]> git.proxmox.com Git - qemu.git/blob - exec.c
vnc: rename vnc-encoding-* vnc-enc-*
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
33
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "tcg.h"
38 #include "hw/hw.h"
39 #include "hw/qdev.h"
40 #include "osdep.h"
41 #include "kvm.h"
42 #include "qemu-timer.h"
43 #if defined(CONFIG_USER_ONLY)
44 #include <qemu.h>
45 #include <signal.h>
46 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
47 #include <sys/param.h>
48 #if __FreeBSD_version >= 700104
49 #define HAVE_KINFO_GETVMMAP
50 #define sigqueue sigqueue_freebsd /* avoid redefinition */
51 #include <sys/time.h>
52 #include <sys/proc.h>
53 #include <machine/profile.h>
54 #define _KERNEL
55 #include <sys/user.h>
56 #undef _KERNEL
57 #undef sigqueue
58 #include <libutil.h>
59 #endif
60 #endif
61 #endif
62
63 //#define DEBUG_TB_INVALIDATE
64 //#define DEBUG_FLUSH
65 //#define DEBUG_TLB
66 //#define DEBUG_UNASSIGNED
67
68 /* make various TB consistency checks */
69 //#define DEBUG_TB_CHECK
70 //#define DEBUG_TLB_CHECK
71
72 //#define DEBUG_IOPORT
73 //#define DEBUG_SUBPAGE
74
75 #if !defined(CONFIG_USER_ONLY)
76 /* TB consistency checks only implemented for usermode emulation. */
77 #undef DEBUG_TB_CHECK
78 #endif
79
80 #define SMC_BITMAP_USE_THRESHOLD 10
81
82 static TranslationBlock *tbs;
83 static int code_gen_max_blocks;
84 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85 static int nb_tbs;
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
88
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32)
97 /* Maximum alignment for Win32 is 16. */
98 #define code_gen_section \
99 __attribute__((aligned (16)))
100 #else
101 #define code_gen_section \
102 __attribute__((aligned (32)))
103 #endif
104
105 uint8_t code_gen_prologue[1024] code_gen_section;
106 static uint8_t *code_gen_buffer;
107 static unsigned long code_gen_buffer_size;
108 /* threshold to flush the translated code buffer */
109 static unsigned long code_gen_buffer_max_size;
110 static uint8_t *code_gen_ptr;
111
112 #if !defined(CONFIG_USER_ONLY)
113 int phys_ram_fd;
114 static int in_migration;
115
116 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
117 #endif
118
119 CPUState *first_cpu;
120 /* current CPU in the current thread. It is only valid inside
121 cpu_exec() */
122 CPUState *cpu_single_env;
123 /* 0 = Do not count executed instructions.
124 1 = Precise instruction counting.
125 2 = Adaptive rate instruction counting. */
126 int use_icount = 0;
127 /* Current instruction counter. While executing translated code this may
128 include some instructions that have not yet been executed. */
129 int64_t qemu_icount;
130
131 typedef struct PageDesc {
132 /* list of TBs intersecting this ram page */
133 TranslationBlock *first_tb;
134 /* in order to optimize self modifying code, we count the number
135 of lookups we do to a given page to use a bitmap */
136 unsigned int code_write_count;
137 uint8_t *code_bitmap;
138 #if defined(CONFIG_USER_ONLY)
139 unsigned long flags;
140 #endif
141 } PageDesc;
142
143 /* In system mode we want L1_MAP to be based on ram offsets,
144 while in user mode we want it to be based on virtual addresses. */
145 #if !defined(CONFIG_USER_ONLY)
146 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
147 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
148 #else
149 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
150 #endif
151 #else
152 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
153 #endif
154
155 /* Size of the L2 (and L3, etc) page tables. */
156 #define L2_BITS 10
157 #define L2_SIZE (1 << L2_BITS)
158
159 /* The bits remaining after N lower levels of page tables. */
160 #define P_L1_BITS_REM \
161 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
162 #define V_L1_BITS_REM \
163 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
164
165 /* Size of the L1 page table. Avoid silly small sizes. */
166 #if P_L1_BITS_REM < 4
167 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
168 #else
169 #define P_L1_BITS P_L1_BITS_REM
170 #endif
171
172 #if V_L1_BITS_REM < 4
173 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
174 #else
175 #define V_L1_BITS V_L1_BITS_REM
176 #endif
177
178 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
179 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
180
181 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
182 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
183
184 unsigned long qemu_real_host_page_size;
185 unsigned long qemu_host_page_bits;
186 unsigned long qemu_host_page_size;
187 unsigned long qemu_host_page_mask;
188
189 /* This is a multi-level map on the virtual address space.
190 The bottom level has pointers to PageDesc. */
191 static void *l1_map[V_L1_SIZE];
192
193 #if !defined(CONFIG_USER_ONLY)
194 typedef struct PhysPageDesc {
195 /* offset in host memory of the page + io_index in the low bits */
196 ram_addr_t phys_offset;
197 ram_addr_t region_offset;
198 } PhysPageDesc;
199
200 /* This is a multi-level map on the physical address space.
201 The bottom level has pointers to PhysPageDesc. */
202 static void *l1_phys_map[P_L1_SIZE];
203
204 static void io_mem_init(void);
205
206 /* io memory support */
207 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
208 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
209 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
210 static char io_mem_used[IO_MEM_NB_ENTRIES];
211 static int io_mem_watch;
212 #endif
213
214 /* log support */
215 #ifdef WIN32
216 static const char *logfilename = "qemu.log";
217 #else
218 static const char *logfilename = "/tmp/qemu.log";
219 #endif
220 FILE *logfile;
221 int loglevel;
222 static int log_append = 0;
223
224 /* statistics */
225 #if !defined(CONFIG_USER_ONLY)
226 static int tlb_flush_count;
227 #endif
228 static int tb_flush_count;
229 static int tb_phys_invalidate_count;
230
231 #ifdef _WIN32
232 static void map_exec(void *addr, long size)
233 {
234 DWORD old_protect;
235 VirtualProtect(addr, size,
236 PAGE_EXECUTE_READWRITE, &old_protect);
237
238 }
239 #else
240 static void map_exec(void *addr, long size)
241 {
242 unsigned long start, end, page_size;
243
244 page_size = getpagesize();
245 start = (unsigned long)addr;
246 start &= ~(page_size - 1);
247
248 end = (unsigned long)addr + size;
249 end += page_size - 1;
250 end &= ~(page_size - 1);
251
252 mprotect((void *)start, end - start,
253 PROT_READ | PROT_WRITE | PROT_EXEC);
254 }
255 #endif
256
257 static void page_init(void)
258 {
259 /* NOTE: we can always suppose that qemu_host_page_size >=
260 TARGET_PAGE_SIZE */
261 #ifdef _WIN32
262 {
263 SYSTEM_INFO system_info;
264
265 GetSystemInfo(&system_info);
266 qemu_real_host_page_size = system_info.dwPageSize;
267 }
268 #else
269 qemu_real_host_page_size = getpagesize();
270 #endif
271 if (qemu_host_page_size == 0)
272 qemu_host_page_size = qemu_real_host_page_size;
273 if (qemu_host_page_size < TARGET_PAGE_SIZE)
274 qemu_host_page_size = TARGET_PAGE_SIZE;
275 qemu_host_page_bits = 0;
276 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
277 qemu_host_page_bits++;
278 qemu_host_page_mask = ~(qemu_host_page_size - 1);
279
280 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
281 {
282 #ifdef HAVE_KINFO_GETVMMAP
283 struct kinfo_vmentry *freep;
284 int i, cnt;
285
286 freep = kinfo_getvmmap(getpid(), &cnt);
287 if (freep) {
288 mmap_lock();
289 for (i = 0; i < cnt; i++) {
290 unsigned long startaddr, endaddr;
291
292 startaddr = freep[i].kve_start;
293 endaddr = freep[i].kve_end;
294 if (h2g_valid(startaddr)) {
295 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
296
297 if (h2g_valid(endaddr)) {
298 endaddr = h2g(endaddr);
299 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
300 } else {
301 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
302 endaddr = ~0ul;
303 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
304 #endif
305 }
306 }
307 }
308 free(freep);
309 mmap_unlock();
310 }
311 #else
312 FILE *f;
313
314 last_brk = (unsigned long)sbrk(0);
315
316 f = fopen("/compat/linux/proc/self/maps", "r");
317 if (f) {
318 mmap_lock();
319
320 do {
321 unsigned long startaddr, endaddr;
322 int n;
323
324 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
325
326 if (n == 2 && h2g_valid(startaddr)) {
327 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
328
329 if (h2g_valid(endaddr)) {
330 endaddr = h2g(endaddr);
331 } else {
332 endaddr = ~0ul;
333 }
334 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
335 }
336 } while (!feof(f));
337
338 fclose(f);
339 mmap_unlock();
340 }
341 #endif
342 }
343 #endif
344 }
345
346 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
347 {
348 PageDesc *pd;
349 void **lp;
350 int i;
351
352 #if defined(CONFIG_USER_ONLY)
353 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
354 # define ALLOC(P, SIZE) \
355 do { \
356 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
357 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
358 } while (0)
359 #else
360 # define ALLOC(P, SIZE) \
361 do { P = qemu_mallocz(SIZE); } while (0)
362 #endif
363
364 /* Level 1. Always allocated. */
365 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
366
367 /* Level 2..N-1. */
368 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
369 void **p = *lp;
370
371 if (p == NULL) {
372 if (!alloc) {
373 return NULL;
374 }
375 ALLOC(p, sizeof(void *) * L2_SIZE);
376 *lp = p;
377 }
378
379 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
380 }
381
382 pd = *lp;
383 if (pd == NULL) {
384 if (!alloc) {
385 return NULL;
386 }
387 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
388 *lp = pd;
389 }
390
391 #undef ALLOC
392
393 return pd + (index & (L2_SIZE - 1));
394 }
395
396 static inline PageDesc *page_find(tb_page_addr_t index)
397 {
398 return page_find_alloc(index, 0);
399 }
400
401 #if !defined(CONFIG_USER_ONLY)
402 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
403 {
404 PhysPageDesc *pd;
405 void **lp;
406 int i;
407
408 /* Level 1. Always allocated. */
409 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
410
411 /* Level 2..N-1. */
412 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
413 void **p = *lp;
414 if (p == NULL) {
415 if (!alloc) {
416 return NULL;
417 }
418 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
419 }
420 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
421 }
422
423 pd = *lp;
424 if (pd == NULL) {
425 int i;
426
427 if (!alloc) {
428 return NULL;
429 }
430
431 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
432
433 for (i = 0; i < L2_SIZE; i++) {
434 pd[i].phys_offset = IO_MEM_UNASSIGNED;
435 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
436 }
437 }
438
439 return pd + (index & (L2_SIZE - 1));
440 }
441
442 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
443 {
444 return phys_page_find_alloc(index, 0);
445 }
446
447 static void tlb_protect_code(ram_addr_t ram_addr);
448 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
449 target_ulong vaddr);
450 #define mmap_lock() do { } while(0)
451 #define mmap_unlock() do { } while(0)
452 #endif
453
454 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
455
456 #if defined(CONFIG_USER_ONLY)
457 /* Currently it is not recommended to allocate big chunks of data in
458 user mode. It will change when a dedicated libc will be used */
459 #define USE_STATIC_CODE_GEN_BUFFER
460 #endif
461
462 #ifdef USE_STATIC_CODE_GEN_BUFFER
463 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
464 __attribute__((aligned (CODE_GEN_ALIGN)));
465 #endif
466
467 static void code_gen_alloc(unsigned long tb_size)
468 {
469 #ifdef USE_STATIC_CODE_GEN_BUFFER
470 code_gen_buffer = static_code_gen_buffer;
471 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
472 map_exec(code_gen_buffer, code_gen_buffer_size);
473 #else
474 code_gen_buffer_size = tb_size;
475 if (code_gen_buffer_size == 0) {
476 #if defined(CONFIG_USER_ONLY)
477 /* in user mode, phys_ram_size is not meaningful */
478 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
479 #else
480 /* XXX: needs adjustments */
481 code_gen_buffer_size = (unsigned long)(ram_size / 4);
482 #endif
483 }
484 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
485 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
486 /* The code gen buffer location may have constraints depending on
487 the host cpu and OS */
488 #if defined(__linux__)
489 {
490 int flags;
491 void *start = NULL;
492
493 flags = MAP_PRIVATE | MAP_ANONYMOUS;
494 #if defined(__x86_64__)
495 flags |= MAP_32BIT;
496 /* Cannot map more than that */
497 if (code_gen_buffer_size > (800 * 1024 * 1024))
498 code_gen_buffer_size = (800 * 1024 * 1024);
499 #elif defined(__sparc_v9__)
500 // Map the buffer below 2G, so we can use direct calls and branches
501 flags |= MAP_FIXED;
502 start = (void *) 0x60000000UL;
503 if (code_gen_buffer_size > (512 * 1024 * 1024))
504 code_gen_buffer_size = (512 * 1024 * 1024);
505 #elif defined(__arm__)
506 /* Map the buffer below 32M, so we can use direct calls and branches */
507 flags |= MAP_FIXED;
508 start = (void *) 0x01000000UL;
509 if (code_gen_buffer_size > 16 * 1024 * 1024)
510 code_gen_buffer_size = 16 * 1024 * 1024;
511 #elif defined(__s390x__)
512 /* Map the buffer so that we can use direct calls and branches. */
513 /* We have a +- 4GB range on the branches; leave some slop. */
514 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
515 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
516 }
517 start = (void *)0x90000000UL;
518 #endif
519 code_gen_buffer = mmap(start, code_gen_buffer_size,
520 PROT_WRITE | PROT_READ | PROT_EXEC,
521 flags, -1, 0);
522 if (code_gen_buffer == MAP_FAILED) {
523 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
524 exit(1);
525 }
526 }
527 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
528 {
529 int flags;
530 void *addr = NULL;
531 flags = MAP_PRIVATE | MAP_ANONYMOUS;
532 #if defined(__x86_64__)
533 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
534 * 0x40000000 is free */
535 flags |= MAP_FIXED;
536 addr = (void *)0x40000000;
537 /* Cannot map more than that */
538 if (code_gen_buffer_size > (800 * 1024 * 1024))
539 code_gen_buffer_size = (800 * 1024 * 1024);
540 #endif
541 code_gen_buffer = mmap(addr, code_gen_buffer_size,
542 PROT_WRITE | PROT_READ | PROT_EXEC,
543 flags, -1, 0);
544 if (code_gen_buffer == MAP_FAILED) {
545 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
546 exit(1);
547 }
548 }
549 #else
550 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
551 map_exec(code_gen_buffer, code_gen_buffer_size);
552 #endif
553 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
554 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
555 code_gen_buffer_max_size = code_gen_buffer_size -
556 (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
557 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
558 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
559 }
560
561 /* Must be called before using the QEMU cpus. 'tb_size' is the size
562 (in bytes) allocated to the translation buffer. Zero means default
563 size. */
564 void cpu_exec_init_all(unsigned long tb_size)
565 {
566 cpu_gen_init();
567 code_gen_alloc(tb_size);
568 code_gen_ptr = code_gen_buffer;
569 page_init();
570 #if !defined(CONFIG_USER_ONLY)
571 io_mem_init();
572 #endif
573 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
574 /* There's no guest base to take into account, so go ahead and
575 initialize the prologue now. */
576 tcg_prologue_init(&tcg_ctx);
577 #endif
578 }
579
580 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
581
582 static int cpu_common_post_load(void *opaque, int version_id)
583 {
584 CPUState *env = opaque;
585
586 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
587 version_id is increased. */
588 env->interrupt_request &= ~0x01;
589 tlb_flush(env, 1);
590
591 return 0;
592 }
593
594 static const VMStateDescription vmstate_cpu_common = {
595 .name = "cpu_common",
596 .version_id = 1,
597 .minimum_version_id = 1,
598 .minimum_version_id_old = 1,
599 .post_load = cpu_common_post_load,
600 .fields = (VMStateField []) {
601 VMSTATE_UINT32(halted, CPUState),
602 VMSTATE_UINT32(interrupt_request, CPUState),
603 VMSTATE_END_OF_LIST()
604 }
605 };
606 #endif
607
608 CPUState *qemu_get_cpu(int cpu)
609 {
610 CPUState *env = first_cpu;
611
612 while (env) {
613 if (env->cpu_index == cpu)
614 break;
615 env = env->next_cpu;
616 }
617
618 return env;
619 }
620
621 void cpu_exec_init(CPUState *env)
622 {
623 CPUState **penv;
624 int cpu_index;
625
626 #if defined(CONFIG_USER_ONLY)
627 cpu_list_lock();
628 #endif
629 env->next_cpu = NULL;
630 penv = &first_cpu;
631 cpu_index = 0;
632 while (*penv != NULL) {
633 penv = &(*penv)->next_cpu;
634 cpu_index++;
635 }
636 env->cpu_index = cpu_index;
637 env->numa_node = 0;
638 QTAILQ_INIT(&env->breakpoints);
639 QTAILQ_INIT(&env->watchpoints);
640 *penv = env;
641 #if defined(CONFIG_USER_ONLY)
642 cpu_list_unlock();
643 #endif
644 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
645 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
646 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
647 cpu_save, cpu_load, env);
648 #endif
649 }
650
651 static inline void invalidate_page_bitmap(PageDesc *p)
652 {
653 if (p->code_bitmap) {
654 qemu_free(p->code_bitmap);
655 p->code_bitmap = NULL;
656 }
657 p->code_write_count = 0;
658 }
659
660 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
661
662 static void page_flush_tb_1 (int level, void **lp)
663 {
664 int i;
665
666 if (*lp == NULL) {
667 return;
668 }
669 if (level == 0) {
670 PageDesc *pd = *lp;
671 for (i = 0; i < L2_SIZE; ++i) {
672 pd[i].first_tb = NULL;
673 invalidate_page_bitmap(pd + i);
674 }
675 } else {
676 void **pp = *lp;
677 for (i = 0; i < L2_SIZE; ++i) {
678 page_flush_tb_1 (level - 1, pp + i);
679 }
680 }
681 }
682
683 static void page_flush_tb(void)
684 {
685 int i;
686 for (i = 0; i < V_L1_SIZE; i++) {
687 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
688 }
689 }
690
691 /* flush all the translation blocks */
692 /* XXX: tb_flush is currently not thread safe */
693 void tb_flush(CPUState *env1)
694 {
695 CPUState *env;
696 #if defined(DEBUG_FLUSH)
697 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
698 (unsigned long)(code_gen_ptr - code_gen_buffer),
699 nb_tbs, nb_tbs > 0 ?
700 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
701 #endif
702 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
703 cpu_abort(env1, "Internal error: code buffer overflow\n");
704
705 nb_tbs = 0;
706
707 for(env = first_cpu; env != NULL; env = env->next_cpu) {
708 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
709 }
710
711 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
712 page_flush_tb();
713
714 code_gen_ptr = code_gen_buffer;
715 /* XXX: flush processor icache at this point if cache flush is
716 expensive */
717 tb_flush_count++;
718 }
719
720 #ifdef DEBUG_TB_CHECK
721
722 static void tb_invalidate_check(target_ulong address)
723 {
724 TranslationBlock *tb;
725 int i;
726 address &= TARGET_PAGE_MASK;
727 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
728 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
729 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
730 address >= tb->pc + tb->size)) {
731 printf("ERROR invalidate: address=" TARGET_FMT_lx
732 " PC=%08lx size=%04x\n",
733 address, (long)tb->pc, tb->size);
734 }
735 }
736 }
737 }
738
739 /* verify that all the pages have correct rights for code */
740 static void tb_page_check(void)
741 {
742 TranslationBlock *tb;
743 int i, flags1, flags2;
744
745 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
746 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
747 flags1 = page_get_flags(tb->pc);
748 flags2 = page_get_flags(tb->pc + tb->size - 1);
749 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
750 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
751 (long)tb->pc, tb->size, flags1, flags2);
752 }
753 }
754 }
755 }
756
757 #endif
758
759 /* invalidate one TB */
760 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
761 int next_offset)
762 {
763 TranslationBlock *tb1;
764 for(;;) {
765 tb1 = *ptb;
766 if (tb1 == tb) {
767 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
768 break;
769 }
770 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
771 }
772 }
773
774 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
775 {
776 TranslationBlock *tb1;
777 unsigned int n1;
778
779 for(;;) {
780 tb1 = *ptb;
781 n1 = (long)tb1 & 3;
782 tb1 = (TranslationBlock *)((long)tb1 & ~3);
783 if (tb1 == tb) {
784 *ptb = tb1->page_next[n1];
785 break;
786 }
787 ptb = &tb1->page_next[n1];
788 }
789 }
790
791 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
792 {
793 TranslationBlock *tb1, **ptb;
794 unsigned int n1;
795
796 ptb = &tb->jmp_next[n];
797 tb1 = *ptb;
798 if (tb1) {
799 /* find tb(n) in circular list */
800 for(;;) {
801 tb1 = *ptb;
802 n1 = (long)tb1 & 3;
803 tb1 = (TranslationBlock *)((long)tb1 & ~3);
804 if (n1 == n && tb1 == tb)
805 break;
806 if (n1 == 2) {
807 ptb = &tb1->jmp_first;
808 } else {
809 ptb = &tb1->jmp_next[n1];
810 }
811 }
812 /* now we can suppress tb(n) from the list */
813 *ptb = tb->jmp_next[n];
814
815 tb->jmp_next[n] = NULL;
816 }
817 }
818
819 /* reset the jump entry 'n' of a TB so that it is not chained to
820 another TB */
821 static inline void tb_reset_jump(TranslationBlock *tb, int n)
822 {
823 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
824 }
825
826 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
827 {
828 CPUState *env;
829 PageDesc *p;
830 unsigned int h, n1;
831 tb_page_addr_t phys_pc;
832 TranslationBlock *tb1, *tb2;
833
834 /* remove the TB from the hash list */
835 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
836 h = tb_phys_hash_func(phys_pc);
837 tb_remove(&tb_phys_hash[h], tb,
838 offsetof(TranslationBlock, phys_hash_next));
839
840 /* remove the TB from the page list */
841 if (tb->page_addr[0] != page_addr) {
842 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
843 tb_page_remove(&p->first_tb, tb);
844 invalidate_page_bitmap(p);
845 }
846 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
847 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
848 tb_page_remove(&p->first_tb, tb);
849 invalidate_page_bitmap(p);
850 }
851
852 tb_invalidated_flag = 1;
853
854 /* remove the TB from the hash list */
855 h = tb_jmp_cache_hash_func(tb->pc);
856 for(env = first_cpu; env != NULL; env = env->next_cpu) {
857 if (env->tb_jmp_cache[h] == tb)
858 env->tb_jmp_cache[h] = NULL;
859 }
860
861 /* suppress this TB from the two jump lists */
862 tb_jmp_remove(tb, 0);
863 tb_jmp_remove(tb, 1);
864
865 /* suppress any remaining jumps to this TB */
866 tb1 = tb->jmp_first;
867 for(;;) {
868 n1 = (long)tb1 & 3;
869 if (n1 == 2)
870 break;
871 tb1 = (TranslationBlock *)((long)tb1 & ~3);
872 tb2 = tb1->jmp_next[n1];
873 tb_reset_jump(tb1, n1);
874 tb1->jmp_next[n1] = NULL;
875 tb1 = tb2;
876 }
877 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
878
879 tb_phys_invalidate_count++;
880 }
881
882 static inline void set_bits(uint8_t *tab, int start, int len)
883 {
884 int end, mask, end1;
885
886 end = start + len;
887 tab += start >> 3;
888 mask = 0xff << (start & 7);
889 if ((start & ~7) == (end & ~7)) {
890 if (start < end) {
891 mask &= ~(0xff << (end & 7));
892 *tab |= mask;
893 }
894 } else {
895 *tab++ |= mask;
896 start = (start + 8) & ~7;
897 end1 = end & ~7;
898 while (start < end1) {
899 *tab++ = 0xff;
900 start += 8;
901 }
902 if (start < end) {
903 mask = ~(0xff << (end & 7));
904 *tab |= mask;
905 }
906 }
907 }
908
909 static void build_page_bitmap(PageDesc *p)
910 {
911 int n, tb_start, tb_end;
912 TranslationBlock *tb;
913
914 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
915
916 tb = p->first_tb;
917 while (tb != NULL) {
918 n = (long)tb & 3;
919 tb = (TranslationBlock *)((long)tb & ~3);
920 /* NOTE: this is subtle as a TB may span two physical pages */
921 if (n == 0) {
922 /* NOTE: tb_end may be after the end of the page, but
923 it is not a problem */
924 tb_start = tb->pc & ~TARGET_PAGE_MASK;
925 tb_end = tb_start + tb->size;
926 if (tb_end > TARGET_PAGE_SIZE)
927 tb_end = TARGET_PAGE_SIZE;
928 } else {
929 tb_start = 0;
930 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
931 }
932 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
933 tb = tb->page_next[n];
934 }
935 }
936
937 TranslationBlock *tb_gen_code(CPUState *env,
938 target_ulong pc, target_ulong cs_base,
939 int flags, int cflags)
940 {
941 TranslationBlock *tb;
942 uint8_t *tc_ptr;
943 tb_page_addr_t phys_pc, phys_page2;
944 target_ulong virt_page2;
945 int code_gen_size;
946
947 phys_pc = get_page_addr_code(env, pc);
948 tb = tb_alloc(pc);
949 if (!tb) {
950 /* flush must be done */
951 tb_flush(env);
952 /* cannot fail at this point */
953 tb = tb_alloc(pc);
954 /* Don't forget to invalidate previous TB info. */
955 tb_invalidated_flag = 1;
956 }
957 tc_ptr = code_gen_ptr;
958 tb->tc_ptr = tc_ptr;
959 tb->cs_base = cs_base;
960 tb->flags = flags;
961 tb->cflags = cflags;
962 cpu_gen_code(env, tb, &code_gen_size);
963 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
964
965 /* check next page if needed */
966 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
967 phys_page2 = -1;
968 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
969 phys_page2 = get_page_addr_code(env, virt_page2);
970 }
971 tb_link_page(tb, phys_pc, phys_page2);
972 return tb;
973 }
974
975 /* invalidate all TBs which intersect with the target physical page
976 starting in range [start;end[. NOTE: start and end must refer to
977 the same physical page. 'is_cpu_write_access' should be true if called
978 from a real cpu write access: the virtual CPU will exit the current
979 TB if code is modified inside this TB. */
980 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
981 int is_cpu_write_access)
982 {
983 TranslationBlock *tb, *tb_next, *saved_tb;
984 CPUState *env = cpu_single_env;
985 tb_page_addr_t tb_start, tb_end;
986 PageDesc *p;
987 int n;
988 #ifdef TARGET_HAS_PRECISE_SMC
989 int current_tb_not_found = is_cpu_write_access;
990 TranslationBlock *current_tb = NULL;
991 int current_tb_modified = 0;
992 target_ulong current_pc = 0;
993 target_ulong current_cs_base = 0;
994 int current_flags = 0;
995 #endif /* TARGET_HAS_PRECISE_SMC */
996
997 p = page_find(start >> TARGET_PAGE_BITS);
998 if (!p)
999 return;
1000 if (!p->code_bitmap &&
1001 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1002 is_cpu_write_access) {
1003 /* build code bitmap */
1004 build_page_bitmap(p);
1005 }
1006
1007 /* we remove all the TBs in the range [start, end[ */
1008 /* XXX: see if in some cases it could be faster to invalidate all the code */
1009 tb = p->first_tb;
1010 while (tb != NULL) {
1011 n = (long)tb & 3;
1012 tb = (TranslationBlock *)((long)tb & ~3);
1013 tb_next = tb->page_next[n];
1014 /* NOTE: this is subtle as a TB may span two physical pages */
1015 if (n == 0) {
1016 /* NOTE: tb_end may be after the end of the page, but
1017 it is not a problem */
1018 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1019 tb_end = tb_start + tb->size;
1020 } else {
1021 tb_start = tb->page_addr[1];
1022 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1023 }
1024 if (!(tb_end <= start || tb_start >= end)) {
1025 #ifdef TARGET_HAS_PRECISE_SMC
1026 if (current_tb_not_found) {
1027 current_tb_not_found = 0;
1028 current_tb = NULL;
1029 if (env->mem_io_pc) {
1030 /* now we have a real cpu fault */
1031 current_tb = tb_find_pc(env->mem_io_pc);
1032 }
1033 }
1034 if (current_tb == tb &&
1035 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1036 /* If we are modifying the current TB, we must stop
1037 its execution. We could be more precise by checking
1038 that the modification is after the current PC, but it
1039 would require a specialized function to partially
1040 restore the CPU state */
1041
1042 current_tb_modified = 1;
1043 cpu_restore_state(current_tb, env,
1044 env->mem_io_pc, NULL);
1045 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1046 &current_flags);
1047 }
1048 #endif /* TARGET_HAS_PRECISE_SMC */
1049 /* we need to do that to handle the case where a signal
1050 occurs while doing tb_phys_invalidate() */
1051 saved_tb = NULL;
1052 if (env) {
1053 saved_tb = env->current_tb;
1054 env->current_tb = NULL;
1055 }
1056 tb_phys_invalidate(tb, -1);
1057 if (env) {
1058 env->current_tb = saved_tb;
1059 if (env->interrupt_request && env->current_tb)
1060 cpu_interrupt(env, env->interrupt_request);
1061 }
1062 }
1063 tb = tb_next;
1064 }
1065 #if !defined(CONFIG_USER_ONLY)
1066 /* if no code remaining, no need to continue to use slow writes */
1067 if (!p->first_tb) {
1068 invalidate_page_bitmap(p);
1069 if (is_cpu_write_access) {
1070 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1071 }
1072 }
1073 #endif
1074 #ifdef TARGET_HAS_PRECISE_SMC
1075 if (current_tb_modified) {
1076 /* we generate a block containing just the instruction
1077 modifying the memory. It will ensure that it cannot modify
1078 itself */
1079 env->current_tb = NULL;
1080 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1081 cpu_resume_from_signal(env, NULL);
1082 }
1083 #endif
1084 }
1085
1086 /* len must be <= 8 and start must be a multiple of len */
1087 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1088 {
1089 PageDesc *p;
1090 int offset, b;
1091 #if 0
1092 if (1) {
1093 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1094 cpu_single_env->mem_io_vaddr, len,
1095 cpu_single_env->eip,
1096 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1097 }
1098 #endif
1099 p = page_find(start >> TARGET_PAGE_BITS);
1100 if (!p)
1101 return;
1102 if (p->code_bitmap) {
1103 offset = start & ~TARGET_PAGE_MASK;
1104 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1105 if (b & ((1 << len) - 1))
1106 goto do_invalidate;
1107 } else {
1108 do_invalidate:
1109 tb_invalidate_phys_page_range(start, start + len, 1);
1110 }
1111 }
1112
1113 #if !defined(CONFIG_SOFTMMU)
1114 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1115 unsigned long pc, void *puc)
1116 {
1117 TranslationBlock *tb;
1118 PageDesc *p;
1119 int n;
1120 #ifdef TARGET_HAS_PRECISE_SMC
1121 TranslationBlock *current_tb = NULL;
1122 CPUState *env = cpu_single_env;
1123 int current_tb_modified = 0;
1124 target_ulong current_pc = 0;
1125 target_ulong current_cs_base = 0;
1126 int current_flags = 0;
1127 #endif
1128
1129 addr &= TARGET_PAGE_MASK;
1130 p = page_find(addr >> TARGET_PAGE_BITS);
1131 if (!p)
1132 return;
1133 tb = p->first_tb;
1134 #ifdef TARGET_HAS_PRECISE_SMC
1135 if (tb && pc != 0) {
1136 current_tb = tb_find_pc(pc);
1137 }
1138 #endif
1139 while (tb != NULL) {
1140 n = (long)tb & 3;
1141 tb = (TranslationBlock *)((long)tb & ~3);
1142 #ifdef TARGET_HAS_PRECISE_SMC
1143 if (current_tb == tb &&
1144 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1145 /* If we are modifying the current TB, we must stop
1146 its execution. We could be more precise by checking
1147 that the modification is after the current PC, but it
1148 would require a specialized function to partially
1149 restore the CPU state */
1150
1151 current_tb_modified = 1;
1152 cpu_restore_state(current_tb, env, pc, puc);
1153 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1154 &current_flags);
1155 }
1156 #endif /* TARGET_HAS_PRECISE_SMC */
1157 tb_phys_invalidate(tb, addr);
1158 tb = tb->page_next[n];
1159 }
1160 p->first_tb = NULL;
1161 #ifdef TARGET_HAS_PRECISE_SMC
1162 if (current_tb_modified) {
1163 /* we generate a block containing just the instruction
1164 modifying the memory. It will ensure that it cannot modify
1165 itself */
1166 env->current_tb = NULL;
1167 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1168 cpu_resume_from_signal(env, puc);
1169 }
1170 #endif
1171 }
1172 #endif
1173
1174 /* add the tb in the target page and protect it if necessary */
1175 static inline void tb_alloc_page(TranslationBlock *tb,
1176 unsigned int n, tb_page_addr_t page_addr)
1177 {
1178 PageDesc *p;
1179 TranslationBlock *last_first_tb;
1180
1181 tb->page_addr[n] = page_addr;
1182 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1183 tb->page_next[n] = p->first_tb;
1184 last_first_tb = p->first_tb;
1185 p->first_tb = (TranslationBlock *)((long)tb | n);
1186 invalidate_page_bitmap(p);
1187
1188 #if defined(TARGET_HAS_SMC) || 1
1189
1190 #if defined(CONFIG_USER_ONLY)
1191 if (p->flags & PAGE_WRITE) {
1192 target_ulong addr;
1193 PageDesc *p2;
1194 int prot;
1195
1196 /* force the host page as non writable (writes will have a
1197 page fault + mprotect overhead) */
1198 page_addr &= qemu_host_page_mask;
1199 prot = 0;
1200 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1201 addr += TARGET_PAGE_SIZE) {
1202
1203 p2 = page_find (addr >> TARGET_PAGE_BITS);
1204 if (!p2)
1205 continue;
1206 prot |= p2->flags;
1207 p2->flags &= ~PAGE_WRITE;
1208 }
1209 mprotect(g2h(page_addr), qemu_host_page_size,
1210 (prot & PAGE_BITS) & ~PAGE_WRITE);
1211 #ifdef DEBUG_TB_INVALIDATE
1212 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1213 page_addr);
1214 #endif
1215 }
1216 #else
1217 /* if some code is already present, then the pages are already
1218 protected. So we handle the case where only the first TB is
1219 allocated in a physical page */
1220 if (!last_first_tb) {
1221 tlb_protect_code(page_addr);
1222 }
1223 #endif
1224
1225 #endif /* TARGET_HAS_SMC */
1226 }
1227
1228 /* Allocate a new translation block. Flush the translation buffer if
1229 too many translation blocks or too much generated code. */
1230 TranslationBlock *tb_alloc(target_ulong pc)
1231 {
1232 TranslationBlock *tb;
1233
1234 if (nb_tbs >= code_gen_max_blocks ||
1235 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1236 return NULL;
1237 tb = &tbs[nb_tbs++];
1238 tb->pc = pc;
1239 tb->cflags = 0;
1240 return tb;
1241 }
1242
1243 void tb_free(TranslationBlock *tb)
1244 {
1245 /* In practice this is mostly used for single use temporary TB
1246 Ignore the hard cases and just back up if this TB happens to
1247 be the last one generated. */
1248 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1249 code_gen_ptr = tb->tc_ptr;
1250 nb_tbs--;
1251 }
1252 }
1253
1254 /* add a new TB and link it to the physical page tables. phys_page2 is
1255 (-1) to indicate that only one page contains the TB. */
1256 void tb_link_page(TranslationBlock *tb,
1257 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1258 {
1259 unsigned int h;
1260 TranslationBlock **ptb;
1261
1262 /* Grab the mmap lock to stop another thread invalidating this TB
1263 before we are done. */
1264 mmap_lock();
1265 /* add in the physical hash table */
1266 h = tb_phys_hash_func(phys_pc);
1267 ptb = &tb_phys_hash[h];
1268 tb->phys_hash_next = *ptb;
1269 *ptb = tb;
1270
1271 /* add in the page list */
1272 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1273 if (phys_page2 != -1)
1274 tb_alloc_page(tb, 1, phys_page2);
1275 else
1276 tb->page_addr[1] = -1;
1277
1278 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1279 tb->jmp_next[0] = NULL;
1280 tb->jmp_next[1] = NULL;
1281
1282 /* init original jump addresses */
1283 if (tb->tb_next_offset[0] != 0xffff)
1284 tb_reset_jump(tb, 0);
1285 if (tb->tb_next_offset[1] != 0xffff)
1286 tb_reset_jump(tb, 1);
1287
1288 #ifdef DEBUG_TB_CHECK
1289 tb_page_check();
1290 #endif
1291 mmap_unlock();
1292 }
1293
1294 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1295 tb[1].tc_ptr. Return NULL if not found */
1296 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1297 {
1298 int m_min, m_max, m;
1299 unsigned long v;
1300 TranslationBlock *tb;
1301
1302 if (nb_tbs <= 0)
1303 return NULL;
1304 if (tc_ptr < (unsigned long)code_gen_buffer ||
1305 tc_ptr >= (unsigned long)code_gen_ptr)
1306 return NULL;
1307 /* binary search (cf Knuth) */
1308 m_min = 0;
1309 m_max = nb_tbs - 1;
1310 while (m_min <= m_max) {
1311 m = (m_min + m_max) >> 1;
1312 tb = &tbs[m];
1313 v = (unsigned long)tb->tc_ptr;
1314 if (v == tc_ptr)
1315 return tb;
1316 else if (tc_ptr < v) {
1317 m_max = m - 1;
1318 } else {
1319 m_min = m + 1;
1320 }
1321 }
1322 return &tbs[m_max];
1323 }
1324
1325 static void tb_reset_jump_recursive(TranslationBlock *tb);
1326
1327 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1328 {
1329 TranslationBlock *tb1, *tb_next, **ptb;
1330 unsigned int n1;
1331
1332 tb1 = tb->jmp_next[n];
1333 if (tb1 != NULL) {
1334 /* find head of list */
1335 for(;;) {
1336 n1 = (long)tb1 & 3;
1337 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1338 if (n1 == 2)
1339 break;
1340 tb1 = tb1->jmp_next[n1];
1341 }
1342 /* we are now sure now that tb jumps to tb1 */
1343 tb_next = tb1;
1344
1345 /* remove tb from the jmp_first list */
1346 ptb = &tb_next->jmp_first;
1347 for(;;) {
1348 tb1 = *ptb;
1349 n1 = (long)tb1 & 3;
1350 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1351 if (n1 == n && tb1 == tb)
1352 break;
1353 ptb = &tb1->jmp_next[n1];
1354 }
1355 *ptb = tb->jmp_next[n];
1356 tb->jmp_next[n] = NULL;
1357
1358 /* suppress the jump to next tb in generated code */
1359 tb_reset_jump(tb, n);
1360
1361 /* suppress jumps in the tb on which we could have jumped */
1362 tb_reset_jump_recursive(tb_next);
1363 }
1364 }
1365
1366 static void tb_reset_jump_recursive(TranslationBlock *tb)
1367 {
1368 tb_reset_jump_recursive2(tb, 0);
1369 tb_reset_jump_recursive2(tb, 1);
1370 }
1371
1372 #if defined(TARGET_HAS_ICE)
1373 #if defined(CONFIG_USER_ONLY)
1374 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1375 {
1376 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1377 }
1378 #else
1379 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1380 {
1381 target_phys_addr_t addr;
1382 target_ulong pd;
1383 ram_addr_t ram_addr;
1384 PhysPageDesc *p;
1385
1386 addr = cpu_get_phys_page_debug(env, pc);
1387 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1388 if (!p) {
1389 pd = IO_MEM_UNASSIGNED;
1390 } else {
1391 pd = p->phys_offset;
1392 }
1393 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1394 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1395 }
1396 #endif
1397 #endif /* TARGET_HAS_ICE */
1398
1399 #if defined(CONFIG_USER_ONLY)
1400 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1401
1402 {
1403 }
1404
1405 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1406 int flags, CPUWatchpoint **watchpoint)
1407 {
1408 return -ENOSYS;
1409 }
1410 #else
1411 /* Add a watchpoint. */
1412 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1413 int flags, CPUWatchpoint **watchpoint)
1414 {
1415 target_ulong len_mask = ~(len - 1);
1416 CPUWatchpoint *wp;
1417
1418 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1419 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1420 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1421 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1422 return -EINVAL;
1423 }
1424 wp = qemu_malloc(sizeof(*wp));
1425
1426 wp->vaddr = addr;
1427 wp->len_mask = len_mask;
1428 wp->flags = flags;
1429
1430 /* keep all GDB-injected watchpoints in front */
1431 if (flags & BP_GDB)
1432 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1433 else
1434 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1435
1436 tlb_flush_page(env, addr);
1437
1438 if (watchpoint)
1439 *watchpoint = wp;
1440 return 0;
1441 }
1442
1443 /* Remove a specific watchpoint. */
1444 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1445 int flags)
1446 {
1447 target_ulong len_mask = ~(len - 1);
1448 CPUWatchpoint *wp;
1449
1450 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1451 if (addr == wp->vaddr && len_mask == wp->len_mask
1452 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1453 cpu_watchpoint_remove_by_ref(env, wp);
1454 return 0;
1455 }
1456 }
1457 return -ENOENT;
1458 }
1459
1460 /* Remove a specific watchpoint by reference. */
1461 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1462 {
1463 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1464
1465 tlb_flush_page(env, watchpoint->vaddr);
1466
1467 qemu_free(watchpoint);
1468 }
1469
1470 /* Remove all matching watchpoints. */
1471 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1472 {
1473 CPUWatchpoint *wp, *next;
1474
1475 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1476 if (wp->flags & mask)
1477 cpu_watchpoint_remove_by_ref(env, wp);
1478 }
1479 }
1480 #endif
1481
1482 /* Add a breakpoint. */
1483 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1484 CPUBreakpoint **breakpoint)
1485 {
1486 #if defined(TARGET_HAS_ICE)
1487 CPUBreakpoint *bp;
1488
1489 bp = qemu_malloc(sizeof(*bp));
1490
1491 bp->pc = pc;
1492 bp->flags = flags;
1493
1494 /* keep all GDB-injected breakpoints in front */
1495 if (flags & BP_GDB)
1496 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1497 else
1498 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1499
1500 breakpoint_invalidate(env, pc);
1501
1502 if (breakpoint)
1503 *breakpoint = bp;
1504 return 0;
1505 #else
1506 return -ENOSYS;
1507 #endif
1508 }
1509
1510 /* Remove a specific breakpoint. */
1511 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1512 {
1513 #if defined(TARGET_HAS_ICE)
1514 CPUBreakpoint *bp;
1515
1516 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1517 if (bp->pc == pc && bp->flags == flags) {
1518 cpu_breakpoint_remove_by_ref(env, bp);
1519 return 0;
1520 }
1521 }
1522 return -ENOENT;
1523 #else
1524 return -ENOSYS;
1525 #endif
1526 }
1527
1528 /* Remove a specific breakpoint by reference. */
1529 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1530 {
1531 #if defined(TARGET_HAS_ICE)
1532 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1533
1534 breakpoint_invalidate(env, breakpoint->pc);
1535
1536 qemu_free(breakpoint);
1537 #endif
1538 }
1539
1540 /* Remove all matching breakpoints. */
1541 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1542 {
1543 #if defined(TARGET_HAS_ICE)
1544 CPUBreakpoint *bp, *next;
1545
1546 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1547 if (bp->flags & mask)
1548 cpu_breakpoint_remove_by_ref(env, bp);
1549 }
1550 #endif
1551 }
1552
1553 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1554 CPU loop after each instruction */
1555 void cpu_single_step(CPUState *env, int enabled)
1556 {
1557 #if defined(TARGET_HAS_ICE)
1558 if (env->singlestep_enabled != enabled) {
1559 env->singlestep_enabled = enabled;
1560 if (kvm_enabled())
1561 kvm_update_guest_debug(env, 0);
1562 else {
1563 /* must flush all the translated code to avoid inconsistencies */
1564 /* XXX: only flush what is necessary */
1565 tb_flush(env);
1566 }
1567 }
1568 #endif
1569 }
1570
1571 /* enable or disable low levels log */
1572 void cpu_set_log(int log_flags)
1573 {
1574 loglevel = log_flags;
1575 if (loglevel && !logfile) {
1576 logfile = fopen(logfilename, log_append ? "a" : "w");
1577 if (!logfile) {
1578 perror(logfilename);
1579 _exit(1);
1580 }
1581 #if !defined(CONFIG_SOFTMMU)
1582 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1583 {
1584 static char logfile_buf[4096];
1585 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1586 }
1587 #elif !defined(_WIN32)
1588 /* Win32 doesn't support line-buffering and requires size >= 2 */
1589 setvbuf(logfile, NULL, _IOLBF, 0);
1590 #endif
1591 log_append = 1;
1592 }
1593 if (!loglevel && logfile) {
1594 fclose(logfile);
1595 logfile = NULL;
1596 }
1597 }
1598
1599 void cpu_set_log_filename(const char *filename)
1600 {
1601 logfilename = strdup(filename);
1602 if (logfile) {
1603 fclose(logfile);
1604 logfile = NULL;
1605 }
1606 cpu_set_log(loglevel);
1607 }
1608
1609 static void cpu_unlink_tb(CPUState *env)
1610 {
1611 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1612 problem and hope the cpu will stop of its own accord. For userspace
1613 emulation this often isn't actually as bad as it sounds. Often
1614 signals are used primarily to interrupt blocking syscalls. */
1615 TranslationBlock *tb;
1616 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1617
1618 spin_lock(&interrupt_lock);
1619 tb = env->current_tb;
1620 /* if the cpu is currently executing code, we must unlink it and
1621 all the potentially executing TB */
1622 if (tb) {
1623 env->current_tb = NULL;
1624 tb_reset_jump_recursive(tb);
1625 }
1626 spin_unlock(&interrupt_lock);
1627 }
1628
1629 /* mask must never be zero, except for A20 change call */
1630 void cpu_interrupt(CPUState *env, int mask)
1631 {
1632 int old_mask;
1633
1634 old_mask = env->interrupt_request;
1635 env->interrupt_request |= mask;
1636
1637 #ifndef CONFIG_USER_ONLY
1638 /*
1639 * If called from iothread context, wake the target cpu in
1640 * case its halted.
1641 */
1642 if (!qemu_cpu_self(env)) {
1643 qemu_cpu_kick(env);
1644 return;
1645 }
1646 #endif
1647
1648 if (use_icount) {
1649 env->icount_decr.u16.high = 0xffff;
1650 #ifndef CONFIG_USER_ONLY
1651 if (!can_do_io(env)
1652 && (mask & ~old_mask) != 0) {
1653 cpu_abort(env, "Raised interrupt while not in I/O function");
1654 }
1655 #endif
1656 } else {
1657 cpu_unlink_tb(env);
1658 }
1659 }
1660
1661 void cpu_reset_interrupt(CPUState *env, int mask)
1662 {
1663 env->interrupt_request &= ~mask;
1664 }
1665
1666 void cpu_exit(CPUState *env)
1667 {
1668 env->exit_request = 1;
1669 cpu_unlink_tb(env);
1670 }
1671
1672 const CPULogItem cpu_log_items[] = {
1673 { CPU_LOG_TB_OUT_ASM, "out_asm",
1674 "show generated host assembly code for each compiled TB" },
1675 { CPU_LOG_TB_IN_ASM, "in_asm",
1676 "show target assembly code for each compiled TB" },
1677 { CPU_LOG_TB_OP, "op",
1678 "show micro ops for each compiled TB" },
1679 { CPU_LOG_TB_OP_OPT, "op_opt",
1680 "show micro ops "
1681 #ifdef TARGET_I386
1682 "before eflags optimization and "
1683 #endif
1684 "after liveness analysis" },
1685 { CPU_LOG_INT, "int",
1686 "show interrupts/exceptions in short format" },
1687 { CPU_LOG_EXEC, "exec",
1688 "show trace before each executed TB (lots of logs)" },
1689 { CPU_LOG_TB_CPU, "cpu",
1690 "show CPU state before block translation" },
1691 #ifdef TARGET_I386
1692 { CPU_LOG_PCALL, "pcall",
1693 "show protected mode far calls/returns/exceptions" },
1694 { CPU_LOG_RESET, "cpu_reset",
1695 "show CPU state before CPU resets" },
1696 #endif
1697 #ifdef DEBUG_IOPORT
1698 { CPU_LOG_IOPORT, "ioport",
1699 "show all i/o ports accesses" },
1700 #endif
1701 { 0, NULL, NULL },
1702 };
1703
1704 #ifndef CONFIG_USER_ONLY
1705 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1706 = QLIST_HEAD_INITIALIZER(memory_client_list);
1707
1708 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1709 ram_addr_t size,
1710 ram_addr_t phys_offset)
1711 {
1712 CPUPhysMemoryClient *client;
1713 QLIST_FOREACH(client, &memory_client_list, list) {
1714 client->set_memory(client, start_addr, size, phys_offset);
1715 }
1716 }
1717
1718 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1719 target_phys_addr_t end)
1720 {
1721 CPUPhysMemoryClient *client;
1722 QLIST_FOREACH(client, &memory_client_list, list) {
1723 int r = client->sync_dirty_bitmap(client, start, end);
1724 if (r < 0)
1725 return r;
1726 }
1727 return 0;
1728 }
1729
1730 static int cpu_notify_migration_log(int enable)
1731 {
1732 CPUPhysMemoryClient *client;
1733 QLIST_FOREACH(client, &memory_client_list, list) {
1734 int r = client->migration_log(client, enable);
1735 if (r < 0)
1736 return r;
1737 }
1738 return 0;
1739 }
1740
1741 static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1742 int level, void **lp)
1743 {
1744 int i;
1745
1746 if (*lp == NULL) {
1747 return;
1748 }
1749 if (level == 0) {
1750 PhysPageDesc *pd = *lp;
1751 for (i = 0; i < L2_SIZE; ++i) {
1752 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1753 client->set_memory(client, pd[i].region_offset,
1754 TARGET_PAGE_SIZE, pd[i].phys_offset);
1755 }
1756 }
1757 } else {
1758 void **pp = *lp;
1759 for (i = 0; i < L2_SIZE; ++i) {
1760 phys_page_for_each_1(client, level - 1, pp + i);
1761 }
1762 }
1763 }
1764
1765 static void phys_page_for_each(CPUPhysMemoryClient *client)
1766 {
1767 int i;
1768 for (i = 0; i < P_L1_SIZE; ++i) {
1769 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1770 l1_phys_map + 1);
1771 }
1772 }
1773
1774 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1775 {
1776 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1777 phys_page_for_each(client);
1778 }
1779
1780 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1781 {
1782 QLIST_REMOVE(client, list);
1783 }
1784 #endif
1785
1786 static int cmp1(const char *s1, int n, const char *s2)
1787 {
1788 if (strlen(s2) != n)
1789 return 0;
1790 return memcmp(s1, s2, n) == 0;
1791 }
1792
1793 /* takes a comma separated list of log masks. Return 0 if error. */
1794 int cpu_str_to_log_mask(const char *str)
1795 {
1796 const CPULogItem *item;
1797 int mask;
1798 const char *p, *p1;
1799
1800 p = str;
1801 mask = 0;
1802 for(;;) {
1803 p1 = strchr(p, ',');
1804 if (!p1)
1805 p1 = p + strlen(p);
1806 if(cmp1(p,p1-p,"all")) {
1807 for(item = cpu_log_items; item->mask != 0; item++) {
1808 mask |= item->mask;
1809 }
1810 } else {
1811 for(item = cpu_log_items; item->mask != 0; item++) {
1812 if (cmp1(p, p1 - p, item->name))
1813 goto found;
1814 }
1815 return 0;
1816 }
1817 found:
1818 mask |= item->mask;
1819 if (*p1 != ',')
1820 break;
1821 p = p1 + 1;
1822 }
1823 return mask;
1824 }
1825
1826 void cpu_abort(CPUState *env, const char *fmt, ...)
1827 {
1828 va_list ap;
1829 va_list ap2;
1830
1831 va_start(ap, fmt);
1832 va_copy(ap2, ap);
1833 fprintf(stderr, "qemu: fatal: ");
1834 vfprintf(stderr, fmt, ap);
1835 fprintf(stderr, "\n");
1836 #ifdef TARGET_I386
1837 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1838 #else
1839 cpu_dump_state(env, stderr, fprintf, 0);
1840 #endif
1841 if (qemu_log_enabled()) {
1842 qemu_log("qemu: fatal: ");
1843 qemu_log_vprintf(fmt, ap2);
1844 qemu_log("\n");
1845 #ifdef TARGET_I386
1846 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1847 #else
1848 log_cpu_state(env, 0);
1849 #endif
1850 qemu_log_flush();
1851 qemu_log_close();
1852 }
1853 va_end(ap2);
1854 va_end(ap);
1855 #if defined(CONFIG_USER_ONLY)
1856 {
1857 struct sigaction act;
1858 sigfillset(&act.sa_mask);
1859 act.sa_handler = SIG_DFL;
1860 sigaction(SIGABRT, &act, NULL);
1861 }
1862 #endif
1863 abort();
1864 }
1865
1866 CPUState *cpu_copy(CPUState *env)
1867 {
1868 CPUState *new_env = cpu_init(env->cpu_model_str);
1869 CPUState *next_cpu = new_env->next_cpu;
1870 int cpu_index = new_env->cpu_index;
1871 #if defined(TARGET_HAS_ICE)
1872 CPUBreakpoint *bp;
1873 CPUWatchpoint *wp;
1874 #endif
1875
1876 memcpy(new_env, env, sizeof(CPUState));
1877
1878 /* Preserve chaining and index. */
1879 new_env->next_cpu = next_cpu;
1880 new_env->cpu_index = cpu_index;
1881
1882 /* Clone all break/watchpoints.
1883 Note: Once we support ptrace with hw-debug register access, make sure
1884 BP_CPU break/watchpoints are handled correctly on clone. */
1885 QTAILQ_INIT(&env->breakpoints);
1886 QTAILQ_INIT(&env->watchpoints);
1887 #if defined(TARGET_HAS_ICE)
1888 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1889 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1890 }
1891 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1892 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1893 wp->flags, NULL);
1894 }
1895 #endif
1896
1897 return new_env;
1898 }
1899
1900 #if !defined(CONFIG_USER_ONLY)
1901
1902 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1903 {
1904 unsigned int i;
1905
1906 /* Discard jump cache entries for any tb which might potentially
1907 overlap the flushed page. */
1908 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1909 memset (&env->tb_jmp_cache[i], 0,
1910 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1911
1912 i = tb_jmp_cache_hash_page(addr);
1913 memset (&env->tb_jmp_cache[i], 0,
1914 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1915 }
1916
1917 static CPUTLBEntry s_cputlb_empty_entry = {
1918 .addr_read = -1,
1919 .addr_write = -1,
1920 .addr_code = -1,
1921 .addend = -1,
1922 };
1923
1924 /* NOTE: if flush_global is true, also flush global entries (not
1925 implemented yet) */
1926 void tlb_flush(CPUState *env, int flush_global)
1927 {
1928 int i;
1929
1930 #if defined(DEBUG_TLB)
1931 printf("tlb_flush:\n");
1932 #endif
1933 /* must reset current TB so that interrupts cannot modify the
1934 links while we are modifying them */
1935 env->current_tb = NULL;
1936
1937 for(i = 0; i < CPU_TLB_SIZE; i++) {
1938 int mmu_idx;
1939 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1940 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1941 }
1942 }
1943
1944 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1945
1946 env->tlb_flush_addr = -1;
1947 env->tlb_flush_mask = 0;
1948 tlb_flush_count++;
1949 }
1950
1951 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1952 {
1953 if (addr == (tlb_entry->addr_read &
1954 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1955 addr == (tlb_entry->addr_write &
1956 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1957 addr == (tlb_entry->addr_code &
1958 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1959 *tlb_entry = s_cputlb_empty_entry;
1960 }
1961 }
1962
1963 void tlb_flush_page(CPUState *env, target_ulong addr)
1964 {
1965 int i;
1966 int mmu_idx;
1967
1968 #if defined(DEBUG_TLB)
1969 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1970 #endif
1971 /* Check if we need to flush due to large pages. */
1972 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1973 #if defined(DEBUG_TLB)
1974 printf("tlb_flush_page: forced full flush ("
1975 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1976 env->tlb_flush_addr, env->tlb_flush_mask);
1977 #endif
1978 tlb_flush(env, 1);
1979 return;
1980 }
1981 /* must reset current TB so that interrupts cannot modify the
1982 links while we are modifying them */
1983 env->current_tb = NULL;
1984
1985 addr &= TARGET_PAGE_MASK;
1986 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1987 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1988 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1989
1990 tlb_flush_jmp_cache(env, addr);
1991 }
1992
1993 /* update the TLBs so that writes to code in the virtual page 'addr'
1994 can be detected */
1995 static void tlb_protect_code(ram_addr_t ram_addr)
1996 {
1997 cpu_physical_memory_reset_dirty(ram_addr,
1998 ram_addr + TARGET_PAGE_SIZE,
1999 CODE_DIRTY_FLAG);
2000 }
2001
2002 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2003 tested for self modifying code */
2004 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
2005 target_ulong vaddr)
2006 {
2007 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
2008 }
2009
2010 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2011 unsigned long start, unsigned long length)
2012 {
2013 unsigned long addr;
2014 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2015 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2016 if ((addr - start) < length) {
2017 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2018 }
2019 }
2020 }
2021
2022 /* Note: start and end must be within the same ram block. */
2023 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2024 int dirty_flags)
2025 {
2026 CPUState *env;
2027 unsigned long length, start1;
2028 int i;
2029
2030 start &= TARGET_PAGE_MASK;
2031 end = TARGET_PAGE_ALIGN(end);
2032
2033 length = end - start;
2034 if (length == 0)
2035 return;
2036 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2037
2038 /* we modify the TLB cache so that the dirty bit will be set again
2039 when accessing the range */
2040 start1 = (unsigned long)qemu_get_ram_ptr(start);
2041 /* Chek that we don't span multiple blocks - this breaks the
2042 address comparisons below. */
2043 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2044 != (end - 1) - start) {
2045 abort();
2046 }
2047
2048 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2049 int mmu_idx;
2050 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2051 for(i = 0; i < CPU_TLB_SIZE; i++)
2052 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2053 start1, length);
2054 }
2055 }
2056 }
2057
2058 int cpu_physical_memory_set_dirty_tracking(int enable)
2059 {
2060 int ret = 0;
2061 in_migration = enable;
2062 ret = cpu_notify_migration_log(!!enable);
2063 return ret;
2064 }
2065
2066 int cpu_physical_memory_get_dirty_tracking(void)
2067 {
2068 return in_migration;
2069 }
2070
2071 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2072 target_phys_addr_t end_addr)
2073 {
2074 int ret;
2075
2076 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2077 return ret;
2078 }
2079
2080 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2081 {
2082 ram_addr_t ram_addr;
2083 void *p;
2084
2085 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2086 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2087 + tlb_entry->addend);
2088 ram_addr = qemu_ram_addr_from_host(p);
2089 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2090 tlb_entry->addr_write |= TLB_NOTDIRTY;
2091 }
2092 }
2093 }
2094
2095 /* update the TLB according to the current state of the dirty bits */
2096 void cpu_tlb_update_dirty(CPUState *env)
2097 {
2098 int i;
2099 int mmu_idx;
2100 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2101 for(i = 0; i < CPU_TLB_SIZE; i++)
2102 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2103 }
2104 }
2105
2106 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2107 {
2108 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2109 tlb_entry->addr_write = vaddr;
2110 }
2111
2112 /* update the TLB corresponding to virtual page vaddr
2113 so that it is no longer dirty */
2114 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2115 {
2116 int i;
2117 int mmu_idx;
2118
2119 vaddr &= TARGET_PAGE_MASK;
2120 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2121 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2122 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2123 }
2124
2125 /* Our TLB does not support large pages, so remember the area covered by
2126 large pages and trigger a full TLB flush if these are invalidated. */
2127 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2128 target_ulong size)
2129 {
2130 target_ulong mask = ~(size - 1);
2131
2132 if (env->tlb_flush_addr == (target_ulong)-1) {
2133 env->tlb_flush_addr = vaddr & mask;
2134 env->tlb_flush_mask = mask;
2135 return;
2136 }
2137 /* Extend the existing region to include the new page.
2138 This is a compromise between unnecessary flushes and the cost
2139 of maintaining a full variable size TLB. */
2140 mask &= env->tlb_flush_mask;
2141 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2142 mask <<= 1;
2143 }
2144 env->tlb_flush_addr &= mask;
2145 env->tlb_flush_mask = mask;
2146 }
2147
2148 /* Add a new TLB entry. At most one entry for a given virtual address
2149 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2150 supplied size is only used by tlb_flush_page. */
2151 void tlb_set_page(CPUState *env, target_ulong vaddr,
2152 target_phys_addr_t paddr, int prot,
2153 int mmu_idx, target_ulong size)
2154 {
2155 PhysPageDesc *p;
2156 unsigned long pd;
2157 unsigned int index;
2158 target_ulong address;
2159 target_ulong code_address;
2160 unsigned long addend;
2161 CPUTLBEntry *te;
2162 CPUWatchpoint *wp;
2163 target_phys_addr_t iotlb;
2164
2165 assert(size >= TARGET_PAGE_SIZE);
2166 if (size != TARGET_PAGE_SIZE) {
2167 tlb_add_large_page(env, vaddr, size);
2168 }
2169 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2170 if (!p) {
2171 pd = IO_MEM_UNASSIGNED;
2172 } else {
2173 pd = p->phys_offset;
2174 }
2175 #if defined(DEBUG_TLB)
2176 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2177 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2178 #endif
2179
2180 address = vaddr;
2181 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2182 /* IO memory case (romd handled later) */
2183 address |= TLB_MMIO;
2184 }
2185 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2186 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2187 /* Normal RAM. */
2188 iotlb = pd & TARGET_PAGE_MASK;
2189 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2190 iotlb |= IO_MEM_NOTDIRTY;
2191 else
2192 iotlb |= IO_MEM_ROM;
2193 } else {
2194 /* IO handlers are currently passed a physical address.
2195 It would be nice to pass an offset from the base address
2196 of that region. This would avoid having to special case RAM,
2197 and avoid full address decoding in every device.
2198 We can't use the high bits of pd for this because
2199 IO_MEM_ROMD uses these as a ram address. */
2200 iotlb = (pd & ~TARGET_PAGE_MASK);
2201 if (p) {
2202 iotlb += p->region_offset;
2203 } else {
2204 iotlb += paddr;
2205 }
2206 }
2207
2208 code_address = address;
2209 /* Make accesses to pages with watchpoints go via the
2210 watchpoint trap routines. */
2211 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2212 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2213 /* Avoid trapping reads of pages with a write breakpoint. */
2214 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2215 iotlb = io_mem_watch + paddr;
2216 address |= TLB_MMIO;
2217 break;
2218 }
2219 }
2220 }
2221
2222 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2223 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2224 te = &env->tlb_table[mmu_idx][index];
2225 te->addend = addend - vaddr;
2226 if (prot & PAGE_READ) {
2227 te->addr_read = address;
2228 } else {
2229 te->addr_read = -1;
2230 }
2231
2232 if (prot & PAGE_EXEC) {
2233 te->addr_code = code_address;
2234 } else {
2235 te->addr_code = -1;
2236 }
2237 if (prot & PAGE_WRITE) {
2238 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2239 (pd & IO_MEM_ROMD)) {
2240 /* Write access calls the I/O callback. */
2241 te->addr_write = address | TLB_MMIO;
2242 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2243 !cpu_physical_memory_is_dirty(pd)) {
2244 te->addr_write = address | TLB_NOTDIRTY;
2245 } else {
2246 te->addr_write = address;
2247 }
2248 } else {
2249 te->addr_write = -1;
2250 }
2251 }
2252
2253 #else
2254
2255 void tlb_flush(CPUState *env, int flush_global)
2256 {
2257 }
2258
2259 void tlb_flush_page(CPUState *env, target_ulong addr)
2260 {
2261 }
2262
2263 /*
2264 * Walks guest process memory "regions" one by one
2265 * and calls callback function 'fn' for each region.
2266 */
2267
2268 struct walk_memory_regions_data
2269 {
2270 walk_memory_regions_fn fn;
2271 void *priv;
2272 unsigned long start;
2273 int prot;
2274 };
2275
2276 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2277 abi_ulong end, int new_prot)
2278 {
2279 if (data->start != -1ul) {
2280 int rc = data->fn(data->priv, data->start, end, data->prot);
2281 if (rc != 0) {
2282 return rc;
2283 }
2284 }
2285
2286 data->start = (new_prot ? end : -1ul);
2287 data->prot = new_prot;
2288
2289 return 0;
2290 }
2291
2292 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2293 abi_ulong base, int level, void **lp)
2294 {
2295 abi_ulong pa;
2296 int i, rc;
2297
2298 if (*lp == NULL) {
2299 return walk_memory_regions_end(data, base, 0);
2300 }
2301
2302 if (level == 0) {
2303 PageDesc *pd = *lp;
2304 for (i = 0; i < L2_SIZE; ++i) {
2305 int prot = pd[i].flags;
2306
2307 pa = base | (i << TARGET_PAGE_BITS);
2308 if (prot != data->prot) {
2309 rc = walk_memory_regions_end(data, pa, prot);
2310 if (rc != 0) {
2311 return rc;
2312 }
2313 }
2314 }
2315 } else {
2316 void **pp = *lp;
2317 for (i = 0; i < L2_SIZE; ++i) {
2318 pa = base | ((abi_ulong)i <<
2319 (TARGET_PAGE_BITS + L2_BITS * level));
2320 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2321 if (rc != 0) {
2322 return rc;
2323 }
2324 }
2325 }
2326
2327 return 0;
2328 }
2329
2330 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2331 {
2332 struct walk_memory_regions_data data;
2333 unsigned long i;
2334
2335 data.fn = fn;
2336 data.priv = priv;
2337 data.start = -1ul;
2338 data.prot = 0;
2339
2340 for (i = 0; i < V_L1_SIZE; i++) {
2341 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2342 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2343 if (rc != 0) {
2344 return rc;
2345 }
2346 }
2347
2348 return walk_memory_regions_end(&data, 0, 0);
2349 }
2350
2351 static int dump_region(void *priv, abi_ulong start,
2352 abi_ulong end, unsigned long prot)
2353 {
2354 FILE *f = (FILE *)priv;
2355
2356 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2357 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2358 start, end, end - start,
2359 ((prot & PAGE_READ) ? 'r' : '-'),
2360 ((prot & PAGE_WRITE) ? 'w' : '-'),
2361 ((prot & PAGE_EXEC) ? 'x' : '-'));
2362
2363 return (0);
2364 }
2365
2366 /* dump memory mappings */
2367 void page_dump(FILE *f)
2368 {
2369 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2370 "start", "end", "size", "prot");
2371 walk_memory_regions(f, dump_region);
2372 }
2373
2374 int page_get_flags(target_ulong address)
2375 {
2376 PageDesc *p;
2377
2378 p = page_find(address >> TARGET_PAGE_BITS);
2379 if (!p)
2380 return 0;
2381 return p->flags;
2382 }
2383
2384 /* Modify the flags of a page and invalidate the code if necessary.
2385 The flag PAGE_WRITE_ORG is positioned automatically depending
2386 on PAGE_WRITE. The mmap_lock should already be held. */
2387 void page_set_flags(target_ulong start, target_ulong end, int flags)
2388 {
2389 target_ulong addr, len;
2390
2391 /* This function should never be called with addresses outside the
2392 guest address space. If this assert fires, it probably indicates
2393 a missing call to h2g_valid. */
2394 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2395 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2396 #endif
2397 assert(start < end);
2398
2399 start = start & TARGET_PAGE_MASK;
2400 end = TARGET_PAGE_ALIGN(end);
2401
2402 if (flags & PAGE_WRITE) {
2403 flags |= PAGE_WRITE_ORG;
2404 }
2405
2406 for (addr = start, len = end - start;
2407 len != 0;
2408 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2409 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2410
2411 /* If the write protection bit is set, then we invalidate
2412 the code inside. */
2413 if (!(p->flags & PAGE_WRITE) &&
2414 (flags & PAGE_WRITE) &&
2415 p->first_tb) {
2416 tb_invalidate_phys_page(addr, 0, NULL);
2417 }
2418 p->flags = flags;
2419 }
2420 }
2421
2422 int page_check_range(target_ulong start, target_ulong len, int flags)
2423 {
2424 PageDesc *p;
2425 target_ulong end;
2426 target_ulong addr;
2427
2428 /* This function should never be called with addresses outside the
2429 guest address space. If this assert fires, it probably indicates
2430 a missing call to h2g_valid. */
2431 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2432 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2433 #endif
2434
2435 if (len == 0) {
2436 return 0;
2437 }
2438 if (start + len - 1 < start) {
2439 /* We've wrapped around. */
2440 return -1;
2441 }
2442
2443 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2444 start = start & TARGET_PAGE_MASK;
2445
2446 for (addr = start, len = end - start;
2447 len != 0;
2448 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2449 p = page_find(addr >> TARGET_PAGE_BITS);
2450 if( !p )
2451 return -1;
2452 if( !(p->flags & PAGE_VALID) )
2453 return -1;
2454
2455 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2456 return -1;
2457 if (flags & PAGE_WRITE) {
2458 if (!(p->flags & PAGE_WRITE_ORG))
2459 return -1;
2460 /* unprotect the page if it was put read-only because it
2461 contains translated code */
2462 if (!(p->flags & PAGE_WRITE)) {
2463 if (!page_unprotect(addr, 0, NULL))
2464 return -1;
2465 }
2466 return 0;
2467 }
2468 }
2469 return 0;
2470 }
2471
2472 /* called from signal handler: invalidate the code and unprotect the
2473 page. Return TRUE if the fault was successfully handled. */
2474 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2475 {
2476 unsigned int prot;
2477 PageDesc *p;
2478 target_ulong host_start, host_end, addr;
2479
2480 /* Technically this isn't safe inside a signal handler. However we
2481 know this only ever happens in a synchronous SEGV handler, so in
2482 practice it seems to be ok. */
2483 mmap_lock();
2484
2485 p = page_find(address >> TARGET_PAGE_BITS);
2486 if (!p) {
2487 mmap_unlock();
2488 return 0;
2489 }
2490
2491 /* if the page was really writable, then we change its
2492 protection back to writable */
2493 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2494 host_start = address & qemu_host_page_mask;
2495 host_end = host_start + qemu_host_page_size;
2496
2497 prot = 0;
2498 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2499 p = page_find(addr >> TARGET_PAGE_BITS);
2500 p->flags |= PAGE_WRITE;
2501 prot |= p->flags;
2502
2503 /* and since the content will be modified, we must invalidate
2504 the corresponding translated code. */
2505 tb_invalidate_phys_page(addr, pc, puc);
2506 #ifdef DEBUG_TB_CHECK
2507 tb_invalidate_check(addr);
2508 #endif
2509 }
2510 mprotect((void *)g2h(host_start), qemu_host_page_size,
2511 prot & PAGE_BITS);
2512
2513 mmap_unlock();
2514 return 1;
2515 }
2516 mmap_unlock();
2517 return 0;
2518 }
2519
2520 static inline void tlb_set_dirty(CPUState *env,
2521 unsigned long addr, target_ulong vaddr)
2522 {
2523 }
2524 #endif /* defined(CONFIG_USER_ONLY) */
2525
2526 #if !defined(CONFIG_USER_ONLY)
2527
2528 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2529 typedef struct subpage_t {
2530 target_phys_addr_t base;
2531 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2532 ram_addr_t region_offset[TARGET_PAGE_SIZE];
2533 } subpage_t;
2534
2535 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2536 ram_addr_t memory, ram_addr_t region_offset);
2537 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2538 ram_addr_t orig_memory,
2539 ram_addr_t region_offset);
2540 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2541 need_subpage) \
2542 do { \
2543 if (addr > start_addr) \
2544 start_addr2 = 0; \
2545 else { \
2546 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2547 if (start_addr2 > 0) \
2548 need_subpage = 1; \
2549 } \
2550 \
2551 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2552 end_addr2 = TARGET_PAGE_SIZE - 1; \
2553 else { \
2554 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2555 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2556 need_subpage = 1; \
2557 } \
2558 } while (0)
2559
2560 /* register physical memory.
2561 For RAM, 'size' must be a multiple of the target page size.
2562 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2563 io memory page. The address used when calling the IO function is
2564 the offset from the start of the region, plus region_offset. Both
2565 start_addr and region_offset are rounded down to a page boundary
2566 before calculating this offset. This should not be a problem unless
2567 the low bits of start_addr and region_offset differ. */
2568 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2569 ram_addr_t size,
2570 ram_addr_t phys_offset,
2571 ram_addr_t region_offset)
2572 {
2573 target_phys_addr_t addr, end_addr;
2574 PhysPageDesc *p;
2575 CPUState *env;
2576 ram_addr_t orig_size = size;
2577 subpage_t *subpage;
2578
2579 cpu_notify_set_memory(start_addr, size, phys_offset);
2580
2581 if (phys_offset == IO_MEM_UNASSIGNED) {
2582 region_offset = start_addr;
2583 }
2584 region_offset &= TARGET_PAGE_MASK;
2585 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2586 end_addr = start_addr + (target_phys_addr_t)size;
2587 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2588 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2589 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2590 ram_addr_t orig_memory = p->phys_offset;
2591 target_phys_addr_t start_addr2, end_addr2;
2592 int need_subpage = 0;
2593
2594 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2595 need_subpage);
2596 if (need_subpage) {
2597 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2598 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2599 &p->phys_offset, orig_memory,
2600 p->region_offset);
2601 } else {
2602 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2603 >> IO_MEM_SHIFT];
2604 }
2605 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2606 region_offset);
2607 p->region_offset = 0;
2608 } else {
2609 p->phys_offset = phys_offset;
2610 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2611 (phys_offset & IO_MEM_ROMD))
2612 phys_offset += TARGET_PAGE_SIZE;
2613 }
2614 } else {
2615 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2616 p->phys_offset = phys_offset;
2617 p->region_offset = region_offset;
2618 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2619 (phys_offset & IO_MEM_ROMD)) {
2620 phys_offset += TARGET_PAGE_SIZE;
2621 } else {
2622 target_phys_addr_t start_addr2, end_addr2;
2623 int need_subpage = 0;
2624
2625 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2626 end_addr2, need_subpage);
2627
2628 if (need_subpage) {
2629 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2630 &p->phys_offset, IO_MEM_UNASSIGNED,
2631 addr & TARGET_PAGE_MASK);
2632 subpage_register(subpage, start_addr2, end_addr2,
2633 phys_offset, region_offset);
2634 p->region_offset = 0;
2635 }
2636 }
2637 }
2638 region_offset += TARGET_PAGE_SIZE;
2639 }
2640
2641 /* since each CPU stores ram addresses in its TLB cache, we must
2642 reset the modified entries */
2643 /* XXX: slow ! */
2644 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2645 tlb_flush(env, 1);
2646 }
2647 }
2648
2649 /* XXX: temporary until new memory mapping API */
2650 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2651 {
2652 PhysPageDesc *p;
2653
2654 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2655 if (!p)
2656 return IO_MEM_UNASSIGNED;
2657 return p->phys_offset;
2658 }
2659
2660 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2661 {
2662 if (kvm_enabled())
2663 kvm_coalesce_mmio_region(addr, size);
2664 }
2665
2666 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2667 {
2668 if (kvm_enabled())
2669 kvm_uncoalesce_mmio_region(addr, size);
2670 }
2671
2672 void qemu_flush_coalesced_mmio_buffer(void)
2673 {
2674 if (kvm_enabled())
2675 kvm_flush_coalesced_mmio_buffer();
2676 }
2677
2678 #if defined(__linux__) && !defined(TARGET_S390X)
2679
2680 #include <sys/vfs.h>
2681
2682 #define HUGETLBFS_MAGIC 0x958458f6
2683
2684 static long gethugepagesize(const char *path)
2685 {
2686 struct statfs fs;
2687 int ret;
2688
2689 do {
2690 ret = statfs(path, &fs);
2691 } while (ret != 0 && errno == EINTR);
2692
2693 if (ret != 0) {
2694 perror(path);
2695 return 0;
2696 }
2697
2698 if (fs.f_type != HUGETLBFS_MAGIC)
2699 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2700
2701 return fs.f_bsize;
2702 }
2703
2704 static void *file_ram_alloc(RAMBlock *block,
2705 ram_addr_t memory,
2706 const char *path)
2707 {
2708 char *filename;
2709 void *area;
2710 int fd;
2711 #ifdef MAP_POPULATE
2712 int flags;
2713 #endif
2714 unsigned long hpagesize;
2715
2716 hpagesize = gethugepagesize(path);
2717 if (!hpagesize) {
2718 return NULL;
2719 }
2720
2721 if (memory < hpagesize) {
2722 return NULL;
2723 }
2724
2725 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2726 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2727 return NULL;
2728 }
2729
2730 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2731 return NULL;
2732 }
2733
2734 fd = mkstemp(filename);
2735 if (fd < 0) {
2736 perror("unable to create backing store for hugepages");
2737 free(filename);
2738 return NULL;
2739 }
2740 unlink(filename);
2741 free(filename);
2742
2743 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2744
2745 /*
2746 * ftruncate is not supported by hugetlbfs in older
2747 * hosts, so don't bother bailing out on errors.
2748 * If anything goes wrong with it under other filesystems,
2749 * mmap will fail.
2750 */
2751 if (ftruncate(fd, memory))
2752 perror("ftruncate");
2753
2754 #ifdef MAP_POPULATE
2755 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2756 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2757 * to sidestep this quirk.
2758 */
2759 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2760 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2761 #else
2762 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2763 #endif
2764 if (area == MAP_FAILED) {
2765 perror("file_ram_alloc: can't mmap RAM pages");
2766 close(fd);
2767 return (NULL);
2768 }
2769 block->fd = fd;
2770 return area;
2771 }
2772 #endif
2773
2774 static ram_addr_t find_ram_offset(ram_addr_t size)
2775 {
2776 RAMBlock *block, *next_block;
2777 ram_addr_t offset = 0, mingap = ULONG_MAX;
2778
2779 if (QLIST_EMPTY(&ram_list.blocks))
2780 return 0;
2781
2782 QLIST_FOREACH(block, &ram_list.blocks, next) {
2783 ram_addr_t end, next = ULONG_MAX;
2784
2785 end = block->offset + block->length;
2786
2787 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2788 if (next_block->offset >= end) {
2789 next = MIN(next, next_block->offset);
2790 }
2791 }
2792 if (next - end >= size && next - end < mingap) {
2793 offset = end;
2794 mingap = next - end;
2795 }
2796 }
2797 return offset;
2798 }
2799
2800 static ram_addr_t last_ram_offset(void)
2801 {
2802 RAMBlock *block;
2803 ram_addr_t last = 0;
2804
2805 QLIST_FOREACH(block, &ram_list.blocks, next)
2806 last = MAX(last, block->offset + block->length);
2807
2808 return last;
2809 }
2810
2811 ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
2812 {
2813 RAMBlock *new_block, *block;
2814
2815 size = TARGET_PAGE_ALIGN(size);
2816 new_block = qemu_mallocz(sizeof(*new_block));
2817
2818 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2819 char *id = dev->parent_bus->info->get_dev_path(dev);
2820 if (id) {
2821 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2822 qemu_free(id);
2823 }
2824 }
2825 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2826
2827 QLIST_FOREACH(block, &ram_list.blocks, next) {
2828 if (!strcmp(block->idstr, new_block->idstr)) {
2829 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2830 new_block->idstr);
2831 abort();
2832 }
2833 }
2834
2835 if (mem_path) {
2836 #if defined (__linux__) && !defined(TARGET_S390X)
2837 new_block->host = file_ram_alloc(new_block, size, mem_path);
2838 if (!new_block->host) {
2839 new_block->host = qemu_vmalloc(size);
2840 #ifdef MADV_MERGEABLE
2841 madvise(new_block->host, size, MADV_MERGEABLE);
2842 #endif
2843 }
2844 #else
2845 fprintf(stderr, "-mem-path option unsupported\n");
2846 exit(1);
2847 #endif
2848 } else {
2849 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2850 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2851 new_block->host = mmap((void*)0x1000000, size,
2852 PROT_EXEC|PROT_READ|PROT_WRITE,
2853 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2854 #else
2855 new_block->host = qemu_vmalloc(size);
2856 #endif
2857 #ifdef MADV_MERGEABLE
2858 madvise(new_block->host, size, MADV_MERGEABLE);
2859 #endif
2860 }
2861 new_block->offset = find_ram_offset(size);
2862 new_block->length = size;
2863
2864 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2865
2866 ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
2867 last_ram_offset() >> TARGET_PAGE_BITS);
2868 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2869 0xff, size >> TARGET_PAGE_BITS);
2870
2871 if (kvm_enabled())
2872 kvm_setup_guest_memory(new_block->host, size);
2873
2874 return new_block->offset;
2875 }
2876
2877 void qemu_ram_free(ram_addr_t addr)
2878 {
2879 RAMBlock *block;
2880
2881 QLIST_FOREACH(block, &ram_list.blocks, next) {
2882 if (addr == block->offset) {
2883 QLIST_REMOVE(block, next);
2884 if (mem_path) {
2885 #if defined (__linux__) && !defined(TARGET_S390X)
2886 if (block->fd) {
2887 munmap(block->host, block->length);
2888 close(block->fd);
2889 } else {
2890 qemu_vfree(block->host);
2891 }
2892 #endif
2893 } else {
2894 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2895 munmap(block->host, block->length);
2896 #else
2897 qemu_vfree(block->host);
2898 #endif
2899 }
2900 qemu_free(block);
2901 return;
2902 }
2903 }
2904
2905 }
2906
2907 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2908 With the exception of the softmmu code in this file, this should
2909 only be used for local memory (e.g. video ram) that the device owns,
2910 and knows it isn't going to access beyond the end of the block.
2911
2912 It should not be used for general purpose DMA.
2913 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2914 */
2915 void *qemu_get_ram_ptr(ram_addr_t addr)
2916 {
2917 RAMBlock *block;
2918
2919 QLIST_FOREACH(block, &ram_list.blocks, next) {
2920 if (addr - block->offset < block->length) {
2921 QLIST_REMOVE(block, next);
2922 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2923 return block->host + (addr - block->offset);
2924 }
2925 }
2926
2927 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2928 abort();
2929
2930 return NULL;
2931 }
2932
2933 /* Some of the softmmu routines need to translate from a host pointer
2934 (typically a TLB entry) back to a ram offset. */
2935 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2936 {
2937 RAMBlock *block;
2938 uint8_t *host = ptr;
2939
2940 QLIST_FOREACH(block, &ram_list.blocks, next) {
2941 if (host - block->host < block->length) {
2942 return block->offset + (host - block->host);
2943 }
2944 }
2945
2946 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2947 abort();
2948
2949 return 0;
2950 }
2951
2952 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2953 {
2954 #ifdef DEBUG_UNASSIGNED
2955 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2956 #endif
2957 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2958 do_unassigned_access(addr, 0, 0, 0, 1);
2959 #endif
2960 return 0;
2961 }
2962
2963 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2964 {
2965 #ifdef DEBUG_UNASSIGNED
2966 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2967 #endif
2968 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2969 do_unassigned_access(addr, 0, 0, 0, 2);
2970 #endif
2971 return 0;
2972 }
2973
2974 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2975 {
2976 #ifdef DEBUG_UNASSIGNED
2977 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2978 #endif
2979 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2980 do_unassigned_access(addr, 0, 0, 0, 4);
2981 #endif
2982 return 0;
2983 }
2984
2985 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2986 {
2987 #ifdef DEBUG_UNASSIGNED
2988 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2989 #endif
2990 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2991 do_unassigned_access(addr, 1, 0, 0, 1);
2992 #endif
2993 }
2994
2995 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2996 {
2997 #ifdef DEBUG_UNASSIGNED
2998 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2999 #endif
3000 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3001 do_unassigned_access(addr, 1, 0, 0, 2);
3002 #endif
3003 }
3004
3005 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
3006 {
3007 #ifdef DEBUG_UNASSIGNED
3008 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3009 #endif
3010 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3011 do_unassigned_access(addr, 1, 0, 0, 4);
3012 #endif
3013 }
3014
3015 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
3016 unassigned_mem_readb,
3017 unassigned_mem_readw,
3018 unassigned_mem_readl,
3019 };
3020
3021 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
3022 unassigned_mem_writeb,
3023 unassigned_mem_writew,
3024 unassigned_mem_writel,
3025 };
3026
3027 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
3028 uint32_t val)
3029 {
3030 int dirty_flags;
3031 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3032 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3033 #if !defined(CONFIG_USER_ONLY)
3034 tb_invalidate_phys_page_fast(ram_addr, 1);
3035 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3036 #endif
3037 }
3038 stb_p(qemu_get_ram_ptr(ram_addr), val);
3039 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3040 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3041 /* we remove the notdirty callback only if the code has been
3042 flushed */
3043 if (dirty_flags == 0xff)
3044 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3045 }
3046
3047 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
3048 uint32_t val)
3049 {
3050 int dirty_flags;
3051 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3052 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3053 #if !defined(CONFIG_USER_ONLY)
3054 tb_invalidate_phys_page_fast(ram_addr, 2);
3055 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3056 #endif
3057 }
3058 stw_p(qemu_get_ram_ptr(ram_addr), val);
3059 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3060 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3061 /* we remove the notdirty callback only if the code has been
3062 flushed */
3063 if (dirty_flags == 0xff)
3064 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3065 }
3066
3067 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
3068 uint32_t val)
3069 {
3070 int dirty_flags;
3071 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3072 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3073 #if !defined(CONFIG_USER_ONLY)
3074 tb_invalidate_phys_page_fast(ram_addr, 4);
3075 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3076 #endif
3077 }
3078 stl_p(qemu_get_ram_ptr(ram_addr), val);
3079 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3080 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3081 /* we remove the notdirty callback only if the code has been
3082 flushed */
3083 if (dirty_flags == 0xff)
3084 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3085 }
3086
3087 static CPUReadMemoryFunc * const error_mem_read[3] = {
3088 NULL, /* never used */
3089 NULL, /* never used */
3090 NULL, /* never used */
3091 };
3092
3093 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3094 notdirty_mem_writeb,
3095 notdirty_mem_writew,
3096 notdirty_mem_writel,
3097 };
3098
3099 /* Generate a debug exception if a watchpoint has been hit. */
3100 static void check_watchpoint(int offset, int len_mask, int flags)
3101 {
3102 CPUState *env = cpu_single_env;
3103 target_ulong pc, cs_base;
3104 TranslationBlock *tb;
3105 target_ulong vaddr;
3106 CPUWatchpoint *wp;
3107 int cpu_flags;
3108
3109 if (env->watchpoint_hit) {
3110 /* We re-entered the check after replacing the TB. Now raise
3111 * the debug interrupt so that is will trigger after the
3112 * current instruction. */
3113 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3114 return;
3115 }
3116 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3117 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3118 if ((vaddr == (wp->vaddr & len_mask) ||
3119 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3120 wp->flags |= BP_WATCHPOINT_HIT;
3121 if (!env->watchpoint_hit) {
3122 env->watchpoint_hit = wp;
3123 tb = tb_find_pc(env->mem_io_pc);
3124 if (!tb) {
3125 cpu_abort(env, "check_watchpoint: could not find TB for "
3126 "pc=%p", (void *)env->mem_io_pc);
3127 }
3128 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3129 tb_phys_invalidate(tb, -1);
3130 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3131 env->exception_index = EXCP_DEBUG;
3132 } else {
3133 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3134 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3135 }
3136 cpu_resume_from_signal(env, NULL);
3137 }
3138 } else {
3139 wp->flags &= ~BP_WATCHPOINT_HIT;
3140 }
3141 }
3142 }
3143
3144 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3145 so these check for a hit then pass through to the normal out-of-line
3146 phys routines. */
3147 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3148 {
3149 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3150 return ldub_phys(addr);
3151 }
3152
3153 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3154 {
3155 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3156 return lduw_phys(addr);
3157 }
3158
3159 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3160 {
3161 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3162 return ldl_phys(addr);
3163 }
3164
3165 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3166 uint32_t val)
3167 {
3168 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3169 stb_phys(addr, val);
3170 }
3171
3172 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3173 uint32_t val)
3174 {
3175 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3176 stw_phys(addr, val);
3177 }
3178
3179 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3180 uint32_t val)
3181 {
3182 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3183 stl_phys(addr, val);
3184 }
3185
3186 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3187 watch_mem_readb,
3188 watch_mem_readw,
3189 watch_mem_readl,
3190 };
3191
3192 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3193 watch_mem_writeb,
3194 watch_mem_writew,
3195 watch_mem_writel,
3196 };
3197
3198 static inline uint32_t subpage_readlen (subpage_t *mmio,
3199 target_phys_addr_t addr,
3200 unsigned int len)
3201 {
3202 unsigned int idx = SUBPAGE_IDX(addr);
3203 #if defined(DEBUG_SUBPAGE)
3204 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3205 mmio, len, addr, idx);
3206 #endif
3207
3208 addr += mmio->region_offset[idx];
3209 idx = mmio->sub_io_index[idx];
3210 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
3211 }
3212
3213 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3214 uint32_t value, unsigned int len)
3215 {
3216 unsigned int idx = SUBPAGE_IDX(addr);
3217 #if defined(DEBUG_SUBPAGE)
3218 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3219 __func__, mmio, len, addr, idx, value);
3220 #endif
3221
3222 addr += mmio->region_offset[idx];
3223 idx = mmio->sub_io_index[idx];
3224 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
3225 }
3226
3227 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3228 {
3229 return subpage_readlen(opaque, addr, 0);
3230 }
3231
3232 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3233 uint32_t value)
3234 {
3235 subpage_writelen(opaque, addr, value, 0);
3236 }
3237
3238 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3239 {
3240 return subpage_readlen(opaque, addr, 1);
3241 }
3242
3243 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3244 uint32_t value)
3245 {
3246 subpage_writelen(opaque, addr, value, 1);
3247 }
3248
3249 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3250 {
3251 return subpage_readlen(opaque, addr, 2);
3252 }
3253
3254 static void subpage_writel (void *opaque, target_phys_addr_t addr,
3255 uint32_t value)
3256 {
3257 subpage_writelen(opaque, addr, value, 2);
3258 }
3259
3260 static CPUReadMemoryFunc * const subpage_read[] = {
3261 &subpage_readb,
3262 &subpage_readw,
3263 &subpage_readl,
3264 };
3265
3266 static CPUWriteMemoryFunc * const subpage_write[] = {
3267 &subpage_writeb,
3268 &subpage_writew,
3269 &subpage_writel,
3270 };
3271
3272 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3273 ram_addr_t memory, ram_addr_t region_offset)
3274 {
3275 int idx, eidx;
3276
3277 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3278 return -1;
3279 idx = SUBPAGE_IDX(start);
3280 eidx = SUBPAGE_IDX(end);
3281 #if defined(DEBUG_SUBPAGE)
3282 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3283 mmio, start, end, idx, eidx, memory);
3284 #endif
3285 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3286 for (; idx <= eidx; idx++) {
3287 mmio->sub_io_index[idx] = memory;
3288 mmio->region_offset[idx] = region_offset;
3289 }
3290
3291 return 0;
3292 }
3293
3294 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3295 ram_addr_t orig_memory,
3296 ram_addr_t region_offset)
3297 {
3298 subpage_t *mmio;
3299 int subpage_memory;
3300
3301 mmio = qemu_mallocz(sizeof(subpage_t));
3302
3303 mmio->base = base;
3304 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
3305 #if defined(DEBUG_SUBPAGE)
3306 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3307 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3308 #endif
3309 *phys = subpage_memory | IO_MEM_SUBPAGE;
3310 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
3311
3312 return mmio;
3313 }
3314
3315 static int get_free_io_mem_idx(void)
3316 {
3317 int i;
3318
3319 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3320 if (!io_mem_used[i]) {
3321 io_mem_used[i] = 1;
3322 return i;
3323 }
3324 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3325 return -1;
3326 }
3327
3328 /* mem_read and mem_write are arrays of functions containing the
3329 function to access byte (index 0), word (index 1) and dword (index
3330 2). Functions can be omitted with a NULL function pointer.
3331 If io_index is non zero, the corresponding io zone is
3332 modified. If it is zero, a new io zone is allocated. The return
3333 value can be used with cpu_register_physical_memory(). (-1) is
3334 returned if error. */
3335 static int cpu_register_io_memory_fixed(int io_index,
3336 CPUReadMemoryFunc * const *mem_read,
3337 CPUWriteMemoryFunc * const *mem_write,
3338 void *opaque)
3339 {
3340 int i;
3341
3342 if (io_index <= 0) {
3343 io_index = get_free_io_mem_idx();
3344 if (io_index == -1)
3345 return io_index;
3346 } else {
3347 io_index >>= IO_MEM_SHIFT;
3348 if (io_index >= IO_MEM_NB_ENTRIES)
3349 return -1;
3350 }
3351
3352 for (i = 0; i < 3; ++i) {
3353 io_mem_read[io_index][i]
3354 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3355 }
3356 for (i = 0; i < 3; ++i) {
3357 io_mem_write[io_index][i]
3358 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3359 }
3360 io_mem_opaque[io_index] = opaque;
3361
3362 return (io_index << IO_MEM_SHIFT);
3363 }
3364
3365 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3366 CPUWriteMemoryFunc * const *mem_write,
3367 void *opaque)
3368 {
3369 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3370 }
3371
3372 void cpu_unregister_io_memory(int io_table_address)
3373 {
3374 int i;
3375 int io_index = io_table_address >> IO_MEM_SHIFT;
3376
3377 for (i=0;i < 3; i++) {
3378 io_mem_read[io_index][i] = unassigned_mem_read[i];
3379 io_mem_write[io_index][i] = unassigned_mem_write[i];
3380 }
3381 io_mem_opaque[io_index] = NULL;
3382 io_mem_used[io_index] = 0;
3383 }
3384
3385 static void io_mem_init(void)
3386 {
3387 int i;
3388
3389 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3390 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3391 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3392 for (i=0; i<5; i++)
3393 io_mem_used[i] = 1;
3394
3395 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3396 watch_mem_write, NULL);
3397 }
3398
3399 #endif /* !defined(CONFIG_USER_ONLY) */
3400
3401 /* physical memory access (slow version, mainly for debug) */
3402 #if defined(CONFIG_USER_ONLY)
3403 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3404 uint8_t *buf, int len, int is_write)
3405 {
3406 int l, flags;
3407 target_ulong page;
3408 void * p;
3409
3410 while (len > 0) {
3411 page = addr & TARGET_PAGE_MASK;
3412 l = (page + TARGET_PAGE_SIZE) - addr;
3413 if (l > len)
3414 l = len;
3415 flags = page_get_flags(page);
3416 if (!(flags & PAGE_VALID))
3417 return -1;
3418 if (is_write) {
3419 if (!(flags & PAGE_WRITE))
3420 return -1;
3421 /* XXX: this code should not depend on lock_user */
3422 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3423 return -1;
3424 memcpy(p, buf, l);
3425 unlock_user(p, addr, l);
3426 } else {
3427 if (!(flags & PAGE_READ))
3428 return -1;
3429 /* XXX: this code should not depend on lock_user */
3430 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3431 return -1;
3432 memcpy(buf, p, l);
3433 unlock_user(p, addr, 0);
3434 }
3435 len -= l;
3436 buf += l;
3437 addr += l;
3438 }
3439 return 0;
3440 }
3441
3442 #else
3443 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3444 int len, int is_write)
3445 {
3446 int l, io_index;
3447 uint8_t *ptr;
3448 uint32_t val;
3449 target_phys_addr_t page;
3450 unsigned long pd;
3451 PhysPageDesc *p;
3452
3453 while (len > 0) {
3454 page = addr & TARGET_PAGE_MASK;
3455 l = (page + TARGET_PAGE_SIZE) - addr;
3456 if (l > len)
3457 l = len;
3458 p = phys_page_find(page >> TARGET_PAGE_BITS);
3459 if (!p) {
3460 pd = IO_MEM_UNASSIGNED;
3461 } else {
3462 pd = p->phys_offset;
3463 }
3464
3465 if (is_write) {
3466 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3467 target_phys_addr_t addr1 = addr;
3468 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3469 if (p)
3470 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3471 /* XXX: could force cpu_single_env to NULL to avoid
3472 potential bugs */
3473 if (l >= 4 && ((addr1 & 3) == 0)) {
3474 /* 32 bit write access */
3475 val = ldl_p(buf);
3476 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3477 l = 4;
3478 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3479 /* 16 bit write access */
3480 val = lduw_p(buf);
3481 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3482 l = 2;
3483 } else {
3484 /* 8 bit write access */
3485 val = ldub_p(buf);
3486 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3487 l = 1;
3488 }
3489 } else {
3490 unsigned long addr1;
3491 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3492 /* RAM case */
3493 ptr = qemu_get_ram_ptr(addr1);
3494 memcpy(ptr, buf, l);
3495 if (!cpu_physical_memory_is_dirty(addr1)) {
3496 /* invalidate code */
3497 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3498 /* set dirty bit */
3499 cpu_physical_memory_set_dirty_flags(
3500 addr1, (0xff & ~CODE_DIRTY_FLAG));
3501 }
3502 }
3503 } else {
3504 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3505 !(pd & IO_MEM_ROMD)) {
3506 target_phys_addr_t addr1 = addr;
3507 /* I/O case */
3508 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3509 if (p)
3510 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3511 if (l >= 4 && ((addr1 & 3) == 0)) {
3512 /* 32 bit read access */
3513 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3514 stl_p(buf, val);
3515 l = 4;
3516 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3517 /* 16 bit read access */
3518 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3519 stw_p(buf, val);
3520 l = 2;
3521 } else {
3522 /* 8 bit read access */
3523 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3524 stb_p(buf, val);
3525 l = 1;
3526 }
3527 } else {
3528 /* RAM case */
3529 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3530 (addr & ~TARGET_PAGE_MASK);
3531 memcpy(buf, ptr, l);
3532 }
3533 }
3534 len -= l;
3535 buf += l;
3536 addr += l;
3537 }
3538 }
3539
3540 /* used for ROM loading : can write in RAM and ROM */
3541 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3542 const uint8_t *buf, int len)
3543 {
3544 int l;
3545 uint8_t *ptr;
3546 target_phys_addr_t page;
3547 unsigned long pd;
3548 PhysPageDesc *p;
3549
3550 while (len > 0) {
3551 page = addr & TARGET_PAGE_MASK;
3552 l = (page + TARGET_PAGE_SIZE) - addr;
3553 if (l > len)
3554 l = len;
3555 p = phys_page_find(page >> TARGET_PAGE_BITS);
3556 if (!p) {
3557 pd = IO_MEM_UNASSIGNED;
3558 } else {
3559 pd = p->phys_offset;
3560 }
3561
3562 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3563 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3564 !(pd & IO_MEM_ROMD)) {
3565 /* do nothing */
3566 } else {
3567 unsigned long addr1;
3568 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3569 /* ROM/RAM case */
3570 ptr = qemu_get_ram_ptr(addr1);
3571 memcpy(ptr, buf, l);
3572 }
3573 len -= l;
3574 buf += l;
3575 addr += l;
3576 }
3577 }
3578
3579 typedef struct {
3580 void *buffer;
3581 target_phys_addr_t addr;
3582 target_phys_addr_t len;
3583 } BounceBuffer;
3584
3585 static BounceBuffer bounce;
3586
3587 typedef struct MapClient {
3588 void *opaque;
3589 void (*callback)(void *opaque);
3590 QLIST_ENTRY(MapClient) link;
3591 } MapClient;
3592
3593 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3594 = QLIST_HEAD_INITIALIZER(map_client_list);
3595
3596 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3597 {
3598 MapClient *client = qemu_malloc(sizeof(*client));
3599
3600 client->opaque = opaque;
3601 client->callback = callback;
3602 QLIST_INSERT_HEAD(&map_client_list, client, link);
3603 return client;
3604 }
3605
3606 void cpu_unregister_map_client(void *_client)
3607 {
3608 MapClient *client = (MapClient *)_client;
3609
3610 QLIST_REMOVE(client, link);
3611 qemu_free(client);
3612 }
3613
3614 static void cpu_notify_map_clients(void)
3615 {
3616 MapClient *client;
3617
3618 while (!QLIST_EMPTY(&map_client_list)) {
3619 client = QLIST_FIRST(&map_client_list);
3620 client->callback(client->opaque);
3621 cpu_unregister_map_client(client);
3622 }
3623 }
3624
3625 /* Map a physical memory region into a host virtual address.
3626 * May map a subset of the requested range, given by and returned in *plen.
3627 * May return NULL if resources needed to perform the mapping are exhausted.
3628 * Use only for reads OR writes - not for read-modify-write operations.
3629 * Use cpu_register_map_client() to know when retrying the map operation is
3630 * likely to succeed.
3631 */
3632 void *cpu_physical_memory_map(target_phys_addr_t addr,
3633 target_phys_addr_t *plen,
3634 int is_write)
3635 {
3636 target_phys_addr_t len = *plen;
3637 target_phys_addr_t done = 0;
3638 int l;
3639 uint8_t *ret = NULL;
3640 uint8_t *ptr;
3641 target_phys_addr_t page;
3642 unsigned long pd;
3643 PhysPageDesc *p;
3644 unsigned long addr1;
3645
3646 while (len > 0) {
3647 page = addr & TARGET_PAGE_MASK;
3648 l = (page + TARGET_PAGE_SIZE) - addr;
3649 if (l > len)
3650 l = len;
3651 p = phys_page_find(page >> TARGET_PAGE_BITS);
3652 if (!p) {
3653 pd = IO_MEM_UNASSIGNED;
3654 } else {
3655 pd = p->phys_offset;
3656 }
3657
3658 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3659 if (done || bounce.buffer) {
3660 break;
3661 }
3662 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3663 bounce.addr = addr;
3664 bounce.len = l;
3665 if (!is_write) {
3666 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3667 }
3668 ptr = bounce.buffer;
3669 } else {
3670 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3671 ptr = qemu_get_ram_ptr(addr1);
3672 }
3673 if (!done) {
3674 ret = ptr;
3675 } else if (ret + done != ptr) {
3676 break;
3677 }
3678
3679 len -= l;
3680 addr += l;
3681 done += l;
3682 }
3683 *plen = done;
3684 return ret;
3685 }
3686
3687 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3688 * Will also mark the memory as dirty if is_write == 1. access_len gives
3689 * the amount of memory that was actually read or written by the caller.
3690 */
3691 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3692 int is_write, target_phys_addr_t access_len)
3693 {
3694 if (buffer != bounce.buffer) {
3695 if (is_write) {
3696 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3697 while (access_len) {
3698 unsigned l;
3699 l = TARGET_PAGE_SIZE;
3700 if (l > access_len)
3701 l = access_len;
3702 if (!cpu_physical_memory_is_dirty(addr1)) {
3703 /* invalidate code */
3704 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3705 /* set dirty bit */
3706 cpu_physical_memory_set_dirty_flags(
3707 addr1, (0xff & ~CODE_DIRTY_FLAG));
3708 }
3709 addr1 += l;
3710 access_len -= l;
3711 }
3712 }
3713 return;
3714 }
3715 if (is_write) {
3716 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3717 }
3718 qemu_vfree(bounce.buffer);
3719 bounce.buffer = NULL;
3720 cpu_notify_map_clients();
3721 }
3722
3723 /* warning: addr must be aligned */
3724 uint32_t ldl_phys(target_phys_addr_t addr)
3725 {
3726 int io_index;
3727 uint8_t *ptr;
3728 uint32_t val;
3729 unsigned long pd;
3730 PhysPageDesc *p;
3731
3732 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3733 if (!p) {
3734 pd = IO_MEM_UNASSIGNED;
3735 } else {
3736 pd = p->phys_offset;
3737 }
3738
3739 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3740 !(pd & IO_MEM_ROMD)) {
3741 /* I/O case */
3742 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3743 if (p)
3744 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3745 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3746 } else {
3747 /* RAM case */
3748 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3749 (addr & ~TARGET_PAGE_MASK);
3750 val = ldl_p(ptr);
3751 }
3752 return val;
3753 }
3754
3755 /* warning: addr must be aligned */
3756 uint64_t ldq_phys(target_phys_addr_t addr)
3757 {
3758 int io_index;
3759 uint8_t *ptr;
3760 uint64_t val;
3761 unsigned long pd;
3762 PhysPageDesc *p;
3763
3764 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3765 if (!p) {
3766 pd = IO_MEM_UNASSIGNED;
3767 } else {
3768 pd = p->phys_offset;
3769 }
3770
3771 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3772 !(pd & IO_MEM_ROMD)) {
3773 /* I/O case */
3774 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3775 if (p)
3776 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3777 #ifdef TARGET_WORDS_BIGENDIAN
3778 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3779 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3780 #else
3781 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3782 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3783 #endif
3784 } else {
3785 /* RAM case */
3786 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3787 (addr & ~TARGET_PAGE_MASK);
3788 val = ldq_p(ptr);
3789 }
3790 return val;
3791 }
3792
3793 /* XXX: optimize */
3794 uint32_t ldub_phys(target_phys_addr_t addr)
3795 {
3796 uint8_t val;
3797 cpu_physical_memory_read(addr, &val, 1);
3798 return val;
3799 }
3800
3801 /* warning: addr must be aligned */
3802 uint32_t lduw_phys(target_phys_addr_t addr)
3803 {
3804 int io_index;
3805 uint8_t *ptr;
3806 uint64_t val;
3807 unsigned long pd;
3808 PhysPageDesc *p;
3809
3810 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3811 if (!p) {
3812 pd = IO_MEM_UNASSIGNED;
3813 } else {
3814 pd = p->phys_offset;
3815 }
3816
3817 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3818 !(pd & IO_MEM_ROMD)) {
3819 /* I/O case */
3820 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3821 if (p)
3822 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3823 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
3824 } else {
3825 /* RAM case */
3826 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3827 (addr & ~TARGET_PAGE_MASK);
3828 val = lduw_p(ptr);
3829 }
3830 return val;
3831 }
3832
3833 /* warning: addr must be aligned. The ram page is not masked as dirty
3834 and the code inside is not invalidated. It is useful if the dirty
3835 bits are used to track modified PTEs */
3836 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3837 {
3838 int io_index;
3839 uint8_t *ptr;
3840 unsigned long pd;
3841 PhysPageDesc *p;
3842
3843 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3844 if (!p) {
3845 pd = IO_MEM_UNASSIGNED;
3846 } else {
3847 pd = p->phys_offset;
3848 }
3849
3850 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3851 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3852 if (p)
3853 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3854 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3855 } else {
3856 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3857 ptr = qemu_get_ram_ptr(addr1);
3858 stl_p(ptr, val);
3859
3860 if (unlikely(in_migration)) {
3861 if (!cpu_physical_memory_is_dirty(addr1)) {
3862 /* invalidate code */
3863 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3864 /* set dirty bit */
3865 cpu_physical_memory_set_dirty_flags(
3866 addr1, (0xff & ~CODE_DIRTY_FLAG));
3867 }
3868 }
3869 }
3870 }
3871
3872 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3873 {
3874 int io_index;
3875 uint8_t *ptr;
3876 unsigned long pd;
3877 PhysPageDesc *p;
3878
3879 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3880 if (!p) {
3881 pd = IO_MEM_UNASSIGNED;
3882 } else {
3883 pd = p->phys_offset;
3884 }
3885
3886 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3887 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3888 if (p)
3889 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3890 #ifdef TARGET_WORDS_BIGENDIAN
3891 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3892 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3893 #else
3894 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3895 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3896 #endif
3897 } else {
3898 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3899 (addr & ~TARGET_PAGE_MASK);
3900 stq_p(ptr, val);
3901 }
3902 }
3903
3904 /* warning: addr must be aligned */
3905 void stl_phys(target_phys_addr_t addr, uint32_t val)
3906 {
3907 int io_index;
3908 uint8_t *ptr;
3909 unsigned long pd;
3910 PhysPageDesc *p;
3911
3912 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3913 if (!p) {
3914 pd = IO_MEM_UNASSIGNED;
3915 } else {
3916 pd = p->phys_offset;
3917 }
3918
3919 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3920 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3921 if (p)
3922 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3923 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3924 } else {
3925 unsigned long addr1;
3926 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3927 /* RAM case */
3928 ptr = qemu_get_ram_ptr(addr1);
3929 stl_p(ptr, val);
3930 if (!cpu_physical_memory_is_dirty(addr1)) {
3931 /* invalidate code */
3932 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3933 /* set dirty bit */
3934 cpu_physical_memory_set_dirty_flags(addr1,
3935 (0xff & ~CODE_DIRTY_FLAG));
3936 }
3937 }
3938 }
3939
3940 /* XXX: optimize */
3941 void stb_phys(target_phys_addr_t addr, uint32_t val)
3942 {
3943 uint8_t v = val;
3944 cpu_physical_memory_write(addr, &v, 1);
3945 }
3946
3947 /* warning: addr must be aligned */
3948 void stw_phys(target_phys_addr_t addr, uint32_t val)
3949 {
3950 int io_index;
3951 uint8_t *ptr;
3952 unsigned long pd;
3953 PhysPageDesc *p;
3954
3955 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3956 if (!p) {
3957 pd = IO_MEM_UNASSIGNED;
3958 } else {
3959 pd = p->phys_offset;
3960 }
3961
3962 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3963 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3964 if (p)
3965 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3966 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
3967 } else {
3968 unsigned long addr1;
3969 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3970 /* RAM case */
3971 ptr = qemu_get_ram_ptr(addr1);
3972 stw_p(ptr, val);
3973 if (!cpu_physical_memory_is_dirty(addr1)) {
3974 /* invalidate code */
3975 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
3976 /* set dirty bit */
3977 cpu_physical_memory_set_dirty_flags(addr1,
3978 (0xff & ~CODE_DIRTY_FLAG));
3979 }
3980 }
3981 }
3982
3983 /* XXX: optimize */
3984 void stq_phys(target_phys_addr_t addr, uint64_t val)
3985 {
3986 val = tswap64(val);
3987 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3988 }
3989
3990 /* virtual memory access for debug (includes writing to ROM) */
3991 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3992 uint8_t *buf, int len, int is_write)
3993 {
3994 int l;
3995 target_phys_addr_t phys_addr;
3996 target_ulong page;
3997
3998 while (len > 0) {
3999 page = addr & TARGET_PAGE_MASK;
4000 phys_addr = cpu_get_phys_page_debug(env, page);
4001 /* if no physical page mapped, return an error */
4002 if (phys_addr == -1)
4003 return -1;
4004 l = (page + TARGET_PAGE_SIZE) - addr;
4005 if (l > len)
4006 l = len;
4007 phys_addr += (addr & ~TARGET_PAGE_MASK);
4008 if (is_write)
4009 cpu_physical_memory_write_rom(phys_addr, buf, l);
4010 else
4011 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4012 len -= l;
4013 buf += l;
4014 addr += l;
4015 }
4016 return 0;
4017 }
4018 #endif
4019
4020 /* in deterministic execution mode, instructions doing device I/Os
4021 must be at the end of the TB */
4022 void cpu_io_recompile(CPUState *env, void *retaddr)
4023 {
4024 TranslationBlock *tb;
4025 uint32_t n, cflags;
4026 target_ulong pc, cs_base;
4027 uint64_t flags;
4028
4029 tb = tb_find_pc((unsigned long)retaddr);
4030 if (!tb) {
4031 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4032 retaddr);
4033 }
4034 n = env->icount_decr.u16.low + tb->icount;
4035 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
4036 /* Calculate how many instructions had been executed before the fault
4037 occurred. */
4038 n = n - env->icount_decr.u16.low;
4039 /* Generate a new TB ending on the I/O insn. */
4040 n++;
4041 /* On MIPS and SH, delay slot instructions can only be restarted if
4042 they were already the first instruction in the TB. If this is not
4043 the first instruction in a TB then re-execute the preceding
4044 branch. */
4045 #if defined(TARGET_MIPS)
4046 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4047 env->active_tc.PC -= 4;
4048 env->icount_decr.u16.low++;
4049 env->hflags &= ~MIPS_HFLAG_BMASK;
4050 }
4051 #elif defined(TARGET_SH4)
4052 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4053 && n > 1) {
4054 env->pc -= 2;
4055 env->icount_decr.u16.low++;
4056 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4057 }
4058 #endif
4059 /* This should never happen. */
4060 if (n > CF_COUNT_MASK)
4061 cpu_abort(env, "TB too big during recompile");
4062
4063 cflags = n | CF_LAST_IO;
4064 pc = tb->pc;
4065 cs_base = tb->cs_base;
4066 flags = tb->flags;
4067 tb_phys_invalidate(tb, -1);
4068 /* FIXME: In theory this could raise an exception. In practice
4069 we have already translated the block once so it's probably ok. */
4070 tb_gen_code(env, pc, cs_base, flags, cflags);
4071 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4072 the first in the TB) then we end up generating a whole new TB and
4073 repeating the fault, which is horribly inefficient.
4074 Better would be to execute just this insn uncached, or generate a
4075 second new TB. */
4076 cpu_resume_from_signal(env, NULL);
4077 }
4078
4079 #if !defined(CONFIG_USER_ONLY)
4080
4081 void dump_exec_info(FILE *f,
4082 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
4083 {
4084 int i, target_code_size, max_target_code_size;
4085 int direct_jmp_count, direct_jmp2_count, cross_page;
4086 TranslationBlock *tb;
4087
4088 target_code_size = 0;
4089 max_target_code_size = 0;
4090 cross_page = 0;
4091 direct_jmp_count = 0;
4092 direct_jmp2_count = 0;
4093 for(i = 0; i < nb_tbs; i++) {
4094 tb = &tbs[i];
4095 target_code_size += tb->size;
4096 if (tb->size > max_target_code_size)
4097 max_target_code_size = tb->size;
4098 if (tb->page_addr[1] != -1)
4099 cross_page++;
4100 if (tb->tb_next_offset[0] != 0xffff) {
4101 direct_jmp_count++;
4102 if (tb->tb_next_offset[1] != 0xffff) {
4103 direct_jmp2_count++;
4104 }
4105 }
4106 }
4107 /* XXX: avoid using doubles ? */
4108 cpu_fprintf(f, "Translation buffer state:\n");
4109 cpu_fprintf(f, "gen code size %ld/%ld\n",
4110 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4111 cpu_fprintf(f, "TB count %d/%d\n",
4112 nb_tbs, code_gen_max_blocks);
4113 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4114 nb_tbs ? target_code_size / nb_tbs : 0,
4115 max_target_code_size);
4116 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
4117 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4118 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4119 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4120 cross_page,
4121 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4122 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4123 direct_jmp_count,
4124 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4125 direct_jmp2_count,
4126 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4127 cpu_fprintf(f, "\nStatistics:\n");
4128 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4129 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4130 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4131 tcg_dump_info(f, cpu_fprintf);
4132 }
4133
4134 #define MMUSUFFIX _cmmu
4135 #define GETPC() NULL
4136 #define env cpu_single_env
4137 #define SOFTMMU_CODE_ACCESS
4138
4139 #define SHIFT 0
4140 #include "softmmu_template.h"
4141
4142 #define SHIFT 1
4143 #include "softmmu_template.h"
4144
4145 #define SHIFT 2
4146 #include "softmmu_template.h"
4147
4148 #define SHIFT 3
4149 #include "softmmu_template.h"
4150
4151 #undef env
4152
4153 #endif