]> git.proxmox.com Git - qemu.git/blob - exec.c
xhci: fix portsc writes
[qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include <qemu.h>
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
44 #include "trace.h"
45 #endif
46 #include "exec/cpu-all.h"
47
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
50
51 #include "exec/memory-internal.h"
52
53 //#define DEBUG_UNASSIGNED
54 //#define DEBUG_SUBPAGE
55
56 #if !defined(CONFIG_USER_ONLY)
57 int phys_ram_fd;
58 static int in_migration;
59
60 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
61
62 static MemoryRegion *system_memory;
63 static MemoryRegion *system_io;
64
65 AddressSpace address_space_io;
66 AddressSpace address_space_memory;
67 DMAContext dma_context_memory;
68
69 MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
70 static MemoryRegion io_mem_subpage_ram;
71
72 #endif
73
74 CPUArchState *first_cpu;
75 /* current CPU in the current thread. It is only valid inside
76 cpu_exec() */
77 DEFINE_TLS(CPUArchState *,cpu_single_env);
78 /* 0 = Do not count executed instructions.
79 1 = Precise instruction counting.
80 2 = Adaptive rate instruction counting. */
81 int use_icount;
82
83 #if !defined(CONFIG_USER_ONLY)
84
85 static MemoryRegionSection *phys_sections;
86 static unsigned phys_sections_nb, phys_sections_nb_alloc;
87 static uint16_t phys_section_unassigned;
88 static uint16_t phys_section_notdirty;
89 static uint16_t phys_section_rom;
90 static uint16_t phys_section_watch;
91
92 /* Simple allocator for PhysPageEntry nodes */
93 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
94 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
95
96 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
97
98 static void io_mem_init(void);
99 static void memory_map_init(void);
100 static void *qemu_safe_ram_ptr(ram_addr_t addr);
101
102 static MemoryRegion io_mem_watch;
103 #endif
104
105 #if !defined(CONFIG_USER_ONLY)
106
107 static void phys_map_node_reserve(unsigned nodes)
108 {
109 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
110 typedef PhysPageEntry Node[L2_SIZE];
111 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
112 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
113 phys_map_nodes_nb + nodes);
114 phys_map_nodes = g_renew(Node, phys_map_nodes,
115 phys_map_nodes_nb_alloc);
116 }
117 }
118
119 static uint16_t phys_map_node_alloc(void)
120 {
121 unsigned i;
122 uint16_t ret;
123
124 ret = phys_map_nodes_nb++;
125 assert(ret != PHYS_MAP_NODE_NIL);
126 assert(ret != phys_map_nodes_nb_alloc);
127 for (i = 0; i < L2_SIZE; ++i) {
128 phys_map_nodes[ret][i].is_leaf = 0;
129 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
130 }
131 return ret;
132 }
133
134 static void phys_map_nodes_reset(void)
135 {
136 phys_map_nodes_nb = 0;
137 }
138
139
140 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
141 hwaddr *nb, uint16_t leaf,
142 int level)
143 {
144 PhysPageEntry *p;
145 int i;
146 hwaddr step = (hwaddr)1 << (level * L2_BITS);
147
148 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
149 lp->ptr = phys_map_node_alloc();
150 p = phys_map_nodes[lp->ptr];
151 if (level == 0) {
152 for (i = 0; i < L2_SIZE; i++) {
153 p[i].is_leaf = 1;
154 p[i].ptr = phys_section_unassigned;
155 }
156 }
157 } else {
158 p = phys_map_nodes[lp->ptr];
159 }
160 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
161
162 while (*nb && lp < &p[L2_SIZE]) {
163 if ((*index & (step - 1)) == 0 && *nb >= step) {
164 lp->is_leaf = true;
165 lp->ptr = leaf;
166 *index += step;
167 *nb -= step;
168 } else {
169 phys_page_set_level(lp, index, nb, leaf, level - 1);
170 }
171 ++lp;
172 }
173 }
174
175 static void phys_page_set(AddressSpaceDispatch *d,
176 hwaddr index, hwaddr nb,
177 uint16_t leaf)
178 {
179 /* Wildly overreserve - it doesn't matter much. */
180 phys_map_node_reserve(3 * P_L2_LEVELS);
181
182 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
183 }
184
185 MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
186 {
187 PhysPageEntry lp = d->phys_map;
188 PhysPageEntry *p;
189 int i;
190 uint16_t s_index = phys_section_unassigned;
191
192 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
193 if (lp.ptr == PHYS_MAP_NODE_NIL) {
194 goto not_found;
195 }
196 p = phys_map_nodes[lp.ptr];
197 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
198 }
199
200 s_index = lp.ptr;
201 not_found:
202 return &phys_sections[s_index];
203 }
204
205 bool memory_region_is_unassigned(MemoryRegion *mr)
206 {
207 return mr != &io_mem_ram && mr != &io_mem_rom
208 && mr != &io_mem_notdirty && !mr->rom_device
209 && mr != &io_mem_watch;
210 }
211 #endif
212
213 void cpu_exec_init_all(void)
214 {
215 #if !defined(CONFIG_USER_ONLY)
216 qemu_mutex_init(&ram_list.mutex);
217 memory_map_init();
218 io_mem_init();
219 #endif
220 }
221
222 #if !defined(CONFIG_USER_ONLY)
223
224 static int cpu_common_post_load(void *opaque, int version_id)
225 {
226 CPUState *cpu = opaque;
227
228 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
229 version_id is increased. */
230 cpu->interrupt_request &= ~0x01;
231 tlb_flush(cpu->env_ptr, 1);
232
233 return 0;
234 }
235
236 static const VMStateDescription vmstate_cpu_common = {
237 .name = "cpu_common",
238 .version_id = 1,
239 .minimum_version_id = 1,
240 .minimum_version_id_old = 1,
241 .post_load = cpu_common_post_load,
242 .fields = (VMStateField []) {
243 VMSTATE_UINT32(halted, CPUState),
244 VMSTATE_UINT32(interrupt_request, CPUState),
245 VMSTATE_END_OF_LIST()
246 }
247 };
248 #else
249 #define vmstate_cpu_common vmstate_dummy
250 #endif
251
252 CPUState *qemu_get_cpu(int index)
253 {
254 CPUArchState *env = first_cpu;
255 CPUState *cpu = NULL;
256
257 while (env) {
258 cpu = ENV_GET_CPU(env);
259 if (cpu->cpu_index == index) {
260 break;
261 }
262 env = env->next_cpu;
263 }
264
265 return env ? cpu : NULL;
266 }
267
268 void cpu_exec_init(CPUArchState *env)
269 {
270 CPUState *cpu = ENV_GET_CPU(env);
271 CPUClass *cc = CPU_GET_CLASS(cpu);
272 CPUArchState **penv;
273 int cpu_index;
274
275 #if defined(CONFIG_USER_ONLY)
276 cpu_list_lock();
277 #endif
278 env->next_cpu = NULL;
279 penv = &first_cpu;
280 cpu_index = 0;
281 while (*penv != NULL) {
282 penv = &(*penv)->next_cpu;
283 cpu_index++;
284 }
285 cpu->cpu_index = cpu_index;
286 cpu->numa_node = 0;
287 QTAILQ_INIT(&env->breakpoints);
288 QTAILQ_INIT(&env->watchpoints);
289 #ifndef CONFIG_USER_ONLY
290 cpu->thread_id = qemu_get_thread_id();
291 #endif
292 *penv = env;
293 #if defined(CONFIG_USER_ONLY)
294 cpu_list_unlock();
295 #endif
296 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
297 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
298 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
299 cpu_save, cpu_load, env);
300 assert(cc->vmsd == NULL);
301 #endif
302 if (cc->vmsd != NULL) {
303 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
304 }
305 }
306
307 #if defined(TARGET_HAS_ICE)
308 #if defined(CONFIG_USER_ONLY)
309 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
310 {
311 tb_invalidate_phys_page_range(pc, pc + 1, 0);
312 }
313 #else
314 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
315 {
316 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
317 (pc & ~TARGET_PAGE_MASK));
318 }
319 #endif
320 #endif /* TARGET_HAS_ICE */
321
322 #if defined(CONFIG_USER_ONLY)
323 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
324
325 {
326 }
327
328 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
329 int flags, CPUWatchpoint **watchpoint)
330 {
331 return -ENOSYS;
332 }
333 #else
334 /* Add a watchpoint. */
335 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
336 int flags, CPUWatchpoint **watchpoint)
337 {
338 target_ulong len_mask = ~(len - 1);
339 CPUWatchpoint *wp;
340
341 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
342 if ((len & (len - 1)) || (addr & ~len_mask) ||
343 len == 0 || len > TARGET_PAGE_SIZE) {
344 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
345 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
346 return -EINVAL;
347 }
348 wp = g_malloc(sizeof(*wp));
349
350 wp->vaddr = addr;
351 wp->len_mask = len_mask;
352 wp->flags = flags;
353
354 /* keep all GDB-injected watchpoints in front */
355 if (flags & BP_GDB)
356 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
357 else
358 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
359
360 tlb_flush_page(env, addr);
361
362 if (watchpoint)
363 *watchpoint = wp;
364 return 0;
365 }
366
367 /* Remove a specific watchpoint. */
368 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
369 int flags)
370 {
371 target_ulong len_mask = ~(len - 1);
372 CPUWatchpoint *wp;
373
374 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
375 if (addr == wp->vaddr && len_mask == wp->len_mask
376 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
377 cpu_watchpoint_remove_by_ref(env, wp);
378 return 0;
379 }
380 }
381 return -ENOENT;
382 }
383
384 /* Remove a specific watchpoint by reference. */
385 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
386 {
387 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
388
389 tlb_flush_page(env, watchpoint->vaddr);
390
391 g_free(watchpoint);
392 }
393
394 /* Remove all matching watchpoints. */
395 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
396 {
397 CPUWatchpoint *wp, *next;
398
399 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
400 if (wp->flags & mask)
401 cpu_watchpoint_remove_by_ref(env, wp);
402 }
403 }
404 #endif
405
406 /* Add a breakpoint. */
407 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
408 CPUBreakpoint **breakpoint)
409 {
410 #if defined(TARGET_HAS_ICE)
411 CPUBreakpoint *bp;
412
413 bp = g_malloc(sizeof(*bp));
414
415 bp->pc = pc;
416 bp->flags = flags;
417
418 /* keep all GDB-injected breakpoints in front */
419 if (flags & BP_GDB)
420 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
421 else
422 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
423
424 breakpoint_invalidate(env, pc);
425
426 if (breakpoint)
427 *breakpoint = bp;
428 return 0;
429 #else
430 return -ENOSYS;
431 #endif
432 }
433
434 /* Remove a specific breakpoint. */
435 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
436 {
437 #if defined(TARGET_HAS_ICE)
438 CPUBreakpoint *bp;
439
440 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
441 if (bp->pc == pc && bp->flags == flags) {
442 cpu_breakpoint_remove_by_ref(env, bp);
443 return 0;
444 }
445 }
446 return -ENOENT;
447 #else
448 return -ENOSYS;
449 #endif
450 }
451
452 /* Remove a specific breakpoint by reference. */
453 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
454 {
455 #if defined(TARGET_HAS_ICE)
456 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
457
458 breakpoint_invalidate(env, breakpoint->pc);
459
460 g_free(breakpoint);
461 #endif
462 }
463
464 /* Remove all matching breakpoints. */
465 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
466 {
467 #if defined(TARGET_HAS_ICE)
468 CPUBreakpoint *bp, *next;
469
470 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
471 if (bp->flags & mask)
472 cpu_breakpoint_remove_by_ref(env, bp);
473 }
474 #endif
475 }
476
477 /* enable or disable single step mode. EXCP_DEBUG is returned by the
478 CPU loop after each instruction */
479 void cpu_single_step(CPUArchState *env, int enabled)
480 {
481 #if defined(TARGET_HAS_ICE)
482 if (env->singlestep_enabled != enabled) {
483 env->singlestep_enabled = enabled;
484 if (kvm_enabled())
485 kvm_update_guest_debug(env, 0);
486 else {
487 /* must flush all the translated code to avoid inconsistencies */
488 /* XXX: only flush what is necessary */
489 tb_flush(env);
490 }
491 }
492 #endif
493 }
494
495 void cpu_exit(CPUArchState *env)
496 {
497 CPUState *cpu = ENV_GET_CPU(env);
498
499 cpu->exit_request = 1;
500 cpu->tcg_exit_req = 1;
501 }
502
503 void cpu_abort(CPUArchState *env, const char *fmt, ...)
504 {
505 va_list ap;
506 va_list ap2;
507
508 va_start(ap, fmt);
509 va_copy(ap2, ap);
510 fprintf(stderr, "qemu: fatal: ");
511 vfprintf(stderr, fmt, ap);
512 fprintf(stderr, "\n");
513 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
514 if (qemu_log_enabled()) {
515 qemu_log("qemu: fatal: ");
516 qemu_log_vprintf(fmt, ap2);
517 qemu_log("\n");
518 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
519 qemu_log_flush();
520 qemu_log_close();
521 }
522 va_end(ap2);
523 va_end(ap);
524 #if defined(CONFIG_USER_ONLY)
525 {
526 struct sigaction act;
527 sigfillset(&act.sa_mask);
528 act.sa_handler = SIG_DFL;
529 sigaction(SIGABRT, &act, NULL);
530 }
531 #endif
532 abort();
533 }
534
535 CPUArchState *cpu_copy(CPUArchState *env)
536 {
537 CPUArchState *new_env = cpu_init(env->cpu_model_str);
538 CPUArchState *next_cpu = new_env->next_cpu;
539 #if defined(TARGET_HAS_ICE)
540 CPUBreakpoint *bp;
541 CPUWatchpoint *wp;
542 #endif
543
544 memcpy(new_env, env, sizeof(CPUArchState));
545
546 /* Preserve chaining. */
547 new_env->next_cpu = next_cpu;
548
549 /* Clone all break/watchpoints.
550 Note: Once we support ptrace with hw-debug register access, make sure
551 BP_CPU break/watchpoints are handled correctly on clone. */
552 QTAILQ_INIT(&env->breakpoints);
553 QTAILQ_INIT(&env->watchpoints);
554 #if defined(TARGET_HAS_ICE)
555 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
556 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
557 }
558 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
559 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
560 wp->flags, NULL);
561 }
562 #endif
563
564 return new_env;
565 }
566
567 #if !defined(CONFIG_USER_ONLY)
568 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
569 uintptr_t length)
570 {
571 uintptr_t start1;
572
573 /* we modify the TLB cache so that the dirty bit will be set again
574 when accessing the range */
575 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
576 /* Check that we don't span multiple blocks - this breaks the
577 address comparisons below. */
578 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
579 != (end - 1) - start) {
580 abort();
581 }
582 cpu_tlb_reset_dirty_all(start1, length);
583
584 }
585
586 /* Note: start and end must be within the same ram block. */
587 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
588 int dirty_flags)
589 {
590 uintptr_t length;
591
592 start &= TARGET_PAGE_MASK;
593 end = TARGET_PAGE_ALIGN(end);
594
595 length = end - start;
596 if (length == 0)
597 return;
598 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
599
600 if (tcg_enabled()) {
601 tlb_reset_dirty_range_all(start, end, length);
602 }
603 }
604
605 static int cpu_physical_memory_set_dirty_tracking(int enable)
606 {
607 int ret = 0;
608 in_migration = enable;
609 return ret;
610 }
611
612 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
613 MemoryRegionSection *section,
614 target_ulong vaddr,
615 hwaddr paddr,
616 int prot,
617 target_ulong *address)
618 {
619 hwaddr iotlb;
620 CPUWatchpoint *wp;
621
622 if (memory_region_is_ram(section->mr)) {
623 /* Normal RAM. */
624 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
625 + memory_region_section_addr(section, paddr);
626 if (!section->readonly) {
627 iotlb |= phys_section_notdirty;
628 } else {
629 iotlb |= phys_section_rom;
630 }
631 } else {
632 /* IO handlers are currently passed a physical address.
633 It would be nice to pass an offset from the base address
634 of that region. This would avoid having to special case RAM,
635 and avoid full address decoding in every device.
636 We can't use the high bits of pd for this because
637 IO_MEM_ROMD uses these as a ram address. */
638 iotlb = section - phys_sections;
639 iotlb += memory_region_section_addr(section, paddr);
640 }
641
642 /* Make accesses to pages with watchpoints go via the
643 watchpoint trap routines. */
644 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
645 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
646 /* Avoid trapping reads of pages with a write breakpoint. */
647 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
648 iotlb = phys_section_watch + paddr;
649 *address |= TLB_MMIO;
650 break;
651 }
652 }
653 }
654
655 return iotlb;
656 }
657 #endif /* defined(CONFIG_USER_ONLY) */
658
659 #if !defined(CONFIG_USER_ONLY)
660
661 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
662 typedef struct subpage_t {
663 MemoryRegion iomem;
664 hwaddr base;
665 uint16_t sub_section[TARGET_PAGE_SIZE];
666 } subpage_t;
667
668 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
669 uint16_t section);
670 static subpage_t *subpage_init(hwaddr base);
671 static void destroy_page_desc(uint16_t section_index)
672 {
673 MemoryRegionSection *section = &phys_sections[section_index];
674 MemoryRegion *mr = section->mr;
675
676 if (mr->subpage) {
677 subpage_t *subpage = container_of(mr, subpage_t, iomem);
678 memory_region_destroy(&subpage->iomem);
679 g_free(subpage);
680 }
681 }
682
683 static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
684 {
685 unsigned i;
686 PhysPageEntry *p;
687
688 if (lp->ptr == PHYS_MAP_NODE_NIL) {
689 return;
690 }
691
692 p = phys_map_nodes[lp->ptr];
693 for (i = 0; i < L2_SIZE; ++i) {
694 if (!p[i].is_leaf) {
695 destroy_l2_mapping(&p[i], level - 1);
696 } else {
697 destroy_page_desc(p[i].ptr);
698 }
699 }
700 lp->is_leaf = 0;
701 lp->ptr = PHYS_MAP_NODE_NIL;
702 }
703
704 static void destroy_all_mappings(AddressSpaceDispatch *d)
705 {
706 destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
707 phys_map_nodes_reset();
708 }
709
710 static uint16_t phys_section_add(MemoryRegionSection *section)
711 {
712 if (phys_sections_nb == phys_sections_nb_alloc) {
713 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
714 phys_sections = g_renew(MemoryRegionSection, phys_sections,
715 phys_sections_nb_alloc);
716 }
717 phys_sections[phys_sections_nb] = *section;
718 return phys_sections_nb++;
719 }
720
721 static void phys_sections_clear(void)
722 {
723 phys_sections_nb = 0;
724 }
725
726 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
727 {
728 subpage_t *subpage;
729 hwaddr base = section->offset_within_address_space
730 & TARGET_PAGE_MASK;
731 MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS);
732 MemoryRegionSection subsection = {
733 .offset_within_address_space = base,
734 .size = TARGET_PAGE_SIZE,
735 };
736 hwaddr start, end;
737
738 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
739
740 if (!(existing->mr->subpage)) {
741 subpage = subpage_init(base);
742 subsection.mr = &subpage->iomem;
743 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
744 phys_section_add(&subsection));
745 } else {
746 subpage = container_of(existing->mr, subpage_t, iomem);
747 }
748 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
749 end = start + section->size - 1;
750 subpage_register(subpage, start, end, phys_section_add(section));
751 }
752
753
754 static void register_multipage(AddressSpaceDispatch *d, MemoryRegionSection *section)
755 {
756 hwaddr start_addr = section->offset_within_address_space;
757 ram_addr_t size = section->size;
758 hwaddr addr;
759 uint16_t section_index = phys_section_add(section);
760
761 assert(size);
762
763 addr = start_addr;
764 phys_page_set(d, addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
765 section_index);
766 }
767
768 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
769 {
770 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
771 MemoryRegionSection now = *section, remain = *section;
772
773 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
774 || (now.size < TARGET_PAGE_SIZE)) {
775 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
776 - now.offset_within_address_space,
777 now.size);
778 register_subpage(d, &now);
779 remain.size -= now.size;
780 remain.offset_within_address_space += now.size;
781 remain.offset_within_region += now.size;
782 }
783 while (remain.size >= TARGET_PAGE_SIZE) {
784 now = remain;
785 if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
786 now.size = TARGET_PAGE_SIZE;
787 register_subpage(d, &now);
788 } else {
789 now.size &= TARGET_PAGE_MASK;
790 register_multipage(d, &now);
791 }
792 remain.size -= now.size;
793 remain.offset_within_address_space += now.size;
794 remain.offset_within_region += now.size;
795 }
796 now = remain;
797 if (now.size) {
798 register_subpage(d, &now);
799 }
800 }
801
802 void qemu_flush_coalesced_mmio_buffer(void)
803 {
804 if (kvm_enabled())
805 kvm_flush_coalesced_mmio_buffer();
806 }
807
808 void qemu_mutex_lock_ramlist(void)
809 {
810 qemu_mutex_lock(&ram_list.mutex);
811 }
812
813 void qemu_mutex_unlock_ramlist(void)
814 {
815 qemu_mutex_unlock(&ram_list.mutex);
816 }
817
818 #if defined(__linux__) && !defined(TARGET_S390X)
819
820 #include <sys/vfs.h>
821
822 #define HUGETLBFS_MAGIC 0x958458f6
823
824 static long gethugepagesize(const char *path)
825 {
826 struct statfs fs;
827 int ret;
828
829 do {
830 ret = statfs(path, &fs);
831 } while (ret != 0 && errno == EINTR);
832
833 if (ret != 0) {
834 perror(path);
835 return 0;
836 }
837
838 if (fs.f_type != HUGETLBFS_MAGIC)
839 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
840
841 return fs.f_bsize;
842 }
843
844 static void *file_ram_alloc(RAMBlock *block,
845 ram_addr_t memory,
846 const char *path)
847 {
848 char *filename;
849 char *sanitized_name;
850 char *c;
851 void *area;
852 int fd;
853 #ifdef MAP_POPULATE
854 int flags;
855 #endif
856 unsigned long hpagesize;
857
858 hpagesize = gethugepagesize(path);
859 if (!hpagesize) {
860 return NULL;
861 }
862
863 if (memory < hpagesize) {
864 return NULL;
865 }
866
867 if (kvm_enabled() && !kvm_has_sync_mmu()) {
868 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
869 return NULL;
870 }
871
872 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
873 sanitized_name = g_strdup(block->mr->name);
874 for (c = sanitized_name; *c != '\0'; c++) {
875 if (*c == '/')
876 *c = '_';
877 }
878
879 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
880 sanitized_name);
881 g_free(sanitized_name);
882
883 fd = mkstemp(filename);
884 if (fd < 0) {
885 perror("unable to create backing store for hugepages");
886 g_free(filename);
887 return NULL;
888 }
889 unlink(filename);
890 g_free(filename);
891
892 memory = (memory+hpagesize-1) & ~(hpagesize-1);
893
894 /*
895 * ftruncate is not supported by hugetlbfs in older
896 * hosts, so don't bother bailing out on errors.
897 * If anything goes wrong with it under other filesystems,
898 * mmap will fail.
899 */
900 if (ftruncate(fd, memory))
901 perror("ftruncate");
902
903 #ifdef MAP_POPULATE
904 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
905 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
906 * to sidestep this quirk.
907 */
908 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
909 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
910 #else
911 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
912 #endif
913 if (area == MAP_FAILED) {
914 perror("file_ram_alloc: can't mmap RAM pages");
915 close(fd);
916 return (NULL);
917 }
918 block->fd = fd;
919 return area;
920 }
921 #endif
922
923 static ram_addr_t find_ram_offset(ram_addr_t size)
924 {
925 RAMBlock *block, *next_block;
926 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
927
928 assert(size != 0); /* it would hand out same offset multiple times */
929
930 if (QTAILQ_EMPTY(&ram_list.blocks))
931 return 0;
932
933 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
934 ram_addr_t end, next = RAM_ADDR_MAX;
935
936 end = block->offset + block->length;
937
938 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
939 if (next_block->offset >= end) {
940 next = MIN(next, next_block->offset);
941 }
942 }
943 if (next - end >= size && next - end < mingap) {
944 offset = end;
945 mingap = next - end;
946 }
947 }
948
949 if (offset == RAM_ADDR_MAX) {
950 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
951 (uint64_t)size);
952 abort();
953 }
954
955 return offset;
956 }
957
958 ram_addr_t last_ram_offset(void)
959 {
960 RAMBlock *block;
961 ram_addr_t last = 0;
962
963 QTAILQ_FOREACH(block, &ram_list.blocks, next)
964 last = MAX(last, block->offset + block->length);
965
966 return last;
967 }
968
969 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
970 {
971 int ret;
972 QemuOpts *machine_opts;
973
974 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
975 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
976 if (machine_opts &&
977 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
978 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
979 if (ret) {
980 perror("qemu_madvise");
981 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
982 "but dump_guest_core=off specified\n");
983 }
984 }
985 }
986
987 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
988 {
989 RAMBlock *new_block, *block;
990
991 new_block = NULL;
992 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
993 if (block->offset == addr) {
994 new_block = block;
995 break;
996 }
997 }
998 assert(new_block);
999 assert(!new_block->idstr[0]);
1000
1001 if (dev) {
1002 char *id = qdev_get_dev_path(dev);
1003 if (id) {
1004 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1005 g_free(id);
1006 }
1007 }
1008 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1009
1010 /* This assumes the iothread lock is taken here too. */
1011 qemu_mutex_lock_ramlist();
1012 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1013 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1014 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1015 new_block->idstr);
1016 abort();
1017 }
1018 }
1019 qemu_mutex_unlock_ramlist();
1020 }
1021
1022 static int memory_try_enable_merging(void *addr, size_t len)
1023 {
1024 QemuOpts *opts;
1025
1026 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1027 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
1028 /* disabled by the user */
1029 return 0;
1030 }
1031
1032 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1033 }
1034
1035 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1036 MemoryRegion *mr)
1037 {
1038 RAMBlock *block, *new_block;
1039
1040 size = TARGET_PAGE_ALIGN(size);
1041 new_block = g_malloc0(sizeof(*new_block));
1042
1043 /* This assumes the iothread lock is taken here too. */
1044 qemu_mutex_lock_ramlist();
1045 new_block->mr = mr;
1046 new_block->offset = find_ram_offset(size);
1047 if (host) {
1048 new_block->host = host;
1049 new_block->flags |= RAM_PREALLOC_MASK;
1050 } else {
1051 if (mem_path) {
1052 #if defined (__linux__) && !defined(TARGET_S390X)
1053 new_block->host = file_ram_alloc(new_block, size, mem_path);
1054 if (!new_block->host) {
1055 new_block->host = qemu_vmalloc(size);
1056 memory_try_enable_merging(new_block->host, size);
1057 }
1058 #else
1059 fprintf(stderr, "-mem-path option unsupported\n");
1060 exit(1);
1061 #endif
1062 } else {
1063 if (xen_enabled()) {
1064 xen_ram_alloc(new_block->offset, size, mr);
1065 } else if (kvm_enabled()) {
1066 /* some s390/kvm configurations have special constraints */
1067 new_block->host = kvm_vmalloc(size);
1068 } else {
1069 new_block->host = qemu_vmalloc(size);
1070 }
1071 memory_try_enable_merging(new_block->host, size);
1072 }
1073 }
1074 new_block->length = size;
1075
1076 /* Keep the list sorted from biggest to smallest block. */
1077 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1078 if (block->length < new_block->length) {
1079 break;
1080 }
1081 }
1082 if (block) {
1083 QTAILQ_INSERT_BEFORE(block, new_block, next);
1084 } else {
1085 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1086 }
1087 ram_list.mru_block = NULL;
1088
1089 ram_list.version++;
1090 qemu_mutex_unlock_ramlist();
1091
1092 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1093 last_ram_offset() >> TARGET_PAGE_BITS);
1094 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1095 0, size >> TARGET_PAGE_BITS);
1096 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1097
1098 qemu_ram_setup_dump(new_block->host, size);
1099 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1100
1101 if (kvm_enabled())
1102 kvm_setup_guest_memory(new_block->host, size);
1103
1104 return new_block->offset;
1105 }
1106
1107 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1108 {
1109 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1110 }
1111
1112 void qemu_ram_free_from_ptr(ram_addr_t addr)
1113 {
1114 RAMBlock *block;
1115
1116 /* This assumes the iothread lock is taken here too. */
1117 qemu_mutex_lock_ramlist();
1118 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1119 if (addr == block->offset) {
1120 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1121 ram_list.mru_block = NULL;
1122 ram_list.version++;
1123 g_free(block);
1124 break;
1125 }
1126 }
1127 qemu_mutex_unlock_ramlist();
1128 }
1129
1130 void qemu_ram_free(ram_addr_t addr)
1131 {
1132 RAMBlock *block;
1133
1134 /* This assumes the iothread lock is taken here too. */
1135 qemu_mutex_lock_ramlist();
1136 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1137 if (addr == block->offset) {
1138 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1139 ram_list.mru_block = NULL;
1140 ram_list.version++;
1141 if (block->flags & RAM_PREALLOC_MASK) {
1142 ;
1143 } else if (mem_path) {
1144 #if defined (__linux__) && !defined(TARGET_S390X)
1145 if (block->fd) {
1146 munmap(block->host, block->length);
1147 close(block->fd);
1148 } else {
1149 qemu_vfree(block->host);
1150 }
1151 #else
1152 abort();
1153 #endif
1154 } else {
1155 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1156 munmap(block->host, block->length);
1157 #else
1158 if (xen_enabled()) {
1159 xen_invalidate_map_cache_entry(block->host);
1160 } else {
1161 qemu_vfree(block->host);
1162 }
1163 #endif
1164 }
1165 g_free(block);
1166 break;
1167 }
1168 }
1169 qemu_mutex_unlock_ramlist();
1170
1171 }
1172
1173 #ifndef _WIN32
1174 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1175 {
1176 RAMBlock *block;
1177 ram_addr_t offset;
1178 int flags;
1179 void *area, *vaddr;
1180
1181 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1182 offset = addr - block->offset;
1183 if (offset < block->length) {
1184 vaddr = block->host + offset;
1185 if (block->flags & RAM_PREALLOC_MASK) {
1186 ;
1187 } else {
1188 flags = MAP_FIXED;
1189 munmap(vaddr, length);
1190 if (mem_path) {
1191 #if defined(__linux__) && !defined(TARGET_S390X)
1192 if (block->fd) {
1193 #ifdef MAP_POPULATE
1194 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1195 MAP_PRIVATE;
1196 #else
1197 flags |= MAP_PRIVATE;
1198 #endif
1199 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1200 flags, block->fd, offset);
1201 } else {
1202 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1203 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1204 flags, -1, 0);
1205 }
1206 #else
1207 abort();
1208 #endif
1209 } else {
1210 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1211 flags |= MAP_SHARED | MAP_ANONYMOUS;
1212 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1213 flags, -1, 0);
1214 #else
1215 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1216 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1217 flags, -1, 0);
1218 #endif
1219 }
1220 if (area != vaddr) {
1221 fprintf(stderr, "Could not remap addr: "
1222 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1223 length, addr);
1224 exit(1);
1225 }
1226 memory_try_enable_merging(vaddr, length);
1227 qemu_ram_setup_dump(vaddr, length);
1228 }
1229 return;
1230 }
1231 }
1232 }
1233 #endif /* !_WIN32 */
1234
1235 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1236 With the exception of the softmmu code in this file, this should
1237 only be used for local memory (e.g. video ram) that the device owns,
1238 and knows it isn't going to access beyond the end of the block.
1239
1240 It should not be used for general purpose DMA.
1241 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1242 */
1243 void *qemu_get_ram_ptr(ram_addr_t addr)
1244 {
1245 RAMBlock *block;
1246
1247 /* The list is protected by the iothread lock here. */
1248 block = ram_list.mru_block;
1249 if (block && addr - block->offset < block->length) {
1250 goto found;
1251 }
1252 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1253 if (addr - block->offset < block->length) {
1254 goto found;
1255 }
1256 }
1257
1258 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1259 abort();
1260
1261 found:
1262 ram_list.mru_block = block;
1263 if (xen_enabled()) {
1264 /* We need to check if the requested address is in the RAM
1265 * because we don't want to map the entire memory in QEMU.
1266 * In that case just map until the end of the page.
1267 */
1268 if (block->offset == 0) {
1269 return xen_map_cache(addr, 0, 0);
1270 } else if (block->host == NULL) {
1271 block->host =
1272 xen_map_cache(block->offset, block->length, 1);
1273 }
1274 }
1275 return block->host + (addr - block->offset);
1276 }
1277
1278 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1279 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1280 *
1281 * ??? Is this still necessary?
1282 */
1283 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1284 {
1285 RAMBlock *block;
1286
1287 /* The list is protected by the iothread lock here. */
1288 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1289 if (addr - block->offset < block->length) {
1290 if (xen_enabled()) {
1291 /* We need to check if the requested address is in the RAM
1292 * because we don't want to map the entire memory in QEMU.
1293 * In that case just map until the end of the page.
1294 */
1295 if (block->offset == 0) {
1296 return xen_map_cache(addr, 0, 0);
1297 } else if (block->host == NULL) {
1298 block->host =
1299 xen_map_cache(block->offset, block->length, 1);
1300 }
1301 }
1302 return block->host + (addr - block->offset);
1303 }
1304 }
1305
1306 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1307 abort();
1308
1309 return NULL;
1310 }
1311
1312 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1313 * but takes a size argument */
1314 static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
1315 {
1316 if (*size == 0) {
1317 return NULL;
1318 }
1319 if (xen_enabled()) {
1320 return xen_map_cache(addr, *size, 1);
1321 } else {
1322 RAMBlock *block;
1323
1324 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1325 if (addr - block->offset < block->length) {
1326 if (addr - block->offset + *size > block->length)
1327 *size = block->length - addr + block->offset;
1328 return block->host + (addr - block->offset);
1329 }
1330 }
1331
1332 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1333 abort();
1334 }
1335 }
1336
1337 void qemu_put_ram_ptr(void *addr)
1338 {
1339 trace_qemu_put_ram_ptr(addr);
1340 }
1341
1342 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1343 {
1344 RAMBlock *block;
1345 uint8_t *host = ptr;
1346
1347 if (xen_enabled()) {
1348 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1349 return 0;
1350 }
1351
1352 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1353 /* This case append when the block is not mapped. */
1354 if (block->host == NULL) {
1355 continue;
1356 }
1357 if (host - block->host < block->length) {
1358 *ram_addr = block->offset + (host - block->host);
1359 return 0;
1360 }
1361 }
1362
1363 return -1;
1364 }
1365
1366 /* Some of the softmmu routines need to translate from a host pointer
1367 (typically a TLB entry) back to a ram offset. */
1368 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1369 {
1370 ram_addr_t ram_addr;
1371
1372 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
1373 fprintf(stderr, "Bad ram pointer %p\n", ptr);
1374 abort();
1375 }
1376 return ram_addr;
1377 }
1378
1379 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1380 unsigned size)
1381 {
1382 #ifdef DEBUG_UNASSIGNED
1383 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1384 #endif
1385 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
1386 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
1387 #endif
1388 return 0;
1389 }
1390
1391 static void unassigned_mem_write(void *opaque, hwaddr addr,
1392 uint64_t val, unsigned size)
1393 {
1394 #ifdef DEBUG_UNASSIGNED
1395 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1396 #endif
1397 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
1398 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
1399 #endif
1400 }
1401
1402 static const MemoryRegionOps unassigned_mem_ops = {
1403 .read = unassigned_mem_read,
1404 .write = unassigned_mem_write,
1405 .endianness = DEVICE_NATIVE_ENDIAN,
1406 };
1407
1408 static uint64_t error_mem_read(void *opaque, hwaddr addr,
1409 unsigned size)
1410 {
1411 abort();
1412 }
1413
1414 static void error_mem_write(void *opaque, hwaddr addr,
1415 uint64_t value, unsigned size)
1416 {
1417 abort();
1418 }
1419
1420 static const MemoryRegionOps error_mem_ops = {
1421 .read = error_mem_read,
1422 .write = error_mem_write,
1423 .endianness = DEVICE_NATIVE_ENDIAN,
1424 };
1425
1426 static const MemoryRegionOps rom_mem_ops = {
1427 .read = error_mem_read,
1428 .write = unassigned_mem_write,
1429 .endianness = DEVICE_NATIVE_ENDIAN,
1430 };
1431
1432 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1433 uint64_t val, unsigned size)
1434 {
1435 int dirty_flags;
1436 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1437 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1438 #if !defined(CONFIG_USER_ONLY)
1439 tb_invalidate_phys_page_fast(ram_addr, size);
1440 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1441 #endif
1442 }
1443 switch (size) {
1444 case 1:
1445 stb_p(qemu_get_ram_ptr(ram_addr), val);
1446 break;
1447 case 2:
1448 stw_p(qemu_get_ram_ptr(ram_addr), val);
1449 break;
1450 case 4:
1451 stl_p(qemu_get_ram_ptr(ram_addr), val);
1452 break;
1453 default:
1454 abort();
1455 }
1456 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1457 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1458 /* we remove the notdirty callback only if the code has been
1459 flushed */
1460 if (dirty_flags == 0xff)
1461 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
1462 }
1463
1464 static const MemoryRegionOps notdirty_mem_ops = {
1465 .read = error_mem_read,
1466 .write = notdirty_mem_write,
1467 .endianness = DEVICE_NATIVE_ENDIAN,
1468 };
1469
1470 /* Generate a debug exception if a watchpoint has been hit. */
1471 static void check_watchpoint(int offset, int len_mask, int flags)
1472 {
1473 CPUArchState *env = cpu_single_env;
1474 target_ulong pc, cs_base;
1475 target_ulong vaddr;
1476 CPUWatchpoint *wp;
1477 int cpu_flags;
1478
1479 if (env->watchpoint_hit) {
1480 /* We re-entered the check after replacing the TB. Now raise
1481 * the debug interrupt so that is will trigger after the
1482 * current instruction. */
1483 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1484 return;
1485 }
1486 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1487 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1488 if ((vaddr == (wp->vaddr & len_mask) ||
1489 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1490 wp->flags |= BP_WATCHPOINT_HIT;
1491 if (!env->watchpoint_hit) {
1492 env->watchpoint_hit = wp;
1493 tb_check_watchpoint(env);
1494 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1495 env->exception_index = EXCP_DEBUG;
1496 cpu_loop_exit(env);
1497 } else {
1498 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1499 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1500 cpu_resume_from_signal(env, NULL);
1501 }
1502 }
1503 } else {
1504 wp->flags &= ~BP_WATCHPOINT_HIT;
1505 }
1506 }
1507 }
1508
1509 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1510 so these check for a hit then pass through to the normal out-of-line
1511 phys routines. */
1512 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1513 unsigned size)
1514 {
1515 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1516 switch (size) {
1517 case 1: return ldub_phys(addr);
1518 case 2: return lduw_phys(addr);
1519 case 4: return ldl_phys(addr);
1520 default: abort();
1521 }
1522 }
1523
1524 static void watch_mem_write(void *opaque, hwaddr addr,
1525 uint64_t val, unsigned size)
1526 {
1527 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1528 switch (size) {
1529 case 1:
1530 stb_phys(addr, val);
1531 break;
1532 case 2:
1533 stw_phys(addr, val);
1534 break;
1535 case 4:
1536 stl_phys(addr, val);
1537 break;
1538 default: abort();
1539 }
1540 }
1541
1542 static const MemoryRegionOps watch_mem_ops = {
1543 .read = watch_mem_read,
1544 .write = watch_mem_write,
1545 .endianness = DEVICE_NATIVE_ENDIAN,
1546 };
1547
1548 static uint64_t subpage_read(void *opaque, hwaddr addr,
1549 unsigned len)
1550 {
1551 subpage_t *mmio = opaque;
1552 unsigned int idx = SUBPAGE_IDX(addr);
1553 MemoryRegionSection *section;
1554 #if defined(DEBUG_SUBPAGE)
1555 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
1556 mmio, len, addr, idx);
1557 #endif
1558
1559 section = &phys_sections[mmio->sub_section[idx]];
1560 addr += mmio->base;
1561 addr -= section->offset_within_address_space;
1562 addr += section->offset_within_region;
1563 return io_mem_read(section->mr, addr, len);
1564 }
1565
1566 static void subpage_write(void *opaque, hwaddr addr,
1567 uint64_t value, unsigned len)
1568 {
1569 subpage_t *mmio = opaque;
1570 unsigned int idx = SUBPAGE_IDX(addr);
1571 MemoryRegionSection *section;
1572 #if defined(DEBUG_SUBPAGE)
1573 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1574 " idx %d value %"PRIx64"\n",
1575 __func__, mmio, len, addr, idx, value);
1576 #endif
1577
1578 section = &phys_sections[mmio->sub_section[idx]];
1579 addr += mmio->base;
1580 addr -= section->offset_within_address_space;
1581 addr += section->offset_within_region;
1582 io_mem_write(section->mr, addr, value, len);
1583 }
1584
1585 static const MemoryRegionOps subpage_ops = {
1586 .read = subpage_read,
1587 .write = subpage_write,
1588 .endianness = DEVICE_NATIVE_ENDIAN,
1589 };
1590
1591 static uint64_t subpage_ram_read(void *opaque, hwaddr addr,
1592 unsigned size)
1593 {
1594 ram_addr_t raddr = addr;
1595 void *ptr = qemu_get_ram_ptr(raddr);
1596 switch (size) {
1597 case 1: return ldub_p(ptr);
1598 case 2: return lduw_p(ptr);
1599 case 4: return ldl_p(ptr);
1600 default: abort();
1601 }
1602 }
1603
1604 static void subpage_ram_write(void *opaque, hwaddr addr,
1605 uint64_t value, unsigned size)
1606 {
1607 ram_addr_t raddr = addr;
1608 void *ptr = qemu_get_ram_ptr(raddr);
1609 switch (size) {
1610 case 1: return stb_p(ptr, value);
1611 case 2: return stw_p(ptr, value);
1612 case 4: return stl_p(ptr, value);
1613 default: abort();
1614 }
1615 }
1616
1617 static const MemoryRegionOps subpage_ram_ops = {
1618 .read = subpage_ram_read,
1619 .write = subpage_ram_write,
1620 .endianness = DEVICE_NATIVE_ENDIAN,
1621 };
1622
1623 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1624 uint16_t section)
1625 {
1626 int idx, eidx;
1627
1628 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1629 return -1;
1630 idx = SUBPAGE_IDX(start);
1631 eidx = SUBPAGE_IDX(end);
1632 #if defined(DEBUG_SUBPAGE)
1633 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1634 mmio, start, end, idx, eidx, memory);
1635 #endif
1636 if (memory_region_is_ram(phys_sections[section].mr)) {
1637 MemoryRegionSection new_section = phys_sections[section];
1638 new_section.mr = &io_mem_subpage_ram;
1639 section = phys_section_add(&new_section);
1640 }
1641 for (; idx <= eidx; idx++) {
1642 mmio->sub_section[idx] = section;
1643 }
1644
1645 return 0;
1646 }
1647
1648 static subpage_t *subpage_init(hwaddr base)
1649 {
1650 subpage_t *mmio;
1651
1652 mmio = g_malloc0(sizeof(subpage_t));
1653
1654 mmio->base = base;
1655 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
1656 "subpage", TARGET_PAGE_SIZE);
1657 mmio->iomem.subpage = true;
1658 #if defined(DEBUG_SUBPAGE)
1659 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1660 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1661 #endif
1662 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
1663
1664 return mmio;
1665 }
1666
1667 static uint16_t dummy_section(MemoryRegion *mr)
1668 {
1669 MemoryRegionSection section = {
1670 .mr = mr,
1671 .offset_within_address_space = 0,
1672 .offset_within_region = 0,
1673 .size = UINT64_MAX,
1674 };
1675
1676 return phys_section_add(&section);
1677 }
1678
1679 MemoryRegion *iotlb_to_region(hwaddr index)
1680 {
1681 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
1682 }
1683
1684 static void io_mem_init(void)
1685 {
1686 memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
1687 memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
1688 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
1689 "unassigned", UINT64_MAX);
1690 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
1691 "notdirty", UINT64_MAX);
1692 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
1693 "subpage-ram", UINT64_MAX);
1694 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
1695 "watch", UINT64_MAX);
1696 }
1697
1698 static void mem_begin(MemoryListener *listener)
1699 {
1700 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
1701
1702 destroy_all_mappings(d);
1703 d->phys_map.ptr = PHYS_MAP_NODE_NIL;
1704 }
1705
1706 static void core_begin(MemoryListener *listener)
1707 {
1708 phys_sections_clear();
1709 phys_section_unassigned = dummy_section(&io_mem_unassigned);
1710 phys_section_notdirty = dummy_section(&io_mem_notdirty);
1711 phys_section_rom = dummy_section(&io_mem_rom);
1712 phys_section_watch = dummy_section(&io_mem_watch);
1713 }
1714
1715 static void tcg_commit(MemoryListener *listener)
1716 {
1717 CPUArchState *env;
1718
1719 /* since each CPU stores ram addresses in its TLB cache, we must
1720 reset the modified entries */
1721 /* XXX: slow ! */
1722 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1723 tlb_flush(env, 1);
1724 }
1725 }
1726
1727 static void core_log_global_start(MemoryListener *listener)
1728 {
1729 cpu_physical_memory_set_dirty_tracking(1);
1730 }
1731
1732 static void core_log_global_stop(MemoryListener *listener)
1733 {
1734 cpu_physical_memory_set_dirty_tracking(0);
1735 }
1736
1737 static void io_region_add(MemoryListener *listener,
1738 MemoryRegionSection *section)
1739 {
1740 MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
1741
1742 mrio->mr = section->mr;
1743 mrio->offset = section->offset_within_region;
1744 iorange_init(&mrio->iorange, &memory_region_iorange_ops,
1745 section->offset_within_address_space, section->size);
1746 ioport_register(&mrio->iorange);
1747 }
1748
1749 static void io_region_del(MemoryListener *listener,
1750 MemoryRegionSection *section)
1751 {
1752 isa_unassign_ioport(section->offset_within_address_space, section->size);
1753 }
1754
1755 static MemoryListener core_memory_listener = {
1756 .begin = core_begin,
1757 .log_global_start = core_log_global_start,
1758 .log_global_stop = core_log_global_stop,
1759 .priority = 1,
1760 };
1761
1762 static MemoryListener io_memory_listener = {
1763 .region_add = io_region_add,
1764 .region_del = io_region_del,
1765 .priority = 0,
1766 };
1767
1768 static MemoryListener tcg_memory_listener = {
1769 .commit = tcg_commit,
1770 };
1771
1772 void address_space_init_dispatch(AddressSpace *as)
1773 {
1774 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1775
1776 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1777 d->listener = (MemoryListener) {
1778 .begin = mem_begin,
1779 .region_add = mem_add,
1780 .region_nop = mem_add,
1781 .priority = 0,
1782 };
1783 as->dispatch = d;
1784 memory_listener_register(&d->listener, as);
1785 }
1786
1787 void address_space_destroy_dispatch(AddressSpace *as)
1788 {
1789 AddressSpaceDispatch *d = as->dispatch;
1790
1791 memory_listener_unregister(&d->listener);
1792 destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
1793 g_free(d);
1794 as->dispatch = NULL;
1795 }
1796
1797 static void memory_map_init(void)
1798 {
1799 system_memory = g_malloc(sizeof(*system_memory));
1800 memory_region_init(system_memory, "system", INT64_MAX);
1801 address_space_init(&address_space_memory, system_memory);
1802 address_space_memory.name = "memory";
1803
1804 system_io = g_malloc(sizeof(*system_io));
1805 memory_region_init(system_io, "io", 65536);
1806 address_space_init(&address_space_io, system_io);
1807 address_space_io.name = "I/O";
1808
1809 memory_listener_register(&core_memory_listener, &address_space_memory);
1810 memory_listener_register(&io_memory_listener, &address_space_io);
1811 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1812
1813 dma_context_init(&dma_context_memory, &address_space_memory,
1814 NULL, NULL, NULL);
1815 }
1816
1817 MemoryRegion *get_system_memory(void)
1818 {
1819 return system_memory;
1820 }
1821
1822 MemoryRegion *get_system_io(void)
1823 {
1824 return system_io;
1825 }
1826
1827 #endif /* !defined(CONFIG_USER_ONLY) */
1828
1829 /* physical memory access (slow version, mainly for debug) */
1830 #if defined(CONFIG_USER_ONLY)
1831 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
1832 uint8_t *buf, int len, int is_write)
1833 {
1834 int l, flags;
1835 target_ulong page;
1836 void * p;
1837
1838 while (len > 0) {
1839 page = addr & TARGET_PAGE_MASK;
1840 l = (page + TARGET_PAGE_SIZE) - addr;
1841 if (l > len)
1842 l = len;
1843 flags = page_get_flags(page);
1844 if (!(flags & PAGE_VALID))
1845 return -1;
1846 if (is_write) {
1847 if (!(flags & PAGE_WRITE))
1848 return -1;
1849 /* XXX: this code should not depend on lock_user */
1850 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1851 return -1;
1852 memcpy(p, buf, l);
1853 unlock_user(p, addr, l);
1854 } else {
1855 if (!(flags & PAGE_READ))
1856 return -1;
1857 /* XXX: this code should not depend on lock_user */
1858 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1859 return -1;
1860 memcpy(buf, p, l);
1861 unlock_user(p, addr, 0);
1862 }
1863 len -= l;
1864 buf += l;
1865 addr += l;
1866 }
1867 return 0;
1868 }
1869
1870 #else
1871
1872 static void invalidate_and_set_dirty(hwaddr addr,
1873 hwaddr length)
1874 {
1875 if (!cpu_physical_memory_is_dirty(addr)) {
1876 /* invalidate code */
1877 tb_invalidate_phys_page_range(addr, addr + length, 0);
1878 /* set dirty bit */
1879 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1880 }
1881 xen_modified_memory(addr, length);
1882 }
1883
1884 void address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1885 int len, bool is_write)
1886 {
1887 AddressSpaceDispatch *d = as->dispatch;
1888 int l;
1889 uint8_t *ptr;
1890 uint32_t val;
1891 hwaddr page;
1892 MemoryRegionSection *section;
1893
1894 while (len > 0) {
1895 page = addr & TARGET_PAGE_MASK;
1896 l = (page + TARGET_PAGE_SIZE) - addr;
1897 if (l > len)
1898 l = len;
1899 section = phys_page_find(d, page >> TARGET_PAGE_BITS);
1900
1901 if (is_write) {
1902 if (!memory_region_is_ram(section->mr)) {
1903 hwaddr addr1;
1904 addr1 = memory_region_section_addr(section, addr);
1905 /* XXX: could force cpu_single_env to NULL to avoid
1906 potential bugs */
1907 if (l >= 4 && ((addr1 & 3) == 0)) {
1908 /* 32 bit write access */
1909 val = ldl_p(buf);
1910 io_mem_write(section->mr, addr1, val, 4);
1911 l = 4;
1912 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1913 /* 16 bit write access */
1914 val = lduw_p(buf);
1915 io_mem_write(section->mr, addr1, val, 2);
1916 l = 2;
1917 } else {
1918 /* 8 bit write access */
1919 val = ldub_p(buf);
1920 io_mem_write(section->mr, addr1, val, 1);
1921 l = 1;
1922 }
1923 } else if (!section->readonly) {
1924 ram_addr_t addr1;
1925 addr1 = memory_region_get_ram_addr(section->mr)
1926 + memory_region_section_addr(section, addr);
1927 /* RAM case */
1928 ptr = qemu_get_ram_ptr(addr1);
1929 memcpy(ptr, buf, l);
1930 invalidate_and_set_dirty(addr1, l);
1931 qemu_put_ram_ptr(ptr);
1932 }
1933 } else {
1934 if (!(memory_region_is_ram(section->mr) ||
1935 memory_region_is_romd(section->mr))) {
1936 hwaddr addr1;
1937 /* I/O case */
1938 addr1 = memory_region_section_addr(section, addr);
1939 if (l >= 4 && ((addr1 & 3) == 0)) {
1940 /* 32 bit read access */
1941 val = io_mem_read(section->mr, addr1, 4);
1942 stl_p(buf, val);
1943 l = 4;
1944 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1945 /* 16 bit read access */
1946 val = io_mem_read(section->mr, addr1, 2);
1947 stw_p(buf, val);
1948 l = 2;
1949 } else {
1950 /* 8 bit read access */
1951 val = io_mem_read(section->mr, addr1, 1);
1952 stb_p(buf, val);
1953 l = 1;
1954 }
1955 } else {
1956 /* RAM case */
1957 ptr = qemu_get_ram_ptr(section->mr->ram_addr
1958 + memory_region_section_addr(section,
1959 addr));
1960 memcpy(buf, ptr, l);
1961 qemu_put_ram_ptr(ptr);
1962 }
1963 }
1964 len -= l;
1965 buf += l;
1966 addr += l;
1967 }
1968 }
1969
1970 void address_space_write(AddressSpace *as, hwaddr addr,
1971 const uint8_t *buf, int len)
1972 {
1973 address_space_rw(as, addr, (uint8_t *)buf, len, true);
1974 }
1975
1976 /**
1977 * address_space_read: read from an address space.
1978 *
1979 * @as: #AddressSpace to be accessed
1980 * @addr: address within that address space
1981 * @buf: buffer with the data transferred
1982 */
1983 void address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
1984 {
1985 address_space_rw(as, addr, buf, len, false);
1986 }
1987
1988
1989 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
1990 int len, int is_write)
1991 {
1992 return address_space_rw(&address_space_memory, addr, buf, len, is_write);
1993 }
1994
1995 /* used for ROM loading : can write in RAM and ROM */
1996 void cpu_physical_memory_write_rom(hwaddr addr,
1997 const uint8_t *buf, int len)
1998 {
1999 AddressSpaceDispatch *d = address_space_memory.dispatch;
2000 int l;
2001 uint8_t *ptr;
2002 hwaddr page;
2003 MemoryRegionSection *section;
2004
2005 while (len > 0) {
2006 page = addr & TARGET_PAGE_MASK;
2007 l = (page + TARGET_PAGE_SIZE) - addr;
2008 if (l > len)
2009 l = len;
2010 section = phys_page_find(d, page >> TARGET_PAGE_BITS);
2011
2012 if (!(memory_region_is_ram(section->mr) ||
2013 memory_region_is_romd(section->mr))) {
2014 /* do nothing */
2015 } else {
2016 unsigned long addr1;
2017 addr1 = memory_region_get_ram_addr(section->mr)
2018 + memory_region_section_addr(section, addr);
2019 /* ROM/RAM case */
2020 ptr = qemu_get_ram_ptr(addr1);
2021 memcpy(ptr, buf, l);
2022 invalidate_and_set_dirty(addr1, l);
2023 qemu_put_ram_ptr(ptr);
2024 }
2025 len -= l;
2026 buf += l;
2027 addr += l;
2028 }
2029 }
2030
2031 typedef struct {
2032 void *buffer;
2033 hwaddr addr;
2034 hwaddr len;
2035 } BounceBuffer;
2036
2037 static BounceBuffer bounce;
2038
2039 typedef struct MapClient {
2040 void *opaque;
2041 void (*callback)(void *opaque);
2042 QLIST_ENTRY(MapClient) link;
2043 } MapClient;
2044
2045 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2046 = QLIST_HEAD_INITIALIZER(map_client_list);
2047
2048 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2049 {
2050 MapClient *client = g_malloc(sizeof(*client));
2051
2052 client->opaque = opaque;
2053 client->callback = callback;
2054 QLIST_INSERT_HEAD(&map_client_list, client, link);
2055 return client;
2056 }
2057
2058 static void cpu_unregister_map_client(void *_client)
2059 {
2060 MapClient *client = (MapClient *)_client;
2061
2062 QLIST_REMOVE(client, link);
2063 g_free(client);
2064 }
2065
2066 static void cpu_notify_map_clients(void)
2067 {
2068 MapClient *client;
2069
2070 while (!QLIST_EMPTY(&map_client_list)) {
2071 client = QLIST_FIRST(&map_client_list);
2072 client->callback(client->opaque);
2073 cpu_unregister_map_client(client);
2074 }
2075 }
2076
2077 /* Map a physical memory region into a host virtual address.
2078 * May map a subset of the requested range, given by and returned in *plen.
2079 * May return NULL if resources needed to perform the mapping are exhausted.
2080 * Use only for reads OR writes - not for read-modify-write operations.
2081 * Use cpu_register_map_client() to know when retrying the map operation is
2082 * likely to succeed.
2083 */
2084 void *address_space_map(AddressSpace *as,
2085 hwaddr addr,
2086 hwaddr *plen,
2087 bool is_write)
2088 {
2089 AddressSpaceDispatch *d = as->dispatch;
2090 hwaddr len = *plen;
2091 hwaddr todo = 0;
2092 int l;
2093 hwaddr page;
2094 MemoryRegionSection *section;
2095 ram_addr_t raddr = RAM_ADDR_MAX;
2096 ram_addr_t rlen;
2097 void *ret;
2098
2099 while (len > 0) {
2100 page = addr & TARGET_PAGE_MASK;
2101 l = (page + TARGET_PAGE_SIZE) - addr;
2102 if (l > len)
2103 l = len;
2104 section = phys_page_find(d, page >> TARGET_PAGE_BITS);
2105
2106 if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
2107 if (todo || bounce.buffer) {
2108 break;
2109 }
2110 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2111 bounce.addr = addr;
2112 bounce.len = l;
2113 if (!is_write) {
2114 address_space_read(as, addr, bounce.buffer, l);
2115 }
2116
2117 *plen = l;
2118 return bounce.buffer;
2119 }
2120 if (!todo) {
2121 raddr = memory_region_get_ram_addr(section->mr)
2122 + memory_region_section_addr(section, addr);
2123 }
2124
2125 len -= l;
2126 addr += l;
2127 todo += l;
2128 }
2129 rlen = todo;
2130 ret = qemu_ram_ptr_length(raddr, &rlen);
2131 *plen = rlen;
2132 return ret;
2133 }
2134
2135 /* Unmaps a memory region previously mapped by address_space_map().
2136 * Will also mark the memory as dirty if is_write == 1. access_len gives
2137 * the amount of memory that was actually read or written by the caller.
2138 */
2139 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2140 int is_write, hwaddr access_len)
2141 {
2142 if (buffer != bounce.buffer) {
2143 if (is_write) {
2144 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
2145 while (access_len) {
2146 unsigned l;
2147 l = TARGET_PAGE_SIZE;
2148 if (l > access_len)
2149 l = access_len;
2150 invalidate_and_set_dirty(addr1, l);
2151 addr1 += l;
2152 access_len -= l;
2153 }
2154 }
2155 if (xen_enabled()) {
2156 xen_invalidate_map_cache_entry(buffer);
2157 }
2158 return;
2159 }
2160 if (is_write) {
2161 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2162 }
2163 qemu_vfree(bounce.buffer);
2164 bounce.buffer = NULL;
2165 cpu_notify_map_clients();
2166 }
2167
2168 void *cpu_physical_memory_map(hwaddr addr,
2169 hwaddr *plen,
2170 int is_write)
2171 {
2172 return address_space_map(&address_space_memory, addr, plen, is_write);
2173 }
2174
2175 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2176 int is_write, hwaddr access_len)
2177 {
2178 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2179 }
2180
2181 /* warning: addr must be aligned */
2182 static inline uint32_t ldl_phys_internal(hwaddr addr,
2183 enum device_endian endian)
2184 {
2185 uint8_t *ptr;
2186 uint32_t val;
2187 MemoryRegionSection *section;
2188
2189 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2190
2191 if (!(memory_region_is_ram(section->mr) ||
2192 memory_region_is_romd(section->mr))) {
2193 /* I/O case */
2194 addr = memory_region_section_addr(section, addr);
2195 val = io_mem_read(section->mr, addr, 4);
2196 #if defined(TARGET_WORDS_BIGENDIAN)
2197 if (endian == DEVICE_LITTLE_ENDIAN) {
2198 val = bswap32(val);
2199 }
2200 #else
2201 if (endian == DEVICE_BIG_ENDIAN) {
2202 val = bswap32(val);
2203 }
2204 #endif
2205 } else {
2206 /* RAM case */
2207 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2208 & TARGET_PAGE_MASK)
2209 + memory_region_section_addr(section, addr));
2210 switch (endian) {
2211 case DEVICE_LITTLE_ENDIAN:
2212 val = ldl_le_p(ptr);
2213 break;
2214 case DEVICE_BIG_ENDIAN:
2215 val = ldl_be_p(ptr);
2216 break;
2217 default:
2218 val = ldl_p(ptr);
2219 break;
2220 }
2221 }
2222 return val;
2223 }
2224
2225 uint32_t ldl_phys(hwaddr addr)
2226 {
2227 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2228 }
2229
2230 uint32_t ldl_le_phys(hwaddr addr)
2231 {
2232 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2233 }
2234
2235 uint32_t ldl_be_phys(hwaddr addr)
2236 {
2237 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2238 }
2239
2240 /* warning: addr must be aligned */
2241 static inline uint64_t ldq_phys_internal(hwaddr addr,
2242 enum device_endian endian)
2243 {
2244 uint8_t *ptr;
2245 uint64_t val;
2246 MemoryRegionSection *section;
2247
2248 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2249
2250 if (!(memory_region_is_ram(section->mr) ||
2251 memory_region_is_romd(section->mr))) {
2252 /* I/O case */
2253 addr = memory_region_section_addr(section, addr);
2254
2255 /* XXX This is broken when device endian != cpu endian.
2256 Fix and add "endian" variable check */
2257 #ifdef TARGET_WORDS_BIGENDIAN
2258 val = io_mem_read(section->mr, addr, 4) << 32;
2259 val |= io_mem_read(section->mr, addr + 4, 4);
2260 #else
2261 val = io_mem_read(section->mr, addr, 4);
2262 val |= io_mem_read(section->mr, addr + 4, 4) << 32;
2263 #endif
2264 } else {
2265 /* RAM case */
2266 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2267 & TARGET_PAGE_MASK)
2268 + memory_region_section_addr(section, addr));
2269 switch (endian) {
2270 case DEVICE_LITTLE_ENDIAN:
2271 val = ldq_le_p(ptr);
2272 break;
2273 case DEVICE_BIG_ENDIAN:
2274 val = ldq_be_p(ptr);
2275 break;
2276 default:
2277 val = ldq_p(ptr);
2278 break;
2279 }
2280 }
2281 return val;
2282 }
2283
2284 uint64_t ldq_phys(hwaddr addr)
2285 {
2286 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2287 }
2288
2289 uint64_t ldq_le_phys(hwaddr addr)
2290 {
2291 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2292 }
2293
2294 uint64_t ldq_be_phys(hwaddr addr)
2295 {
2296 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2297 }
2298
2299 /* XXX: optimize */
2300 uint32_t ldub_phys(hwaddr addr)
2301 {
2302 uint8_t val;
2303 cpu_physical_memory_read(addr, &val, 1);
2304 return val;
2305 }
2306
2307 /* warning: addr must be aligned */
2308 static inline uint32_t lduw_phys_internal(hwaddr addr,
2309 enum device_endian endian)
2310 {
2311 uint8_t *ptr;
2312 uint64_t val;
2313 MemoryRegionSection *section;
2314
2315 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2316
2317 if (!(memory_region_is_ram(section->mr) ||
2318 memory_region_is_romd(section->mr))) {
2319 /* I/O case */
2320 addr = memory_region_section_addr(section, addr);
2321 val = io_mem_read(section->mr, addr, 2);
2322 #if defined(TARGET_WORDS_BIGENDIAN)
2323 if (endian == DEVICE_LITTLE_ENDIAN) {
2324 val = bswap16(val);
2325 }
2326 #else
2327 if (endian == DEVICE_BIG_ENDIAN) {
2328 val = bswap16(val);
2329 }
2330 #endif
2331 } else {
2332 /* RAM case */
2333 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2334 & TARGET_PAGE_MASK)
2335 + memory_region_section_addr(section, addr));
2336 switch (endian) {
2337 case DEVICE_LITTLE_ENDIAN:
2338 val = lduw_le_p(ptr);
2339 break;
2340 case DEVICE_BIG_ENDIAN:
2341 val = lduw_be_p(ptr);
2342 break;
2343 default:
2344 val = lduw_p(ptr);
2345 break;
2346 }
2347 }
2348 return val;
2349 }
2350
2351 uint32_t lduw_phys(hwaddr addr)
2352 {
2353 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2354 }
2355
2356 uint32_t lduw_le_phys(hwaddr addr)
2357 {
2358 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2359 }
2360
2361 uint32_t lduw_be_phys(hwaddr addr)
2362 {
2363 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2364 }
2365
2366 /* warning: addr must be aligned. The ram page is not masked as dirty
2367 and the code inside is not invalidated. It is useful if the dirty
2368 bits are used to track modified PTEs */
2369 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2370 {
2371 uint8_t *ptr;
2372 MemoryRegionSection *section;
2373
2374 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2375
2376 if (!memory_region_is_ram(section->mr) || section->readonly) {
2377 addr = memory_region_section_addr(section, addr);
2378 if (memory_region_is_ram(section->mr)) {
2379 section = &phys_sections[phys_section_rom];
2380 }
2381 io_mem_write(section->mr, addr, val, 4);
2382 } else {
2383 unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
2384 & TARGET_PAGE_MASK)
2385 + memory_region_section_addr(section, addr);
2386 ptr = qemu_get_ram_ptr(addr1);
2387 stl_p(ptr, val);
2388
2389 if (unlikely(in_migration)) {
2390 if (!cpu_physical_memory_is_dirty(addr1)) {
2391 /* invalidate code */
2392 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2393 /* set dirty bit */
2394 cpu_physical_memory_set_dirty_flags(
2395 addr1, (0xff & ~CODE_DIRTY_FLAG));
2396 }
2397 }
2398 }
2399 }
2400
2401 void stq_phys_notdirty(hwaddr addr, uint64_t val)
2402 {
2403 uint8_t *ptr;
2404 MemoryRegionSection *section;
2405
2406 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2407
2408 if (!memory_region_is_ram(section->mr) || section->readonly) {
2409 addr = memory_region_section_addr(section, addr);
2410 if (memory_region_is_ram(section->mr)) {
2411 section = &phys_sections[phys_section_rom];
2412 }
2413 #ifdef TARGET_WORDS_BIGENDIAN
2414 io_mem_write(section->mr, addr, val >> 32, 4);
2415 io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
2416 #else
2417 io_mem_write(section->mr, addr, (uint32_t)val, 4);
2418 io_mem_write(section->mr, addr + 4, val >> 32, 4);
2419 #endif
2420 } else {
2421 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2422 & TARGET_PAGE_MASK)
2423 + memory_region_section_addr(section, addr));
2424 stq_p(ptr, val);
2425 }
2426 }
2427
2428 /* warning: addr must be aligned */
2429 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2430 enum device_endian endian)
2431 {
2432 uint8_t *ptr;
2433 MemoryRegionSection *section;
2434
2435 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2436
2437 if (!memory_region_is_ram(section->mr) || section->readonly) {
2438 addr = memory_region_section_addr(section, addr);
2439 if (memory_region_is_ram(section->mr)) {
2440 section = &phys_sections[phys_section_rom];
2441 }
2442 #if defined(TARGET_WORDS_BIGENDIAN)
2443 if (endian == DEVICE_LITTLE_ENDIAN) {
2444 val = bswap32(val);
2445 }
2446 #else
2447 if (endian == DEVICE_BIG_ENDIAN) {
2448 val = bswap32(val);
2449 }
2450 #endif
2451 io_mem_write(section->mr, addr, val, 4);
2452 } else {
2453 unsigned long addr1;
2454 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
2455 + memory_region_section_addr(section, addr);
2456 /* RAM case */
2457 ptr = qemu_get_ram_ptr(addr1);
2458 switch (endian) {
2459 case DEVICE_LITTLE_ENDIAN:
2460 stl_le_p(ptr, val);
2461 break;
2462 case DEVICE_BIG_ENDIAN:
2463 stl_be_p(ptr, val);
2464 break;
2465 default:
2466 stl_p(ptr, val);
2467 break;
2468 }
2469 invalidate_and_set_dirty(addr1, 4);
2470 }
2471 }
2472
2473 void stl_phys(hwaddr addr, uint32_t val)
2474 {
2475 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2476 }
2477
2478 void stl_le_phys(hwaddr addr, uint32_t val)
2479 {
2480 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2481 }
2482
2483 void stl_be_phys(hwaddr addr, uint32_t val)
2484 {
2485 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2486 }
2487
2488 /* XXX: optimize */
2489 void stb_phys(hwaddr addr, uint32_t val)
2490 {
2491 uint8_t v = val;
2492 cpu_physical_memory_write(addr, &v, 1);
2493 }
2494
2495 /* warning: addr must be aligned */
2496 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2497 enum device_endian endian)
2498 {
2499 uint8_t *ptr;
2500 MemoryRegionSection *section;
2501
2502 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2503
2504 if (!memory_region_is_ram(section->mr) || section->readonly) {
2505 addr = memory_region_section_addr(section, addr);
2506 if (memory_region_is_ram(section->mr)) {
2507 section = &phys_sections[phys_section_rom];
2508 }
2509 #if defined(TARGET_WORDS_BIGENDIAN)
2510 if (endian == DEVICE_LITTLE_ENDIAN) {
2511 val = bswap16(val);
2512 }
2513 #else
2514 if (endian == DEVICE_BIG_ENDIAN) {
2515 val = bswap16(val);
2516 }
2517 #endif
2518 io_mem_write(section->mr, addr, val, 2);
2519 } else {
2520 unsigned long addr1;
2521 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
2522 + memory_region_section_addr(section, addr);
2523 /* RAM case */
2524 ptr = qemu_get_ram_ptr(addr1);
2525 switch (endian) {
2526 case DEVICE_LITTLE_ENDIAN:
2527 stw_le_p(ptr, val);
2528 break;
2529 case DEVICE_BIG_ENDIAN:
2530 stw_be_p(ptr, val);
2531 break;
2532 default:
2533 stw_p(ptr, val);
2534 break;
2535 }
2536 invalidate_and_set_dirty(addr1, 2);
2537 }
2538 }
2539
2540 void stw_phys(hwaddr addr, uint32_t val)
2541 {
2542 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2543 }
2544
2545 void stw_le_phys(hwaddr addr, uint32_t val)
2546 {
2547 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2548 }
2549
2550 void stw_be_phys(hwaddr addr, uint32_t val)
2551 {
2552 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2553 }
2554
2555 /* XXX: optimize */
2556 void stq_phys(hwaddr addr, uint64_t val)
2557 {
2558 val = tswap64(val);
2559 cpu_physical_memory_write(addr, &val, 8);
2560 }
2561
2562 void stq_le_phys(hwaddr addr, uint64_t val)
2563 {
2564 val = cpu_to_le64(val);
2565 cpu_physical_memory_write(addr, &val, 8);
2566 }
2567
2568 void stq_be_phys(hwaddr addr, uint64_t val)
2569 {
2570 val = cpu_to_be64(val);
2571 cpu_physical_memory_write(addr, &val, 8);
2572 }
2573
2574 /* virtual memory access for debug (includes writing to ROM) */
2575 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
2576 uint8_t *buf, int len, int is_write)
2577 {
2578 int l;
2579 hwaddr phys_addr;
2580 target_ulong page;
2581
2582 while (len > 0) {
2583 page = addr & TARGET_PAGE_MASK;
2584 phys_addr = cpu_get_phys_page_debug(env, page);
2585 /* if no physical page mapped, return an error */
2586 if (phys_addr == -1)
2587 return -1;
2588 l = (page + TARGET_PAGE_SIZE) - addr;
2589 if (l > len)
2590 l = len;
2591 phys_addr += (addr & ~TARGET_PAGE_MASK);
2592 if (is_write)
2593 cpu_physical_memory_write_rom(phys_addr, buf, l);
2594 else
2595 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2596 len -= l;
2597 buf += l;
2598 addr += l;
2599 }
2600 return 0;
2601 }
2602 #endif
2603
2604 #if !defined(CONFIG_USER_ONLY)
2605
2606 /*
2607 * A helper function for the _utterly broken_ virtio device model to find out if
2608 * it's running on a big endian machine. Don't do this at home kids!
2609 */
2610 bool virtio_is_big_endian(void);
2611 bool virtio_is_big_endian(void)
2612 {
2613 #if defined(TARGET_WORDS_BIGENDIAN)
2614 return true;
2615 #else
2616 return false;
2617 #endif
2618 }
2619
2620 #endif
2621
2622 #ifndef CONFIG_USER_ONLY
2623 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2624 {
2625 MemoryRegionSection *section;
2626
2627 section = phys_page_find(address_space_memory.dispatch,
2628 phys_addr >> TARGET_PAGE_BITS);
2629
2630 return !(memory_region_is_ram(section->mr) ||
2631 memory_region_is_romd(section->mr));
2632 }
2633 #endif