]> git.proxmox.com Git - qemu.git/blob - exec.c
CPUPhysMemoryClient: Pass guest physical address not region offset
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "exec-all.h"
30 #include "tcg.h"
31 #include "hw/hw.h"
32 #include "hw/qdev.h"
33 #include "osdep.h"
34 #include "kvm.h"
35 #include "qemu-timer.h"
36 #if defined(CONFIG_USER_ONLY)
37 #include <qemu.h>
38 #include <signal.h>
39 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
40 #include <sys/param.h>
41 #if __FreeBSD_version >= 700104
42 #define HAVE_KINFO_GETVMMAP
43 #define sigqueue sigqueue_freebsd /* avoid redefinition */
44 #include <sys/time.h>
45 #include <sys/proc.h>
46 #include <machine/profile.h>
47 #define _KERNEL
48 #include <sys/user.h>
49 #undef _KERNEL
50 #undef sigqueue
51 #include <libutil.h>
52 #endif
53 #endif
54 #endif
55
56 //#define DEBUG_TB_INVALIDATE
57 //#define DEBUG_FLUSH
58 //#define DEBUG_TLB
59 //#define DEBUG_UNASSIGNED
60
61 /* make various TB consistency checks */
62 //#define DEBUG_TB_CHECK
63 //#define DEBUG_TLB_CHECK
64
65 //#define DEBUG_IOPORT
66 //#define DEBUG_SUBPAGE
67
68 #if !defined(CONFIG_USER_ONLY)
69 /* TB consistency checks only implemented for usermode emulation. */
70 #undef DEBUG_TB_CHECK
71 #endif
72
73 #define SMC_BITMAP_USE_THRESHOLD 10
74
75 static TranslationBlock *tbs;
76 static int code_gen_max_blocks;
77 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
78 static int nb_tbs;
79 /* any access to the tbs or the page table must use this lock */
80 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
81
82 #if defined(__arm__) || defined(__sparc_v9__)
83 /* The prologue must be reachable with a direct jump. ARM and Sparc64
84 have limited branch ranges (possibly also PPC) so place it in a
85 section close to code segment. */
86 #define code_gen_section \
87 __attribute__((__section__(".gen_code"))) \
88 __attribute__((aligned (32)))
89 #elif defined(_WIN32)
90 /* Maximum alignment for Win32 is 16. */
91 #define code_gen_section \
92 __attribute__((aligned (16)))
93 #else
94 #define code_gen_section \
95 __attribute__((aligned (32)))
96 #endif
97
98 uint8_t code_gen_prologue[1024] code_gen_section;
99 static uint8_t *code_gen_buffer;
100 static unsigned long code_gen_buffer_size;
101 /* threshold to flush the translated code buffer */
102 static unsigned long code_gen_buffer_max_size;
103 static uint8_t *code_gen_ptr;
104
105 #if !defined(CONFIG_USER_ONLY)
106 int phys_ram_fd;
107 static int in_migration;
108
109 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
110 #endif
111
112 CPUState *first_cpu;
113 /* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
115 CPUState *cpu_single_env;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
119 int use_icount = 0;
120 /* Current instruction counter. While executing translated code this may
121 include some instructions that have not yet been executed. */
122 int64_t qemu_icount;
123
124 typedef struct PageDesc {
125 /* list of TBs intersecting this ram page */
126 TranslationBlock *first_tb;
127 /* in order to optimize self modifying code, we count the number
128 of lookups we do to a given page to use a bitmap */
129 unsigned int code_write_count;
130 uint8_t *code_bitmap;
131 #if defined(CONFIG_USER_ONLY)
132 unsigned long flags;
133 #endif
134 } PageDesc;
135
136 /* In system mode we want L1_MAP to be based on ram offsets,
137 while in user mode we want it to be based on virtual addresses. */
138 #if !defined(CONFIG_USER_ONLY)
139 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
140 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
141 #else
142 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
143 #endif
144 #else
145 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
146 #endif
147
148 /* Size of the L2 (and L3, etc) page tables. */
149 #define L2_BITS 10
150 #define L2_SIZE (1 << L2_BITS)
151
152 /* The bits remaining after N lower levels of page tables. */
153 #define P_L1_BITS_REM \
154 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
155 #define V_L1_BITS_REM \
156 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
157
158 /* Size of the L1 page table. Avoid silly small sizes. */
159 #if P_L1_BITS_REM < 4
160 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
161 #else
162 #define P_L1_BITS P_L1_BITS_REM
163 #endif
164
165 #if V_L1_BITS_REM < 4
166 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
167 #else
168 #define V_L1_BITS V_L1_BITS_REM
169 #endif
170
171 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
172 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
173
174 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
175 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
176
177 unsigned long qemu_real_host_page_size;
178 unsigned long qemu_host_page_bits;
179 unsigned long qemu_host_page_size;
180 unsigned long qemu_host_page_mask;
181
182 /* This is a multi-level map on the virtual address space.
183 The bottom level has pointers to PageDesc. */
184 static void *l1_map[V_L1_SIZE];
185
186 #if !defined(CONFIG_USER_ONLY)
187 typedef struct PhysPageDesc {
188 /* offset in host memory of the page + io_index in the low bits */
189 ram_addr_t phys_offset;
190 ram_addr_t region_offset;
191 } PhysPageDesc;
192
193 /* This is a multi-level map on the physical address space.
194 The bottom level has pointers to PhysPageDesc. */
195 static void *l1_phys_map[P_L1_SIZE];
196
197 static void io_mem_init(void);
198
199 /* io memory support */
200 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
201 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
202 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
203 static char io_mem_used[IO_MEM_NB_ENTRIES];
204 static int io_mem_watch;
205 #endif
206
207 /* log support */
208 #ifdef WIN32
209 static const char *logfilename = "qemu.log";
210 #else
211 static const char *logfilename = "/tmp/qemu.log";
212 #endif
213 FILE *logfile;
214 int loglevel;
215 static int log_append = 0;
216
217 /* statistics */
218 #if !defined(CONFIG_USER_ONLY)
219 static int tlb_flush_count;
220 #endif
221 static int tb_flush_count;
222 static int tb_phys_invalidate_count;
223
224 #ifdef _WIN32
225 static void map_exec(void *addr, long size)
226 {
227 DWORD old_protect;
228 VirtualProtect(addr, size,
229 PAGE_EXECUTE_READWRITE, &old_protect);
230
231 }
232 #else
233 static void map_exec(void *addr, long size)
234 {
235 unsigned long start, end, page_size;
236
237 page_size = getpagesize();
238 start = (unsigned long)addr;
239 start &= ~(page_size - 1);
240
241 end = (unsigned long)addr + size;
242 end += page_size - 1;
243 end &= ~(page_size - 1);
244
245 mprotect((void *)start, end - start,
246 PROT_READ | PROT_WRITE | PROT_EXEC);
247 }
248 #endif
249
250 static void page_init(void)
251 {
252 /* NOTE: we can always suppose that qemu_host_page_size >=
253 TARGET_PAGE_SIZE */
254 #ifdef _WIN32
255 {
256 SYSTEM_INFO system_info;
257
258 GetSystemInfo(&system_info);
259 qemu_real_host_page_size = system_info.dwPageSize;
260 }
261 #else
262 qemu_real_host_page_size = getpagesize();
263 #endif
264 if (qemu_host_page_size == 0)
265 qemu_host_page_size = qemu_real_host_page_size;
266 if (qemu_host_page_size < TARGET_PAGE_SIZE)
267 qemu_host_page_size = TARGET_PAGE_SIZE;
268 qemu_host_page_bits = 0;
269 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
270 qemu_host_page_bits++;
271 qemu_host_page_mask = ~(qemu_host_page_size - 1);
272
273 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
274 {
275 #ifdef HAVE_KINFO_GETVMMAP
276 struct kinfo_vmentry *freep;
277 int i, cnt;
278
279 freep = kinfo_getvmmap(getpid(), &cnt);
280 if (freep) {
281 mmap_lock();
282 for (i = 0; i < cnt; i++) {
283 unsigned long startaddr, endaddr;
284
285 startaddr = freep[i].kve_start;
286 endaddr = freep[i].kve_end;
287 if (h2g_valid(startaddr)) {
288 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
289
290 if (h2g_valid(endaddr)) {
291 endaddr = h2g(endaddr);
292 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
293 } else {
294 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
295 endaddr = ~0ul;
296 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
297 #endif
298 }
299 }
300 }
301 free(freep);
302 mmap_unlock();
303 }
304 #else
305 FILE *f;
306
307 last_brk = (unsigned long)sbrk(0);
308
309 f = fopen("/compat/linux/proc/self/maps", "r");
310 if (f) {
311 mmap_lock();
312
313 do {
314 unsigned long startaddr, endaddr;
315 int n;
316
317 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
318
319 if (n == 2 && h2g_valid(startaddr)) {
320 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
321
322 if (h2g_valid(endaddr)) {
323 endaddr = h2g(endaddr);
324 } else {
325 endaddr = ~0ul;
326 }
327 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
328 }
329 } while (!feof(f));
330
331 fclose(f);
332 mmap_unlock();
333 }
334 #endif
335 }
336 #endif
337 }
338
339 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
340 {
341 PageDesc *pd;
342 void **lp;
343 int i;
344
345 #if defined(CONFIG_USER_ONLY)
346 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
347 # define ALLOC(P, SIZE) \
348 do { \
349 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
350 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
351 } while (0)
352 #else
353 # define ALLOC(P, SIZE) \
354 do { P = qemu_mallocz(SIZE); } while (0)
355 #endif
356
357 /* Level 1. Always allocated. */
358 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
359
360 /* Level 2..N-1. */
361 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
362 void **p = *lp;
363
364 if (p == NULL) {
365 if (!alloc) {
366 return NULL;
367 }
368 ALLOC(p, sizeof(void *) * L2_SIZE);
369 *lp = p;
370 }
371
372 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
373 }
374
375 pd = *lp;
376 if (pd == NULL) {
377 if (!alloc) {
378 return NULL;
379 }
380 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
381 *lp = pd;
382 }
383
384 #undef ALLOC
385
386 return pd + (index & (L2_SIZE - 1));
387 }
388
389 static inline PageDesc *page_find(tb_page_addr_t index)
390 {
391 return page_find_alloc(index, 0);
392 }
393
394 #if !defined(CONFIG_USER_ONLY)
395 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
396 {
397 PhysPageDesc *pd;
398 void **lp;
399 int i;
400
401 /* Level 1. Always allocated. */
402 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
403
404 /* Level 2..N-1. */
405 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
406 void **p = *lp;
407 if (p == NULL) {
408 if (!alloc) {
409 return NULL;
410 }
411 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
412 }
413 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
414 }
415
416 pd = *lp;
417 if (pd == NULL) {
418 int i;
419
420 if (!alloc) {
421 return NULL;
422 }
423
424 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
425
426 for (i = 0; i < L2_SIZE; i++) {
427 pd[i].phys_offset = IO_MEM_UNASSIGNED;
428 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
429 }
430 }
431
432 return pd + (index & (L2_SIZE - 1));
433 }
434
435 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
436 {
437 return phys_page_find_alloc(index, 0);
438 }
439
440 static void tlb_protect_code(ram_addr_t ram_addr);
441 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
442 target_ulong vaddr);
443 #define mmap_lock() do { } while(0)
444 #define mmap_unlock() do { } while(0)
445 #endif
446
447 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
448
449 #if defined(CONFIG_USER_ONLY)
450 /* Currently it is not recommended to allocate big chunks of data in
451 user mode. It will change when a dedicated libc will be used */
452 #define USE_STATIC_CODE_GEN_BUFFER
453 #endif
454
455 #ifdef USE_STATIC_CODE_GEN_BUFFER
456 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
457 __attribute__((aligned (CODE_GEN_ALIGN)));
458 #endif
459
460 static void code_gen_alloc(unsigned long tb_size)
461 {
462 #ifdef USE_STATIC_CODE_GEN_BUFFER
463 code_gen_buffer = static_code_gen_buffer;
464 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
465 map_exec(code_gen_buffer, code_gen_buffer_size);
466 #else
467 code_gen_buffer_size = tb_size;
468 if (code_gen_buffer_size == 0) {
469 #if defined(CONFIG_USER_ONLY)
470 /* in user mode, phys_ram_size is not meaningful */
471 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
472 #else
473 /* XXX: needs adjustments */
474 code_gen_buffer_size = (unsigned long)(ram_size / 4);
475 #endif
476 }
477 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
478 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
479 /* The code gen buffer location may have constraints depending on
480 the host cpu and OS */
481 #if defined(__linux__)
482 {
483 int flags;
484 void *start = NULL;
485
486 flags = MAP_PRIVATE | MAP_ANONYMOUS;
487 #if defined(__x86_64__)
488 flags |= MAP_32BIT;
489 /* Cannot map more than that */
490 if (code_gen_buffer_size > (800 * 1024 * 1024))
491 code_gen_buffer_size = (800 * 1024 * 1024);
492 #elif defined(__sparc_v9__)
493 // Map the buffer below 2G, so we can use direct calls and branches
494 flags |= MAP_FIXED;
495 start = (void *) 0x60000000UL;
496 if (code_gen_buffer_size > (512 * 1024 * 1024))
497 code_gen_buffer_size = (512 * 1024 * 1024);
498 #elif defined(__arm__)
499 /* Map the buffer below 32M, so we can use direct calls and branches */
500 flags |= MAP_FIXED;
501 start = (void *) 0x01000000UL;
502 if (code_gen_buffer_size > 16 * 1024 * 1024)
503 code_gen_buffer_size = 16 * 1024 * 1024;
504 #elif defined(__s390x__)
505 /* Map the buffer so that we can use direct calls and branches. */
506 /* We have a +- 4GB range on the branches; leave some slop. */
507 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
508 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
509 }
510 start = (void *)0x90000000UL;
511 #endif
512 code_gen_buffer = mmap(start, code_gen_buffer_size,
513 PROT_WRITE | PROT_READ | PROT_EXEC,
514 flags, -1, 0);
515 if (code_gen_buffer == MAP_FAILED) {
516 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
517 exit(1);
518 }
519 }
520 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
521 || defined(__DragonFly__) || defined(__OpenBSD__)
522 {
523 int flags;
524 void *addr = NULL;
525 flags = MAP_PRIVATE | MAP_ANONYMOUS;
526 #if defined(__x86_64__)
527 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
528 * 0x40000000 is free */
529 flags |= MAP_FIXED;
530 addr = (void *)0x40000000;
531 /* Cannot map more than that */
532 if (code_gen_buffer_size > (800 * 1024 * 1024))
533 code_gen_buffer_size = (800 * 1024 * 1024);
534 #elif defined(__sparc_v9__)
535 // Map the buffer below 2G, so we can use direct calls and branches
536 flags |= MAP_FIXED;
537 addr = (void *) 0x60000000UL;
538 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
539 code_gen_buffer_size = (512 * 1024 * 1024);
540 }
541 #endif
542 code_gen_buffer = mmap(addr, code_gen_buffer_size,
543 PROT_WRITE | PROT_READ | PROT_EXEC,
544 flags, -1, 0);
545 if (code_gen_buffer == MAP_FAILED) {
546 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
547 exit(1);
548 }
549 }
550 #else
551 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
552 map_exec(code_gen_buffer, code_gen_buffer_size);
553 #endif
554 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
555 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
556 code_gen_buffer_max_size = code_gen_buffer_size -
557 (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
558 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
559 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
560 }
561
562 /* Must be called before using the QEMU cpus. 'tb_size' is the size
563 (in bytes) allocated to the translation buffer. Zero means default
564 size. */
565 void cpu_exec_init_all(unsigned long tb_size)
566 {
567 cpu_gen_init();
568 code_gen_alloc(tb_size);
569 code_gen_ptr = code_gen_buffer;
570 page_init();
571 #if !defined(CONFIG_USER_ONLY)
572 io_mem_init();
573 #endif
574 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
575 /* There's no guest base to take into account, so go ahead and
576 initialize the prologue now. */
577 tcg_prologue_init(&tcg_ctx);
578 #endif
579 }
580
581 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
582
583 static int cpu_common_post_load(void *opaque, int version_id)
584 {
585 CPUState *env = opaque;
586
587 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
588 version_id is increased. */
589 env->interrupt_request &= ~0x01;
590 tlb_flush(env, 1);
591
592 return 0;
593 }
594
595 static const VMStateDescription vmstate_cpu_common = {
596 .name = "cpu_common",
597 .version_id = 1,
598 .minimum_version_id = 1,
599 .minimum_version_id_old = 1,
600 .post_load = cpu_common_post_load,
601 .fields = (VMStateField []) {
602 VMSTATE_UINT32(halted, CPUState),
603 VMSTATE_UINT32(interrupt_request, CPUState),
604 VMSTATE_END_OF_LIST()
605 }
606 };
607 #endif
608
609 CPUState *qemu_get_cpu(int cpu)
610 {
611 CPUState *env = first_cpu;
612
613 while (env) {
614 if (env->cpu_index == cpu)
615 break;
616 env = env->next_cpu;
617 }
618
619 return env;
620 }
621
622 void cpu_exec_init(CPUState *env)
623 {
624 CPUState **penv;
625 int cpu_index;
626
627 #if defined(CONFIG_USER_ONLY)
628 cpu_list_lock();
629 #endif
630 env->next_cpu = NULL;
631 penv = &first_cpu;
632 cpu_index = 0;
633 while (*penv != NULL) {
634 penv = &(*penv)->next_cpu;
635 cpu_index++;
636 }
637 env->cpu_index = cpu_index;
638 env->numa_node = 0;
639 QTAILQ_INIT(&env->breakpoints);
640 QTAILQ_INIT(&env->watchpoints);
641 #ifndef CONFIG_USER_ONLY
642 env->thread_id = qemu_get_thread_id();
643 #endif
644 *penv = env;
645 #if defined(CONFIG_USER_ONLY)
646 cpu_list_unlock();
647 #endif
648 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
649 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
650 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
651 cpu_save, cpu_load, env);
652 #endif
653 }
654
655 /* Allocate a new translation block. Flush the translation buffer if
656 too many translation blocks or too much generated code. */
657 static TranslationBlock *tb_alloc(target_ulong pc)
658 {
659 TranslationBlock *tb;
660
661 if (nb_tbs >= code_gen_max_blocks ||
662 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
663 return NULL;
664 tb = &tbs[nb_tbs++];
665 tb->pc = pc;
666 tb->cflags = 0;
667 return tb;
668 }
669
670 void tb_free(TranslationBlock *tb)
671 {
672 /* In practice this is mostly used for single use temporary TB
673 Ignore the hard cases and just back up if this TB happens to
674 be the last one generated. */
675 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
676 code_gen_ptr = tb->tc_ptr;
677 nb_tbs--;
678 }
679 }
680
681 static inline void invalidate_page_bitmap(PageDesc *p)
682 {
683 if (p->code_bitmap) {
684 qemu_free(p->code_bitmap);
685 p->code_bitmap = NULL;
686 }
687 p->code_write_count = 0;
688 }
689
690 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
691
692 static void page_flush_tb_1 (int level, void **lp)
693 {
694 int i;
695
696 if (*lp == NULL) {
697 return;
698 }
699 if (level == 0) {
700 PageDesc *pd = *lp;
701 for (i = 0; i < L2_SIZE; ++i) {
702 pd[i].first_tb = NULL;
703 invalidate_page_bitmap(pd + i);
704 }
705 } else {
706 void **pp = *lp;
707 for (i = 0; i < L2_SIZE; ++i) {
708 page_flush_tb_1 (level - 1, pp + i);
709 }
710 }
711 }
712
713 static void page_flush_tb(void)
714 {
715 int i;
716 for (i = 0; i < V_L1_SIZE; i++) {
717 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
718 }
719 }
720
721 /* flush all the translation blocks */
722 /* XXX: tb_flush is currently not thread safe */
723 void tb_flush(CPUState *env1)
724 {
725 CPUState *env;
726 #if defined(DEBUG_FLUSH)
727 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
728 (unsigned long)(code_gen_ptr - code_gen_buffer),
729 nb_tbs, nb_tbs > 0 ?
730 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
731 #endif
732 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
733 cpu_abort(env1, "Internal error: code buffer overflow\n");
734
735 nb_tbs = 0;
736
737 for(env = first_cpu; env != NULL; env = env->next_cpu) {
738 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
739 }
740
741 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
742 page_flush_tb();
743
744 code_gen_ptr = code_gen_buffer;
745 /* XXX: flush processor icache at this point if cache flush is
746 expensive */
747 tb_flush_count++;
748 }
749
750 #ifdef DEBUG_TB_CHECK
751
752 static void tb_invalidate_check(target_ulong address)
753 {
754 TranslationBlock *tb;
755 int i;
756 address &= TARGET_PAGE_MASK;
757 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
758 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
759 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
760 address >= tb->pc + tb->size)) {
761 printf("ERROR invalidate: address=" TARGET_FMT_lx
762 " PC=%08lx size=%04x\n",
763 address, (long)tb->pc, tb->size);
764 }
765 }
766 }
767 }
768
769 /* verify that all the pages have correct rights for code */
770 static void tb_page_check(void)
771 {
772 TranslationBlock *tb;
773 int i, flags1, flags2;
774
775 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
776 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
777 flags1 = page_get_flags(tb->pc);
778 flags2 = page_get_flags(tb->pc + tb->size - 1);
779 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
780 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
781 (long)tb->pc, tb->size, flags1, flags2);
782 }
783 }
784 }
785 }
786
787 #endif
788
789 /* invalidate one TB */
790 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
791 int next_offset)
792 {
793 TranslationBlock *tb1;
794 for(;;) {
795 tb1 = *ptb;
796 if (tb1 == tb) {
797 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
798 break;
799 }
800 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
801 }
802 }
803
804 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
805 {
806 TranslationBlock *tb1;
807 unsigned int n1;
808
809 for(;;) {
810 tb1 = *ptb;
811 n1 = (long)tb1 & 3;
812 tb1 = (TranslationBlock *)((long)tb1 & ~3);
813 if (tb1 == tb) {
814 *ptb = tb1->page_next[n1];
815 break;
816 }
817 ptb = &tb1->page_next[n1];
818 }
819 }
820
821 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
822 {
823 TranslationBlock *tb1, **ptb;
824 unsigned int n1;
825
826 ptb = &tb->jmp_next[n];
827 tb1 = *ptb;
828 if (tb1) {
829 /* find tb(n) in circular list */
830 for(;;) {
831 tb1 = *ptb;
832 n1 = (long)tb1 & 3;
833 tb1 = (TranslationBlock *)((long)tb1 & ~3);
834 if (n1 == n && tb1 == tb)
835 break;
836 if (n1 == 2) {
837 ptb = &tb1->jmp_first;
838 } else {
839 ptb = &tb1->jmp_next[n1];
840 }
841 }
842 /* now we can suppress tb(n) from the list */
843 *ptb = tb->jmp_next[n];
844
845 tb->jmp_next[n] = NULL;
846 }
847 }
848
849 /* reset the jump entry 'n' of a TB so that it is not chained to
850 another TB */
851 static inline void tb_reset_jump(TranslationBlock *tb, int n)
852 {
853 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
854 }
855
856 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
857 {
858 CPUState *env;
859 PageDesc *p;
860 unsigned int h, n1;
861 tb_page_addr_t phys_pc;
862 TranslationBlock *tb1, *tb2;
863
864 /* remove the TB from the hash list */
865 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
866 h = tb_phys_hash_func(phys_pc);
867 tb_remove(&tb_phys_hash[h], tb,
868 offsetof(TranslationBlock, phys_hash_next));
869
870 /* remove the TB from the page list */
871 if (tb->page_addr[0] != page_addr) {
872 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
873 tb_page_remove(&p->first_tb, tb);
874 invalidate_page_bitmap(p);
875 }
876 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
877 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
878 tb_page_remove(&p->first_tb, tb);
879 invalidate_page_bitmap(p);
880 }
881
882 tb_invalidated_flag = 1;
883
884 /* remove the TB from the hash list */
885 h = tb_jmp_cache_hash_func(tb->pc);
886 for(env = first_cpu; env != NULL; env = env->next_cpu) {
887 if (env->tb_jmp_cache[h] == tb)
888 env->tb_jmp_cache[h] = NULL;
889 }
890
891 /* suppress this TB from the two jump lists */
892 tb_jmp_remove(tb, 0);
893 tb_jmp_remove(tb, 1);
894
895 /* suppress any remaining jumps to this TB */
896 tb1 = tb->jmp_first;
897 for(;;) {
898 n1 = (long)tb1 & 3;
899 if (n1 == 2)
900 break;
901 tb1 = (TranslationBlock *)((long)tb1 & ~3);
902 tb2 = tb1->jmp_next[n1];
903 tb_reset_jump(tb1, n1);
904 tb1->jmp_next[n1] = NULL;
905 tb1 = tb2;
906 }
907 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
908
909 tb_phys_invalidate_count++;
910 }
911
912 static inline void set_bits(uint8_t *tab, int start, int len)
913 {
914 int end, mask, end1;
915
916 end = start + len;
917 tab += start >> 3;
918 mask = 0xff << (start & 7);
919 if ((start & ~7) == (end & ~7)) {
920 if (start < end) {
921 mask &= ~(0xff << (end & 7));
922 *tab |= mask;
923 }
924 } else {
925 *tab++ |= mask;
926 start = (start + 8) & ~7;
927 end1 = end & ~7;
928 while (start < end1) {
929 *tab++ = 0xff;
930 start += 8;
931 }
932 if (start < end) {
933 mask = ~(0xff << (end & 7));
934 *tab |= mask;
935 }
936 }
937 }
938
939 static void build_page_bitmap(PageDesc *p)
940 {
941 int n, tb_start, tb_end;
942 TranslationBlock *tb;
943
944 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
945
946 tb = p->first_tb;
947 while (tb != NULL) {
948 n = (long)tb & 3;
949 tb = (TranslationBlock *)((long)tb & ~3);
950 /* NOTE: this is subtle as a TB may span two physical pages */
951 if (n == 0) {
952 /* NOTE: tb_end may be after the end of the page, but
953 it is not a problem */
954 tb_start = tb->pc & ~TARGET_PAGE_MASK;
955 tb_end = tb_start + tb->size;
956 if (tb_end > TARGET_PAGE_SIZE)
957 tb_end = TARGET_PAGE_SIZE;
958 } else {
959 tb_start = 0;
960 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
961 }
962 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
963 tb = tb->page_next[n];
964 }
965 }
966
967 TranslationBlock *tb_gen_code(CPUState *env,
968 target_ulong pc, target_ulong cs_base,
969 int flags, int cflags)
970 {
971 TranslationBlock *tb;
972 uint8_t *tc_ptr;
973 tb_page_addr_t phys_pc, phys_page2;
974 target_ulong virt_page2;
975 int code_gen_size;
976
977 phys_pc = get_page_addr_code(env, pc);
978 tb = tb_alloc(pc);
979 if (!tb) {
980 /* flush must be done */
981 tb_flush(env);
982 /* cannot fail at this point */
983 tb = tb_alloc(pc);
984 /* Don't forget to invalidate previous TB info. */
985 tb_invalidated_flag = 1;
986 }
987 tc_ptr = code_gen_ptr;
988 tb->tc_ptr = tc_ptr;
989 tb->cs_base = cs_base;
990 tb->flags = flags;
991 tb->cflags = cflags;
992 cpu_gen_code(env, tb, &code_gen_size);
993 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
994
995 /* check next page if needed */
996 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
997 phys_page2 = -1;
998 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
999 phys_page2 = get_page_addr_code(env, virt_page2);
1000 }
1001 tb_link_page(tb, phys_pc, phys_page2);
1002 return tb;
1003 }
1004
1005 /* invalidate all TBs which intersect with the target physical page
1006 starting in range [start;end[. NOTE: start and end must refer to
1007 the same physical page. 'is_cpu_write_access' should be true if called
1008 from a real cpu write access: the virtual CPU will exit the current
1009 TB if code is modified inside this TB. */
1010 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1011 int is_cpu_write_access)
1012 {
1013 TranslationBlock *tb, *tb_next, *saved_tb;
1014 CPUState *env = cpu_single_env;
1015 tb_page_addr_t tb_start, tb_end;
1016 PageDesc *p;
1017 int n;
1018 #ifdef TARGET_HAS_PRECISE_SMC
1019 int current_tb_not_found = is_cpu_write_access;
1020 TranslationBlock *current_tb = NULL;
1021 int current_tb_modified = 0;
1022 target_ulong current_pc = 0;
1023 target_ulong current_cs_base = 0;
1024 int current_flags = 0;
1025 #endif /* TARGET_HAS_PRECISE_SMC */
1026
1027 p = page_find(start >> TARGET_PAGE_BITS);
1028 if (!p)
1029 return;
1030 if (!p->code_bitmap &&
1031 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1032 is_cpu_write_access) {
1033 /* build code bitmap */
1034 build_page_bitmap(p);
1035 }
1036
1037 /* we remove all the TBs in the range [start, end[ */
1038 /* XXX: see if in some cases it could be faster to invalidate all the code */
1039 tb = p->first_tb;
1040 while (tb != NULL) {
1041 n = (long)tb & 3;
1042 tb = (TranslationBlock *)((long)tb & ~3);
1043 tb_next = tb->page_next[n];
1044 /* NOTE: this is subtle as a TB may span two physical pages */
1045 if (n == 0) {
1046 /* NOTE: tb_end may be after the end of the page, but
1047 it is not a problem */
1048 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1049 tb_end = tb_start + tb->size;
1050 } else {
1051 tb_start = tb->page_addr[1];
1052 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1053 }
1054 if (!(tb_end <= start || tb_start >= end)) {
1055 #ifdef TARGET_HAS_PRECISE_SMC
1056 if (current_tb_not_found) {
1057 current_tb_not_found = 0;
1058 current_tb = NULL;
1059 if (env->mem_io_pc) {
1060 /* now we have a real cpu fault */
1061 current_tb = tb_find_pc(env->mem_io_pc);
1062 }
1063 }
1064 if (current_tb == tb &&
1065 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1066 /* If we are modifying the current TB, we must stop
1067 its execution. We could be more precise by checking
1068 that the modification is after the current PC, but it
1069 would require a specialized function to partially
1070 restore the CPU state */
1071
1072 current_tb_modified = 1;
1073 cpu_restore_state(current_tb, env,
1074 env->mem_io_pc, NULL);
1075 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1076 &current_flags);
1077 }
1078 #endif /* TARGET_HAS_PRECISE_SMC */
1079 /* we need to do that to handle the case where a signal
1080 occurs while doing tb_phys_invalidate() */
1081 saved_tb = NULL;
1082 if (env) {
1083 saved_tb = env->current_tb;
1084 env->current_tb = NULL;
1085 }
1086 tb_phys_invalidate(tb, -1);
1087 if (env) {
1088 env->current_tb = saved_tb;
1089 if (env->interrupt_request && env->current_tb)
1090 cpu_interrupt(env, env->interrupt_request);
1091 }
1092 }
1093 tb = tb_next;
1094 }
1095 #if !defined(CONFIG_USER_ONLY)
1096 /* if no code remaining, no need to continue to use slow writes */
1097 if (!p->first_tb) {
1098 invalidate_page_bitmap(p);
1099 if (is_cpu_write_access) {
1100 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1101 }
1102 }
1103 #endif
1104 #ifdef TARGET_HAS_PRECISE_SMC
1105 if (current_tb_modified) {
1106 /* we generate a block containing just the instruction
1107 modifying the memory. It will ensure that it cannot modify
1108 itself */
1109 env->current_tb = NULL;
1110 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1111 cpu_resume_from_signal(env, NULL);
1112 }
1113 #endif
1114 }
1115
1116 /* len must be <= 8 and start must be a multiple of len */
1117 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1118 {
1119 PageDesc *p;
1120 int offset, b;
1121 #if 0
1122 if (1) {
1123 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1124 cpu_single_env->mem_io_vaddr, len,
1125 cpu_single_env->eip,
1126 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1127 }
1128 #endif
1129 p = page_find(start >> TARGET_PAGE_BITS);
1130 if (!p)
1131 return;
1132 if (p->code_bitmap) {
1133 offset = start & ~TARGET_PAGE_MASK;
1134 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1135 if (b & ((1 << len) - 1))
1136 goto do_invalidate;
1137 } else {
1138 do_invalidate:
1139 tb_invalidate_phys_page_range(start, start + len, 1);
1140 }
1141 }
1142
1143 #if !defined(CONFIG_SOFTMMU)
1144 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1145 unsigned long pc, void *puc)
1146 {
1147 TranslationBlock *tb;
1148 PageDesc *p;
1149 int n;
1150 #ifdef TARGET_HAS_PRECISE_SMC
1151 TranslationBlock *current_tb = NULL;
1152 CPUState *env = cpu_single_env;
1153 int current_tb_modified = 0;
1154 target_ulong current_pc = 0;
1155 target_ulong current_cs_base = 0;
1156 int current_flags = 0;
1157 #endif
1158
1159 addr &= TARGET_PAGE_MASK;
1160 p = page_find(addr >> TARGET_PAGE_BITS);
1161 if (!p)
1162 return;
1163 tb = p->first_tb;
1164 #ifdef TARGET_HAS_PRECISE_SMC
1165 if (tb && pc != 0) {
1166 current_tb = tb_find_pc(pc);
1167 }
1168 #endif
1169 while (tb != NULL) {
1170 n = (long)tb & 3;
1171 tb = (TranslationBlock *)((long)tb & ~3);
1172 #ifdef TARGET_HAS_PRECISE_SMC
1173 if (current_tb == tb &&
1174 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1175 /* If we are modifying the current TB, we must stop
1176 its execution. We could be more precise by checking
1177 that the modification is after the current PC, but it
1178 would require a specialized function to partially
1179 restore the CPU state */
1180
1181 current_tb_modified = 1;
1182 cpu_restore_state(current_tb, env, pc, puc);
1183 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1184 &current_flags);
1185 }
1186 #endif /* TARGET_HAS_PRECISE_SMC */
1187 tb_phys_invalidate(tb, addr);
1188 tb = tb->page_next[n];
1189 }
1190 p->first_tb = NULL;
1191 #ifdef TARGET_HAS_PRECISE_SMC
1192 if (current_tb_modified) {
1193 /* we generate a block containing just the instruction
1194 modifying the memory. It will ensure that it cannot modify
1195 itself */
1196 env->current_tb = NULL;
1197 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1198 cpu_resume_from_signal(env, puc);
1199 }
1200 #endif
1201 }
1202 #endif
1203
1204 /* add the tb in the target page and protect it if necessary */
1205 static inline void tb_alloc_page(TranslationBlock *tb,
1206 unsigned int n, tb_page_addr_t page_addr)
1207 {
1208 PageDesc *p;
1209 TranslationBlock *last_first_tb;
1210
1211 tb->page_addr[n] = page_addr;
1212 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1213 tb->page_next[n] = p->first_tb;
1214 last_first_tb = p->first_tb;
1215 p->first_tb = (TranslationBlock *)((long)tb | n);
1216 invalidate_page_bitmap(p);
1217
1218 #if defined(TARGET_HAS_SMC) || 1
1219
1220 #if defined(CONFIG_USER_ONLY)
1221 if (p->flags & PAGE_WRITE) {
1222 target_ulong addr;
1223 PageDesc *p2;
1224 int prot;
1225
1226 /* force the host page as non writable (writes will have a
1227 page fault + mprotect overhead) */
1228 page_addr &= qemu_host_page_mask;
1229 prot = 0;
1230 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1231 addr += TARGET_PAGE_SIZE) {
1232
1233 p2 = page_find (addr >> TARGET_PAGE_BITS);
1234 if (!p2)
1235 continue;
1236 prot |= p2->flags;
1237 p2->flags &= ~PAGE_WRITE;
1238 }
1239 mprotect(g2h(page_addr), qemu_host_page_size,
1240 (prot & PAGE_BITS) & ~PAGE_WRITE);
1241 #ifdef DEBUG_TB_INVALIDATE
1242 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1243 page_addr);
1244 #endif
1245 }
1246 #else
1247 /* if some code is already present, then the pages are already
1248 protected. So we handle the case where only the first TB is
1249 allocated in a physical page */
1250 if (!last_first_tb) {
1251 tlb_protect_code(page_addr);
1252 }
1253 #endif
1254
1255 #endif /* TARGET_HAS_SMC */
1256 }
1257
1258 /* add a new TB and link it to the physical page tables. phys_page2 is
1259 (-1) to indicate that only one page contains the TB. */
1260 void tb_link_page(TranslationBlock *tb,
1261 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1262 {
1263 unsigned int h;
1264 TranslationBlock **ptb;
1265
1266 /* Grab the mmap lock to stop another thread invalidating this TB
1267 before we are done. */
1268 mmap_lock();
1269 /* add in the physical hash table */
1270 h = tb_phys_hash_func(phys_pc);
1271 ptb = &tb_phys_hash[h];
1272 tb->phys_hash_next = *ptb;
1273 *ptb = tb;
1274
1275 /* add in the page list */
1276 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1277 if (phys_page2 != -1)
1278 tb_alloc_page(tb, 1, phys_page2);
1279 else
1280 tb->page_addr[1] = -1;
1281
1282 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1283 tb->jmp_next[0] = NULL;
1284 tb->jmp_next[1] = NULL;
1285
1286 /* init original jump addresses */
1287 if (tb->tb_next_offset[0] != 0xffff)
1288 tb_reset_jump(tb, 0);
1289 if (tb->tb_next_offset[1] != 0xffff)
1290 tb_reset_jump(tb, 1);
1291
1292 #ifdef DEBUG_TB_CHECK
1293 tb_page_check();
1294 #endif
1295 mmap_unlock();
1296 }
1297
1298 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1299 tb[1].tc_ptr. Return NULL if not found */
1300 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1301 {
1302 int m_min, m_max, m;
1303 unsigned long v;
1304 TranslationBlock *tb;
1305
1306 if (nb_tbs <= 0)
1307 return NULL;
1308 if (tc_ptr < (unsigned long)code_gen_buffer ||
1309 tc_ptr >= (unsigned long)code_gen_ptr)
1310 return NULL;
1311 /* binary search (cf Knuth) */
1312 m_min = 0;
1313 m_max = nb_tbs - 1;
1314 while (m_min <= m_max) {
1315 m = (m_min + m_max) >> 1;
1316 tb = &tbs[m];
1317 v = (unsigned long)tb->tc_ptr;
1318 if (v == tc_ptr)
1319 return tb;
1320 else if (tc_ptr < v) {
1321 m_max = m - 1;
1322 } else {
1323 m_min = m + 1;
1324 }
1325 }
1326 return &tbs[m_max];
1327 }
1328
1329 static void tb_reset_jump_recursive(TranslationBlock *tb);
1330
1331 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1332 {
1333 TranslationBlock *tb1, *tb_next, **ptb;
1334 unsigned int n1;
1335
1336 tb1 = tb->jmp_next[n];
1337 if (tb1 != NULL) {
1338 /* find head of list */
1339 for(;;) {
1340 n1 = (long)tb1 & 3;
1341 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1342 if (n1 == 2)
1343 break;
1344 tb1 = tb1->jmp_next[n1];
1345 }
1346 /* we are now sure now that tb jumps to tb1 */
1347 tb_next = tb1;
1348
1349 /* remove tb from the jmp_first list */
1350 ptb = &tb_next->jmp_first;
1351 for(;;) {
1352 tb1 = *ptb;
1353 n1 = (long)tb1 & 3;
1354 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1355 if (n1 == n && tb1 == tb)
1356 break;
1357 ptb = &tb1->jmp_next[n1];
1358 }
1359 *ptb = tb->jmp_next[n];
1360 tb->jmp_next[n] = NULL;
1361
1362 /* suppress the jump to next tb in generated code */
1363 tb_reset_jump(tb, n);
1364
1365 /* suppress jumps in the tb on which we could have jumped */
1366 tb_reset_jump_recursive(tb_next);
1367 }
1368 }
1369
1370 static void tb_reset_jump_recursive(TranslationBlock *tb)
1371 {
1372 tb_reset_jump_recursive2(tb, 0);
1373 tb_reset_jump_recursive2(tb, 1);
1374 }
1375
1376 #if defined(TARGET_HAS_ICE)
1377 #if defined(CONFIG_USER_ONLY)
1378 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1379 {
1380 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1381 }
1382 #else
1383 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1384 {
1385 target_phys_addr_t addr;
1386 target_ulong pd;
1387 ram_addr_t ram_addr;
1388 PhysPageDesc *p;
1389
1390 addr = cpu_get_phys_page_debug(env, pc);
1391 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1392 if (!p) {
1393 pd = IO_MEM_UNASSIGNED;
1394 } else {
1395 pd = p->phys_offset;
1396 }
1397 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1398 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1399 }
1400 #endif
1401 #endif /* TARGET_HAS_ICE */
1402
1403 #if defined(CONFIG_USER_ONLY)
1404 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1405
1406 {
1407 }
1408
1409 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1410 int flags, CPUWatchpoint **watchpoint)
1411 {
1412 return -ENOSYS;
1413 }
1414 #else
1415 /* Add a watchpoint. */
1416 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1417 int flags, CPUWatchpoint **watchpoint)
1418 {
1419 target_ulong len_mask = ~(len - 1);
1420 CPUWatchpoint *wp;
1421
1422 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1423 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1424 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1425 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1426 return -EINVAL;
1427 }
1428 wp = qemu_malloc(sizeof(*wp));
1429
1430 wp->vaddr = addr;
1431 wp->len_mask = len_mask;
1432 wp->flags = flags;
1433
1434 /* keep all GDB-injected watchpoints in front */
1435 if (flags & BP_GDB)
1436 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1437 else
1438 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1439
1440 tlb_flush_page(env, addr);
1441
1442 if (watchpoint)
1443 *watchpoint = wp;
1444 return 0;
1445 }
1446
1447 /* Remove a specific watchpoint. */
1448 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1449 int flags)
1450 {
1451 target_ulong len_mask = ~(len - 1);
1452 CPUWatchpoint *wp;
1453
1454 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1455 if (addr == wp->vaddr && len_mask == wp->len_mask
1456 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1457 cpu_watchpoint_remove_by_ref(env, wp);
1458 return 0;
1459 }
1460 }
1461 return -ENOENT;
1462 }
1463
1464 /* Remove a specific watchpoint by reference. */
1465 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1466 {
1467 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1468
1469 tlb_flush_page(env, watchpoint->vaddr);
1470
1471 qemu_free(watchpoint);
1472 }
1473
1474 /* Remove all matching watchpoints. */
1475 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1476 {
1477 CPUWatchpoint *wp, *next;
1478
1479 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1480 if (wp->flags & mask)
1481 cpu_watchpoint_remove_by_ref(env, wp);
1482 }
1483 }
1484 #endif
1485
1486 /* Add a breakpoint. */
1487 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1488 CPUBreakpoint **breakpoint)
1489 {
1490 #if defined(TARGET_HAS_ICE)
1491 CPUBreakpoint *bp;
1492
1493 bp = qemu_malloc(sizeof(*bp));
1494
1495 bp->pc = pc;
1496 bp->flags = flags;
1497
1498 /* keep all GDB-injected breakpoints in front */
1499 if (flags & BP_GDB)
1500 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1501 else
1502 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1503
1504 breakpoint_invalidate(env, pc);
1505
1506 if (breakpoint)
1507 *breakpoint = bp;
1508 return 0;
1509 #else
1510 return -ENOSYS;
1511 #endif
1512 }
1513
1514 /* Remove a specific breakpoint. */
1515 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1516 {
1517 #if defined(TARGET_HAS_ICE)
1518 CPUBreakpoint *bp;
1519
1520 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1521 if (bp->pc == pc && bp->flags == flags) {
1522 cpu_breakpoint_remove_by_ref(env, bp);
1523 return 0;
1524 }
1525 }
1526 return -ENOENT;
1527 #else
1528 return -ENOSYS;
1529 #endif
1530 }
1531
1532 /* Remove a specific breakpoint by reference. */
1533 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1534 {
1535 #if defined(TARGET_HAS_ICE)
1536 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1537
1538 breakpoint_invalidate(env, breakpoint->pc);
1539
1540 qemu_free(breakpoint);
1541 #endif
1542 }
1543
1544 /* Remove all matching breakpoints. */
1545 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1546 {
1547 #if defined(TARGET_HAS_ICE)
1548 CPUBreakpoint *bp, *next;
1549
1550 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1551 if (bp->flags & mask)
1552 cpu_breakpoint_remove_by_ref(env, bp);
1553 }
1554 #endif
1555 }
1556
1557 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1558 CPU loop after each instruction */
1559 void cpu_single_step(CPUState *env, int enabled)
1560 {
1561 #if defined(TARGET_HAS_ICE)
1562 if (env->singlestep_enabled != enabled) {
1563 env->singlestep_enabled = enabled;
1564 if (kvm_enabled())
1565 kvm_update_guest_debug(env, 0);
1566 else {
1567 /* must flush all the translated code to avoid inconsistencies */
1568 /* XXX: only flush what is necessary */
1569 tb_flush(env);
1570 }
1571 }
1572 #endif
1573 }
1574
1575 /* enable or disable low levels log */
1576 void cpu_set_log(int log_flags)
1577 {
1578 loglevel = log_flags;
1579 if (loglevel && !logfile) {
1580 logfile = fopen(logfilename, log_append ? "a" : "w");
1581 if (!logfile) {
1582 perror(logfilename);
1583 _exit(1);
1584 }
1585 #if !defined(CONFIG_SOFTMMU)
1586 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1587 {
1588 static char logfile_buf[4096];
1589 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1590 }
1591 #elif !defined(_WIN32)
1592 /* Win32 doesn't support line-buffering and requires size >= 2 */
1593 setvbuf(logfile, NULL, _IOLBF, 0);
1594 #endif
1595 log_append = 1;
1596 }
1597 if (!loglevel && logfile) {
1598 fclose(logfile);
1599 logfile = NULL;
1600 }
1601 }
1602
1603 void cpu_set_log_filename(const char *filename)
1604 {
1605 logfilename = strdup(filename);
1606 if (logfile) {
1607 fclose(logfile);
1608 logfile = NULL;
1609 }
1610 cpu_set_log(loglevel);
1611 }
1612
1613 static void cpu_unlink_tb(CPUState *env)
1614 {
1615 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1616 problem and hope the cpu will stop of its own accord. For userspace
1617 emulation this often isn't actually as bad as it sounds. Often
1618 signals are used primarily to interrupt blocking syscalls. */
1619 TranslationBlock *tb;
1620 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1621
1622 spin_lock(&interrupt_lock);
1623 tb = env->current_tb;
1624 /* if the cpu is currently executing code, we must unlink it and
1625 all the potentially executing TB */
1626 if (tb) {
1627 env->current_tb = NULL;
1628 tb_reset_jump_recursive(tb);
1629 }
1630 spin_unlock(&interrupt_lock);
1631 }
1632
1633 /* mask must never be zero, except for A20 change call */
1634 void cpu_interrupt(CPUState *env, int mask)
1635 {
1636 int old_mask;
1637
1638 old_mask = env->interrupt_request;
1639 env->interrupt_request |= mask;
1640
1641 #ifndef CONFIG_USER_ONLY
1642 /*
1643 * If called from iothread context, wake the target cpu in
1644 * case its halted.
1645 */
1646 if (!qemu_cpu_is_self(env)) {
1647 qemu_cpu_kick(env);
1648 return;
1649 }
1650 #endif
1651
1652 if (use_icount) {
1653 env->icount_decr.u16.high = 0xffff;
1654 #ifndef CONFIG_USER_ONLY
1655 if (!can_do_io(env)
1656 && (mask & ~old_mask) != 0) {
1657 cpu_abort(env, "Raised interrupt while not in I/O function");
1658 }
1659 #endif
1660 } else {
1661 cpu_unlink_tb(env);
1662 }
1663 }
1664
1665 void cpu_reset_interrupt(CPUState *env, int mask)
1666 {
1667 env->interrupt_request &= ~mask;
1668 }
1669
1670 void cpu_exit(CPUState *env)
1671 {
1672 env->exit_request = 1;
1673 cpu_unlink_tb(env);
1674 }
1675
1676 const CPULogItem cpu_log_items[] = {
1677 { CPU_LOG_TB_OUT_ASM, "out_asm",
1678 "show generated host assembly code for each compiled TB" },
1679 { CPU_LOG_TB_IN_ASM, "in_asm",
1680 "show target assembly code for each compiled TB" },
1681 { CPU_LOG_TB_OP, "op",
1682 "show micro ops for each compiled TB" },
1683 { CPU_LOG_TB_OP_OPT, "op_opt",
1684 "show micro ops "
1685 #ifdef TARGET_I386
1686 "before eflags optimization and "
1687 #endif
1688 "after liveness analysis" },
1689 { CPU_LOG_INT, "int",
1690 "show interrupts/exceptions in short format" },
1691 { CPU_LOG_EXEC, "exec",
1692 "show trace before each executed TB (lots of logs)" },
1693 { CPU_LOG_TB_CPU, "cpu",
1694 "show CPU state before block translation" },
1695 #ifdef TARGET_I386
1696 { CPU_LOG_PCALL, "pcall",
1697 "show protected mode far calls/returns/exceptions" },
1698 { CPU_LOG_RESET, "cpu_reset",
1699 "show CPU state before CPU resets" },
1700 #endif
1701 #ifdef DEBUG_IOPORT
1702 { CPU_LOG_IOPORT, "ioport",
1703 "show all i/o ports accesses" },
1704 #endif
1705 { 0, NULL, NULL },
1706 };
1707
1708 #ifndef CONFIG_USER_ONLY
1709 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1710 = QLIST_HEAD_INITIALIZER(memory_client_list);
1711
1712 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1713 ram_addr_t size,
1714 ram_addr_t phys_offset,
1715 bool log_dirty)
1716 {
1717 CPUPhysMemoryClient *client;
1718 QLIST_FOREACH(client, &memory_client_list, list) {
1719 client->set_memory(client, start_addr, size, phys_offset, log_dirty);
1720 }
1721 }
1722
1723 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1724 target_phys_addr_t end)
1725 {
1726 CPUPhysMemoryClient *client;
1727 QLIST_FOREACH(client, &memory_client_list, list) {
1728 int r = client->sync_dirty_bitmap(client, start, end);
1729 if (r < 0)
1730 return r;
1731 }
1732 return 0;
1733 }
1734
1735 static int cpu_notify_migration_log(int enable)
1736 {
1737 CPUPhysMemoryClient *client;
1738 QLIST_FOREACH(client, &memory_client_list, list) {
1739 int r = client->migration_log(client, enable);
1740 if (r < 0)
1741 return r;
1742 }
1743 return 0;
1744 }
1745
1746 /* The l1_phys_map provides the upper P_L1_BITs of the guest physical
1747 * address. Each intermediate table provides the next L2_BITs of guest
1748 * physical address space. The number of levels vary based on host and
1749 * guest configuration, making it efficient to build the final guest
1750 * physical address by seeding the L1 offset and shifting and adding in
1751 * each L2 offset as we recurse through them. */
1752 static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1753 int level, void **lp, target_phys_addr_t addr)
1754 {
1755 int i;
1756
1757 if (*lp == NULL) {
1758 return;
1759 }
1760 if (level == 0) {
1761 PhysPageDesc *pd = *lp;
1762 addr <<= L2_BITS + TARGET_PAGE_BITS;
1763 for (i = 0; i < L2_SIZE; ++i) {
1764 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1765 client->set_memory(client, addr | i << TARGET_PAGE_BITS,
1766 TARGET_PAGE_SIZE, pd[i].phys_offset, false);
1767 }
1768 }
1769 } else {
1770 void **pp = *lp;
1771 for (i = 0; i < L2_SIZE; ++i) {
1772 phys_page_for_each_1(client, level - 1, pp + i,
1773 (addr << L2_BITS) | i);
1774 }
1775 }
1776 }
1777
1778 static void phys_page_for_each(CPUPhysMemoryClient *client)
1779 {
1780 int i;
1781 for (i = 0; i < P_L1_SIZE; ++i) {
1782 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1783 l1_phys_map + i, i);
1784 }
1785 }
1786
1787 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1788 {
1789 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1790 phys_page_for_each(client);
1791 }
1792
1793 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1794 {
1795 QLIST_REMOVE(client, list);
1796 }
1797 #endif
1798
1799 static int cmp1(const char *s1, int n, const char *s2)
1800 {
1801 if (strlen(s2) != n)
1802 return 0;
1803 return memcmp(s1, s2, n) == 0;
1804 }
1805
1806 /* takes a comma separated list of log masks. Return 0 if error. */
1807 int cpu_str_to_log_mask(const char *str)
1808 {
1809 const CPULogItem *item;
1810 int mask;
1811 const char *p, *p1;
1812
1813 p = str;
1814 mask = 0;
1815 for(;;) {
1816 p1 = strchr(p, ',');
1817 if (!p1)
1818 p1 = p + strlen(p);
1819 if(cmp1(p,p1-p,"all")) {
1820 for(item = cpu_log_items; item->mask != 0; item++) {
1821 mask |= item->mask;
1822 }
1823 } else {
1824 for(item = cpu_log_items; item->mask != 0; item++) {
1825 if (cmp1(p, p1 - p, item->name))
1826 goto found;
1827 }
1828 return 0;
1829 }
1830 found:
1831 mask |= item->mask;
1832 if (*p1 != ',')
1833 break;
1834 p = p1 + 1;
1835 }
1836 return mask;
1837 }
1838
1839 void cpu_abort(CPUState *env, const char *fmt, ...)
1840 {
1841 va_list ap;
1842 va_list ap2;
1843
1844 va_start(ap, fmt);
1845 va_copy(ap2, ap);
1846 fprintf(stderr, "qemu: fatal: ");
1847 vfprintf(stderr, fmt, ap);
1848 fprintf(stderr, "\n");
1849 #ifdef TARGET_I386
1850 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1851 #else
1852 cpu_dump_state(env, stderr, fprintf, 0);
1853 #endif
1854 if (qemu_log_enabled()) {
1855 qemu_log("qemu: fatal: ");
1856 qemu_log_vprintf(fmt, ap2);
1857 qemu_log("\n");
1858 #ifdef TARGET_I386
1859 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1860 #else
1861 log_cpu_state(env, 0);
1862 #endif
1863 qemu_log_flush();
1864 qemu_log_close();
1865 }
1866 va_end(ap2);
1867 va_end(ap);
1868 #if defined(CONFIG_USER_ONLY)
1869 {
1870 struct sigaction act;
1871 sigfillset(&act.sa_mask);
1872 act.sa_handler = SIG_DFL;
1873 sigaction(SIGABRT, &act, NULL);
1874 }
1875 #endif
1876 abort();
1877 }
1878
1879 CPUState *cpu_copy(CPUState *env)
1880 {
1881 CPUState *new_env = cpu_init(env->cpu_model_str);
1882 CPUState *next_cpu = new_env->next_cpu;
1883 int cpu_index = new_env->cpu_index;
1884 #if defined(TARGET_HAS_ICE)
1885 CPUBreakpoint *bp;
1886 CPUWatchpoint *wp;
1887 #endif
1888
1889 memcpy(new_env, env, sizeof(CPUState));
1890
1891 /* Preserve chaining and index. */
1892 new_env->next_cpu = next_cpu;
1893 new_env->cpu_index = cpu_index;
1894
1895 /* Clone all break/watchpoints.
1896 Note: Once we support ptrace with hw-debug register access, make sure
1897 BP_CPU break/watchpoints are handled correctly on clone. */
1898 QTAILQ_INIT(&env->breakpoints);
1899 QTAILQ_INIT(&env->watchpoints);
1900 #if defined(TARGET_HAS_ICE)
1901 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1902 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1903 }
1904 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1905 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1906 wp->flags, NULL);
1907 }
1908 #endif
1909
1910 return new_env;
1911 }
1912
1913 #if !defined(CONFIG_USER_ONLY)
1914
1915 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1916 {
1917 unsigned int i;
1918
1919 /* Discard jump cache entries for any tb which might potentially
1920 overlap the flushed page. */
1921 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1922 memset (&env->tb_jmp_cache[i], 0,
1923 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1924
1925 i = tb_jmp_cache_hash_page(addr);
1926 memset (&env->tb_jmp_cache[i], 0,
1927 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1928 }
1929
1930 static CPUTLBEntry s_cputlb_empty_entry = {
1931 .addr_read = -1,
1932 .addr_write = -1,
1933 .addr_code = -1,
1934 .addend = -1,
1935 };
1936
1937 /* NOTE: if flush_global is true, also flush global entries (not
1938 implemented yet) */
1939 void tlb_flush(CPUState *env, int flush_global)
1940 {
1941 int i;
1942
1943 #if defined(DEBUG_TLB)
1944 printf("tlb_flush:\n");
1945 #endif
1946 /* must reset current TB so that interrupts cannot modify the
1947 links while we are modifying them */
1948 env->current_tb = NULL;
1949
1950 for(i = 0; i < CPU_TLB_SIZE; i++) {
1951 int mmu_idx;
1952 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1953 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1954 }
1955 }
1956
1957 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1958
1959 env->tlb_flush_addr = -1;
1960 env->tlb_flush_mask = 0;
1961 tlb_flush_count++;
1962 }
1963
1964 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1965 {
1966 if (addr == (tlb_entry->addr_read &
1967 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1968 addr == (tlb_entry->addr_write &
1969 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1970 addr == (tlb_entry->addr_code &
1971 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1972 *tlb_entry = s_cputlb_empty_entry;
1973 }
1974 }
1975
1976 void tlb_flush_page(CPUState *env, target_ulong addr)
1977 {
1978 int i;
1979 int mmu_idx;
1980
1981 #if defined(DEBUG_TLB)
1982 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1983 #endif
1984 /* Check if we need to flush due to large pages. */
1985 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1986 #if defined(DEBUG_TLB)
1987 printf("tlb_flush_page: forced full flush ("
1988 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1989 env->tlb_flush_addr, env->tlb_flush_mask);
1990 #endif
1991 tlb_flush(env, 1);
1992 return;
1993 }
1994 /* must reset current TB so that interrupts cannot modify the
1995 links while we are modifying them */
1996 env->current_tb = NULL;
1997
1998 addr &= TARGET_PAGE_MASK;
1999 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2000 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2001 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
2002
2003 tlb_flush_jmp_cache(env, addr);
2004 }
2005
2006 /* update the TLBs so that writes to code in the virtual page 'addr'
2007 can be detected */
2008 static void tlb_protect_code(ram_addr_t ram_addr)
2009 {
2010 cpu_physical_memory_reset_dirty(ram_addr,
2011 ram_addr + TARGET_PAGE_SIZE,
2012 CODE_DIRTY_FLAG);
2013 }
2014
2015 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2016 tested for self modifying code */
2017 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
2018 target_ulong vaddr)
2019 {
2020 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
2021 }
2022
2023 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2024 unsigned long start, unsigned long length)
2025 {
2026 unsigned long addr;
2027 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2028 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2029 if ((addr - start) < length) {
2030 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2031 }
2032 }
2033 }
2034
2035 /* Note: start and end must be within the same ram block. */
2036 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2037 int dirty_flags)
2038 {
2039 CPUState *env;
2040 unsigned long length, start1;
2041 int i;
2042
2043 start &= TARGET_PAGE_MASK;
2044 end = TARGET_PAGE_ALIGN(end);
2045
2046 length = end - start;
2047 if (length == 0)
2048 return;
2049 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2050
2051 /* we modify the TLB cache so that the dirty bit will be set again
2052 when accessing the range */
2053 start1 = (unsigned long)qemu_safe_ram_ptr(start);
2054 /* Chek that we don't span multiple blocks - this breaks the
2055 address comparisons below. */
2056 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
2057 != (end - 1) - start) {
2058 abort();
2059 }
2060
2061 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2062 int mmu_idx;
2063 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2064 for(i = 0; i < CPU_TLB_SIZE; i++)
2065 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2066 start1, length);
2067 }
2068 }
2069 }
2070
2071 int cpu_physical_memory_set_dirty_tracking(int enable)
2072 {
2073 int ret = 0;
2074 in_migration = enable;
2075 ret = cpu_notify_migration_log(!!enable);
2076 return ret;
2077 }
2078
2079 int cpu_physical_memory_get_dirty_tracking(void)
2080 {
2081 return in_migration;
2082 }
2083
2084 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2085 target_phys_addr_t end_addr)
2086 {
2087 int ret;
2088
2089 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2090 return ret;
2091 }
2092
2093 int cpu_physical_log_start(target_phys_addr_t start_addr,
2094 ram_addr_t size)
2095 {
2096 CPUPhysMemoryClient *client;
2097 QLIST_FOREACH(client, &memory_client_list, list) {
2098 if (client->log_start) {
2099 int r = client->log_start(client, start_addr, size);
2100 if (r < 0) {
2101 return r;
2102 }
2103 }
2104 }
2105 return 0;
2106 }
2107
2108 int cpu_physical_log_stop(target_phys_addr_t start_addr,
2109 ram_addr_t size)
2110 {
2111 CPUPhysMemoryClient *client;
2112 QLIST_FOREACH(client, &memory_client_list, list) {
2113 if (client->log_stop) {
2114 int r = client->log_stop(client, start_addr, size);
2115 if (r < 0) {
2116 return r;
2117 }
2118 }
2119 }
2120 return 0;
2121 }
2122
2123 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2124 {
2125 ram_addr_t ram_addr;
2126 void *p;
2127
2128 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2129 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2130 + tlb_entry->addend);
2131 ram_addr = qemu_ram_addr_from_host_nofail(p);
2132 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2133 tlb_entry->addr_write |= TLB_NOTDIRTY;
2134 }
2135 }
2136 }
2137
2138 /* update the TLB according to the current state of the dirty bits */
2139 void cpu_tlb_update_dirty(CPUState *env)
2140 {
2141 int i;
2142 int mmu_idx;
2143 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2144 for(i = 0; i < CPU_TLB_SIZE; i++)
2145 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2146 }
2147 }
2148
2149 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2150 {
2151 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2152 tlb_entry->addr_write = vaddr;
2153 }
2154
2155 /* update the TLB corresponding to virtual page vaddr
2156 so that it is no longer dirty */
2157 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2158 {
2159 int i;
2160 int mmu_idx;
2161
2162 vaddr &= TARGET_PAGE_MASK;
2163 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2164 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2165 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2166 }
2167
2168 /* Our TLB does not support large pages, so remember the area covered by
2169 large pages and trigger a full TLB flush if these are invalidated. */
2170 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2171 target_ulong size)
2172 {
2173 target_ulong mask = ~(size - 1);
2174
2175 if (env->tlb_flush_addr == (target_ulong)-1) {
2176 env->tlb_flush_addr = vaddr & mask;
2177 env->tlb_flush_mask = mask;
2178 return;
2179 }
2180 /* Extend the existing region to include the new page.
2181 This is a compromise between unnecessary flushes and the cost
2182 of maintaining a full variable size TLB. */
2183 mask &= env->tlb_flush_mask;
2184 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2185 mask <<= 1;
2186 }
2187 env->tlb_flush_addr &= mask;
2188 env->tlb_flush_mask = mask;
2189 }
2190
2191 /* Add a new TLB entry. At most one entry for a given virtual address
2192 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2193 supplied size is only used by tlb_flush_page. */
2194 void tlb_set_page(CPUState *env, target_ulong vaddr,
2195 target_phys_addr_t paddr, int prot,
2196 int mmu_idx, target_ulong size)
2197 {
2198 PhysPageDesc *p;
2199 unsigned long pd;
2200 unsigned int index;
2201 target_ulong address;
2202 target_ulong code_address;
2203 unsigned long addend;
2204 CPUTLBEntry *te;
2205 CPUWatchpoint *wp;
2206 target_phys_addr_t iotlb;
2207
2208 assert(size >= TARGET_PAGE_SIZE);
2209 if (size != TARGET_PAGE_SIZE) {
2210 tlb_add_large_page(env, vaddr, size);
2211 }
2212 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2213 if (!p) {
2214 pd = IO_MEM_UNASSIGNED;
2215 } else {
2216 pd = p->phys_offset;
2217 }
2218 #if defined(DEBUG_TLB)
2219 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2220 " prot=%x idx=%d pd=0x%08lx\n",
2221 vaddr, paddr, prot, mmu_idx, pd);
2222 #endif
2223
2224 address = vaddr;
2225 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2226 /* IO memory case (romd handled later) */
2227 address |= TLB_MMIO;
2228 }
2229 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2230 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2231 /* Normal RAM. */
2232 iotlb = pd & TARGET_PAGE_MASK;
2233 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2234 iotlb |= IO_MEM_NOTDIRTY;
2235 else
2236 iotlb |= IO_MEM_ROM;
2237 } else {
2238 /* IO handlers are currently passed a physical address.
2239 It would be nice to pass an offset from the base address
2240 of that region. This would avoid having to special case RAM,
2241 and avoid full address decoding in every device.
2242 We can't use the high bits of pd for this because
2243 IO_MEM_ROMD uses these as a ram address. */
2244 iotlb = (pd & ~TARGET_PAGE_MASK);
2245 if (p) {
2246 iotlb += p->region_offset;
2247 } else {
2248 iotlb += paddr;
2249 }
2250 }
2251
2252 code_address = address;
2253 /* Make accesses to pages with watchpoints go via the
2254 watchpoint trap routines. */
2255 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2256 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2257 /* Avoid trapping reads of pages with a write breakpoint. */
2258 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2259 iotlb = io_mem_watch + paddr;
2260 address |= TLB_MMIO;
2261 break;
2262 }
2263 }
2264 }
2265
2266 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2267 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2268 te = &env->tlb_table[mmu_idx][index];
2269 te->addend = addend - vaddr;
2270 if (prot & PAGE_READ) {
2271 te->addr_read = address;
2272 } else {
2273 te->addr_read = -1;
2274 }
2275
2276 if (prot & PAGE_EXEC) {
2277 te->addr_code = code_address;
2278 } else {
2279 te->addr_code = -1;
2280 }
2281 if (prot & PAGE_WRITE) {
2282 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2283 (pd & IO_MEM_ROMD)) {
2284 /* Write access calls the I/O callback. */
2285 te->addr_write = address | TLB_MMIO;
2286 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2287 !cpu_physical_memory_is_dirty(pd)) {
2288 te->addr_write = address | TLB_NOTDIRTY;
2289 } else {
2290 te->addr_write = address;
2291 }
2292 } else {
2293 te->addr_write = -1;
2294 }
2295 }
2296
2297 #else
2298
2299 void tlb_flush(CPUState *env, int flush_global)
2300 {
2301 }
2302
2303 void tlb_flush_page(CPUState *env, target_ulong addr)
2304 {
2305 }
2306
2307 /*
2308 * Walks guest process memory "regions" one by one
2309 * and calls callback function 'fn' for each region.
2310 */
2311
2312 struct walk_memory_regions_data
2313 {
2314 walk_memory_regions_fn fn;
2315 void *priv;
2316 unsigned long start;
2317 int prot;
2318 };
2319
2320 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2321 abi_ulong end, int new_prot)
2322 {
2323 if (data->start != -1ul) {
2324 int rc = data->fn(data->priv, data->start, end, data->prot);
2325 if (rc != 0) {
2326 return rc;
2327 }
2328 }
2329
2330 data->start = (new_prot ? end : -1ul);
2331 data->prot = new_prot;
2332
2333 return 0;
2334 }
2335
2336 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2337 abi_ulong base, int level, void **lp)
2338 {
2339 abi_ulong pa;
2340 int i, rc;
2341
2342 if (*lp == NULL) {
2343 return walk_memory_regions_end(data, base, 0);
2344 }
2345
2346 if (level == 0) {
2347 PageDesc *pd = *lp;
2348 for (i = 0; i < L2_SIZE; ++i) {
2349 int prot = pd[i].flags;
2350
2351 pa = base | (i << TARGET_PAGE_BITS);
2352 if (prot != data->prot) {
2353 rc = walk_memory_regions_end(data, pa, prot);
2354 if (rc != 0) {
2355 return rc;
2356 }
2357 }
2358 }
2359 } else {
2360 void **pp = *lp;
2361 for (i = 0; i < L2_SIZE; ++i) {
2362 pa = base | ((abi_ulong)i <<
2363 (TARGET_PAGE_BITS + L2_BITS * level));
2364 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2365 if (rc != 0) {
2366 return rc;
2367 }
2368 }
2369 }
2370
2371 return 0;
2372 }
2373
2374 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2375 {
2376 struct walk_memory_regions_data data;
2377 unsigned long i;
2378
2379 data.fn = fn;
2380 data.priv = priv;
2381 data.start = -1ul;
2382 data.prot = 0;
2383
2384 for (i = 0; i < V_L1_SIZE; i++) {
2385 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2386 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2387 if (rc != 0) {
2388 return rc;
2389 }
2390 }
2391
2392 return walk_memory_regions_end(&data, 0, 0);
2393 }
2394
2395 static int dump_region(void *priv, abi_ulong start,
2396 abi_ulong end, unsigned long prot)
2397 {
2398 FILE *f = (FILE *)priv;
2399
2400 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2401 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2402 start, end, end - start,
2403 ((prot & PAGE_READ) ? 'r' : '-'),
2404 ((prot & PAGE_WRITE) ? 'w' : '-'),
2405 ((prot & PAGE_EXEC) ? 'x' : '-'));
2406
2407 return (0);
2408 }
2409
2410 /* dump memory mappings */
2411 void page_dump(FILE *f)
2412 {
2413 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2414 "start", "end", "size", "prot");
2415 walk_memory_regions(f, dump_region);
2416 }
2417
2418 int page_get_flags(target_ulong address)
2419 {
2420 PageDesc *p;
2421
2422 p = page_find(address >> TARGET_PAGE_BITS);
2423 if (!p)
2424 return 0;
2425 return p->flags;
2426 }
2427
2428 /* Modify the flags of a page and invalidate the code if necessary.
2429 The flag PAGE_WRITE_ORG is positioned automatically depending
2430 on PAGE_WRITE. The mmap_lock should already be held. */
2431 void page_set_flags(target_ulong start, target_ulong end, int flags)
2432 {
2433 target_ulong addr, len;
2434
2435 /* This function should never be called with addresses outside the
2436 guest address space. If this assert fires, it probably indicates
2437 a missing call to h2g_valid. */
2438 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2439 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2440 #endif
2441 assert(start < end);
2442
2443 start = start & TARGET_PAGE_MASK;
2444 end = TARGET_PAGE_ALIGN(end);
2445
2446 if (flags & PAGE_WRITE) {
2447 flags |= PAGE_WRITE_ORG;
2448 }
2449
2450 for (addr = start, len = end - start;
2451 len != 0;
2452 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2453 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2454
2455 /* If the write protection bit is set, then we invalidate
2456 the code inside. */
2457 if (!(p->flags & PAGE_WRITE) &&
2458 (flags & PAGE_WRITE) &&
2459 p->first_tb) {
2460 tb_invalidate_phys_page(addr, 0, NULL);
2461 }
2462 p->flags = flags;
2463 }
2464 }
2465
2466 int page_check_range(target_ulong start, target_ulong len, int flags)
2467 {
2468 PageDesc *p;
2469 target_ulong end;
2470 target_ulong addr;
2471
2472 /* This function should never be called with addresses outside the
2473 guest address space. If this assert fires, it probably indicates
2474 a missing call to h2g_valid. */
2475 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2476 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2477 #endif
2478
2479 if (len == 0) {
2480 return 0;
2481 }
2482 if (start + len - 1 < start) {
2483 /* We've wrapped around. */
2484 return -1;
2485 }
2486
2487 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2488 start = start & TARGET_PAGE_MASK;
2489
2490 for (addr = start, len = end - start;
2491 len != 0;
2492 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2493 p = page_find(addr >> TARGET_PAGE_BITS);
2494 if( !p )
2495 return -1;
2496 if( !(p->flags & PAGE_VALID) )
2497 return -1;
2498
2499 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2500 return -1;
2501 if (flags & PAGE_WRITE) {
2502 if (!(p->flags & PAGE_WRITE_ORG))
2503 return -1;
2504 /* unprotect the page if it was put read-only because it
2505 contains translated code */
2506 if (!(p->flags & PAGE_WRITE)) {
2507 if (!page_unprotect(addr, 0, NULL))
2508 return -1;
2509 }
2510 return 0;
2511 }
2512 }
2513 return 0;
2514 }
2515
2516 /* called from signal handler: invalidate the code and unprotect the
2517 page. Return TRUE if the fault was successfully handled. */
2518 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2519 {
2520 unsigned int prot;
2521 PageDesc *p;
2522 target_ulong host_start, host_end, addr;
2523
2524 /* Technically this isn't safe inside a signal handler. However we
2525 know this only ever happens in a synchronous SEGV handler, so in
2526 practice it seems to be ok. */
2527 mmap_lock();
2528
2529 p = page_find(address >> TARGET_PAGE_BITS);
2530 if (!p) {
2531 mmap_unlock();
2532 return 0;
2533 }
2534
2535 /* if the page was really writable, then we change its
2536 protection back to writable */
2537 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2538 host_start = address & qemu_host_page_mask;
2539 host_end = host_start + qemu_host_page_size;
2540
2541 prot = 0;
2542 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2543 p = page_find(addr >> TARGET_PAGE_BITS);
2544 p->flags |= PAGE_WRITE;
2545 prot |= p->flags;
2546
2547 /* and since the content will be modified, we must invalidate
2548 the corresponding translated code. */
2549 tb_invalidate_phys_page(addr, pc, puc);
2550 #ifdef DEBUG_TB_CHECK
2551 tb_invalidate_check(addr);
2552 #endif
2553 }
2554 mprotect((void *)g2h(host_start), qemu_host_page_size,
2555 prot & PAGE_BITS);
2556
2557 mmap_unlock();
2558 return 1;
2559 }
2560 mmap_unlock();
2561 return 0;
2562 }
2563
2564 static inline void tlb_set_dirty(CPUState *env,
2565 unsigned long addr, target_ulong vaddr)
2566 {
2567 }
2568 #endif /* defined(CONFIG_USER_ONLY) */
2569
2570 #if !defined(CONFIG_USER_ONLY)
2571
2572 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2573 typedef struct subpage_t {
2574 target_phys_addr_t base;
2575 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2576 ram_addr_t region_offset[TARGET_PAGE_SIZE];
2577 } subpage_t;
2578
2579 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2580 ram_addr_t memory, ram_addr_t region_offset);
2581 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2582 ram_addr_t orig_memory,
2583 ram_addr_t region_offset);
2584 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2585 need_subpage) \
2586 do { \
2587 if (addr > start_addr) \
2588 start_addr2 = 0; \
2589 else { \
2590 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2591 if (start_addr2 > 0) \
2592 need_subpage = 1; \
2593 } \
2594 \
2595 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2596 end_addr2 = TARGET_PAGE_SIZE - 1; \
2597 else { \
2598 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2599 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2600 need_subpage = 1; \
2601 } \
2602 } while (0)
2603
2604 /* register physical memory.
2605 For RAM, 'size' must be a multiple of the target page size.
2606 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2607 io memory page. The address used when calling the IO function is
2608 the offset from the start of the region, plus region_offset. Both
2609 start_addr and region_offset are rounded down to a page boundary
2610 before calculating this offset. This should not be a problem unless
2611 the low bits of start_addr and region_offset differ. */
2612 void cpu_register_physical_memory_log(target_phys_addr_t start_addr,
2613 ram_addr_t size,
2614 ram_addr_t phys_offset,
2615 ram_addr_t region_offset,
2616 bool log_dirty)
2617 {
2618 target_phys_addr_t addr, end_addr;
2619 PhysPageDesc *p;
2620 CPUState *env;
2621 ram_addr_t orig_size = size;
2622 subpage_t *subpage;
2623
2624 cpu_notify_set_memory(start_addr, size, phys_offset, log_dirty);
2625
2626 if (phys_offset == IO_MEM_UNASSIGNED) {
2627 region_offset = start_addr;
2628 }
2629 region_offset &= TARGET_PAGE_MASK;
2630 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2631 end_addr = start_addr + (target_phys_addr_t)size;
2632 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2633 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2634 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2635 ram_addr_t orig_memory = p->phys_offset;
2636 target_phys_addr_t start_addr2, end_addr2;
2637 int need_subpage = 0;
2638
2639 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2640 need_subpage);
2641 if (need_subpage) {
2642 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2643 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2644 &p->phys_offset, orig_memory,
2645 p->region_offset);
2646 } else {
2647 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2648 >> IO_MEM_SHIFT];
2649 }
2650 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2651 region_offset);
2652 p->region_offset = 0;
2653 } else {
2654 p->phys_offset = phys_offset;
2655 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2656 (phys_offset & IO_MEM_ROMD))
2657 phys_offset += TARGET_PAGE_SIZE;
2658 }
2659 } else {
2660 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2661 p->phys_offset = phys_offset;
2662 p->region_offset = region_offset;
2663 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2664 (phys_offset & IO_MEM_ROMD)) {
2665 phys_offset += TARGET_PAGE_SIZE;
2666 } else {
2667 target_phys_addr_t start_addr2, end_addr2;
2668 int need_subpage = 0;
2669
2670 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2671 end_addr2, need_subpage);
2672
2673 if (need_subpage) {
2674 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2675 &p->phys_offset, IO_MEM_UNASSIGNED,
2676 addr & TARGET_PAGE_MASK);
2677 subpage_register(subpage, start_addr2, end_addr2,
2678 phys_offset, region_offset);
2679 p->region_offset = 0;
2680 }
2681 }
2682 }
2683 region_offset += TARGET_PAGE_SIZE;
2684 }
2685
2686 /* since each CPU stores ram addresses in its TLB cache, we must
2687 reset the modified entries */
2688 /* XXX: slow ! */
2689 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2690 tlb_flush(env, 1);
2691 }
2692 }
2693
2694 /* XXX: temporary until new memory mapping API */
2695 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2696 {
2697 PhysPageDesc *p;
2698
2699 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2700 if (!p)
2701 return IO_MEM_UNASSIGNED;
2702 return p->phys_offset;
2703 }
2704
2705 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2706 {
2707 if (kvm_enabled())
2708 kvm_coalesce_mmio_region(addr, size);
2709 }
2710
2711 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2712 {
2713 if (kvm_enabled())
2714 kvm_uncoalesce_mmio_region(addr, size);
2715 }
2716
2717 void qemu_flush_coalesced_mmio_buffer(void)
2718 {
2719 if (kvm_enabled())
2720 kvm_flush_coalesced_mmio_buffer();
2721 }
2722
2723 #if defined(__linux__) && !defined(TARGET_S390X)
2724
2725 #include <sys/vfs.h>
2726
2727 #define HUGETLBFS_MAGIC 0x958458f6
2728
2729 static long gethugepagesize(const char *path)
2730 {
2731 struct statfs fs;
2732 int ret;
2733
2734 do {
2735 ret = statfs(path, &fs);
2736 } while (ret != 0 && errno == EINTR);
2737
2738 if (ret != 0) {
2739 perror(path);
2740 return 0;
2741 }
2742
2743 if (fs.f_type != HUGETLBFS_MAGIC)
2744 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2745
2746 return fs.f_bsize;
2747 }
2748
2749 static void *file_ram_alloc(RAMBlock *block,
2750 ram_addr_t memory,
2751 const char *path)
2752 {
2753 char *filename;
2754 void *area;
2755 int fd;
2756 #ifdef MAP_POPULATE
2757 int flags;
2758 #endif
2759 unsigned long hpagesize;
2760
2761 hpagesize = gethugepagesize(path);
2762 if (!hpagesize) {
2763 return NULL;
2764 }
2765
2766 if (memory < hpagesize) {
2767 return NULL;
2768 }
2769
2770 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2771 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2772 return NULL;
2773 }
2774
2775 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2776 return NULL;
2777 }
2778
2779 fd = mkstemp(filename);
2780 if (fd < 0) {
2781 perror("unable to create backing store for hugepages");
2782 free(filename);
2783 return NULL;
2784 }
2785 unlink(filename);
2786 free(filename);
2787
2788 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2789
2790 /*
2791 * ftruncate is not supported by hugetlbfs in older
2792 * hosts, so don't bother bailing out on errors.
2793 * If anything goes wrong with it under other filesystems,
2794 * mmap will fail.
2795 */
2796 if (ftruncate(fd, memory))
2797 perror("ftruncate");
2798
2799 #ifdef MAP_POPULATE
2800 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2801 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2802 * to sidestep this quirk.
2803 */
2804 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2805 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2806 #else
2807 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2808 #endif
2809 if (area == MAP_FAILED) {
2810 perror("file_ram_alloc: can't mmap RAM pages");
2811 close(fd);
2812 return (NULL);
2813 }
2814 block->fd = fd;
2815 return area;
2816 }
2817 #endif
2818
2819 static ram_addr_t find_ram_offset(ram_addr_t size)
2820 {
2821 RAMBlock *block, *next_block;
2822 ram_addr_t offset = 0, mingap = ULONG_MAX;
2823
2824 if (QLIST_EMPTY(&ram_list.blocks))
2825 return 0;
2826
2827 QLIST_FOREACH(block, &ram_list.blocks, next) {
2828 ram_addr_t end, next = ULONG_MAX;
2829
2830 end = block->offset + block->length;
2831
2832 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2833 if (next_block->offset >= end) {
2834 next = MIN(next, next_block->offset);
2835 }
2836 }
2837 if (next - end >= size && next - end < mingap) {
2838 offset = end;
2839 mingap = next - end;
2840 }
2841 }
2842 return offset;
2843 }
2844
2845 static ram_addr_t last_ram_offset(void)
2846 {
2847 RAMBlock *block;
2848 ram_addr_t last = 0;
2849
2850 QLIST_FOREACH(block, &ram_list.blocks, next)
2851 last = MAX(last, block->offset + block->length);
2852
2853 return last;
2854 }
2855
2856 ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
2857 ram_addr_t size, void *host)
2858 {
2859 RAMBlock *new_block, *block;
2860
2861 size = TARGET_PAGE_ALIGN(size);
2862 new_block = qemu_mallocz(sizeof(*new_block));
2863
2864 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2865 char *id = dev->parent_bus->info->get_dev_path(dev);
2866 if (id) {
2867 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2868 qemu_free(id);
2869 }
2870 }
2871 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2872
2873 QLIST_FOREACH(block, &ram_list.blocks, next) {
2874 if (!strcmp(block->idstr, new_block->idstr)) {
2875 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2876 new_block->idstr);
2877 abort();
2878 }
2879 }
2880
2881 if (host) {
2882 new_block->host = host;
2883 new_block->flags |= RAM_PREALLOC_MASK;
2884 } else {
2885 if (mem_path) {
2886 #if defined (__linux__) && !defined(TARGET_S390X)
2887 new_block->host = file_ram_alloc(new_block, size, mem_path);
2888 if (!new_block->host) {
2889 new_block->host = qemu_vmalloc(size);
2890 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2891 }
2892 #else
2893 fprintf(stderr, "-mem-path option unsupported\n");
2894 exit(1);
2895 #endif
2896 } else {
2897 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2898 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2899 new_block->host = mmap((void*)0x1000000, size,
2900 PROT_EXEC|PROT_READ|PROT_WRITE,
2901 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2902 #else
2903 new_block->host = qemu_vmalloc(size);
2904 #endif
2905 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2906 }
2907 }
2908
2909 new_block->offset = find_ram_offset(size);
2910 new_block->length = size;
2911
2912 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2913
2914 ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
2915 last_ram_offset() >> TARGET_PAGE_BITS);
2916 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2917 0xff, size >> TARGET_PAGE_BITS);
2918
2919 if (kvm_enabled())
2920 kvm_setup_guest_memory(new_block->host, size);
2921
2922 return new_block->offset;
2923 }
2924
2925 ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
2926 {
2927 return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
2928 }
2929
2930 void qemu_ram_free(ram_addr_t addr)
2931 {
2932 RAMBlock *block;
2933
2934 QLIST_FOREACH(block, &ram_list.blocks, next) {
2935 if (addr == block->offset) {
2936 QLIST_REMOVE(block, next);
2937 if (block->flags & RAM_PREALLOC_MASK) {
2938 ;
2939 } else if (mem_path) {
2940 #if defined (__linux__) && !defined(TARGET_S390X)
2941 if (block->fd) {
2942 munmap(block->host, block->length);
2943 close(block->fd);
2944 } else {
2945 qemu_vfree(block->host);
2946 }
2947 #else
2948 abort();
2949 #endif
2950 } else {
2951 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2952 munmap(block->host, block->length);
2953 #else
2954 qemu_vfree(block->host);
2955 #endif
2956 }
2957 qemu_free(block);
2958 return;
2959 }
2960 }
2961
2962 }
2963
2964 #ifndef _WIN32
2965 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2966 {
2967 RAMBlock *block;
2968 ram_addr_t offset;
2969 int flags;
2970 void *area, *vaddr;
2971
2972 QLIST_FOREACH(block, &ram_list.blocks, next) {
2973 offset = addr - block->offset;
2974 if (offset < block->length) {
2975 vaddr = block->host + offset;
2976 if (block->flags & RAM_PREALLOC_MASK) {
2977 ;
2978 } else {
2979 flags = MAP_FIXED;
2980 munmap(vaddr, length);
2981 if (mem_path) {
2982 #if defined(__linux__) && !defined(TARGET_S390X)
2983 if (block->fd) {
2984 #ifdef MAP_POPULATE
2985 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
2986 MAP_PRIVATE;
2987 #else
2988 flags |= MAP_PRIVATE;
2989 #endif
2990 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2991 flags, block->fd, offset);
2992 } else {
2993 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2994 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2995 flags, -1, 0);
2996 }
2997 #else
2998 abort();
2999 #endif
3000 } else {
3001 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
3002 flags |= MAP_SHARED | MAP_ANONYMOUS;
3003 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
3004 flags, -1, 0);
3005 #else
3006 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3007 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3008 flags, -1, 0);
3009 #endif
3010 }
3011 if (area != vaddr) {
3012 fprintf(stderr, "Could not remap addr: %lx@%lx\n",
3013 length, addr);
3014 exit(1);
3015 }
3016 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3017 }
3018 return;
3019 }
3020 }
3021 }
3022 #endif /* !_WIN32 */
3023
3024 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3025 With the exception of the softmmu code in this file, this should
3026 only be used for local memory (e.g. video ram) that the device owns,
3027 and knows it isn't going to access beyond the end of the block.
3028
3029 It should not be used for general purpose DMA.
3030 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3031 */
3032 void *qemu_get_ram_ptr(ram_addr_t addr)
3033 {
3034 RAMBlock *block;
3035
3036 QLIST_FOREACH(block, &ram_list.blocks, next) {
3037 if (addr - block->offset < block->length) {
3038 /* Move this entry to to start of the list. */
3039 if (block != QLIST_FIRST(&ram_list.blocks)) {
3040 QLIST_REMOVE(block, next);
3041 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3042 }
3043 return block->host + (addr - block->offset);
3044 }
3045 }
3046
3047 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3048 abort();
3049
3050 return NULL;
3051 }
3052
3053 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3054 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3055 */
3056 void *qemu_safe_ram_ptr(ram_addr_t addr)
3057 {
3058 RAMBlock *block;
3059
3060 QLIST_FOREACH(block, &ram_list.blocks, next) {
3061 if (addr - block->offset < block->length) {
3062 return block->host + (addr - block->offset);
3063 }
3064 }
3065
3066 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3067 abort();
3068
3069 return NULL;
3070 }
3071
3072 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
3073 {
3074 RAMBlock *block;
3075 uint8_t *host = ptr;
3076
3077 QLIST_FOREACH(block, &ram_list.blocks, next) {
3078 if (host - block->host < block->length) {
3079 *ram_addr = block->offset + (host - block->host);
3080 return 0;
3081 }
3082 }
3083 return -1;
3084 }
3085
3086 /* Some of the softmmu routines need to translate from a host pointer
3087 (typically a TLB entry) back to a ram offset. */
3088 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3089 {
3090 ram_addr_t ram_addr;
3091
3092 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3093 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3094 abort();
3095 }
3096 return ram_addr;
3097 }
3098
3099 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
3100 {
3101 #ifdef DEBUG_UNASSIGNED
3102 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3103 #endif
3104 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3105 do_unassigned_access(addr, 0, 0, 0, 1);
3106 #endif
3107 return 0;
3108 }
3109
3110 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
3111 {
3112 #ifdef DEBUG_UNASSIGNED
3113 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3114 #endif
3115 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3116 do_unassigned_access(addr, 0, 0, 0, 2);
3117 #endif
3118 return 0;
3119 }
3120
3121 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
3122 {
3123 #ifdef DEBUG_UNASSIGNED
3124 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3125 #endif
3126 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3127 do_unassigned_access(addr, 0, 0, 0, 4);
3128 #endif
3129 return 0;
3130 }
3131
3132 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
3133 {
3134 #ifdef DEBUG_UNASSIGNED
3135 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3136 #endif
3137 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3138 do_unassigned_access(addr, 1, 0, 0, 1);
3139 #endif
3140 }
3141
3142 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
3143 {
3144 #ifdef DEBUG_UNASSIGNED
3145 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3146 #endif
3147 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3148 do_unassigned_access(addr, 1, 0, 0, 2);
3149 #endif
3150 }
3151
3152 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
3153 {
3154 #ifdef DEBUG_UNASSIGNED
3155 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3156 #endif
3157 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3158 do_unassigned_access(addr, 1, 0, 0, 4);
3159 #endif
3160 }
3161
3162 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
3163 unassigned_mem_readb,
3164 unassigned_mem_readw,
3165 unassigned_mem_readl,
3166 };
3167
3168 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
3169 unassigned_mem_writeb,
3170 unassigned_mem_writew,
3171 unassigned_mem_writel,
3172 };
3173
3174 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
3175 uint32_t val)
3176 {
3177 int dirty_flags;
3178 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3179 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3180 #if !defined(CONFIG_USER_ONLY)
3181 tb_invalidate_phys_page_fast(ram_addr, 1);
3182 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3183 #endif
3184 }
3185 stb_p(qemu_get_ram_ptr(ram_addr), val);
3186 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3187 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3188 /* we remove the notdirty callback only if the code has been
3189 flushed */
3190 if (dirty_flags == 0xff)
3191 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3192 }
3193
3194 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
3195 uint32_t val)
3196 {
3197 int dirty_flags;
3198 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3199 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3200 #if !defined(CONFIG_USER_ONLY)
3201 tb_invalidate_phys_page_fast(ram_addr, 2);
3202 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3203 #endif
3204 }
3205 stw_p(qemu_get_ram_ptr(ram_addr), val);
3206 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3207 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3208 /* we remove the notdirty callback only if the code has been
3209 flushed */
3210 if (dirty_flags == 0xff)
3211 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3212 }
3213
3214 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
3215 uint32_t val)
3216 {
3217 int dirty_flags;
3218 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3219 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3220 #if !defined(CONFIG_USER_ONLY)
3221 tb_invalidate_phys_page_fast(ram_addr, 4);
3222 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3223 #endif
3224 }
3225 stl_p(qemu_get_ram_ptr(ram_addr), val);
3226 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3227 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3228 /* we remove the notdirty callback only if the code has been
3229 flushed */
3230 if (dirty_flags == 0xff)
3231 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3232 }
3233
3234 static CPUReadMemoryFunc * const error_mem_read[3] = {
3235 NULL, /* never used */
3236 NULL, /* never used */
3237 NULL, /* never used */
3238 };
3239
3240 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3241 notdirty_mem_writeb,
3242 notdirty_mem_writew,
3243 notdirty_mem_writel,
3244 };
3245
3246 /* Generate a debug exception if a watchpoint has been hit. */
3247 static void check_watchpoint(int offset, int len_mask, int flags)
3248 {
3249 CPUState *env = cpu_single_env;
3250 target_ulong pc, cs_base;
3251 TranslationBlock *tb;
3252 target_ulong vaddr;
3253 CPUWatchpoint *wp;
3254 int cpu_flags;
3255
3256 if (env->watchpoint_hit) {
3257 /* We re-entered the check after replacing the TB. Now raise
3258 * the debug interrupt so that is will trigger after the
3259 * current instruction. */
3260 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3261 return;
3262 }
3263 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3264 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3265 if ((vaddr == (wp->vaddr & len_mask) ||
3266 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3267 wp->flags |= BP_WATCHPOINT_HIT;
3268 if (!env->watchpoint_hit) {
3269 env->watchpoint_hit = wp;
3270 tb = tb_find_pc(env->mem_io_pc);
3271 if (!tb) {
3272 cpu_abort(env, "check_watchpoint: could not find TB for "
3273 "pc=%p", (void *)env->mem_io_pc);
3274 }
3275 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3276 tb_phys_invalidate(tb, -1);
3277 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3278 env->exception_index = EXCP_DEBUG;
3279 } else {
3280 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3281 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3282 }
3283 cpu_resume_from_signal(env, NULL);
3284 }
3285 } else {
3286 wp->flags &= ~BP_WATCHPOINT_HIT;
3287 }
3288 }
3289 }
3290
3291 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3292 so these check for a hit then pass through to the normal out-of-line
3293 phys routines. */
3294 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3295 {
3296 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3297 return ldub_phys(addr);
3298 }
3299
3300 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3301 {
3302 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3303 return lduw_phys(addr);
3304 }
3305
3306 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3307 {
3308 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3309 return ldl_phys(addr);
3310 }
3311
3312 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3313 uint32_t val)
3314 {
3315 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3316 stb_phys(addr, val);
3317 }
3318
3319 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3320 uint32_t val)
3321 {
3322 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3323 stw_phys(addr, val);
3324 }
3325
3326 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3327 uint32_t val)
3328 {
3329 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3330 stl_phys(addr, val);
3331 }
3332
3333 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3334 watch_mem_readb,
3335 watch_mem_readw,
3336 watch_mem_readl,
3337 };
3338
3339 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3340 watch_mem_writeb,
3341 watch_mem_writew,
3342 watch_mem_writel,
3343 };
3344
3345 static inline uint32_t subpage_readlen (subpage_t *mmio,
3346 target_phys_addr_t addr,
3347 unsigned int len)
3348 {
3349 unsigned int idx = SUBPAGE_IDX(addr);
3350 #if defined(DEBUG_SUBPAGE)
3351 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3352 mmio, len, addr, idx);
3353 #endif
3354
3355 addr += mmio->region_offset[idx];
3356 idx = mmio->sub_io_index[idx];
3357 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
3358 }
3359
3360 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3361 uint32_t value, unsigned int len)
3362 {
3363 unsigned int idx = SUBPAGE_IDX(addr);
3364 #if defined(DEBUG_SUBPAGE)
3365 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3366 __func__, mmio, len, addr, idx, value);
3367 #endif
3368
3369 addr += mmio->region_offset[idx];
3370 idx = mmio->sub_io_index[idx];
3371 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
3372 }
3373
3374 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3375 {
3376 return subpage_readlen(opaque, addr, 0);
3377 }
3378
3379 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3380 uint32_t value)
3381 {
3382 subpage_writelen(opaque, addr, value, 0);
3383 }
3384
3385 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3386 {
3387 return subpage_readlen(opaque, addr, 1);
3388 }
3389
3390 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3391 uint32_t value)
3392 {
3393 subpage_writelen(opaque, addr, value, 1);
3394 }
3395
3396 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3397 {
3398 return subpage_readlen(opaque, addr, 2);
3399 }
3400
3401 static void subpage_writel (void *opaque, target_phys_addr_t addr,
3402 uint32_t value)
3403 {
3404 subpage_writelen(opaque, addr, value, 2);
3405 }
3406
3407 static CPUReadMemoryFunc * const subpage_read[] = {
3408 &subpage_readb,
3409 &subpage_readw,
3410 &subpage_readl,
3411 };
3412
3413 static CPUWriteMemoryFunc * const subpage_write[] = {
3414 &subpage_writeb,
3415 &subpage_writew,
3416 &subpage_writel,
3417 };
3418
3419 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3420 ram_addr_t memory, ram_addr_t region_offset)
3421 {
3422 int idx, eidx;
3423
3424 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3425 return -1;
3426 idx = SUBPAGE_IDX(start);
3427 eidx = SUBPAGE_IDX(end);
3428 #if defined(DEBUG_SUBPAGE)
3429 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3430 mmio, start, end, idx, eidx, memory);
3431 #endif
3432 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
3433 memory = IO_MEM_UNASSIGNED;
3434 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3435 for (; idx <= eidx; idx++) {
3436 mmio->sub_io_index[idx] = memory;
3437 mmio->region_offset[idx] = region_offset;
3438 }
3439
3440 return 0;
3441 }
3442
3443 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3444 ram_addr_t orig_memory,
3445 ram_addr_t region_offset)
3446 {
3447 subpage_t *mmio;
3448 int subpage_memory;
3449
3450 mmio = qemu_mallocz(sizeof(subpage_t));
3451
3452 mmio->base = base;
3453 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
3454 DEVICE_NATIVE_ENDIAN);
3455 #if defined(DEBUG_SUBPAGE)
3456 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3457 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3458 #endif
3459 *phys = subpage_memory | IO_MEM_SUBPAGE;
3460 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
3461
3462 return mmio;
3463 }
3464
3465 static int get_free_io_mem_idx(void)
3466 {
3467 int i;
3468
3469 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3470 if (!io_mem_used[i]) {
3471 io_mem_used[i] = 1;
3472 return i;
3473 }
3474 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3475 return -1;
3476 }
3477
3478 /*
3479 * Usually, devices operate in little endian mode. There are devices out
3480 * there that operate in big endian too. Each device gets byte swapped
3481 * mmio if plugged onto a CPU that does the other endianness.
3482 *
3483 * CPU Device swap?
3484 *
3485 * little little no
3486 * little big yes
3487 * big little yes
3488 * big big no
3489 */
3490
3491 typedef struct SwapEndianContainer {
3492 CPUReadMemoryFunc *read[3];
3493 CPUWriteMemoryFunc *write[3];
3494 void *opaque;
3495 } SwapEndianContainer;
3496
3497 static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
3498 {
3499 uint32_t val;
3500 SwapEndianContainer *c = opaque;
3501 val = c->read[0](c->opaque, addr);
3502 return val;
3503 }
3504
3505 static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
3506 {
3507 uint32_t val;
3508 SwapEndianContainer *c = opaque;
3509 val = bswap16(c->read[1](c->opaque, addr));
3510 return val;
3511 }
3512
3513 static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
3514 {
3515 uint32_t val;
3516 SwapEndianContainer *c = opaque;
3517 val = bswap32(c->read[2](c->opaque, addr));
3518 return val;
3519 }
3520
3521 static CPUReadMemoryFunc * const swapendian_readfn[3]={
3522 swapendian_mem_readb,
3523 swapendian_mem_readw,
3524 swapendian_mem_readl
3525 };
3526
3527 static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
3528 uint32_t val)
3529 {
3530 SwapEndianContainer *c = opaque;
3531 c->write[0](c->opaque, addr, val);
3532 }
3533
3534 static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
3535 uint32_t val)
3536 {
3537 SwapEndianContainer *c = opaque;
3538 c->write[1](c->opaque, addr, bswap16(val));
3539 }
3540
3541 static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
3542 uint32_t val)
3543 {
3544 SwapEndianContainer *c = opaque;
3545 c->write[2](c->opaque, addr, bswap32(val));
3546 }
3547
3548 static CPUWriteMemoryFunc * const swapendian_writefn[3]={
3549 swapendian_mem_writeb,
3550 swapendian_mem_writew,
3551 swapendian_mem_writel
3552 };
3553
3554 static void swapendian_init(int io_index)
3555 {
3556 SwapEndianContainer *c = qemu_malloc(sizeof(SwapEndianContainer));
3557 int i;
3558
3559 /* Swap mmio for big endian targets */
3560 c->opaque = io_mem_opaque[io_index];
3561 for (i = 0; i < 3; i++) {
3562 c->read[i] = io_mem_read[io_index][i];
3563 c->write[i] = io_mem_write[io_index][i];
3564
3565 io_mem_read[io_index][i] = swapendian_readfn[i];
3566 io_mem_write[io_index][i] = swapendian_writefn[i];
3567 }
3568 io_mem_opaque[io_index] = c;
3569 }
3570
3571 static void swapendian_del(int io_index)
3572 {
3573 if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
3574 qemu_free(io_mem_opaque[io_index]);
3575 }
3576 }
3577
3578 /* mem_read and mem_write are arrays of functions containing the
3579 function to access byte (index 0), word (index 1) and dword (index
3580 2). Functions can be omitted with a NULL function pointer.
3581 If io_index is non zero, the corresponding io zone is
3582 modified. If it is zero, a new io zone is allocated. The return
3583 value can be used with cpu_register_physical_memory(). (-1) is
3584 returned if error. */
3585 static int cpu_register_io_memory_fixed(int io_index,
3586 CPUReadMemoryFunc * const *mem_read,
3587 CPUWriteMemoryFunc * const *mem_write,
3588 void *opaque, enum device_endian endian)
3589 {
3590 int i;
3591
3592 if (io_index <= 0) {
3593 io_index = get_free_io_mem_idx();
3594 if (io_index == -1)
3595 return io_index;
3596 } else {
3597 io_index >>= IO_MEM_SHIFT;
3598 if (io_index >= IO_MEM_NB_ENTRIES)
3599 return -1;
3600 }
3601
3602 for (i = 0; i < 3; ++i) {
3603 io_mem_read[io_index][i]
3604 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3605 }
3606 for (i = 0; i < 3; ++i) {
3607 io_mem_write[io_index][i]
3608 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3609 }
3610 io_mem_opaque[io_index] = opaque;
3611
3612 switch (endian) {
3613 case DEVICE_BIG_ENDIAN:
3614 #ifndef TARGET_WORDS_BIGENDIAN
3615 swapendian_init(io_index);
3616 #endif
3617 break;
3618 case DEVICE_LITTLE_ENDIAN:
3619 #ifdef TARGET_WORDS_BIGENDIAN
3620 swapendian_init(io_index);
3621 #endif
3622 break;
3623 case DEVICE_NATIVE_ENDIAN:
3624 default:
3625 break;
3626 }
3627
3628 return (io_index << IO_MEM_SHIFT);
3629 }
3630
3631 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3632 CPUWriteMemoryFunc * const *mem_write,
3633 void *opaque, enum device_endian endian)
3634 {
3635 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
3636 }
3637
3638 void cpu_unregister_io_memory(int io_table_address)
3639 {
3640 int i;
3641 int io_index = io_table_address >> IO_MEM_SHIFT;
3642
3643 swapendian_del(io_index);
3644
3645 for (i=0;i < 3; i++) {
3646 io_mem_read[io_index][i] = unassigned_mem_read[i];
3647 io_mem_write[io_index][i] = unassigned_mem_write[i];
3648 }
3649 io_mem_opaque[io_index] = NULL;
3650 io_mem_used[io_index] = 0;
3651 }
3652
3653 static void io_mem_init(void)
3654 {
3655 int i;
3656
3657 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
3658 unassigned_mem_write, NULL,
3659 DEVICE_NATIVE_ENDIAN);
3660 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
3661 unassigned_mem_write, NULL,
3662 DEVICE_NATIVE_ENDIAN);
3663 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
3664 notdirty_mem_write, NULL,
3665 DEVICE_NATIVE_ENDIAN);
3666 for (i=0; i<5; i++)
3667 io_mem_used[i] = 1;
3668
3669 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3670 watch_mem_write, NULL,
3671 DEVICE_NATIVE_ENDIAN);
3672 }
3673
3674 #endif /* !defined(CONFIG_USER_ONLY) */
3675
3676 /* physical memory access (slow version, mainly for debug) */
3677 #if defined(CONFIG_USER_ONLY)
3678 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3679 uint8_t *buf, int len, int is_write)
3680 {
3681 int l, flags;
3682 target_ulong page;
3683 void * p;
3684
3685 while (len > 0) {
3686 page = addr & TARGET_PAGE_MASK;
3687 l = (page + TARGET_PAGE_SIZE) - addr;
3688 if (l > len)
3689 l = len;
3690 flags = page_get_flags(page);
3691 if (!(flags & PAGE_VALID))
3692 return -1;
3693 if (is_write) {
3694 if (!(flags & PAGE_WRITE))
3695 return -1;
3696 /* XXX: this code should not depend on lock_user */
3697 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3698 return -1;
3699 memcpy(p, buf, l);
3700 unlock_user(p, addr, l);
3701 } else {
3702 if (!(flags & PAGE_READ))
3703 return -1;
3704 /* XXX: this code should not depend on lock_user */
3705 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3706 return -1;
3707 memcpy(buf, p, l);
3708 unlock_user(p, addr, 0);
3709 }
3710 len -= l;
3711 buf += l;
3712 addr += l;
3713 }
3714 return 0;
3715 }
3716
3717 #else
3718 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3719 int len, int is_write)
3720 {
3721 int l, io_index;
3722 uint8_t *ptr;
3723 uint32_t val;
3724 target_phys_addr_t page;
3725 unsigned long pd;
3726 PhysPageDesc *p;
3727
3728 while (len > 0) {
3729 page = addr & TARGET_PAGE_MASK;
3730 l = (page + TARGET_PAGE_SIZE) - addr;
3731 if (l > len)
3732 l = len;
3733 p = phys_page_find(page >> TARGET_PAGE_BITS);
3734 if (!p) {
3735 pd = IO_MEM_UNASSIGNED;
3736 } else {
3737 pd = p->phys_offset;
3738 }
3739
3740 if (is_write) {
3741 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3742 target_phys_addr_t addr1 = addr;
3743 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3744 if (p)
3745 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3746 /* XXX: could force cpu_single_env to NULL to avoid
3747 potential bugs */
3748 if (l >= 4 && ((addr1 & 3) == 0)) {
3749 /* 32 bit write access */
3750 val = ldl_p(buf);
3751 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3752 l = 4;
3753 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3754 /* 16 bit write access */
3755 val = lduw_p(buf);
3756 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3757 l = 2;
3758 } else {
3759 /* 8 bit write access */
3760 val = ldub_p(buf);
3761 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3762 l = 1;
3763 }
3764 } else {
3765 unsigned long addr1;
3766 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3767 /* RAM case */
3768 ptr = qemu_get_ram_ptr(addr1);
3769 memcpy(ptr, buf, l);
3770 if (!cpu_physical_memory_is_dirty(addr1)) {
3771 /* invalidate code */
3772 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3773 /* set dirty bit */
3774 cpu_physical_memory_set_dirty_flags(
3775 addr1, (0xff & ~CODE_DIRTY_FLAG));
3776 }
3777 }
3778 } else {
3779 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3780 !(pd & IO_MEM_ROMD)) {
3781 target_phys_addr_t addr1 = addr;
3782 /* I/O case */
3783 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3784 if (p)
3785 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3786 if (l >= 4 && ((addr1 & 3) == 0)) {
3787 /* 32 bit read access */
3788 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3789 stl_p(buf, val);
3790 l = 4;
3791 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3792 /* 16 bit read access */
3793 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3794 stw_p(buf, val);
3795 l = 2;
3796 } else {
3797 /* 8 bit read access */
3798 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3799 stb_p(buf, val);
3800 l = 1;
3801 }
3802 } else {
3803 /* RAM case */
3804 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3805 (addr & ~TARGET_PAGE_MASK);
3806 memcpy(buf, ptr, l);
3807 }
3808 }
3809 len -= l;
3810 buf += l;
3811 addr += l;
3812 }
3813 }
3814
3815 /* used for ROM loading : can write in RAM and ROM */
3816 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3817 const uint8_t *buf, int len)
3818 {
3819 int l;
3820 uint8_t *ptr;
3821 target_phys_addr_t page;
3822 unsigned long pd;
3823 PhysPageDesc *p;
3824
3825 while (len > 0) {
3826 page = addr & TARGET_PAGE_MASK;
3827 l = (page + TARGET_PAGE_SIZE) - addr;
3828 if (l > len)
3829 l = len;
3830 p = phys_page_find(page >> TARGET_PAGE_BITS);
3831 if (!p) {
3832 pd = IO_MEM_UNASSIGNED;
3833 } else {
3834 pd = p->phys_offset;
3835 }
3836
3837 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3838 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3839 !(pd & IO_MEM_ROMD)) {
3840 /* do nothing */
3841 } else {
3842 unsigned long addr1;
3843 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3844 /* ROM/RAM case */
3845 ptr = qemu_get_ram_ptr(addr1);
3846 memcpy(ptr, buf, l);
3847 }
3848 len -= l;
3849 buf += l;
3850 addr += l;
3851 }
3852 }
3853
3854 typedef struct {
3855 void *buffer;
3856 target_phys_addr_t addr;
3857 target_phys_addr_t len;
3858 } BounceBuffer;
3859
3860 static BounceBuffer bounce;
3861
3862 typedef struct MapClient {
3863 void *opaque;
3864 void (*callback)(void *opaque);
3865 QLIST_ENTRY(MapClient) link;
3866 } MapClient;
3867
3868 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3869 = QLIST_HEAD_INITIALIZER(map_client_list);
3870
3871 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3872 {
3873 MapClient *client = qemu_malloc(sizeof(*client));
3874
3875 client->opaque = opaque;
3876 client->callback = callback;
3877 QLIST_INSERT_HEAD(&map_client_list, client, link);
3878 return client;
3879 }
3880
3881 void cpu_unregister_map_client(void *_client)
3882 {
3883 MapClient *client = (MapClient *)_client;
3884
3885 QLIST_REMOVE(client, link);
3886 qemu_free(client);
3887 }
3888
3889 static void cpu_notify_map_clients(void)
3890 {
3891 MapClient *client;
3892
3893 while (!QLIST_EMPTY(&map_client_list)) {
3894 client = QLIST_FIRST(&map_client_list);
3895 client->callback(client->opaque);
3896 cpu_unregister_map_client(client);
3897 }
3898 }
3899
3900 /* Map a physical memory region into a host virtual address.
3901 * May map a subset of the requested range, given by and returned in *plen.
3902 * May return NULL if resources needed to perform the mapping are exhausted.
3903 * Use only for reads OR writes - not for read-modify-write operations.
3904 * Use cpu_register_map_client() to know when retrying the map operation is
3905 * likely to succeed.
3906 */
3907 void *cpu_physical_memory_map(target_phys_addr_t addr,
3908 target_phys_addr_t *plen,
3909 int is_write)
3910 {
3911 target_phys_addr_t len = *plen;
3912 target_phys_addr_t done = 0;
3913 int l;
3914 uint8_t *ret = NULL;
3915 uint8_t *ptr;
3916 target_phys_addr_t page;
3917 unsigned long pd;
3918 PhysPageDesc *p;
3919 unsigned long addr1;
3920
3921 while (len > 0) {
3922 page = addr & TARGET_PAGE_MASK;
3923 l = (page + TARGET_PAGE_SIZE) - addr;
3924 if (l > len)
3925 l = len;
3926 p = phys_page_find(page >> TARGET_PAGE_BITS);
3927 if (!p) {
3928 pd = IO_MEM_UNASSIGNED;
3929 } else {
3930 pd = p->phys_offset;
3931 }
3932
3933 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3934 if (done || bounce.buffer) {
3935 break;
3936 }
3937 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3938 bounce.addr = addr;
3939 bounce.len = l;
3940 if (!is_write) {
3941 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3942 }
3943 ptr = bounce.buffer;
3944 } else {
3945 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3946 ptr = qemu_get_ram_ptr(addr1);
3947 }
3948 if (!done) {
3949 ret = ptr;
3950 } else if (ret + done != ptr) {
3951 break;
3952 }
3953
3954 len -= l;
3955 addr += l;
3956 done += l;
3957 }
3958 *plen = done;
3959 return ret;
3960 }
3961
3962 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3963 * Will also mark the memory as dirty if is_write == 1. access_len gives
3964 * the amount of memory that was actually read or written by the caller.
3965 */
3966 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3967 int is_write, target_phys_addr_t access_len)
3968 {
3969 if (buffer != bounce.buffer) {
3970 if (is_write) {
3971 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
3972 while (access_len) {
3973 unsigned l;
3974 l = TARGET_PAGE_SIZE;
3975 if (l > access_len)
3976 l = access_len;
3977 if (!cpu_physical_memory_is_dirty(addr1)) {
3978 /* invalidate code */
3979 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3980 /* set dirty bit */
3981 cpu_physical_memory_set_dirty_flags(
3982 addr1, (0xff & ~CODE_DIRTY_FLAG));
3983 }
3984 addr1 += l;
3985 access_len -= l;
3986 }
3987 }
3988 return;
3989 }
3990 if (is_write) {
3991 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3992 }
3993 qemu_vfree(bounce.buffer);
3994 bounce.buffer = NULL;
3995 cpu_notify_map_clients();
3996 }
3997
3998 /* warning: addr must be aligned */
3999 uint32_t ldl_phys(target_phys_addr_t addr)
4000 {
4001 int io_index;
4002 uint8_t *ptr;
4003 uint32_t val;
4004 unsigned long pd;
4005 PhysPageDesc *p;
4006
4007 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4008 if (!p) {
4009 pd = IO_MEM_UNASSIGNED;
4010 } else {
4011 pd = p->phys_offset;
4012 }
4013
4014 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4015 !(pd & IO_MEM_ROMD)) {
4016 /* I/O case */
4017 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4018 if (p)
4019 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4020 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4021 } else {
4022 /* RAM case */
4023 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4024 (addr & ~TARGET_PAGE_MASK);
4025 val = ldl_p(ptr);
4026 }
4027 return val;
4028 }
4029
4030 /* warning: addr must be aligned */
4031 uint64_t ldq_phys(target_phys_addr_t addr)
4032 {
4033 int io_index;
4034 uint8_t *ptr;
4035 uint64_t val;
4036 unsigned long pd;
4037 PhysPageDesc *p;
4038
4039 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4040 if (!p) {
4041 pd = IO_MEM_UNASSIGNED;
4042 } else {
4043 pd = p->phys_offset;
4044 }
4045
4046 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4047 !(pd & IO_MEM_ROMD)) {
4048 /* I/O case */
4049 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4050 if (p)
4051 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4052 #ifdef TARGET_WORDS_BIGENDIAN
4053 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
4054 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
4055 #else
4056 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4057 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
4058 #endif
4059 } else {
4060 /* RAM case */
4061 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4062 (addr & ~TARGET_PAGE_MASK);
4063 val = ldq_p(ptr);
4064 }
4065 return val;
4066 }
4067
4068 /* XXX: optimize */
4069 uint32_t ldub_phys(target_phys_addr_t addr)
4070 {
4071 uint8_t val;
4072 cpu_physical_memory_read(addr, &val, 1);
4073 return val;
4074 }
4075
4076 /* warning: addr must be aligned */
4077 uint32_t lduw_phys(target_phys_addr_t addr)
4078 {
4079 int io_index;
4080 uint8_t *ptr;
4081 uint64_t val;
4082 unsigned long pd;
4083 PhysPageDesc *p;
4084
4085 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4086 if (!p) {
4087 pd = IO_MEM_UNASSIGNED;
4088 } else {
4089 pd = p->phys_offset;
4090 }
4091
4092 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4093 !(pd & IO_MEM_ROMD)) {
4094 /* I/O case */
4095 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4096 if (p)
4097 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4098 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
4099 } else {
4100 /* RAM case */
4101 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4102 (addr & ~TARGET_PAGE_MASK);
4103 val = lduw_p(ptr);
4104 }
4105 return val;
4106 }
4107
4108 /* warning: addr must be aligned. The ram page is not masked as dirty
4109 and the code inside is not invalidated. It is useful if the dirty
4110 bits are used to track modified PTEs */
4111 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
4112 {
4113 int io_index;
4114 uint8_t *ptr;
4115 unsigned long pd;
4116 PhysPageDesc *p;
4117
4118 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4119 if (!p) {
4120 pd = IO_MEM_UNASSIGNED;
4121 } else {
4122 pd = p->phys_offset;
4123 }
4124
4125 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4126 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4127 if (p)
4128 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4129 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4130 } else {
4131 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4132 ptr = qemu_get_ram_ptr(addr1);
4133 stl_p(ptr, val);
4134
4135 if (unlikely(in_migration)) {
4136 if (!cpu_physical_memory_is_dirty(addr1)) {
4137 /* invalidate code */
4138 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4139 /* set dirty bit */
4140 cpu_physical_memory_set_dirty_flags(
4141 addr1, (0xff & ~CODE_DIRTY_FLAG));
4142 }
4143 }
4144 }
4145 }
4146
4147 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
4148 {
4149 int io_index;
4150 uint8_t *ptr;
4151 unsigned long pd;
4152 PhysPageDesc *p;
4153
4154 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4155 if (!p) {
4156 pd = IO_MEM_UNASSIGNED;
4157 } else {
4158 pd = p->phys_offset;
4159 }
4160
4161 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4162 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4163 if (p)
4164 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4165 #ifdef TARGET_WORDS_BIGENDIAN
4166 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
4167 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
4168 #else
4169 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4170 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
4171 #endif
4172 } else {
4173 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4174 (addr & ~TARGET_PAGE_MASK);
4175 stq_p(ptr, val);
4176 }
4177 }
4178
4179 /* warning: addr must be aligned */
4180 void stl_phys(target_phys_addr_t addr, uint32_t val)
4181 {
4182 int io_index;
4183 uint8_t *ptr;
4184 unsigned long pd;
4185 PhysPageDesc *p;
4186
4187 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4188 if (!p) {
4189 pd = IO_MEM_UNASSIGNED;
4190 } else {
4191 pd = p->phys_offset;
4192 }
4193
4194 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4195 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4196 if (p)
4197 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4198 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4199 } else {
4200 unsigned long addr1;
4201 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4202 /* RAM case */
4203 ptr = qemu_get_ram_ptr(addr1);
4204 stl_p(ptr, val);
4205 if (!cpu_physical_memory_is_dirty(addr1)) {
4206 /* invalidate code */
4207 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4208 /* set dirty bit */
4209 cpu_physical_memory_set_dirty_flags(addr1,
4210 (0xff & ~CODE_DIRTY_FLAG));
4211 }
4212 }
4213 }
4214
4215 /* XXX: optimize */
4216 void stb_phys(target_phys_addr_t addr, uint32_t val)
4217 {
4218 uint8_t v = val;
4219 cpu_physical_memory_write(addr, &v, 1);
4220 }
4221
4222 /* warning: addr must be aligned */
4223 void stw_phys(target_phys_addr_t addr, uint32_t val)
4224 {
4225 int io_index;
4226 uint8_t *ptr;
4227 unsigned long pd;
4228 PhysPageDesc *p;
4229
4230 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4231 if (!p) {
4232 pd = IO_MEM_UNASSIGNED;
4233 } else {
4234 pd = p->phys_offset;
4235 }
4236
4237 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4238 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4239 if (p)
4240 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4241 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
4242 } else {
4243 unsigned long addr1;
4244 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4245 /* RAM case */
4246 ptr = qemu_get_ram_ptr(addr1);
4247 stw_p(ptr, val);
4248 if (!cpu_physical_memory_is_dirty(addr1)) {
4249 /* invalidate code */
4250 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4251 /* set dirty bit */
4252 cpu_physical_memory_set_dirty_flags(addr1,
4253 (0xff & ~CODE_DIRTY_FLAG));
4254 }
4255 }
4256 }
4257
4258 /* XXX: optimize */
4259 void stq_phys(target_phys_addr_t addr, uint64_t val)
4260 {
4261 val = tswap64(val);
4262 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
4263 }
4264
4265 /* virtual memory access for debug (includes writing to ROM) */
4266 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
4267 uint8_t *buf, int len, int is_write)
4268 {
4269 int l;
4270 target_phys_addr_t phys_addr;
4271 target_ulong page;
4272
4273 while (len > 0) {
4274 page = addr & TARGET_PAGE_MASK;
4275 phys_addr = cpu_get_phys_page_debug(env, page);
4276 /* if no physical page mapped, return an error */
4277 if (phys_addr == -1)
4278 return -1;
4279 l = (page + TARGET_PAGE_SIZE) - addr;
4280 if (l > len)
4281 l = len;
4282 phys_addr += (addr & ~TARGET_PAGE_MASK);
4283 if (is_write)
4284 cpu_physical_memory_write_rom(phys_addr, buf, l);
4285 else
4286 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4287 len -= l;
4288 buf += l;
4289 addr += l;
4290 }
4291 return 0;
4292 }
4293 #endif
4294
4295 /* in deterministic execution mode, instructions doing device I/Os
4296 must be at the end of the TB */
4297 void cpu_io_recompile(CPUState *env, void *retaddr)
4298 {
4299 TranslationBlock *tb;
4300 uint32_t n, cflags;
4301 target_ulong pc, cs_base;
4302 uint64_t flags;
4303
4304 tb = tb_find_pc((unsigned long)retaddr);
4305 if (!tb) {
4306 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4307 retaddr);
4308 }
4309 n = env->icount_decr.u16.low + tb->icount;
4310 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
4311 /* Calculate how many instructions had been executed before the fault
4312 occurred. */
4313 n = n - env->icount_decr.u16.low;
4314 /* Generate a new TB ending on the I/O insn. */
4315 n++;
4316 /* On MIPS and SH, delay slot instructions can only be restarted if
4317 they were already the first instruction in the TB. If this is not
4318 the first instruction in a TB then re-execute the preceding
4319 branch. */
4320 #if defined(TARGET_MIPS)
4321 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4322 env->active_tc.PC -= 4;
4323 env->icount_decr.u16.low++;
4324 env->hflags &= ~MIPS_HFLAG_BMASK;
4325 }
4326 #elif defined(TARGET_SH4)
4327 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4328 && n > 1) {
4329 env->pc -= 2;
4330 env->icount_decr.u16.low++;
4331 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4332 }
4333 #endif
4334 /* This should never happen. */
4335 if (n > CF_COUNT_MASK)
4336 cpu_abort(env, "TB too big during recompile");
4337
4338 cflags = n | CF_LAST_IO;
4339 pc = tb->pc;
4340 cs_base = tb->cs_base;
4341 flags = tb->flags;
4342 tb_phys_invalidate(tb, -1);
4343 /* FIXME: In theory this could raise an exception. In practice
4344 we have already translated the block once so it's probably ok. */
4345 tb_gen_code(env, pc, cs_base, flags, cflags);
4346 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4347 the first in the TB) then we end up generating a whole new TB and
4348 repeating the fault, which is horribly inefficient.
4349 Better would be to execute just this insn uncached, or generate a
4350 second new TB. */
4351 cpu_resume_from_signal(env, NULL);
4352 }
4353
4354 #if !defined(CONFIG_USER_ONLY)
4355
4356 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4357 {
4358 int i, target_code_size, max_target_code_size;
4359 int direct_jmp_count, direct_jmp2_count, cross_page;
4360 TranslationBlock *tb;
4361
4362 target_code_size = 0;
4363 max_target_code_size = 0;
4364 cross_page = 0;
4365 direct_jmp_count = 0;
4366 direct_jmp2_count = 0;
4367 for(i = 0; i < nb_tbs; i++) {
4368 tb = &tbs[i];
4369 target_code_size += tb->size;
4370 if (tb->size > max_target_code_size)
4371 max_target_code_size = tb->size;
4372 if (tb->page_addr[1] != -1)
4373 cross_page++;
4374 if (tb->tb_next_offset[0] != 0xffff) {
4375 direct_jmp_count++;
4376 if (tb->tb_next_offset[1] != 0xffff) {
4377 direct_jmp2_count++;
4378 }
4379 }
4380 }
4381 /* XXX: avoid using doubles ? */
4382 cpu_fprintf(f, "Translation buffer state:\n");
4383 cpu_fprintf(f, "gen code size %td/%ld\n",
4384 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4385 cpu_fprintf(f, "TB count %d/%d\n",
4386 nb_tbs, code_gen_max_blocks);
4387 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4388 nb_tbs ? target_code_size / nb_tbs : 0,
4389 max_target_code_size);
4390 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4391 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4392 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4393 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4394 cross_page,
4395 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4396 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4397 direct_jmp_count,
4398 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4399 direct_jmp2_count,
4400 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4401 cpu_fprintf(f, "\nStatistics:\n");
4402 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4403 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4404 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4405 tcg_dump_info(f, cpu_fprintf);
4406 }
4407
4408 #define MMUSUFFIX _cmmu
4409 #define GETPC() NULL
4410 #define env cpu_single_env
4411 #define SOFTMMU_CODE_ACCESS
4412
4413 #define SHIFT 0
4414 #include "softmmu_template.h"
4415
4416 #define SHIFT 1
4417 #include "softmmu_template.h"
4418
4419 #define SHIFT 2
4420 #include "softmmu_template.h"
4421
4422 #define SHIFT 3
4423 #include "softmmu_template.h"
4424
4425 #undef env
4426
4427 #endif