_INT64(cpu_ticks_offset, TimersState),
348 VMSTATE_INT64(dummy, TimersState),
349 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
350 VMSTATE_END_OF_LIST()
351 }
352 };
353
354 void configure_icount(const char *option)
355 {
356 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
357 if (!option) {
358 return;
359 }
360
361 icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
362 if (strcmp(option, "auto") != 0) {
363 icount_time_shift = strtol(option, NULL, 0);
364 use_icount = 1;
365 return;
366 }
367
368 use_icount = 2;
369
370 /* 125MIPS seems a reasonable initial guess at the guest speed.
371 It will be corrected fairly quickly anyway. */
372 icount_time_shift = 3;
373
374 /* Have both realtime and virtual time triggers for speed adjustment.
375 The realtime trigger catches emulated time passing too slowly,
376 the virtual time trigger catches emulated time passing too fast.
377 Realtime triggers occur even when idle, so use them less frequently
378 than VM triggers. */
379 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
380 qemu_mod_timer(icount_rt_timer,
381 qemu_get_clock_ms(rt_clock) + 1000);
382 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
383 qemu_mod_timer(icount_vm_timer,
384 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
385 }
386
387 /***********************************************************/
388 void hw_error(const char *fmt, ...)
389 {
390 va_list ap;
391 CPUState *cpu;
392
393 va_start(ap, fmt);
394 fprintf(stderr, "qemu: hardware error: ");
395 vfprintf(stderr, fmt, ap);
396 fprintf(stderr, "\n");
397 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
398 fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
399 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU);
400 }
401 va_end(ap);
402 abort();
403 }
404
405 void cpu_synchronize_all_states(void)
406 {
407 CPUState *cpu;
408
409 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
410 cpu_synchronize_state(cpu);
411 }
412 }
413
414 void cpu_synchronize_all_post_reset(void)
415 {
416 CPUState *cpu;
417
418 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
419 cpu_synchronize_post_reset(cpu);
420 }
421 }
422
423 void cpu_synchronize_all_post_init(void)
424 {
425 CPUState *cpu;
426
427 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
428 cpu_synchronize_post_init(cpu);
429 }
430 }
431
432 bool cpu_is_stopped(CPUState *cpu)
433 {
434 return !runstate_is_running() || cpu->stopped;
435 }
436
437 static int do_vm_stop(RunState state)
438 {
439 int ret = 0;
440
441 if (runstate_is_running()) {
442 cpu_disable_ticks();
443 pause_all_vcpus();
444 runstate_set(state);
445 vm_state_notify(0, state);
446 bdrv_drain_all();
447 ret = bdrv_flush_all();
448 monitor_protocol_event(QEVENT_STOP, NULL);
449 }
450
451 return ret;
452 }
453
454 static bool cpu_can_run(CPUState *cpu)
455 {
456 if (cpu->stop) {
457 return false;
458 }
459 if (cpu->stopped || !runstate_is_running()) {
460 return false;
461 }
462 return true;
463 }
464
465 static void cpu_handle_guest_debug(CPUState *cpu)
466 {
467 gdb_set_stop_cpu(cpu);
468 qemu_system_debug_request();
469 cpu->stopped = true;
470 }
471
472 static void cpu_signal(int sig)
473 {
474 if (current_cpu) {
475 cpu_exit(current_cpu);
476 }
477 exit_request = 1;
478 }
479
480 #ifdef CONFIG_LINUX
481 static void sigbus_reraise(void)
482 {
483 sigset_t set;
484 struct sigaction action;
485
486 memset(&action, 0, sizeof(action));
487 action.sa_handler = SIG_DFL;
488 if (!sigaction(SIGBUS, &action, NULL)) {
489 raise(SIGBUS);
490 sigemptyset(&set);
491 sigaddset(&set, SIGBUS);
492 sigprocmask(SIG_UNBLOCK, &set, NULL);
493 }
494 perror("Failed to re-raise SIGBUS!\n");
495 abort();
496 }
497
498 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
499 void *ctx)
500 {
501 if (kvm_on_sigbus(siginfo->ssi_code,
502 (void *)(intptr_t)siginfo->ssi_addr)) {
503 sigbus_reraise();
504 }
505 }
506
507 static void qemu_init_sigbus(void)
508 {
509 struct sigaction action;
510
511 memset(&action, 0, sizeof(action));
512 action.sa_flags = SA_SIGINFO;
513 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
514 sigaction(SIGBUS, &action, NULL);
515
516 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
517 }
518
519 static void qemu_kvm_eat_signals(CPUState *cpu)
520 {
521 struct timespec ts = { 0, 0 };
522 siginfo_t siginfo;
523 sigset_t waitset;
524 sigset_t chkset;
525 int r;
526
527 sigemptyset(&waitset);
528 sigaddset(&waitset, SIG_IPI);
529 sigaddset(&waitset, SIGBUS);
530
531 do {
532 r = sigtimedwait(&waitset, &siginfo, &ts);
533 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
534 perror("sigtimedwait");
535 exit(1);
536 }
537
538 switch (r) {
539 case SIGBUS:
540 if (kvm_on_sigbus_vcpu(cpu, siginfo.si_code, siginfo.si_addr)) {
541 sigbus_reraise();
542 }
543 break;
544 default:
545 break;
546 }
547
548 r = sigpending(&chkset);
549 if (r == -1) {
550 perror("sigpending");
551 exit(1);
552 }
553 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
554 }
555
556 #else /* !CONFIG_LINUX */
557
558 static void qemu_init_sigbus(void)
559 {
560 }
561
562 static void qemu_kvm_eat_signals(CPUState *cpu)
563 {
564 }
565 #endif /* !CONFIG_LINUX */
566
567 #ifndef _WIN32
568 static void dummy_signal(int sig)
569 {
570 }
571
572 static void qemu_kvm_init_cpu_signals(CPUState *cpu)
573 {
574 int r;
575 sigset_t set;
576 struct sigaction sigact;
577
578 memset(&sigact, 0, sizeof(sigact));
579 sigact.sa_handler = dummy_signal;
580 sigaction(SIG_IPI, &sigact, NULL);
581
582 pthread_sigmask(SIG_BLOCK, NULL, &set);
583 sigdelset(&set, SIG_IPI);
584 sigdelset(&set, SIGBUS);
585 r = kvm_set_signal_mask(cpu, &set);
586 if (r) {
587 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
588 exit(1);
589 }
590 }
591
592 static void qemu_tcg_init_cpu_signals(void)
593 {
594 sigset_t set;
595 struct sigaction sigact;
596
597 memset(&sigact, 0, sizeof(sigact));
598 sigact.sa_handler = cpu_signal;
599 sigaction(SIG_IPI, &sigact, NULL);
600
601 sigemptyset(&set);
602 sigaddset(&set, SIG_IPI);
603 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
604 }
605
606 #else /* _WIN32 */
607 static void qemu_kvm_init_cpu_signals(CPUState *cpu)
608 {
609 abort();
610 }
611
612 static void qemu_tcg_init_cpu_signals(void)
613 {
614 }
615 #endif /* _WIN32 */
616
617 static QemuMutex qemu_global_mutex;
618 static QemuCond qemu_io_proceeded_cond;
619 static bool iothread_requesting_mutex;
620
621 static QemuThread io_thread;
622
623 static QemuThread *tcg_cpu_thread;
624 static QemuCond *tcg_halt_cond;
625
626 /* cpu creation */
627 static QemuCond qemu_cpu_cond;
628 /* system init */
629 static QemuCond qemu_pause_cond;
630 static QemuCond qemu_work_cond;
631
632 void qemu_init_cpu_loop(void)
633 {
634 qemu_init_sigbus();
635 qemu_cond_init(&qemu_cpu_cond);
636 qemu_cond_init(&qemu_pause_cond);
637 qemu_cond_init(&qemu_work_cond);
638 qemu_cond_init(&qemu_io_proceeded_cond);
639 qemu_mutex_init(&qemu_global_mutex);
640
641 qemu_thread_get_self(&io_thread);
642 }
643
644 void run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data)
645 {
646 struct qemu_work_item wi;
647
648 if (qemu_cpu_is_self(cpu)) {
649 func(data);
650 return;
651 }
652
653 wi.func = func;
654 wi.data = data;
655 if (cpu->queued_work_first == NULL) {
656 cpu->queued_work_first = &wi;
657 } else {
658 cpu->queued_work_last->next = &wi;
659 }
660 cpu->queued_work_last = &wi;
661 wi.next = NULL;
662 wi.done = false;
663
664 qemu_cpu_kick(cpu);
665 while (!wi.done) {
666 CPUState *self_cpu = current_cpu;
667
668 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
669 current_cpu = self_cpu;
670 }
671 }
672
673 static void flush_queued_work(CPUState *cpu)
674 {
675 struct qemu_work_item *wi;
676
677 if (cpu->queued_work_first == NULL) {
678 return;
679 }
680
681 while ((wi = cpu->queued_work_first)) {
682 cpu->queued_work_first = wi->next;
683 wi->func(wi->data);
684 wi->done = true;
685 }
686 cpu->queued_work_last = NULL;
687 qemu_cond_broadcast(&qemu_work_cond);
688 }
689
690 static void qemu_wait_io_event_common(CPUState *cpu)
691 {
692 if (cpu->stop) {
693 cpu->stop = false;
694 cpu->stopped = true;
695 qemu_cond_signal(&qemu_pause_cond);
696 }
697 flush_queued_work(cpu);
698 cpu->thread_kicked = false;
699 }
700
701 static void qemu_tcg_wait_io_event(void)
702 {
703 CPUState *cpu;
704
705 while (all_cpu_threads_idle()) {
706 /* Start accounting real time to the virtual clock if the CPUs
707 are idle. */
708 qemu_clock_warp(vm_clock);
709 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
710 }
711
712 while (iothread_requesting_mutex) {
713 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
714 }
715
716 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
717 qemu_wait_io_event_common(cpu);
718 }
719 }
720
721 static void qemu_kvm_wait_io_event(CPUState *cpu)
722 {
723 while (cpu_thread_is_idle(cpu)) {
724 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
725 }
726
727 qemu_kvm_eat_signals(cpu);
728 qemu_wait_io_event_common(cpu);
729 }
730
731 static void *qemu_kvm_cpu_thread_fn(void *arg)
732 {
733 CPUState *cpu = arg;
734 int r;
735
736 qemu_mutex_lock(&qemu_global_mutex);
737 qemu_thread_get_self(cpu->thread);
738 cpu->thread_id = qemu_get_thread_id();
739 current_cpu = cpu;
740
741 r = kvm_init_vcpu(cpu);
742 if (r < 0) {
743 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
744 exit(1);
745 }
746
747 qemu_kvm_init_cpu_signals(cpu);
748
749 /* signal CPU creation */
750 cpu->created = true;
751 qemu_cond_signal(&qemu_cpu_cond);
752
753 while (1) {
754 if (cpu_can_run(cpu)) {
755 r = kvm_cpu_exec(cpu);
756 if (r == EXCP_DEBUG) {
757 cpu_handle_guest_debug(cpu);
758 }
759 }
760 qemu_kvm_wait_io_event(cpu);
761 }
762
763 return NULL;
764 }
765
766 static void *qemu_dummy_cpu_thread_fn(void *arg)
767 {
768 #ifdef _WIN32
769 fprintf(stderr, "qtest is not supported under Windows\n");
770 exit(1);
771 #else
772 CPUState *cpu = arg;
773 sigset_t waitset;
774 int r;
775
776 qemu_mutex_lock_iothread();
777 qemu_thread_get_self(cpu->thread);
778 cpu->thread_id = qemu_get_thread_id();
779
780 sigemptyset(&waitset);
781 sigaddset(&waitset, SIG_IPI);
782
783 /* signal CPU creation */
784 cpu->created = true;
785 qemu_cond_signal(&qemu_cpu_cond);
786
787 current_cpu = cpu;
788 while (1) {
789 current_cpu = NULL;
790 qemu_mutex_unlock_iothread();
791 do {
792 int sig;
793 r = sigwait(&waitset, &sig);
794 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
795 if (r == -1) {
796 perror("sigwait");
797 exit(1);
798 }
799 qemu_mutex_lock_iothread();
800 current_cpu = cpu;
801 qemu_wait_io_event_common(cpu);
802 }
803
804 return NULL;
805 #endif
806 }
807
808 static void tcg_exec_all(void);
809
810 static void tcg_signal_cpu_creation(CPUState *cpu, void *data)
811 {
812 cpu->thread_id = qemu_get_thread_id();
813 cpu->created = true;
814 }
815
816 static void *qemu_tcg_cpu_thread_fn(void *arg)
817 {
818 CPUState *cpu = arg;
819
820 qemu_tcg_init_cpu_signals();
821 qemu_thread_get_self(cpu->thread);
822
823 qemu_mutex_lock(&qemu_global_mutex);
824 qemu_for_each_cpu(tcg_signal_cpu_creation, NULL);
825 qemu_cond_signal(&qemu_cpu_cond);
826
827 /* wait for initial kick-off after machine start */
828 while (first_cpu->stopped) {
829 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
830
831 /* process any pending work */
832 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
833 qemu_wait_io_event_common(cpu);
834 }
835 }
836
837 while (1) {
838 tcg_exec_all();
839 if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
840 qemu_notify_event();
841 }
842 qemu_tcg_wait_io_event();
843 }
844
845 return NULL;
846 }
847
848 static void qemu_cpu_kick_thread(CPUState *cpu)
849 {
850 #ifndef _WIN32
851 int err;
852
853 err = pthread_kill(cpu->thread->thread, SIG_IPI);
854 if (err) {
855 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
856 exit(1);
857 }
858 #else /* _WIN32 */
859 if (!qemu_cpu_is_self(cpu)) {
860 CONTEXT tcgContext;
861
862 if (SuspendThread(cpu->hThread) == (DWORD)-1) {
863 fprintf(stderr, "qemu:%s: GetLastError:%lu\n", __func__,
864 GetLastError());
865 exit(1);
866 }
867
868 /* On multi-core systems, we are not sure that the thread is actually
869 * suspended until we can get the context.
870 */
871 tcgContext.ContextFlags = CONTEXT_CONTROL;
872 while (GetThreadContext(cpu->hThread, &tcgContext) != 0) {
873 continue;
874 }
875
876 cpu_signal(0);
877
878 if (ResumeThread(cpu->hThread) == (DWORD)-1) {
879 fprintf(stderr, "qemu:%s: GetLastError:%lu\n", __func__,
880 GetLastError());
881 exit(1);
882 }
883 }
884 #endif
885 }
886
887 void qemu_cpu_kick(CPUState *cpu)
888 {
889 qemu_cond_broadcast(cpu->halt_cond);
890 if (!tcg_enabled() && !cpu->thread_kicked) {
891 qemu_cpu_kick_thread(cpu);
892 cpu->thread_kicked = true;
893 }
894 }
895
896 void qemu_cpu_kick_self(void)
897 {
898 #ifndef _WIN32
899 assert(current_cpu);
900
901 if (!current_cpu->thread_kicked) {
902 qemu_cpu_kick_thread(current_cpu);
903 current_cpu->thread_kicked = true;
904 }
905 #else
906 abort();
907 #endif
908 }
909
910 bool qemu_cpu_is_self(CPUState *cpu)
911 {
912 return qemu_thread_is_self(cpu->thread);
913 }
914
915 static bool qemu_in_vcpu_thread(void)
916 {
917 return current_cpu && qemu_cpu_is_self(current_cpu);
918 }
919
920 void qemu_mutex_lock_iothread(void)
921 {
922 if (!tcg_enabled()) {
923 qemu_mutex_lock(&qemu_global_mutex);
924 } else {
925 iothread_requesting_mutex = true;
926 if (qemu_mutex_trylock(&qemu_global_mutex)) {
927 qemu_cpu_kick_thread(first_cpu);
928 qemu_mutex_lock(&qemu_global_mutex);
929 }
930 iothread_requesting_mutex = false;
931 qemu_cond_broadcast(&qemu_io_proceeded_cond);
932 }
933 }
934
935 void qemu_mutex_unlock_iothread(void)
936 {
937 qemu_mutex_unlock(&qemu_global_mutex);
938 }
939
940 static int all_vcpus_paused(void)
941 {
942 CPUState *cpu = first_cpu;
943
944 while (cpu) {
945 if (!cpu->stopped) {
946 return 0;
947 }
948 cpu = cpu->next_cpu;
949 }
950
951 return 1;
952 }
953
954 void pause_all_vcpus(void)
955 {
956 CPUState *cpu = first_cpu;
957
958 qemu_clock_enable(vm_clock, false);
959 while (cpu) {
960 cpu->stop = true;
961 qemu_cpu_kick(cpu);
962 cpu = cpu->next_cpu;
963 }
964
965 if (qemu_in_vcpu_thread()) {
966 cpu_stop_current();
967 if (!kvm_enabled()) {
968 cpu = first_cpu;
969 while (cpu) {
970 cpu->stop = false;
971 cpu->stopped = true;
972 cpu = cpu->next_cpu;
973 }
974 return;
975 }
976 }
977
978 while (!all_vcpus_paused()) {
979 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
980 cpu = first_cpu;
981 while (cpu) {
982 qemu_cpu_kick(cpu);
983 cpu = cpu->next_cpu;
984 }
985 }
986 }
987
988 void cpu_resume(CPUState *cpu)
989 {
990 cpu->stop = false;
991 cpu->stopped = false;
992 qemu_cpu_kick(cpu);
993 }
994
995 void resume_all_vcpus(void)
996 {
997 CPUState *cpu = first_cpu;
998
999 qemu_clock_enable(vm_clock, true);
1000 while (cpu) {
1001 cpu_resume(cpu);
1002 cpu = cpu->next_cpu;
1003 }
1004 }
1005
1006 static void qemu_tcg_init_vcpu(CPUState *cpu)
1007 {
1008 /* share a single thread for all cpus with TCG */
1009 if (!tcg_cpu_thread) {
1010 cpu->thread = g_malloc0(sizeof(QemuThread));
1011 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1012 qemu_cond_init(cpu->halt_cond);
1013 tcg_halt_cond = cpu->halt_cond;
1014 qemu_thread_create(cpu->thread, qemu_tcg_cpu_thread_fn, cpu,
1015 QEMU_THREAD_JOINABLE);
1016 #ifdef _WIN32
1017 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1018 #endif
1019 while (!cpu->created) {
1020 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1021 }
1022 tcg_cpu_thread = cpu->thread;
1023 } else {
1024 cpu->thread = tcg_cpu_thread;
1025 cpu->halt_cond = tcg_halt_cond;
1026 }
1027 }
1028
1029 static void qemu_kvm_start_vcpu(CPUState *cpu)
1030 {
1031 cpu->thread = g_malloc0(sizeof(QemuThread));
1032 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1033 qemu_cond_init(cpu->halt_cond);
1034 qemu_thread_create(cpu->thread, qemu_kvm_cpu_thread_fn, cpu,
1035 QEMU_THREAD_JOINABLE);
1036 while (!cpu->created) {
1037 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1038 }
1039 }
1040
1041 static void qemu_dummy_start_vcpu(CPUState *cpu)
1042 {
1043 cpu->thread = g_malloc0(sizeof(QemuThread));
1044 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1045 qemu_cond_init(cpu->halt_cond);
1046 qemu_thread_create(cpu->thread, qemu_dummy_cpu_thread_fn, cpu,
1047 QEMU_THREAD_JOINABLE);
1048 while (!cpu->created) {
1049 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1050 }
1051 }
1052
1053 void qemu_init_vcpu(CPUState *cpu)
1054 {
1055 cpu->nr_cores = smp_cores;
1056 cpu->nr_threads = smp_threads;
1057 cpu->stopped = true;
1058 if (kvm_enabled()) {
1059 qemu_kvm_start_vcpu(cpu);
1060 } else if (tcg_enabled()) {
1061 qemu_tcg_init_vcpu(cpu);
1062 } else {
1063 qemu_dummy_start_vcpu(cpu);
1064 }
1065 }
1066
1067 void cpu_stop_current(void)
1068 {
1069 if (current_cpu) {
1070 current_cpu->stop = false;
1071 current_cpu->stopped = true;
1072 cpu_exit(current_cpu);
1073 qemu_cond_signal(&qemu_pause_cond);
1074 }
1075 }
1076
1077 int vm_stop(RunState state)
1078 {
1079 if (qemu_in_vcpu_thread()) {
1080 qemu_system_vmstop_request(state);
1081 /*
1082 * FIXME: should not return to device code in case
1083 * vm_stop() has been requested.
1084 */
1085 cpu_stop_current();
1086 return 0;
1087 }
1088
1089 return do_vm_stop(state);
1090 }
1091
1092 /* does a state transition even if the VM is already stopped,
1093 current state is forgotten forever */
1094 int vm_stop_force_state(RunState state)
1095 {
1096 if (runstate_is_running()) {
1097 return vm_stop(state);
1098 } else {
1099 runstate_set(state);
1100 return 0;
1101 }
1102 }
1103
1104 static int tcg_cpu_exec(CPUArchState *env)
1105 {
1106 int ret;
1107 #ifdef CONFIG_PROFILER
1108 int64_t ti;
1109 #endif
1110
1111 #ifdef CONFIG_PROFILER
1112 ti = profile_getclock();
1113 #endif
1114 if (use_icount) {
1115 int64_t count;
1116 int decr;
1117 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1118 env->icount_decr.u16.low = 0;
1119 env->icount_extra = 0;
1120 count = qemu_icount_round(qemu_clock_deadline(vm_clock));
1121 qemu_icount += count;
1122 decr = (count > 0xffff) ? 0xffff : count;
1123 count -= decr;
1124 env->icount_decr.u16.low = decr;
1125 env->icount_extra = count;
1126 }
1127 ret = cpu_exec(env);
1128 #ifdef CONFIG_PROFILER
1129 qemu_time += profile_getclock() - ti;
1130 #endif
1131 if (use_icount) {
1132 /* Fold pending instructions back into the
1133 instruction counter, and clear the interrupt flag. */
1134 qemu_icount -= (env->icount_decr.u16.low
1135 + env->icount_extra);
1136 env->icount_decr.u32 = 0;
1137 env->icount_extra = 0;
1138 }
1139 return ret;
1140 }
1141
1142 static void tcg_exec_all(void)
1143 {
1144 int r;
1145
1146 /* Account partial waits to the vm_clock. */
1147 qemu_clock_warp(vm_clock);
1148
1149 if (next_cpu == NULL) {
1150 next_cpu = first_cpu;
1151 }
1152 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1153 CPUState *cpu = next_cpu;
1154 CPUArchState *env = cpu->env_ptr;
1155
1156 qemu_clock_enable(vm_clock,
1157 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1158
1159 if (cpu_can_run(cpu)) {
1160 r = tcg_cpu_exec(env);
1161 if (r == EXCP_DEBUG) {
1162 cpu_handle_guest_debug(cpu);
1163 break;
1164 }
1165 } else if (cpu->stop || cpu->stopped) {
1166 break;
1167 }
1168 }
1169 exit_request = 0;
1170 }
1171
1172 void set_numa_modes(void)
1173 {
1174 CPUState *cpu;
1175 int i;
1176
1177 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
1178 for (i = 0; i < nb_numa_nodes; i++) {
1179 if (test_bit(cpu->cpu_index, node_cpumask[i])) {
1180 cpu->numa_node = i;
1181 }
1182 }
1183 }
1184 }
1185
1186 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1187 {
1188 /* XXX: implement xxx_cpu_list for targets that still miss it */
1189 #if defined(cpu_list)
1190 cpu_list(f, cpu_fprintf);
1191 #endif
1192 }
1193
1194 CpuInfoList *qmp_query_cpus(Error **errp)
1195 {
1196 CpuInfoList *head = NULL, *cur_item = NULL;
1197 CPUState *cpu;
1198
1199 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
1200 CpuInfoList *info;
1201 #if defined(TARGET_I386)
1202 X86CPU *x86_cpu = X86_CPU(cpu);
1203 CPUX86State *env = &x86_cpu->env;
1204 #elif defined(TARGET_PPC)
1205 PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu);
1206 CPUPPCState *env = &ppc_cpu->env;
1207 #elif defined(TARGET_SPARC)
1208 SPARCCPU *sparc_cpu = SPARC_CPU(cpu);
1209 CPUSPARCState *env = &sparc_cpu->env;
1210 #elif defined(TARGET_MIPS)
1211 MIPSCPU *mips_cpu = MIPS_CPU(cpu);
1212 CPUMIPSState *env = &mips_cpu->env;
1213 #endif
1214
1215 cpu_synchronize_state(cpu);
1216
1217 info = g_malloc0(sizeof(*info));
1218 info->value = g_malloc0(sizeof(*info->value));
1219 info->value->CPU = cpu->cpu_index;
1220 info->value->current = (cpu == first_cpu);
1221 info->value->halted = cpu->halted;
1222 info->value->thread_id = cpu->thread_id;
1223 #if defined(TARGET_I386)
1224 info->value->has_pc = true;
1225 info->value->pc = env->eip + env->segs[R_CS].base;
1226 #elif defined(TARGET_PPC)
1227 info->value->has_nip = true;
1228 info->value->nip = env->nip;
1229 #elif defined(TARGET_SPARC)
1230 info->value->has_pc = true;
1231 info->value->pc = env->pc;
1232 info->value->has_npc = true;
1233 info->value->npc = env->npc;
1234 #elif defined(TARGET_MIPS)
1235 info->value->has_PC = true;
1236 info->value->PC = env->active_tc.PC;
1237 #endif
1238
1239 /* XXX: waiting for the qapi to support GSList */
1240 if (!cur_item) {
1241 head = cur_item = info;
1242 } else {
1243 cur_item->next = info;
1244 cur_item = info;
1245 }
1246 }
1247
1248 return head;
1249 }
1250
1251 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1252 bool has_cpu, int64_t cpu_index, Error **errp)
1253 {
1254 FILE *f;
1255 uint32_t l;
1256 CPUArchState *env;
1257 CPUState *cpu;
1258 uint8_t buf[1024];
1259
1260 if (!has_cpu) {
1261 cpu_index = 0;
1262 }
1263
1264 cpu = qemu_get_cpu(cpu_index);
1265 if (cpu == NULL) {
1266 error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1267 "a CPU number");
1268 return;
1269 }
1270 env = cpu->env_ptr;
1271
1272 f = fopen(filename, "wb");
1273 if (!f) {
1274 error_setg_file_open(errp, errno, filename);
1275 return;
1276 }
1277
1278 while (size != 0) {
1279 l = sizeof(buf);
1280 if (l > size)
1281 l = size;
1282 cpu_memory_rw_debug(env, addr, buf, l, 0);
1283 if (fwrite(buf, 1, l, f) != l) {
1284 error_set(errp, QERR_IO_ERROR);
1285 goto exit;
1286 }
1287 addr += l;
1288 size -= l;
1289 }
1290
1291 exit:
1292 fclose(f);
1293 }
1294
1295 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1296 Error **errp)
1297 {
1298 FILE *f;
1299 uint32_t l;
1300 uint8_t buf[1024];
1301
1302 f = fopen(filename, "wb");
1303 if (!f) {
1304 error_setg_file_open(errp, errno, filename);
1305 return;
1306 }
1307
1308 while (size != 0) {
1309 l = sizeof(buf);
1310 if (l > size)
1311 l = size;
1312 cpu_physical_memory_rw(addr, buf, l, 0);
1313 if (fwrite(buf, 1, l, f) != l) {
1314 error_set(errp, QERR_IO_ERROR);
1315 goto exit;
1316 }
1317 addr += l;
1318 size -= l;
1319 }
1320
1321 exit:
1322 fclose(f);
1323 }
1324
1325 void qmp_inject_nmi(Error **errp)
1326 {
1327 #if defined(TARGET_I386)
1328 CPUState *cs;
1329
1330 for (cs = first_cpu; cs != NULL; cs = cs->next_cpu) {
1331 X86CPU *cpu = X86_CPU(cs);
1332 CPUX86State *env = &cpu->env;
1333
1334 if (!env->apic_state) {
1335 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
1336 } else {
1337 apic_deliver_nmi(env->apic_state);
1338 }
1339 }
1340 #else
1341 error_set(errp, QERR_UNSUPPORTED);
1342 #endif
1343 }