]> git.proxmox.com Git - qemu.git/blob - cputlb.c
cpu: Turn cpu_unassigned_access() into a CPUState hook
[qemu.git] / cputlb.c
1 /*
2 * Common CPU TLB handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "config.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/memory.h"
24 #include "exec/address-spaces.h"
25
26 #include "exec/cputlb.h"
27
28 #include "exec/memory-internal.h"
29
30 //#define DEBUG_TLB
31 //#define DEBUG_TLB_CHECK
32
33 /* statistics */
34 int tlb_flush_count;
35
36 static const CPUTLBEntry s_cputlb_empty_entry = {
37 .addr_read = -1,
38 .addr_write = -1,
39 .addr_code = -1,
40 .addend = -1,
41 };
42
43 /* NOTE:
44 * If flush_global is true (the usual case), flush all tlb entries.
45 * If flush_global is false, flush (at least) all tlb entries not
46 * marked global.
47 *
48 * Since QEMU doesn't currently implement a global/not-global flag
49 * for tlb entries, at the moment tlb_flush() will also flush all
50 * tlb entries in the flush_global == false case. This is OK because
51 * CPU architectures generally permit an implementation to drop
52 * entries from the TLB at any time, so flushing more entries than
53 * required is only an efficiency issue, not a correctness issue.
54 */
55 void tlb_flush(CPUArchState *env, int flush_global)
56 {
57 CPUState *cpu = ENV_GET_CPU(env);
58 int i;
59
60 #if defined(DEBUG_TLB)
61 printf("tlb_flush:\n");
62 #endif
63 /* must reset current TB so that interrupts cannot modify the
64 links while we are modifying them */
65 cpu->current_tb = NULL;
66
67 for (i = 0; i < CPU_TLB_SIZE; i++) {
68 int mmu_idx;
69
70 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
71 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
72 }
73 }
74
75 memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
76
77 env->tlb_flush_addr = -1;
78 env->tlb_flush_mask = 0;
79 tlb_flush_count++;
80 }
81
82 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
83 {
84 if (addr == (tlb_entry->addr_read &
85 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
86 addr == (tlb_entry->addr_write &
87 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
88 addr == (tlb_entry->addr_code &
89 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
90 *tlb_entry = s_cputlb_empty_entry;
91 }
92 }
93
94 void tlb_flush_page(CPUArchState *env, target_ulong addr)
95 {
96 CPUState *cpu = ENV_GET_CPU(env);
97 int i;
98 int mmu_idx;
99
100 #if defined(DEBUG_TLB)
101 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
102 #endif
103 /* Check if we need to flush due to large pages. */
104 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
105 #if defined(DEBUG_TLB)
106 printf("tlb_flush_page: forced full flush ("
107 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
108 env->tlb_flush_addr, env->tlb_flush_mask);
109 #endif
110 tlb_flush(env, 1);
111 return;
112 }
113 /* must reset current TB so that interrupts cannot modify the
114 links while we are modifying them */
115 cpu->current_tb = NULL;
116
117 addr &= TARGET_PAGE_MASK;
118 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
119 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
120 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
121 }
122
123 tb_flush_jmp_cache(env, addr);
124 }
125
126 /* update the TLBs so that writes to code in the virtual page 'addr'
127 can be detected */
128 void tlb_protect_code(ram_addr_t ram_addr)
129 {
130 cpu_physical_memory_reset_dirty(ram_addr,
131 ram_addr + TARGET_PAGE_SIZE,
132 CODE_DIRTY_FLAG);
133 }
134
135 /* update the TLB so that writes in physical page 'phys_addr' are no longer
136 tested for self modifying code */
137 void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
138 target_ulong vaddr)
139 {
140 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
141 }
142
143 static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
144 {
145 return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
146 }
147
148 void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
149 uintptr_t length)
150 {
151 uintptr_t addr;
152
153 if (tlb_is_dirty_ram(tlb_entry)) {
154 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
155 if ((addr - start) < length) {
156 tlb_entry->addr_write |= TLB_NOTDIRTY;
157 }
158 }
159 }
160
161 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
162 {
163 ram_addr_t ram_addr;
164 void *p;
165
166 if (tlb_is_dirty_ram(tlb_entry)) {
167 p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK)
168 + tlb_entry->addend);
169 ram_addr = qemu_ram_addr_from_host_nofail(p);
170 if (!cpu_physical_memory_is_dirty(ram_addr)) {
171 tlb_entry->addr_write |= TLB_NOTDIRTY;
172 }
173 }
174 }
175
176 void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
177 {
178 CPUArchState *env;
179
180 for (env = first_cpu; env != NULL; env = env->next_cpu) {
181 int mmu_idx;
182
183 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
184 unsigned int i;
185
186 for (i = 0; i < CPU_TLB_SIZE; i++) {
187 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
188 start1, length);
189 }
190 }
191 }
192 }
193
194 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
195 {
196 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
197 tlb_entry->addr_write = vaddr;
198 }
199 }
200
201 /* update the TLB corresponding to virtual page vaddr
202 so that it is no longer dirty */
203 void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
204 {
205 int i;
206 int mmu_idx;
207
208 vaddr &= TARGET_PAGE_MASK;
209 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
210 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
211 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
212 }
213 }
214
215 /* Our TLB does not support large pages, so remember the area covered by
216 large pages and trigger a full TLB flush if these are invalidated. */
217 static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
218 target_ulong size)
219 {
220 target_ulong mask = ~(size - 1);
221
222 if (env->tlb_flush_addr == (target_ulong)-1) {
223 env->tlb_flush_addr = vaddr & mask;
224 env->tlb_flush_mask = mask;
225 return;
226 }
227 /* Extend the existing region to include the new page.
228 This is a compromise between unnecessary flushes and the cost
229 of maintaining a full variable size TLB. */
230 mask &= env->tlb_flush_mask;
231 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
232 mask <<= 1;
233 }
234 env->tlb_flush_addr &= mask;
235 env->tlb_flush_mask = mask;
236 }
237
238 /* Add a new TLB entry. At most one entry for a given virtual address
239 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
240 supplied size is only used by tlb_flush_page. */
241 void tlb_set_page(CPUArchState *env, target_ulong vaddr,
242 hwaddr paddr, int prot,
243 int mmu_idx, target_ulong size)
244 {
245 MemoryRegionSection *section;
246 unsigned int index;
247 target_ulong address;
248 target_ulong code_address;
249 uintptr_t addend;
250 CPUTLBEntry *te;
251 hwaddr iotlb, xlat, sz;
252
253 assert(size >= TARGET_PAGE_SIZE);
254 if (size != TARGET_PAGE_SIZE) {
255 tlb_add_large_page(env, vaddr, size);
256 }
257
258 sz = size;
259 section = address_space_translate_for_iotlb(&address_space_memory, paddr,
260 &xlat, &sz);
261 assert(sz >= TARGET_PAGE_SIZE);
262
263 #if defined(DEBUG_TLB)
264 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
265 " prot=%x idx=%d\n",
266 vaddr, paddr, prot, mmu_idx);
267 #endif
268
269 address = vaddr;
270 if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
271 /* IO memory case */
272 address |= TLB_MMIO;
273 addend = 0;
274 } else {
275 /* TLB_MMIO for rom/romd handled below */
276 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
277 }
278
279 code_address = address;
280 iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, xlat,
281 prot, &address);
282
283 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
284 env->iotlb[mmu_idx][index] = iotlb - vaddr;
285 te = &env->tlb_table[mmu_idx][index];
286 te->addend = addend - vaddr;
287 if (prot & PAGE_READ) {
288 te->addr_read = address;
289 } else {
290 te->addr_read = -1;
291 }
292
293 if (prot & PAGE_EXEC) {
294 te->addr_code = code_address;
295 } else {
296 te->addr_code = -1;
297 }
298 if (prot & PAGE_WRITE) {
299 if ((memory_region_is_ram(section->mr) && section->readonly)
300 || memory_region_is_romd(section->mr)) {
301 /* Write access calls the I/O callback. */
302 te->addr_write = address | TLB_MMIO;
303 } else if (memory_region_is_ram(section->mr)
304 && !cpu_physical_memory_is_dirty(section->mr->ram_addr + xlat)) {
305 te->addr_write = address | TLB_NOTDIRTY;
306 } else {
307 te->addr_write = address;
308 }
309 } else {
310 te->addr_write = -1;
311 }
312 }
313
314 /* NOTE: this function can trigger an exception */
315 /* NOTE2: the returned address is not exactly the physical address: it
316 * is actually a ram_addr_t (in system mode; the user mode emulation
317 * version of this function returns a guest virtual address).
318 */
319 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
320 {
321 int mmu_idx, page_index, pd;
322 void *p;
323 MemoryRegion *mr;
324
325 page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
326 mmu_idx = cpu_mmu_index(env1);
327 if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
328 (addr & TARGET_PAGE_MASK))) {
329 cpu_ldub_code(env1, addr);
330 }
331 pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
332 mr = iotlb_to_region(pd);
333 if (memory_region_is_unassigned(mr)) {
334 CPUState *cpu = ENV_GET_CPU(env1);
335 CPUClass *cc = CPU_GET_CLASS(cpu);
336
337 if (cc->do_unassigned_access) {
338 cc->do_unassigned_access(cpu, addr, false, true, 0, 4);
339 } else {
340 cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x"
341 TARGET_FMT_lx "\n", addr);
342 }
343 }
344 p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
345 return qemu_ram_addr_from_host_nofail(p);
346 }
347
348 #define MMUSUFFIX _cmmu
349 #undef GETPC
350 #define GETPC() ((uintptr_t)0)
351 #define SOFTMMU_CODE_ACCESS
352
353 #define SHIFT 0
354 #include "exec/softmmu_template.h"
355
356 #define SHIFT 1
357 #include "exec/softmmu_template.h"
358
359 #define SHIFT 2
360 #include "exec/softmmu_template.h"
361
362 #define SHIFT 3
363 #include "exec/softmmu_template.h"
364
365 #undef env