]> git.proxmox.com Git - qemu.git/blob - exec.c
Merge remote-tracking branch 'afaerber/qom-cpu' into staging
[qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "hw/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include <qemu.h>
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
44 #include "trace.h"
45 #endif
46 #include "exec/cpu-all.h"
47
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
50
51 #include "exec/memory-internal.h"
52
53 //#define DEBUG_UNASSIGNED
54 //#define DEBUG_SUBPAGE
55
56 #if !defined(CONFIG_USER_ONLY)
57 int phys_ram_fd;
58 static int in_migration;
59
60 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
61
62 static MemoryRegion *system_memory;
63 static MemoryRegion *system_io;
64
65 AddressSpace address_space_io;
66 AddressSpace address_space_memory;
67 DMAContext dma_context_memory;
68
69 MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
70 static MemoryRegion io_mem_subpage_ram;
71
72 #endif
73
74 CPUArchState *first_cpu;
75 /* current CPU in the current thread. It is only valid inside
76 cpu_exec() */
77 DEFINE_TLS(CPUArchState *,cpu_single_env);
78 /* 0 = Do not count executed instructions.
79 1 = Precise instruction counting.
80 2 = Adaptive rate instruction counting. */
81 int use_icount;
82
83 #if !defined(CONFIG_USER_ONLY)
84
85 static MemoryRegionSection *phys_sections;
86 static unsigned phys_sections_nb, phys_sections_nb_alloc;
87 static uint16_t phys_section_unassigned;
88 static uint16_t phys_section_notdirty;
89 static uint16_t phys_section_rom;
90 static uint16_t phys_section_watch;
91
92 /* Simple allocator for PhysPageEntry nodes */
93 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
94 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
95
96 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
97
98 static void io_mem_init(void);
99 static void memory_map_init(void);
100 static void *qemu_safe_ram_ptr(ram_addr_t addr);
101
102 static MemoryRegion io_mem_watch;
103 #endif
104
105 #if !defined(CONFIG_USER_ONLY)
106
107 static void phys_map_node_reserve(unsigned nodes)
108 {
109 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
110 typedef PhysPageEntry Node[L2_SIZE];
111 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
112 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
113 phys_map_nodes_nb + nodes);
114 phys_map_nodes = g_renew(Node, phys_map_nodes,
115 phys_map_nodes_nb_alloc);
116 }
117 }
118
119 static uint16_t phys_map_node_alloc(void)
120 {
121 unsigned i;
122 uint16_t ret;
123
124 ret = phys_map_nodes_nb++;
125 assert(ret != PHYS_MAP_NODE_NIL);
126 assert(ret != phys_map_nodes_nb_alloc);
127 for (i = 0; i < L2_SIZE; ++i) {
128 phys_map_nodes[ret][i].is_leaf = 0;
129 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
130 }
131 return ret;
132 }
133
134 static void phys_map_nodes_reset(void)
135 {
136 phys_map_nodes_nb = 0;
137 }
138
139
140 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
141 hwaddr *nb, uint16_t leaf,
142 int level)
143 {
144 PhysPageEntry *p;
145 int i;
146 hwaddr step = (hwaddr)1 << (level * L2_BITS);
147
148 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
149 lp->ptr = phys_map_node_alloc();
150 p = phys_map_nodes[lp->ptr];
151 if (level == 0) {
152 for (i = 0; i < L2_SIZE; i++) {
153 p[i].is_leaf = 1;
154 p[i].ptr = phys_section_unassigned;
155 }
156 }
157 } else {
158 p = phys_map_nodes[lp->ptr];
159 }
160 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
161
162 while (*nb && lp < &p[L2_SIZE]) {
163 if ((*index & (step - 1)) == 0 && *nb >= step) {
164 lp->is_leaf = true;
165 lp->ptr = leaf;
166 *index += step;
167 *nb -= step;
168 } else {
169 phys_page_set_level(lp, index, nb, leaf, level - 1);
170 }
171 ++lp;
172 }
173 }
174
175 static void phys_page_set(AddressSpaceDispatch *d,
176 hwaddr index, hwaddr nb,
177 uint16_t leaf)
178 {
179 /* Wildly overreserve - it doesn't matter much. */
180 phys_map_node_reserve(3 * P_L2_LEVELS);
181
182 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
183 }
184
185 MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
186 {
187 PhysPageEntry lp = d->phys_map;
188 PhysPageEntry *p;
189 int i;
190 uint16_t s_index = phys_section_unassigned;
191
192 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
193 if (lp.ptr == PHYS_MAP_NODE_NIL) {
194 goto not_found;
195 }
196 p = phys_map_nodes[lp.ptr];
197 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
198 }
199
200 s_index = lp.ptr;
201 not_found:
202 return &phys_sections[s_index];
203 }
204
205 bool memory_region_is_unassigned(MemoryRegion *mr)
206 {
207 return mr != &io_mem_ram && mr != &io_mem_rom
208 && mr != &io_mem_notdirty && !mr->rom_device
209 && mr != &io_mem_watch;
210 }
211 #endif
212
213 void cpu_exec_init_all(void)
214 {
215 #if !defined(CONFIG_USER_ONLY)
216 qemu_mutex_init(&ram_list.mutex);
217 memory_map_init();
218 io_mem_init();
219 #endif
220 }
221
222 #if !defined(CONFIG_USER_ONLY)
223
224 static int cpu_common_post_load(void *opaque, int version_id)
225 {
226 CPUState *cpu = opaque;
227
228 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
229 version_id is increased. */
230 cpu->interrupt_request &= ~0x01;
231 tlb_flush(cpu->env_ptr, 1);
232
233 return 0;
234 }
235
236 static const VMStateDescription vmstate_cpu_common = {
237 .name = "cpu_common",
238 .version_id = 1,
239 .minimum_version_id = 1,
240 .minimum_version_id_old = 1,
241 .post_load = cpu_common_post_load,
242 .fields = (VMStateField []) {
243 VMSTATE_UINT32(halted, CPUState),
244 VMSTATE_UINT32(interrupt_request, CPUState),
245 VMSTATE_END_OF_LIST()
246 }
247 };
248 #else
249 #define vmstate_cpu_common vmstate_dummy
250 #endif
251
252 CPUState *qemu_get_cpu(int index)
253 {
254 CPUArchState *env = first_cpu;
255 CPUState *cpu = NULL;
256
257 while (env) {
258 cpu = ENV_GET_CPU(env);
259 if (cpu->cpu_index == index) {
260 break;
261 }
262 env = env->next_cpu;
263 }
264
265 return env ? cpu : NULL;
266 }
267
268 void cpu_exec_init(CPUArchState *env)
269 {
270 CPUState *cpu = ENV_GET_CPU(env);
271 CPUClass *cc = CPU_GET_CLASS(cpu);
272 CPUArchState **penv;
273 int cpu_index;
274
275 #if defined(CONFIG_USER_ONLY)
276 cpu_list_lock();
277 #endif
278 env->next_cpu = NULL;
279 penv = &first_cpu;
280 cpu_index = 0;
281 while (*penv != NULL) {
282 penv = &(*penv)->next_cpu;
283 cpu_index++;
284 }
285 cpu->cpu_index = cpu_index;
286 cpu->numa_node = 0;
287 QTAILQ_INIT(&env->breakpoints);
288 QTAILQ_INIT(&env->watchpoints);
289 #ifndef CONFIG_USER_ONLY
290 cpu->thread_id = qemu_get_thread_id();
291 #endif
292 *penv = env;
293 #if defined(CONFIG_USER_ONLY)
294 cpu_list_unlock();
295 #endif
296 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
297 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
298 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
299 cpu_save, cpu_load, env);
300 assert(cc->vmsd == NULL);
301 #endif
302 if (cc->vmsd != NULL) {
303 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
304 }
305 }
306
307 #if defined(TARGET_HAS_ICE)
308 #if defined(CONFIG_USER_ONLY)
309 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
310 {
311 tb_invalidate_phys_page_range(pc, pc + 1, 0);
312 }
313 #else
314 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
315 {
316 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
317 (pc & ~TARGET_PAGE_MASK));
318 }
319 #endif
320 #endif /* TARGET_HAS_ICE */
321
322 #if defined(CONFIG_USER_ONLY)
323 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
324
325 {
326 }
327
328 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
329 int flags, CPUWatchpoint **watchpoint)
330 {
331 return -ENOSYS;
332 }
333 #else
334 /* Add a watchpoint. */
335 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
336 int flags, CPUWatchpoint **watchpoint)
337 {
338 target_ulong len_mask = ~(len - 1);
339 CPUWatchpoint *wp;
340
341 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
342 if ((len & (len - 1)) || (addr & ~len_mask) ||
343 len == 0 || len > TARGET_PAGE_SIZE) {
344 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
345 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
346 return -EINVAL;
347 }
348 wp = g_malloc(sizeof(*wp));
349
350 wp->vaddr = addr;
351 wp->len_mask = len_mask;
352 wp->flags = flags;
353
354 /* keep all GDB-injected watchpoints in front */
355 if (flags & BP_GDB)
356 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
357 else
358 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
359
360 tlb_flush_page(env, addr);
361
362 if (watchpoint)
363 *watchpoint = wp;
364 return 0;
365 }
366
367 /* Remove a specific watchpoint. */
368 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
369 int flags)
370 {
371 target_ulong len_mask = ~(len - 1);
372 CPUWatchpoint *wp;
373
374 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
375 if (addr == wp->vaddr && len_mask == wp->len_mask
376 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
377 cpu_watchpoint_remove_by_ref(env, wp);
378 return 0;
379 }
380 }
381 return -ENOENT;
382 }
383
384 /* Remove a specific watchpoint by reference. */
385 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
386 {
387 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
388
389 tlb_flush_page(env, watchpoint->vaddr);
390
391 g_free(watchpoint);
392 }
393
394 /* Remove all matching watchpoints. */
395 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
396 {
397 CPUWatchpoint *wp, *next;
398
399 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
400 if (wp->flags & mask)
401 cpu_watchpoint_remove_by_ref(env, wp);
402 }
403 }
404 #endif
405
406 /* Add a breakpoint. */
407 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
408 CPUBreakpoint **breakpoint)
409 {
410 #if defined(TARGET_HAS_ICE)
411 CPUBreakpoint *bp;
412
413 bp = g_malloc(sizeof(*bp));
414
415 bp->pc = pc;
416 bp->flags = flags;
417
418 /* keep all GDB-injected breakpoints in front */
419 if (flags & BP_GDB)
420 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
421 else
422 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
423
424 breakpoint_invalidate(env, pc);
425
426 if (breakpoint)
427 *breakpoint = bp;
428 return 0;
429 #else
430 return -ENOSYS;
431 #endif
432 }
433
434 /* Remove a specific breakpoint. */
435 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
436 {
437 #if defined(TARGET_HAS_ICE)
438 CPUBreakpoint *bp;
439
440 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
441 if (bp->pc == pc && bp->flags == flags) {
442 cpu_breakpoint_remove_by_ref(env, bp);
443 return 0;
444 }
445 }
446 return -ENOENT;
447 #else
448 return -ENOSYS;
449 #endif
450 }
451
452 /* Remove a specific breakpoint by reference. */
453 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
454 {
455 #if defined(TARGET_HAS_ICE)
456 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
457
458 breakpoint_invalidate(env, breakpoint->pc);
459
460 g_free(breakpoint);
461 #endif
462 }
463
464 /* Remove all matching breakpoints. */
465 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
466 {
467 #if defined(TARGET_HAS_ICE)
468 CPUBreakpoint *bp, *next;
469
470 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
471 if (bp->flags & mask)
472 cpu_breakpoint_remove_by_ref(env, bp);
473 }
474 #endif
475 }
476
477 /* enable or disable single step mode. EXCP_DEBUG is returned by the
478 CPU loop after each instruction */
479 void cpu_single_step(CPUArchState *env, int enabled)
480 {
481 #if defined(TARGET_HAS_ICE)
482 if (env->singlestep_enabled != enabled) {
483 env->singlestep_enabled = enabled;
484 if (kvm_enabled())
485 kvm_update_guest_debug(env, 0);
486 else {
487 /* must flush all the translated code to avoid inconsistencies */
488 /* XXX: only flush what is necessary */
489 tb_flush(env);
490 }
491 }
492 #endif
493 }
494
495 void cpu_exit(CPUArchState *env)
496 {
497 CPUState *cpu = ENV_GET_CPU(env);
498
499 cpu->exit_request = 1;
500 cpu->tcg_exit_req = 1;
501 }
502
503 void cpu_abort(CPUArchState *env, const char *fmt, ...)
504 {
505 va_list ap;
506 va_list ap2;
507
508 va_start(ap, fmt);
509 va_copy(ap2, ap);
510 fprintf(stderr, "qemu: fatal: ");
511 vfprintf(stderr, fmt, ap);
512 fprintf(stderr, "\n");
513 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
514 if (qemu_log_enabled()) {
515 qemu_log("qemu: fatal: ");
516 qemu_log_vprintf(fmt, ap2);
517 qemu_log("\n");
518 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
519 qemu_log_flush();
520 qemu_log_close();
521 }
522 va_end(ap2);
523 va_end(ap);
524 #if defined(CONFIG_USER_ONLY)
525 {
526 struct sigaction act;
527 sigfillset(&act.sa_mask);
528 act.sa_handler = SIG_DFL;
529 sigaction(SIGABRT, &act, NULL);
530 }
531 #endif
532 abort();
533 }
534
535 CPUArchState *cpu_copy(CPUArchState *env)
536 {
537 CPUArchState *new_env = cpu_init(env->cpu_model_str);
538 CPUArchState *next_cpu = new_env->next_cpu;
539 #if defined(TARGET_HAS_ICE)
540 CPUBreakpoint *bp;
541 CPUWatchpoint *wp;
542 #endif
543
544 memcpy(new_env, env, sizeof(CPUArchState));
545
546 /* Preserve chaining. */
547 new_env->next_cpu = next_cpu;
548
549 /* Clone all break/watchpoints.
550 Note: Once we support ptrace with hw-debug register access, make sure
551 BP_CPU break/watchpoints are handled correctly on clone. */
552 QTAILQ_INIT(&env->breakpoints);
553 QTAILQ_INIT(&env->watchpoints);
554 #if defined(TARGET_HAS_ICE)
555 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
556 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
557 }
558 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
559 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
560 wp->flags, NULL);
561 }
562 #endif
563
564 return new_env;
565 }
566
567 #if !defined(CONFIG_USER_ONLY)
568 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
569 uintptr_t length)
570 {
571 uintptr_t start1;
572
573 /* we modify the TLB cache so that the dirty bit will be set again
574 when accessing the range */
575 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
576 /* Check that we don't span multiple blocks - this breaks the
577 address comparisons below. */
578 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
579 != (end - 1) - start) {
580 abort();
581 }
582 cpu_tlb_reset_dirty_all(start1, length);
583
584 }
585
586 /* Note: start and end must be within the same ram block. */
587 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
588 int dirty_flags)
589 {
590 uintptr_t length;
591
592 start &= TARGET_PAGE_MASK;
593 end = TARGET_PAGE_ALIGN(end);
594
595 length = end - start;
596 if (length == 0)
597 return;
598 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
599
600 if (tcg_enabled()) {
601 tlb_reset_dirty_range_all(start, end, length);
602 }
603 }
604
605 static int cpu_physical_memory_set_dirty_tracking(int enable)
606 {
607 int ret = 0;
608 in_migration = enable;
609 return ret;
610 }
611
612 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
613 MemoryRegionSection *section,
614 target_ulong vaddr,
615 hwaddr paddr,
616 int prot,
617 target_ulong *address)
618 {
619 hwaddr iotlb;
620 CPUWatchpoint *wp;
621
622 if (memory_region_is_ram(section->mr)) {
623 /* Normal RAM. */
624 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
625 + memory_region_section_addr(section, paddr);
626 if (!section->readonly) {
627 iotlb |= phys_section_notdirty;
628 } else {
629 iotlb |= phys_section_rom;
630 }
631 } else {
632 /* IO handlers are currently passed a physical address.
633 It would be nice to pass an offset from the base address
634 of that region. This would avoid having to special case RAM,
635 and avoid full address decoding in every device.
636 We can't use the high bits of pd for this because
637 IO_MEM_ROMD uses these as a ram address. */
638 iotlb = section - phys_sections;
639 iotlb += memory_region_section_addr(section, paddr);
640 }
641
642 /* Make accesses to pages with watchpoints go via the
643 watchpoint trap routines. */
644 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
645 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
646 /* Avoid trapping reads of pages with a write breakpoint. */
647 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
648 iotlb = phys_section_watch + paddr;
649 *address |= TLB_MMIO;
650 break;
651 }
652 }
653 }
654
655 return iotlb;
656 }
657 #endif /* defined(CONFIG_USER_ONLY) */
658
659 #if !defined(CONFIG_USER_ONLY)
660
661 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
662 typedef struct subpage_t {
663 MemoryRegion iomem;
664 hwaddr base;
665 uint16_t sub_section[TARGET_PAGE_SIZE];
666 } subpage_t;
667
668 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
669 uint16_t section);
670 static subpage_t *subpage_init(hwaddr base);
671 static void destroy_page_desc(uint16_t section_index)
672 {
673 MemoryRegionSection *section = &phys_sections[section_index];
674 MemoryRegion *mr = section->mr;
675
676 if (mr->subpage) {
677 subpage_t *subpage = container_of(mr, subpage_t, iomem);
678 memory_region_destroy(&subpage->iomem);
679 g_free(subpage);
680 }
681 }
682
683 static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
684 {
685 unsigned i;
686 PhysPageEntry *p;
687
688 if (lp->ptr == PHYS_MAP_NODE_NIL) {
689 return;
690 }
691
692 p = phys_map_nodes[lp->ptr];
693 for (i = 0; i < L2_SIZE; ++i) {
694 if (!p[i].is_leaf) {
695 destroy_l2_mapping(&p[i], level - 1);
696 } else {
697 destroy_page_desc(p[i].ptr);
698 }
699 }
700 lp->is_leaf = 0;
701 lp->ptr = PHYS_MAP_NODE_NIL;
702 }
703
704 static void destroy_all_mappings(AddressSpaceDispatch *d)
705 {
706 destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
707 phys_map_nodes_reset();
708 }
709
710 static uint16_t phys_section_add(MemoryRegionSection *section)
711 {
712 if (phys_sections_nb == phys_sections_nb_alloc) {
713 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
714 phys_sections = g_renew(MemoryRegionSection, phys_sections,
715 phys_sections_nb_alloc);
716 }
717 phys_sections[phys_sections_nb] = *section;
718 return phys_sections_nb++;
719 }
720
721 static void phys_sections_clear(void)
722 {
723 phys_sections_nb = 0;
724 }
725
726 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
727 {
728 subpage_t *subpage;
729 hwaddr base = section->offset_within_address_space
730 & TARGET_PAGE_MASK;
731 MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS);
732 MemoryRegionSection subsection = {
733 .offset_within_address_space = base,
734 .size = TARGET_PAGE_SIZE,
735 };
736 hwaddr start, end;
737
738 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
739
740 if (!(existing->mr->subpage)) {
741 subpage = subpage_init(base);
742 subsection.mr = &subpage->iomem;
743 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
744 phys_section_add(&subsection));
745 } else {
746 subpage = container_of(existing->mr, subpage_t, iomem);
747 }
748 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
749 end = start + section->size - 1;
750 subpage_register(subpage, start, end, phys_section_add(section));
751 }
752
753
754 static void register_multipage(AddressSpaceDispatch *d, MemoryRegionSection *section)
755 {
756 hwaddr start_addr = section->offset_within_address_space;
757 ram_addr_t size = section->size;
758 hwaddr addr;
759 uint16_t section_index = phys_section_add(section);
760
761 assert(size);
762
763 addr = start_addr;
764 phys_page_set(d, addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
765 section_index);
766 }
767
768 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
769 {
770 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
771 MemoryRegionSection now = *section, remain = *section;
772
773 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
774 || (now.size < TARGET_PAGE_SIZE)) {
775 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
776 - now.offset_within_address_space,
777 now.size);
778 register_subpage(d, &now);
779 remain.size -= now.size;
780 remain.offset_within_address_space += now.size;
781 remain.offset_within_region += now.size;
782 }
783 while (remain.size >= TARGET_PAGE_SIZE) {
784 now = remain;
785 if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
786 now.size = TARGET_PAGE_SIZE;
787 register_subpage(d, &now);
788 } else {
789 now.size &= TARGET_PAGE_MASK;
790 register_multipage(d, &now);
791 }
792 remain.size -= now.size;
793 remain.offset_within_address_space += now.size;
794 remain.offset_within_region += now.size;
795 }
796 now = remain;
797 if (now.size) {
798 register_subpage(d, &now);
799 }
800 }
801
802 void qemu_flush_coalesced_mmio_buffer(void)
803 {
804 if (kvm_enabled())
805 kvm_flush_coalesced_mmio_buffer();
806 }
807
808 void qemu_mutex_lock_ramlist(void)
809 {
810 qemu_mutex_lock(&ram_list.mutex);
811 }
812
813 void qemu_mutex_unlock_ramlist(void)
814 {
815 qemu_mutex_unlock(&ram_list.mutex);
816 }
817
818 #if defined(__linux__) && !defined(TARGET_S390X)
819
820 #include <sys/vfs.h>
821
822 #define HUGETLBFS_MAGIC 0x958458f6
823
824 static long gethugepagesize(const char *path)
825 {
826 struct statfs fs;
827 int ret;
828
829 do {
830 ret = statfs(path, &fs);
831 } while (ret != 0 && errno == EINTR);
832
833 if (ret != 0) {
834 perror(path);
835 return 0;
836 }
837
838 if (fs.f_type != HUGETLBFS_MAGIC)
839 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
840
841 return fs.f_bsize;
842 }
843
844 static void *file_ram_alloc(RAMBlock *block,
845 ram_addr_t memory,
846 const char *path)
847 {
848 char *filename;
849 char *sanitized_name;
850 char *c;
851 void *area;
852 int fd;
853 #ifdef MAP_POPULATE
854 int flags;
855 #endif
856 unsigned long hpagesize;
857
858 hpagesize = gethugepagesize(path);
859 if (!hpagesize) {
860 return NULL;
861 }
862
863 if (memory < hpagesize) {
864 return NULL;
865 }
866
867 if (kvm_enabled() && !kvm_has_sync_mmu()) {
868 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
869 return NULL;
870 }
871
872 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
873 sanitized_name = g_strdup(block->mr->name);
874 for (c = sanitized_name; *c != '\0'; c++) {
875 if (*c == '/')
876 *c = '_';
877 }
878
879 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
880 sanitized_name);
881 g_free(sanitized_name);
882
883 fd = mkstemp(filename);
884 if (fd < 0) {
885 perror("unable to create backing store for hugepages");
886 g_free(filename);
887 return NULL;
888 }
889 unlink(filename);
890 g_free(filename);
891
892 memory = (memory+hpagesize-1) & ~(hpagesize-1);
893
894 /*
895 * ftruncate is not supported by hugetlbfs in older
896 * hosts, so don't bother bailing out on errors.
897 * If anything goes wrong with it under other filesystems,
898 * mmap will fail.
899 */
900 if (ftruncate(fd, memory))
901 perror("ftruncate");
902
903 #ifdef MAP_POPULATE
904 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
905 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
906 * to sidestep this quirk.
907 */
908 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
909 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
910 #else
911 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
912 #endif
913 if (area == MAP_FAILED) {
914 perror("file_ram_alloc: can't mmap RAM pages");
915 close(fd);
916 return (NULL);
917 }
918 block->fd = fd;
919 return area;
920 }
921 #endif
922
923 static ram_addr_t find_ram_offset(ram_addr_t size)
924 {
925 RAMBlock *block, *next_block;
926 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
927
928 if (QTAILQ_EMPTY(&ram_list.blocks))
929 return 0;
930
931 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
932 ram_addr_t end, next = RAM_ADDR_MAX;
933
934 end = block->offset + block->length;
935
936 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
937 if (next_block->offset >= end) {
938 next = MIN(next, next_block->offset);
939 }
940 }
941 if (next - end >= size && next - end < mingap) {
942 offset = end;
943 mingap = next - end;
944 }
945 }
946
947 if (offset == RAM_ADDR_MAX) {
948 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
949 (uint64_t)size);
950 abort();
951 }
952
953 return offset;
954 }
955
956 ram_addr_t last_ram_offset(void)
957 {
958 RAMBlock *block;
959 ram_addr_t last = 0;
960
961 QTAILQ_FOREACH(block, &ram_list.blocks, next)
962 last = MAX(last, block->offset + block->length);
963
964 return last;
965 }
966
967 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
968 {
969 int ret;
970 QemuOpts *machine_opts;
971
972 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
973 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
974 if (machine_opts &&
975 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
976 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
977 if (ret) {
978 perror("qemu_madvise");
979 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
980 "but dump_guest_core=off specified\n");
981 }
982 }
983 }
984
985 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
986 {
987 RAMBlock *new_block, *block;
988
989 new_block = NULL;
990 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
991 if (block->offset == addr) {
992 new_block = block;
993 break;
994 }
995 }
996 assert(new_block);
997 assert(!new_block->idstr[0]);
998
999 if (dev) {
1000 char *id = qdev_get_dev_path(dev);
1001 if (id) {
1002 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1003 g_free(id);
1004 }
1005 }
1006 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1007
1008 /* This assumes the iothread lock is taken here too. */
1009 qemu_mutex_lock_ramlist();
1010 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1011 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1012 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1013 new_block->idstr);
1014 abort();
1015 }
1016 }
1017 qemu_mutex_unlock_ramlist();
1018 }
1019
1020 static int memory_try_enable_merging(void *addr, size_t len)
1021 {
1022 QemuOpts *opts;
1023
1024 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1025 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
1026 /* disabled by the user */
1027 return 0;
1028 }
1029
1030 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1031 }
1032
1033 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1034 MemoryRegion *mr)
1035 {
1036 RAMBlock *block, *new_block;
1037
1038 size = TARGET_PAGE_ALIGN(size);
1039 new_block = g_malloc0(sizeof(*new_block));
1040
1041 /* This assumes the iothread lock is taken here too. */
1042 qemu_mutex_lock_ramlist();
1043 new_block->mr = mr;
1044 new_block->offset = find_ram_offset(size);
1045 if (host) {
1046 new_block->host = host;
1047 new_block->flags |= RAM_PREALLOC_MASK;
1048 } else {
1049 if (mem_path) {
1050 #if defined (__linux__) && !defined(TARGET_S390X)
1051 new_block->host = file_ram_alloc(new_block, size, mem_path);
1052 if (!new_block->host) {
1053 new_block->host = qemu_vmalloc(size);
1054 memory_try_enable_merging(new_block->host, size);
1055 }
1056 #else
1057 fprintf(stderr, "-mem-path option unsupported\n");
1058 exit(1);
1059 #endif
1060 } else {
1061 if (xen_enabled()) {
1062 xen_ram_alloc(new_block->offset, size, mr);
1063 } else if (kvm_enabled()) {
1064 /* some s390/kvm configurations have special constraints */
1065 new_block->host = kvm_vmalloc(size);
1066 } else {
1067 new_block->host = qemu_vmalloc(size);
1068 }
1069 memory_try_enable_merging(new_block->host, size);
1070 }
1071 }
1072 new_block->length = size;
1073
1074 /* Keep the list sorted from biggest to smallest block. */
1075 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1076 if (block->length < new_block->length) {
1077 break;
1078 }
1079 }
1080 if (block) {
1081 QTAILQ_INSERT_BEFORE(block, new_block, next);
1082 } else {
1083 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1084 }
1085 ram_list.mru_block = NULL;
1086
1087 ram_list.version++;
1088 qemu_mutex_unlock_ramlist();
1089
1090 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1091 last_ram_offset() >> TARGET_PAGE_BITS);
1092 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1093 0, size >> TARGET_PAGE_BITS);
1094 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1095
1096 qemu_ram_setup_dump(new_block->host, size);
1097 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1098
1099 if (kvm_enabled())
1100 kvm_setup_guest_memory(new_block->host, size);
1101
1102 return new_block->offset;
1103 }
1104
1105 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1106 {
1107 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1108 }
1109
1110 void qemu_ram_free_from_ptr(ram_addr_t addr)
1111 {
1112 RAMBlock *block;
1113
1114 /* This assumes the iothread lock is taken here too. */
1115 qemu_mutex_lock_ramlist();
1116 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1117 if (addr == block->offset) {
1118 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1119 ram_list.mru_block = NULL;
1120 ram_list.version++;
1121 g_free(block);
1122 break;
1123 }
1124 }
1125 qemu_mutex_unlock_ramlist();
1126 }
1127
1128 void qemu_ram_free(ram_addr_t addr)
1129 {
1130 RAMBlock *block;
1131
1132 /* This assumes the iothread lock is taken here too. */
1133 qemu_mutex_lock_ramlist();
1134 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1135 if (addr == block->offset) {
1136 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1137 ram_list.mru_block = NULL;
1138 ram_list.version++;
1139 if (block->flags & RAM_PREALLOC_MASK) {
1140 ;
1141 } else if (mem_path) {
1142 #if defined (__linux__) && !defined(TARGET_S390X)
1143 if (block->fd) {
1144 munmap(block->host, block->length);
1145 close(block->fd);
1146 } else {
1147 qemu_vfree(block->host);
1148 }
1149 #else
1150 abort();
1151 #endif
1152 } else {
1153 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1154 munmap(block->host, block->length);
1155 #else
1156 if (xen_enabled()) {
1157 xen_invalidate_map_cache_entry(block->host);
1158 } else {
1159 qemu_vfree(block->host);
1160 }
1161 #endif
1162 }
1163 g_free(block);
1164 break;
1165 }
1166 }
1167 qemu_mutex_unlock_ramlist();
1168
1169 }
1170
1171 #ifndef _WIN32
1172 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1173 {
1174 RAMBlock *block;
1175 ram_addr_t offset;
1176 int flags;
1177 void *area, *vaddr;
1178
1179 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1180 offset = addr - block->offset;
1181 if (offset < block->length) {
1182 vaddr = block->host + offset;
1183 if (block->flags & RAM_PREALLOC_MASK) {
1184 ;
1185 } else {
1186 flags = MAP_FIXED;
1187 munmap(vaddr, length);
1188 if (mem_path) {
1189 #if defined(__linux__) && !defined(TARGET_S390X)
1190 if (block->fd) {
1191 #ifdef MAP_POPULATE
1192 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1193 MAP_PRIVATE;
1194 #else
1195 flags |= MAP_PRIVATE;
1196 #endif
1197 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1198 flags, block->fd, offset);
1199 } else {
1200 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1201 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1202 flags, -1, 0);
1203 }
1204 #else
1205 abort();
1206 #endif
1207 } else {
1208 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1209 flags |= MAP_SHARED | MAP_ANONYMOUS;
1210 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1211 flags, -1, 0);
1212 #else
1213 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1214 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1215 flags, -1, 0);
1216 #endif
1217 }
1218 if (area != vaddr) {
1219 fprintf(stderr, "Could not remap addr: "
1220 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1221 length, addr);
1222 exit(1);
1223 }
1224 memory_try_enable_merging(vaddr, length);
1225 qemu_ram_setup_dump(vaddr, length);
1226 }
1227 return;
1228 }
1229 }
1230 }
1231 #endif /* !_WIN32 */
1232
1233 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1234 With the exception of the softmmu code in this file, this should
1235 only be used for local memory (e.g. video ram) that the device owns,
1236 and knows it isn't going to access beyond the end of the block.
1237
1238 It should not be used for general purpose DMA.
1239 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1240 */
1241 void *qemu_get_ram_ptr(ram_addr_t addr)
1242 {
1243 RAMBlock *block;
1244
1245 /* The list is protected by the iothread lock here. */
1246 block = ram_list.mru_block;
1247 if (block && addr - block->offset < block->length) {
1248 goto found;
1249 }
1250 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1251 if (addr - block->offset < block->length) {
1252 goto found;
1253 }
1254 }
1255
1256 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1257 abort();
1258
1259 found:
1260 ram_list.mru_block = block;
1261 if (xen_enabled()) {
1262 /* We need to check if the requested address is in the RAM
1263 * because we don't want to map the entire memory in QEMU.
1264 * In that case just map until the end of the page.
1265 */
1266 if (block->offset == 0) {
1267 return xen_map_cache(addr, 0, 0);
1268 } else if (block->host == NULL) {
1269 block->host =
1270 xen_map_cache(block->offset, block->length, 1);
1271 }
1272 }
1273 return block->host + (addr - block->offset);
1274 }
1275
1276 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1277 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1278 *
1279 * ??? Is this still necessary?
1280 */
1281 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1282 {
1283 RAMBlock *block;
1284
1285 /* The list is protected by the iothread lock here. */
1286 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1287 if (addr - block->offset < block->length) {
1288 if (xen_enabled()) {
1289 /* We need to check if the requested address is in the RAM
1290 * because we don't want to map the entire memory in QEMU.
1291 * In that case just map until the end of the page.
1292 */
1293 if (block->offset == 0) {
1294 return xen_map_cache(addr, 0, 0);
1295 } else if (block->host == NULL) {
1296 block->host =
1297 xen_map_cache(block->offset, block->length, 1);
1298 }
1299 }
1300 return block->host + (addr - block->offset);
1301 }
1302 }
1303
1304 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1305 abort();
1306
1307 return NULL;
1308 }
1309
1310 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1311 * but takes a size argument */
1312 static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
1313 {
1314 if (*size == 0) {
1315 return NULL;
1316 }
1317 if (xen_enabled()) {
1318 return xen_map_cache(addr, *size, 1);
1319 } else {
1320 RAMBlock *block;
1321
1322 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1323 if (addr - block->offset < block->length) {
1324 if (addr - block->offset + *size > block->length)
1325 *size = block->length - addr + block->offset;
1326 return block->host + (addr - block->offset);
1327 }
1328 }
1329
1330 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1331 abort();
1332 }
1333 }
1334
1335 void qemu_put_ram_ptr(void *addr)
1336 {
1337 trace_qemu_put_ram_ptr(addr);
1338 }
1339
1340 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1341 {
1342 RAMBlock *block;
1343 uint8_t *host = ptr;
1344
1345 if (xen_enabled()) {
1346 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1347 return 0;
1348 }
1349
1350 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1351 /* This case append when the block is not mapped. */
1352 if (block->host == NULL) {
1353 continue;
1354 }
1355 if (host - block->host < block->length) {
1356 *ram_addr = block->offset + (host - block->host);
1357 return 0;
1358 }
1359 }
1360
1361 return -1;
1362 }
1363
1364 /* Some of the softmmu routines need to translate from a host pointer
1365 (typically a TLB entry) back to a ram offset. */
1366 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1367 {
1368 ram_addr_t ram_addr;
1369
1370 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
1371 fprintf(stderr, "Bad ram pointer %p\n", ptr);
1372 abort();
1373 }
1374 return ram_addr;
1375 }
1376
1377 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1378 unsigned size)
1379 {
1380 #ifdef DEBUG_UNASSIGNED
1381 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1382 #endif
1383 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
1384 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
1385 #endif
1386 return 0;
1387 }
1388
1389 static void unassigned_mem_write(void *opaque, hwaddr addr,
1390 uint64_t val, unsigned size)
1391 {
1392 #ifdef DEBUG_UNASSIGNED
1393 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1394 #endif
1395 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
1396 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
1397 #endif
1398 }
1399
1400 static const MemoryRegionOps unassigned_mem_ops = {
1401 .read = unassigned_mem_read,
1402 .write = unassigned_mem_write,
1403 .endianness = DEVICE_NATIVE_ENDIAN,
1404 };
1405
1406 static uint64_t error_mem_read(void *opaque, hwaddr addr,
1407 unsigned size)
1408 {
1409 abort();
1410 }
1411
1412 static void error_mem_write(void *opaque, hwaddr addr,
1413 uint64_t value, unsigned size)
1414 {
1415 abort();
1416 }
1417
1418 static const MemoryRegionOps error_mem_ops = {
1419 .read = error_mem_read,
1420 .write = error_mem_write,
1421 .endianness = DEVICE_NATIVE_ENDIAN,
1422 };
1423
1424 static const MemoryRegionOps rom_mem_ops = {
1425 .read = error_mem_read,
1426 .write = unassigned_mem_write,
1427 .endianness = DEVICE_NATIVE_ENDIAN,
1428 };
1429
1430 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1431 uint64_t val, unsigned size)
1432 {
1433 int dirty_flags;
1434 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1435 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1436 #if !defined(CONFIG_USER_ONLY)
1437 tb_invalidate_phys_page_fast(ram_addr, size);
1438 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1439 #endif
1440 }
1441 switch (size) {
1442 case 1:
1443 stb_p(qemu_get_ram_ptr(ram_addr), val);
1444 break;
1445 case 2:
1446 stw_p(qemu_get_ram_ptr(ram_addr), val);
1447 break;
1448 case 4:
1449 stl_p(qemu_get_ram_ptr(ram_addr), val);
1450 break;
1451 default:
1452 abort();
1453 }
1454 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1455 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1456 /* we remove the notdirty callback only if the code has been
1457 flushed */
1458 if (dirty_flags == 0xff)
1459 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
1460 }
1461
1462 static const MemoryRegionOps notdirty_mem_ops = {
1463 .read = error_mem_read,
1464 .write = notdirty_mem_write,
1465 .endianness = DEVICE_NATIVE_ENDIAN,
1466 };
1467
1468 /* Generate a debug exception if a watchpoint has been hit. */
1469 static void check_watchpoint(int offset, int len_mask, int flags)
1470 {
1471 CPUArchState *env = cpu_single_env;
1472 target_ulong pc, cs_base;
1473 target_ulong vaddr;
1474 CPUWatchpoint *wp;
1475 int cpu_flags;
1476
1477 if (env->watchpoint_hit) {
1478 /* We re-entered the check after replacing the TB. Now raise
1479 * the debug interrupt so that is will trigger after the
1480 * current instruction. */
1481 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1482 return;
1483 }
1484 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1485 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1486 if ((vaddr == (wp->vaddr & len_mask) ||
1487 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1488 wp->flags |= BP_WATCHPOINT_HIT;
1489 if (!env->watchpoint_hit) {
1490 env->watchpoint_hit = wp;
1491 tb_check_watchpoint(env);
1492 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1493 env->exception_index = EXCP_DEBUG;
1494 cpu_loop_exit(env);
1495 } else {
1496 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1497 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1498 cpu_resume_from_signal(env, NULL);
1499 }
1500 }
1501 } else {
1502 wp->flags &= ~BP_WATCHPOINT_HIT;
1503 }
1504 }
1505 }
1506
1507 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1508 so these check for a hit then pass through to the normal out-of-line
1509 phys routines. */
1510 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1511 unsigned size)
1512 {
1513 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1514 switch (size) {
1515 case 1: return ldub_phys(addr);
1516 case 2: return lduw_phys(addr);
1517 case 4: return ldl_phys(addr);
1518 default: abort();
1519 }
1520 }
1521
1522 static void watch_mem_write(void *opaque, hwaddr addr,
1523 uint64_t val, unsigned size)
1524 {
1525 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1526 switch (size) {
1527 case 1:
1528 stb_phys(addr, val);
1529 break;
1530 case 2:
1531 stw_phys(addr, val);
1532 break;
1533 case 4:
1534 stl_phys(addr, val);
1535 break;
1536 default: abort();
1537 }
1538 }
1539
1540 static const MemoryRegionOps watch_mem_ops = {
1541 .read = watch_mem_read,
1542 .write = watch_mem_write,
1543 .endianness = DEVICE_NATIVE_ENDIAN,
1544 };
1545
1546 static uint64_t subpage_read(void *opaque, hwaddr addr,
1547 unsigned len)
1548 {
1549 subpage_t *mmio = opaque;
1550 unsigned int idx = SUBPAGE_IDX(addr);
1551 MemoryRegionSection *section;
1552 #if defined(DEBUG_SUBPAGE)
1553 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
1554 mmio, len, addr, idx);
1555 #endif
1556
1557 section = &phys_sections[mmio->sub_section[idx]];
1558 addr += mmio->base;
1559 addr -= section->offset_within_address_space;
1560 addr += section->offset_within_region;
1561 return io_mem_read(section->mr, addr, len);
1562 }
1563
1564 static void subpage_write(void *opaque, hwaddr addr,
1565 uint64_t value, unsigned len)
1566 {
1567 subpage_t *mmio = opaque;
1568 unsigned int idx = SUBPAGE_IDX(addr);
1569 MemoryRegionSection *section;
1570 #if defined(DEBUG_SUBPAGE)
1571 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1572 " idx %d value %"PRIx64"\n",
1573 __func__, mmio, len, addr, idx, value);
1574 #endif
1575
1576 section = &phys_sections[mmio->sub_section[idx]];
1577 addr += mmio->base;
1578 addr -= section->offset_within_address_space;
1579 addr += section->offset_within_region;
1580 io_mem_write(section->mr, addr, value, len);
1581 }
1582
1583 static const MemoryRegionOps subpage_ops = {
1584 .read = subpage_read,
1585 .write = subpage_write,
1586 .endianness = DEVICE_NATIVE_ENDIAN,
1587 };
1588
1589 static uint64_t subpage_ram_read(void *opaque, hwaddr addr,
1590 unsigned size)
1591 {
1592 ram_addr_t raddr = addr;
1593 void *ptr = qemu_get_ram_ptr(raddr);
1594 switch (size) {
1595 case 1: return ldub_p(ptr);
1596 case 2: return lduw_p(ptr);
1597 case 4: return ldl_p(ptr);
1598 default: abort();
1599 }
1600 }
1601
1602 static void subpage_ram_write(void *opaque, hwaddr addr,
1603 uint64_t value, unsigned size)
1604 {
1605 ram_addr_t raddr = addr;
1606 void *ptr = qemu_get_ram_ptr(raddr);
1607 switch (size) {
1608 case 1: return stb_p(ptr, value);
1609 case 2: return stw_p(ptr, value);
1610 case 4: return stl_p(ptr, value);
1611 default: abort();
1612 }
1613 }
1614
1615 static const MemoryRegionOps subpage_ram_ops = {
1616 .read = subpage_ram_read,
1617 .write = subpage_ram_write,
1618 .endianness = DEVICE_NATIVE_ENDIAN,
1619 };
1620
1621 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1622 uint16_t section)
1623 {
1624 int idx, eidx;
1625
1626 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1627 return -1;
1628 idx = SUBPAGE_IDX(start);
1629 eidx = SUBPAGE_IDX(end);
1630 #if defined(DEBUG_SUBPAGE)
1631 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1632 mmio, start, end, idx, eidx, memory);
1633 #endif
1634 if (memory_region_is_ram(phys_sections[section].mr)) {
1635 MemoryRegionSection new_section = phys_sections[section];
1636 new_section.mr = &io_mem_subpage_ram;
1637 section = phys_section_add(&new_section);
1638 }
1639 for (; idx <= eidx; idx++) {
1640 mmio->sub_section[idx] = section;
1641 }
1642
1643 return 0;
1644 }
1645
1646 static subpage_t *subpage_init(hwaddr base)
1647 {
1648 subpage_t *mmio;
1649
1650 mmio = g_malloc0(sizeof(subpage_t));
1651
1652 mmio->base = base;
1653 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
1654 "subpage", TARGET_PAGE_SIZE);
1655 mmio->iomem.subpage = true;
1656 #if defined(DEBUG_SUBPAGE)
1657 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1658 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1659 #endif
1660 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
1661
1662 return mmio;
1663 }
1664
1665 static uint16_t dummy_section(MemoryRegion *mr)
1666 {
1667 MemoryRegionSection section = {
1668 .mr = mr,
1669 .offset_within_address_space = 0,
1670 .offset_within_region = 0,
1671 .size = UINT64_MAX,
1672 };
1673
1674 return phys_section_add(&section);
1675 }
1676
1677 MemoryRegion *iotlb_to_region(hwaddr index)
1678 {
1679 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
1680 }
1681
1682 static void io_mem_init(void)
1683 {
1684 memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
1685 memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
1686 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
1687 "unassigned", UINT64_MAX);
1688 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
1689 "notdirty", UINT64_MAX);
1690 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
1691 "subpage-ram", UINT64_MAX);
1692 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
1693 "watch", UINT64_MAX);
1694 }
1695
1696 static void mem_begin(MemoryListener *listener)
1697 {
1698 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
1699
1700 destroy_all_mappings(d);
1701 d->phys_map.ptr = PHYS_MAP_NODE_NIL;
1702 }
1703
1704 static void core_begin(MemoryListener *listener)
1705 {
1706 phys_sections_clear();
1707 phys_section_unassigned = dummy_section(&io_mem_unassigned);
1708 phys_section_notdirty = dummy_section(&io_mem_notdirty);
1709 phys_section_rom = dummy_section(&io_mem_rom);
1710 phys_section_watch = dummy_section(&io_mem_watch);
1711 }
1712
1713 static void tcg_commit(MemoryListener *listener)
1714 {
1715 CPUArchState *env;
1716
1717 /* since each CPU stores ram addresses in its TLB cache, we must
1718 reset the modified entries */
1719 /* XXX: slow ! */
1720 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1721 tlb_flush(env, 1);
1722 }
1723 }
1724
1725 static void core_log_global_start(MemoryListener *listener)
1726 {
1727 cpu_physical_memory_set_dirty_tracking(1);
1728 }
1729
1730 static void core_log_global_stop(MemoryListener *listener)
1731 {
1732 cpu_physical_memory_set_dirty_tracking(0);
1733 }
1734
1735 static void io_region_add(MemoryListener *listener,
1736 MemoryRegionSection *section)
1737 {
1738 MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
1739
1740 mrio->mr = section->mr;
1741 mrio->offset = section->offset_within_region;
1742 iorange_init(&mrio->iorange, &memory_region_iorange_ops,
1743 section->offset_within_address_space, section->size);
1744 ioport_register(&mrio->iorange);
1745 }
1746
1747 static void io_region_del(MemoryListener *listener,
1748 MemoryRegionSection *section)
1749 {
1750 isa_unassign_ioport(section->offset_within_address_space, section->size);
1751 }
1752
1753 static MemoryListener core_memory_listener = {
1754 .begin = core_begin,
1755 .log_global_start = core_log_global_start,
1756 .log_global_stop = core_log_global_stop,
1757 .priority = 1,
1758 };
1759
1760 static MemoryListener io_memory_listener = {
1761 .region_add = io_region_add,
1762 .region_del = io_region_del,
1763 .priority = 0,
1764 };
1765
1766 static MemoryListener tcg_memory_listener = {
1767 .commit = tcg_commit,
1768 };
1769
1770 void address_space_init_dispatch(AddressSpace *as)
1771 {
1772 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1773
1774 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1775 d->listener = (MemoryListener) {
1776 .begin = mem_begin,
1777 .region_add = mem_add,
1778 .region_nop = mem_add,
1779 .priority = 0,
1780 };
1781 as->dispatch = d;
1782 memory_listener_register(&d->listener, as);
1783 }
1784
1785 void address_space_destroy_dispatch(AddressSpace *as)
1786 {
1787 AddressSpaceDispatch *d = as->dispatch;
1788
1789 memory_listener_unregister(&d->listener);
1790 destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
1791 g_free(d);
1792 as->dispatch = NULL;
1793 }
1794
1795 static void memory_map_init(void)
1796 {
1797 system_memory = g_malloc(sizeof(*system_memory));
1798 memory_region_init(system_memory, "system", INT64_MAX);
1799 address_space_init(&address_space_memory, system_memory);
1800 address_space_memory.name = "memory";
1801
1802 system_io = g_malloc(sizeof(*system_io));
1803 memory_region_init(system_io, "io", 65536);
1804 address_space_init(&address_space_io, system_io);
1805 address_space_io.name = "I/O";
1806
1807 memory_listener_register(&core_memory_listener, &address_space_memory);
1808 memory_listener_register(&io_memory_listener, &address_space_io);
1809 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1810
1811 dma_context_init(&dma_context_memory, &address_space_memory,
1812 NULL, NULL, NULL);
1813 }
1814
1815 MemoryRegion *get_system_memory(void)
1816 {
1817 return system_memory;
1818 }
1819
1820 MemoryRegion *get_system_io(void)
1821 {
1822 return system_io;
1823 }
1824
1825 #endif /* !defined(CONFIG_USER_ONLY) */
1826
1827 /* physical memory access (slow version, mainly for debug) */
1828 #if defined(CONFIG_USER_ONLY)
1829 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
1830 uint8_t *buf, int len, int is_write)
1831 {
1832 int l, flags;
1833 target_ulong page;
1834 void * p;
1835
1836 while (len > 0) {
1837 page = addr & TARGET_PAGE_MASK;
1838 l = (page + TARGET_PAGE_SIZE) - addr;
1839 if (l > len)
1840 l = len;
1841 flags = page_get_flags(page);
1842 if (!(flags & PAGE_VALID))
1843 return -1;
1844 if (is_write) {
1845 if (!(flags & PAGE_WRITE))
1846 return -1;
1847 /* XXX: this code should not depend on lock_user */
1848 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1849 return -1;
1850 memcpy(p, buf, l);
1851 unlock_user(p, addr, l);
1852 } else {
1853 if (!(flags & PAGE_READ))
1854 return -1;
1855 /* XXX: this code should not depend on lock_user */
1856 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1857 return -1;
1858 memcpy(buf, p, l);
1859 unlock_user(p, addr, 0);
1860 }
1861 len -= l;
1862 buf += l;
1863 addr += l;
1864 }
1865 return 0;
1866 }
1867
1868 #else
1869
1870 static void invalidate_and_set_dirty(hwaddr addr,
1871 hwaddr length)
1872 {
1873 if (!cpu_physical_memory_is_dirty(addr)) {
1874 /* invalidate code */
1875 tb_invalidate_phys_page_range(addr, addr + length, 0);
1876 /* set dirty bit */
1877 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1878 }
1879 xen_modified_memory(addr, length);
1880 }
1881
1882 void address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1883 int len, bool is_write)
1884 {
1885 AddressSpaceDispatch *d = as->dispatch;
1886 int l;
1887 uint8_t *ptr;
1888 uint32_t val;
1889 hwaddr page;
1890 MemoryRegionSection *section;
1891
1892 while (len > 0) {
1893 page = addr & TARGET_PAGE_MASK;
1894 l = (page + TARGET_PAGE_SIZE) - addr;
1895 if (l > len)
1896 l = len;
1897 section = phys_page_find(d, page >> TARGET_PAGE_BITS);
1898
1899 if (is_write) {
1900 if (!memory_region_is_ram(section->mr)) {
1901 hwaddr addr1;
1902 addr1 = memory_region_section_addr(section, addr);
1903 /* XXX: could force cpu_single_env to NULL to avoid
1904 potential bugs */
1905 if (l >= 4 && ((addr1 & 3) == 0)) {
1906 /* 32 bit write access */
1907 val = ldl_p(buf);
1908 io_mem_write(section->mr, addr1, val, 4);
1909 l = 4;
1910 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1911 /* 16 bit write access */
1912 val = lduw_p(buf);
1913 io_mem_write(section->mr, addr1, val, 2);
1914 l = 2;
1915 } else {
1916 /* 8 bit write access */
1917 val = ldub_p(buf);
1918 io_mem_write(section->mr, addr1, val, 1);
1919 l = 1;
1920 }
1921 } else if (!section->readonly) {
1922 ram_addr_t addr1;
1923 addr1 = memory_region_get_ram_addr(section->mr)
1924 + memory_region_section_addr(section, addr);
1925 /* RAM case */
1926 ptr = qemu_get_ram_ptr(addr1);
1927 memcpy(ptr, buf, l);
1928 invalidate_and_set_dirty(addr1, l);
1929 qemu_put_ram_ptr(ptr);
1930 }
1931 } else {
1932 if (!(memory_region_is_ram(section->mr) ||
1933 memory_region_is_romd(section->mr))) {
1934 hwaddr addr1;
1935 /* I/O case */
1936 addr1 = memory_region_section_addr(section, addr);
1937 if (l >= 4 && ((addr1 & 3) == 0)) {
1938 /* 32 bit read access */
1939 val = io_mem_read(section->mr, addr1, 4);
1940 stl_p(buf, val);
1941 l = 4;
1942 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1943 /* 16 bit read access */
1944 val = io_mem_read(section->mr, addr1, 2);
1945 stw_p(buf, val);
1946 l = 2;
1947 } else {
1948 /* 8 bit read access */
1949 val = io_mem_read(section->mr, addr1, 1);
1950 stb_p(buf, val);
1951 l = 1;
1952 }
1953 } else {
1954 /* RAM case */
1955 ptr = qemu_get_ram_ptr(section->mr->ram_addr
1956 + memory_region_section_addr(section,
1957 addr));
1958 memcpy(buf, ptr, l);
1959 qemu_put_ram_ptr(ptr);
1960 }
1961 }
1962 len -= l;
1963 buf += l;
1964 addr += l;
1965 }
1966 }
1967
1968 void address_space_write(AddressSpace *as, hwaddr addr,
1969 const uint8_t *buf, int len)
1970 {
1971 address_space_rw(as, addr, (uint8_t *)buf, len, true);
1972 }
1973
1974 /**
1975 * address_space_read: read from an address space.
1976 *
1977 * @as: #AddressSpace to be accessed
1978 * @addr: address within that address space
1979 * @buf: buffer with the data transferred
1980 */
1981 void address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
1982 {
1983 address_space_rw(as, addr, buf, len, false);
1984 }
1985
1986
1987 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
1988 int len, int is_write)
1989 {
1990 return address_space_rw(&address_space_memory, addr, buf, len, is_write);
1991 }
1992
1993 /* used for ROM loading : can write in RAM and ROM */
1994 void cpu_physical_memory_write_rom(hwaddr addr,
1995 const uint8_t *buf, int len)
1996 {
1997 AddressSpaceDispatch *d = address_space_memory.dispatch;
1998 int l;
1999 uint8_t *ptr;
2000 hwaddr page;
2001 MemoryRegionSection *section;
2002
2003 while (len > 0) {
2004 page = addr & TARGET_PAGE_MASK;
2005 l = (page + TARGET_PAGE_SIZE) - addr;
2006 if (l > len)
2007 l = len;
2008 section = phys_page_find(d, page >> TARGET_PAGE_BITS);
2009
2010 if (!(memory_region_is_ram(section->mr) ||
2011 memory_region_is_romd(section->mr))) {
2012 /* do nothing */
2013 } else {
2014 unsigned long addr1;
2015 addr1 = memory_region_get_ram_addr(section->mr)
2016 + memory_region_section_addr(section, addr);
2017 /* ROM/RAM case */
2018 ptr = qemu_get_ram_ptr(addr1);
2019 memcpy(ptr, buf, l);
2020 invalidate_and_set_dirty(addr1, l);
2021 qemu_put_ram_ptr(ptr);
2022 }
2023 len -= l;
2024 buf += l;
2025 addr += l;
2026 }
2027 }
2028
2029 typedef struct {
2030 void *buffer;
2031 hwaddr addr;
2032 hwaddr len;
2033 } BounceBuffer;
2034
2035 static BounceBuffer bounce;
2036
2037 typedef struct MapClient {
2038 void *opaque;
2039 void (*callback)(void *opaque);
2040 QLIST_ENTRY(MapClient) link;
2041 } MapClient;
2042
2043 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2044 = QLIST_HEAD_INITIALIZER(map_client_list);
2045
2046 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2047 {
2048 MapClient *client = g_malloc(sizeof(*client));
2049
2050 client->opaque = opaque;
2051 client->callback = callback;
2052 QLIST_INSERT_HEAD(&map_client_list, client, link);
2053 return client;
2054 }
2055
2056 static void cpu_unregister_map_client(void *_client)
2057 {
2058 MapClient *client = (MapClient *)_client;
2059
2060 QLIST_REMOVE(client, link);
2061 g_free(client);
2062 }
2063
2064 static void cpu_notify_map_clients(void)
2065 {
2066 MapClient *client;
2067
2068 while (!QLIST_EMPTY(&map_client_list)) {
2069 client = QLIST_FIRST(&map_client_list);
2070 client->callback(client->opaque);
2071 cpu_unregister_map_client(client);
2072 }
2073 }
2074
2075 /* Map a physical memory region into a host virtual address.
2076 * May map a subset of the requested range, given by and returned in *plen.
2077 * May return NULL if resources needed to perform the mapping are exhausted.
2078 * Use only for reads OR writes - not for read-modify-write operations.
2079 * Use cpu_register_map_client() to know when retrying the map operation is
2080 * likely to succeed.
2081 */
2082 void *address_space_map(AddressSpace *as,
2083 hwaddr addr,
2084 hwaddr *plen,
2085 bool is_write)
2086 {
2087 AddressSpaceDispatch *d = as->dispatch;
2088 hwaddr len = *plen;
2089 hwaddr todo = 0;
2090 int l;
2091 hwaddr page;
2092 MemoryRegionSection *section;
2093 ram_addr_t raddr = RAM_ADDR_MAX;
2094 ram_addr_t rlen;
2095 void *ret;
2096
2097 while (len > 0) {
2098 page = addr & TARGET_PAGE_MASK;
2099 l = (page + TARGET_PAGE_SIZE) - addr;
2100 if (l > len)
2101 l = len;
2102 section = phys_page_find(d, page >> TARGET_PAGE_BITS);
2103
2104 if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
2105 if (todo || bounce.buffer) {
2106 break;
2107 }
2108 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2109 bounce.addr = addr;
2110 bounce.len = l;
2111 if (!is_write) {
2112 address_space_read(as, addr, bounce.buffer, l);
2113 }
2114
2115 *plen = l;
2116 return bounce.buffer;
2117 }
2118 if (!todo) {
2119 raddr = memory_region_get_ram_addr(section->mr)
2120 + memory_region_section_addr(section, addr);
2121 }
2122
2123 len -= l;
2124 addr += l;
2125 todo += l;
2126 }
2127 rlen = todo;
2128 ret = qemu_ram_ptr_length(raddr, &rlen);
2129 *plen = rlen;
2130 return ret;
2131 }
2132
2133 /* Unmaps a memory region previously mapped by address_space_map().
2134 * Will also mark the memory as dirty if is_write == 1. access_len gives
2135 * the amount of memory that was actually read or written by the caller.
2136 */
2137 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2138 int is_write, hwaddr access_len)
2139 {
2140 if (buffer != bounce.buffer) {
2141 if (is_write) {
2142 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
2143 while (access_len) {
2144 unsigned l;
2145 l = TARGET_PAGE_SIZE;
2146 if (l > access_len)
2147 l = access_len;
2148 invalidate_and_set_dirty(addr1, l);
2149 addr1 += l;
2150 access_len -= l;
2151 }
2152 }
2153 if (xen_enabled()) {
2154 xen_invalidate_map_cache_entry(buffer);
2155 }
2156 return;
2157 }
2158 if (is_write) {
2159 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2160 }
2161 qemu_vfree(bounce.buffer);
2162 bounce.buffer = NULL;
2163 cpu_notify_map_clients();
2164 }
2165
2166 void *cpu_physical_memory_map(hwaddr addr,
2167 hwaddr *plen,
2168 int is_write)
2169 {
2170 return address_space_map(&address_space_memory, addr, plen, is_write);
2171 }
2172
2173 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2174 int is_write, hwaddr access_len)
2175 {
2176 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2177 }
2178
2179 /* warning: addr must be aligned */
2180 static inline uint32_t ldl_phys_internal(hwaddr addr,
2181 enum device_endian endian)
2182 {
2183 uint8_t *ptr;
2184 uint32_t val;
2185 MemoryRegionSection *section;
2186
2187 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2188
2189 if (!(memory_region_is_ram(section->mr) ||
2190 memory_region_is_romd(section->mr))) {
2191 /* I/O case */
2192 addr = memory_region_section_addr(section, addr);
2193 val = io_mem_read(section->mr, addr, 4);
2194 #if defined(TARGET_WORDS_BIGENDIAN)
2195 if (endian == DEVICE_LITTLE_ENDIAN) {
2196 val = bswap32(val);
2197 }
2198 #else
2199 if (endian == DEVICE_BIG_ENDIAN) {
2200 val = bswap32(val);
2201 }
2202 #endif
2203 } else {
2204 /* RAM case */
2205 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2206 & TARGET_PAGE_MASK)
2207 + memory_region_section_addr(section, addr));
2208 switch (endian) {
2209 case DEVICE_LITTLE_ENDIAN:
2210 val = ldl_le_p(ptr);
2211 break;
2212 case DEVICE_BIG_ENDIAN:
2213 val = ldl_be_p(ptr);
2214 break;
2215 default:
2216 val = ldl_p(ptr);
2217 break;
2218 }
2219 }
2220 return val;
2221 }
2222
2223 uint32_t ldl_phys(hwaddr addr)
2224 {
2225 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2226 }
2227
2228 uint32_t ldl_le_phys(hwaddr addr)
2229 {
2230 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2231 }
2232
2233 uint32_t ldl_be_phys(hwaddr addr)
2234 {
2235 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2236 }
2237
2238 /* warning: addr must be aligned */
2239 static inline uint64_t ldq_phys_internal(hwaddr addr,
2240 enum device_endian endian)
2241 {
2242 uint8_t *ptr;
2243 uint64_t val;
2244 MemoryRegionSection *section;
2245
2246 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2247
2248 if (!(memory_region_is_ram(section->mr) ||
2249 memory_region_is_romd(section->mr))) {
2250 /* I/O case */
2251 addr = memory_region_section_addr(section, addr);
2252
2253 /* XXX This is broken when device endian != cpu endian.
2254 Fix and add "endian" variable check */
2255 #ifdef TARGET_WORDS_BIGENDIAN
2256 val = io_mem_read(section->mr, addr, 4) << 32;
2257 val |= io_mem_read(section->mr, addr + 4, 4);
2258 #else
2259 val = io_mem_read(section->mr, addr, 4);
2260 val |= io_mem_read(section->mr, addr + 4, 4) << 32;
2261 #endif
2262 } else {
2263 /* RAM case */
2264 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2265 & TARGET_PAGE_MASK)
2266 + memory_region_section_addr(section, addr));
2267 switch (endian) {
2268 case DEVICE_LITTLE_ENDIAN:
2269 val = ldq_le_p(ptr);
2270 break;
2271 case DEVICE_BIG_ENDIAN:
2272 val = ldq_be_p(ptr);
2273 break;
2274 default:
2275 val = ldq_p(ptr);
2276 break;
2277 }
2278 }
2279 return val;
2280 }
2281
2282 uint64_t ldq_phys(hwaddr addr)
2283 {
2284 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2285 }
2286
2287 uint64_t ldq_le_phys(hwaddr addr)
2288 {
2289 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2290 }
2291
2292 uint64_t ldq_be_phys(hwaddr addr)
2293 {
2294 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2295 }
2296
2297 /* XXX: optimize */
2298 uint32_t ldub_phys(hwaddr addr)
2299 {
2300 uint8_t val;
2301 cpu_physical_memory_read(addr, &val, 1);
2302 return val;
2303 }
2304
2305 /* warning: addr must be aligned */
2306 static inline uint32_t lduw_phys_internal(hwaddr addr,
2307 enum device_endian endian)
2308 {
2309 uint8_t *ptr;
2310 uint64_t val;
2311 MemoryRegionSection *section;
2312
2313 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2314
2315 if (!(memory_region_is_ram(section->mr) ||
2316 memory_region_is_romd(section->mr))) {
2317 /* I/O case */
2318 addr = memory_region_section_addr(section, addr);
2319 val = io_mem_read(section->mr, addr, 2);
2320 #if defined(TARGET_WORDS_BIGENDIAN)
2321 if (endian == DEVICE_LITTLE_ENDIAN) {
2322 val = bswap16(val);
2323 }
2324 #else
2325 if (endian == DEVICE_BIG_ENDIAN) {
2326 val = bswap16(val);
2327 }
2328 #endif
2329 } else {
2330 /* RAM case */
2331 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2332 & TARGET_PAGE_MASK)
2333 + memory_region_section_addr(section, addr));
2334 switch (endian) {
2335 case DEVICE_LITTLE_ENDIAN:
2336 val = lduw_le_p(ptr);
2337 break;
2338 case DEVICE_BIG_ENDIAN:
2339 val = lduw_be_p(ptr);
2340 break;
2341 default:
2342 val = lduw_p(ptr);
2343 break;
2344 }
2345 }
2346 return val;
2347 }
2348
2349 uint32_t lduw_phys(hwaddr addr)
2350 {
2351 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2352 }
2353
2354 uint32_t lduw_le_phys(hwaddr addr)
2355 {
2356 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2357 }
2358
2359 uint32_t lduw_be_phys(hwaddr addr)
2360 {
2361 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2362 }
2363
2364 /* warning: addr must be aligned. The ram page is not masked as dirty
2365 and the code inside is not invalidated. It is useful if the dirty
2366 bits are used to track modified PTEs */
2367 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2368 {
2369 uint8_t *ptr;
2370 MemoryRegionSection *section;
2371
2372 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2373
2374 if (!memory_region_is_ram(section->mr) || section->readonly) {
2375 addr = memory_region_section_addr(section, addr);
2376 if (memory_region_is_ram(section->mr)) {
2377 section = &phys_sections[phys_section_rom];
2378 }
2379 io_mem_write(section->mr, addr, val, 4);
2380 } else {
2381 unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
2382 & TARGET_PAGE_MASK)
2383 + memory_region_section_addr(section, addr);
2384 ptr = qemu_get_ram_ptr(addr1);
2385 stl_p(ptr, val);
2386
2387 if (unlikely(in_migration)) {
2388 if (!cpu_physical_memory_is_dirty(addr1)) {
2389 /* invalidate code */
2390 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2391 /* set dirty bit */
2392 cpu_physical_memory_set_dirty_flags(
2393 addr1, (0xff & ~CODE_DIRTY_FLAG));
2394 }
2395 }
2396 }
2397 }
2398
2399 void stq_phys_notdirty(hwaddr addr, uint64_t val)
2400 {
2401 uint8_t *ptr;
2402 MemoryRegionSection *section;
2403
2404 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2405
2406 if (!memory_region_is_ram(section->mr) || section->readonly) {
2407 addr = memory_region_section_addr(section, addr);
2408 if (memory_region_is_ram(section->mr)) {
2409 section = &phys_sections[phys_section_rom];
2410 }
2411 #ifdef TARGET_WORDS_BIGENDIAN
2412 io_mem_write(section->mr, addr, val >> 32, 4);
2413 io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
2414 #else
2415 io_mem_write(section->mr, addr, (uint32_t)val, 4);
2416 io_mem_write(section->mr, addr + 4, val >> 32, 4);
2417 #endif
2418 } else {
2419 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2420 & TARGET_PAGE_MASK)
2421 + memory_region_section_addr(section, addr));
2422 stq_p(ptr, val);
2423 }
2424 }
2425
2426 /* warning: addr must be aligned */
2427 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2428 enum device_endian endian)
2429 {
2430 uint8_t *ptr;
2431 MemoryRegionSection *section;
2432
2433 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2434
2435 if (!memory_region_is_ram(section->mr) || section->readonly) {
2436 addr = memory_region_section_addr(section, addr);
2437 if (memory_region_is_ram(section->mr)) {
2438 section = &phys_sections[phys_section_rom];
2439 }
2440 #if defined(TARGET_WORDS_BIGENDIAN)
2441 if (endian == DEVICE_LITTLE_ENDIAN) {
2442 val = bswap32(val);
2443 }
2444 #else
2445 if (endian == DEVICE_BIG_ENDIAN) {
2446 val = bswap32(val);
2447 }
2448 #endif
2449 io_mem_write(section->mr, addr, val, 4);
2450 } else {
2451 unsigned long addr1;
2452 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
2453 + memory_region_section_addr(section, addr);
2454 /* RAM case */
2455 ptr = qemu_get_ram_ptr(addr1);
2456 switch (endian) {
2457 case DEVICE_LITTLE_ENDIAN:
2458 stl_le_p(ptr, val);
2459 break;
2460 case DEVICE_BIG_ENDIAN:
2461 stl_be_p(ptr, val);
2462 break;
2463 default:
2464 stl_p(ptr, val);
2465 break;
2466 }
2467 invalidate_and_set_dirty(addr1, 4);
2468 }
2469 }
2470
2471 void stl_phys(hwaddr addr, uint32_t val)
2472 {
2473 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2474 }
2475
2476 void stl_le_phys(hwaddr addr, uint32_t val)
2477 {
2478 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2479 }
2480
2481 void stl_be_phys(hwaddr addr, uint32_t val)
2482 {
2483 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2484 }
2485
2486 /* XXX: optimize */
2487 void stb_phys(hwaddr addr, uint32_t val)
2488 {
2489 uint8_t v = val;
2490 cpu_physical_memory_write(addr, &v, 1);
2491 }
2492
2493 /* warning: addr must be aligned */
2494 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2495 enum device_endian endian)
2496 {
2497 uint8_t *ptr;
2498 MemoryRegionSection *section;
2499
2500 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2501
2502 if (!memory_region_is_ram(section->mr) || section->readonly) {
2503 addr = memory_region_section_addr(section, addr);
2504 if (memory_region_is_ram(section->mr)) {
2505 section = &phys_sections[phys_section_rom];
2506 }
2507 #if defined(TARGET_WORDS_BIGENDIAN)
2508 if (endian == DEVICE_LITTLE_ENDIAN) {
2509 val = bswap16(val);
2510 }
2511 #else
2512 if (endian == DEVICE_BIG_ENDIAN) {
2513 val = bswap16(val);
2514 }
2515 #endif
2516 io_mem_write(section->mr, addr, val, 2);
2517 } else {
2518 unsigned long addr1;
2519 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
2520 + memory_region_section_addr(section, addr);
2521 /* RAM case */
2522 ptr = qemu_get_ram_ptr(addr1);
2523 switch (endian) {
2524 case DEVICE_LITTLE_ENDIAN:
2525 stw_le_p(ptr, val);
2526 break;
2527 case DEVICE_BIG_ENDIAN:
2528 stw_be_p(ptr, val);
2529 break;
2530 default:
2531 stw_p(ptr, val);
2532 break;
2533 }
2534 invalidate_and_set_dirty(addr1, 2);
2535 }
2536 }
2537
2538 void stw_phys(hwaddr addr, uint32_t val)
2539 {
2540 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2541 }
2542
2543 void stw_le_phys(hwaddr addr, uint32_t val)
2544 {
2545 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2546 }
2547
2548 void stw_be_phys(hwaddr addr, uint32_t val)
2549 {
2550 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2551 }
2552
2553 /* XXX: optimize */
2554 void stq_phys(hwaddr addr, uint64_t val)
2555 {
2556 val = tswap64(val);
2557 cpu_physical_memory_write(addr, &val, 8);
2558 }
2559
2560 void stq_le_phys(hwaddr addr, uint64_t val)
2561 {
2562 val = cpu_to_le64(val);
2563 cpu_physical_memory_write(addr, &val, 8);
2564 }
2565
2566 void stq_be_phys(hwaddr addr, uint64_t val)
2567 {
2568 val = cpu_to_be64(val);
2569 cpu_physical_memory_write(addr, &val, 8);
2570 }
2571
2572 /* virtual memory access for debug (includes writing to ROM) */
2573 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
2574 uint8_t *buf, int len, int is_write)
2575 {
2576 int l;
2577 hwaddr phys_addr;
2578 target_ulong page;
2579
2580 while (len > 0) {
2581 page = addr & TARGET_PAGE_MASK;
2582 phys_addr = cpu_get_phys_page_debug(env, page);
2583 /* if no physical page mapped, return an error */
2584 if (phys_addr == -1)
2585 return -1;
2586 l = (page + TARGET_PAGE_SIZE) - addr;
2587 if (l > len)
2588 l = len;
2589 phys_addr += (addr & ~TARGET_PAGE_MASK);
2590 if (is_write)
2591 cpu_physical_memory_write_rom(phys_addr, buf, l);
2592 else
2593 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2594 len -= l;
2595 buf += l;
2596 addr += l;
2597 }
2598 return 0;
2599 }
2600 #endif
2601
2602 #if !defined(CONFIG_USER_ONLY)
2603
2604 /*
2605 * A helper function for the _utterly broken_ virtio device model to find out if
2606 * it's running on a big endian machine. Don't do this at home kids!
2607 */
2608 bool virtio_is_big_endian(void);
2609 bool virtio_is_big_endian(void)
2610 {
2611 #if defined(TARGET_WORDS_BIGENDIAN)
2612 return true;
2613 #else
2614 return false;
2615 #endif
2616 }
2617
2618 #endif
2619
2620 #ifndef CONFIG_USER_ONLY
2621 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2622 {
2623 MemoryRegionSection *section;
2624
2625 section = phys_page_find(address_space_memory.dispatch,
2626 phys_addr >> TARGET_PAGE_BITS);
2627
2628 return !(memory_region_is_ram(section->mr) ||
2629 memory_region_is_romd(section->mr));
2630 }
2631 #endif