]> git.proxmox.com Git - qemu.git/blob - exec.c
exec: Simplify the guest physical memory allocation hook
[qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "hw/xen/xen.h"
36 #include "qemu/timer.h"
37 #include "qemu/config-file.h"
38 #include "exec/memory.h"
39 #include "sysemu/dma.h"
40 #include "exec/address-spaces.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #else /* !CONFIG_USER_ONLY */
44 #include "sysemu/xen-mapcache.h"
45 #include "trace.h"
46 #endif
47 #include "exec/cpu-all.h"
48
49 #include "exec/cputlb.h"
50 #include "translate-all.h"
51
52 #include "exec/memory-internal.h"
53
54 //#define DEBUG_SUBPAGE
55
56 #if !defined(CONFIG_USER_ONLY)
57 static int in_migration;
58
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
60
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
63
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
66
67 MemoryRegion io_mem_rom, io_mem_notdirty;
68 static MemoryRegion io_mem_unassigned;
69
70 #endif
71
72 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
73 /* current CPU in the current thread. It is only valid inside
74 cpu_exec() */
75 DEFINE_TLS(CPUState *, current_cpu);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
79 int use_icount;
80
81 #if !defined(CONFIG_USER_ONLY)
82
83 typedef struct PhysPageEntry PhysPageEntry;
84
85 struct PhysPageEntry {
86 uint16_t is_leaf : 1;
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
88 uint16_t ptr : 15;
89 };
90
91 typedef PhysPageEntry Node[L2_SIZE];
92
93 struct AddressSpaceDispatch {
94 /* This is a multi-level map on the physical address space.
95 * The bottom level has pointers to MemoryRegionSections.
96 */
97 PhysPageEntry phys_map;
98 Node *nodes;
99 MemoryRegionSection *sections;
100 AddressSpace *as;
101 };
102
103 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
104 typedef struct subpage_t {
105 MemoryRegion iomem;
106 AddressSpace *as;
107 hwaddr base;
108 uint16_t sub_section[TARGET_PAGE_SIZE];
109 } subpage_t;
110
111 #define PHYS_SECTION_UNASSIGNED 0
112 #define PHYS_SECTION_NOTDIRTY 1
113 #define PHYS_SECTION_ROM 2
114 #define PHYS_SECTION_WATCH 3
115
116 typedef struct PhysPageMap {
117 unsigned sections_nb;
118 unsigned sections_nb_alloc;
119 unsigned nodes_nb;
120 unsigned nodes_nb_alloc;
121 Node *nodes;
122 MemoryRegionSection *sections;
123 } PhysPageMap;
124
125 static PhysPageMap *prev_map;
126 static PhysPageMap next_map;
127
128 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
129
130 static void io_mem_init(void);
131 static void memory_map_init(void);
132 static void *qemu_safe_ram_ptr(ram_addr_t addr);
133
134 static MemoryRegion io_mem_watch;
135 #endif
136
137 #if !defined(CONFIG_USER_ONLY)
138
139 static void phys_map_node_reserve(unsigned nodes)
140 {
141 if (next_map.nodes_nb + nodes > next_map.nodes_nb_alloc) {
142 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc * 2,
143 16);
144 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc,
145 next_map.nodes_nb + nodes);
146 next_map.nodes = g_renew(Node, next_map.nodes,
147 next_map.nodes_nb_alloc);
148 }
149 }
150
151 static uint16_t phys_map_node_alloc(void)
152 {
153 unsigned i;
154 uint16_t ret;
155
156 ret = next_map.nodes_nb++;
157 assert(ret != PHYS_MAP_NODE_NIL);
158 assert(ret != next_map.nodes_nb_alloc);
159 for (i = 0; i < L2_SIZE; ++i) {
160 next_map.nodes[ret][i].is_leaf = 0;
161 next_map.nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
162 }
163 return ret;
164 }
165
166 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
167 hwaddr *nb, uint16_t leaf,
168 int level)
169 {
170 PhysPageEntry *p;
171 int i;
172 hwaddr step = (hwaddr)1 << (level * L2_BITS);
173
174 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
175 lp->ptr = phys_map_node_alloc();
176 p = next_map.nodes[lp->ptr];
177 if (level == 0) {
178 for (i = 0; i < L2_SIZE; i++) {
179 p[i].is_leaf = 1;
180 p[i].ptr = PHYS_SECTION_UNASSIGNED;
181 }
182 }
183 } else {
184 p = next_map.nodes[lp->ptr];
185 }
186 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
187
188 while (*nb && lp < &p[L2_SIZE]) {
189 if ((*index & (step - 1)) == 0 && *nb >= step) {
190 lp->is_leaf = true;
191 lp->ptr = leaf;
192 *index += step;
193 *nb -= step;
194 } else {
195 phys_page_set_level(lp, index, nb, leaf, level - 1);
196 }
197 ++lp;
198 }
199 }
200
201 static void phys_page_set(AddressSpaceDispatch *d,
202 hwaddr index, hwaddr nb,
203 uint16_t leaf)
204 {
205 /* Wildly overreserve - it doesn't matter much. */
206 phys_map_node_reserve(3 * P_L2_LEVELS);
207
208 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
209 }
210
211 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr index,
212 Node *nodes, MemoryRegionSection *sections)
213 {
214 PhysPageEntry *p;
215 int i;
216
217 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
218 if (lp.ptr == PHYS_MAP_NODE_NIL) {
219 return &sections[PHYS_SECTION_UNASSIGNED];
220 }
221 p = nodes[lp.ptr];
222 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
223 }
224 return &sections[lp.ptr];
225 }
226
227 bool memory_region_is_unassigned(MemoryRegion *mr)
228 {
229 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
230 && mr != &io_mem_watch;
231 }
232
233 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
234 hwaddr addr,
235 bool resolve_subpage)
236 {
237 MemoryRegionSection *section;
238 subpage_t *subpage;
239
240 section = phys_page_find(d->phys_map, addr >> TARGET_PAGE_BITS,
241 d->nodes, d->sections);
242 if (resolve_subpage && section->mr->subpage) {
243 subpage = container_of(section->mr, subpage_t, iomem);
244 section = &d->sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
245 }
246 return section;
247 }
248
249 static MemoryRegionSection *
250 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
251 hwaddr *plen, bool resolve_subpage)
252 {
253 MemoryRegionSection *section;
254 Int128 diff;
255
256 section = address_space_lookup_region(d, addr, resolve_subpage);
257 /* Compute offset within MemoryRegionSection */
258 addr -= section->offset_within_address_space;
259
260 /* Compute offset within MemoryRegion */
261 *xlat = addr + section->offset_within_region;
262
263 diff = int128_sub(section->mr->size, int128_make64(addr));
264 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
265 return section;
266 }
267
268 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
269 hwaddr *xlat, hwaddr *plen,
270 bool is_write)
271 {
272 IOMMUTLBEntry iotlb;
273 MemoryRegionSection *section;
274 MemoryRegion *mr;
275 hwaddr len = *plen;
276
277 for (;;) {
278 section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
279 mr = section->mr;
280
281 if (!mr->iommu_ops) {
282 break;
283 }
284
285 iotlb = mr->iommu_ops->translate(mr, addr);
286 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
287 | (addr & iotlb.addr_mask));
288 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
289 if (!(iotlb.perm & (1 << is_write))) {
290 mr = &io_mem_unassigned;
291 break;
292 }
293
294 as = iotlb.target_as;
295 }
296
297 *plen = len;
298 *xlat = addr;
299 return mr;
300 }
301
302 MemoryRegionSection *
303 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
304 hwaddr *plen)
305 {
306 MemoryRegionSection *section;
307 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
308
309 assert(!section->mr->iommu_ops);
310 return section;
311 }
312 #endif
313
314 void cpu_exec_init_all(void)
315 {
316 #if !defined(CONFIG_USER_ONLY)
317 qemu_mutex_init(&ram_list.mutex);
318 memory_map_init();
319 io_mem_init();
320 #endif
321 }
322
323 #if !defined(CONFIG_USER_ONLY)
324
325 static int cpu_common_post_load(void *opaque, int version_id)
326 {
327 CPUState *cpu = opaque;
328
329 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
330 version_id is increased. */
331 cpu->interrupt_request &= ~0x01;
332 tlb_flush(cpu->env_ptr, 1);
333
334 return 0;
335 }
336
337 const VMStateDescription vmstate_cpu_common = {
338 .name = "cpu_common",
339 .version_id = 1,
340 .minimum_version_id = 1,
341 .minimum_version_id_old = 1,
342 .post_load = cpu_common_post_load,
343 .fields = (VMStateField []) {
344 VMSTATE_UINT32(halted, CPUState),
345 VMSTATE_UINT32(interrupt_request, CPUState),
346 VMSTATE_END_OF_LIST()
347 }
348 };
349
350 #endif
351
352 CPUState *qemu_get_cpu(int index)
353 {
354 CPUState *cpu;
355
356 CPU_FOREACH(cpu) {
357 if (cpu->cpu_index == index) {
358 return cpu;
359 }
360 }
361
362 return NULL;
363 }
364
365 void cpu_exec_init(CPUArchState *env)
366 {
367 CPUState *cpu = ENV_GET_CPU(env);
368 CPUClass *cc = CPU_GET_CLASS(cpu);
369 CPUState *some_cpu;
370 int cpu_index;
371
372 #if defined(CONFIG_USER_ONLY)
373 cpu_list_lock();
374 #endif
375 cpu_index = 0;
376 CPU_FOREACH(some_cpu) {
377 cpu_index++;
378 }
379 cpu->cpu_index = cpu_index;
380 cpu->numa_node = 0;
381 QTAILQ_INIT(&env->breakpoints);
382 QTAILQ_INIT(&env->watchpoints);
383 #ifndef CONFIG_USER_ONLY
384 cpu->thread_id = qemu_get_thread_id();
385 #endif
386 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
387 #if defined(CONFIG_USER_ONLY)
388 cpu_list_unlock();
389 #endif
390 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
391 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
392 }
393 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
394 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
395 cpu_save, cpu_load, env);
396 assert(cc->vmsd == NULL);
397 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
398 #endif
399 if (cc->vmsd != NULL) {
400 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
401 }
402 }
403
404 #if defined(TARGET_HAS_ICE)
405 #if defined(CONFIG_USER_ONLY)
406 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
407 {
408 tb_invalidate_phys_page_range(pc, pc + 1, 0);
409 }
410 #else
411 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
412 {
413 tb_invalidate_phys_addr(cpu_get_phys_page_debug(cpu, pc) |
414 (pc & ~TARGET_PAGE_MASK));
415 }
416 #endif
417 #endif /* TARGET_HAS_ICE */
418
419 #if defined(CONFIG_USER_ONLY)
420 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
421
422 {
423 }
424
425 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
426 int flags, CPUWatchpoint **watchpoint)
427 {
428 return -ENOSYS;
429 }
430 #else
431 /* Add a watchpoint. */
432 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
433 int flags, CPUWatchpoint **watchpoint)
434 {
435 target_ulong len_mask = ~(len - 1);
436 CPUWatchpoint *wp;
437
438 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
439 if ((len & (len - 1)) || (addr & ~len_mask) ||
440 len == 0 || len > TARGET_PAGE_SIZE) {
441 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
442 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
443 return -EINVAL;
444 }
445 wp = g_malloc(sizeof(*wp));
446
447 wp->vaddr = addr;
448 wp->len_mask = len_mask;
449 wp->flags = flags;
450
451 /* keep all GDB-injected watchpoints in front */
452 if (flags & BP_GDB)
453 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
454 else
455 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
456
457 tlb_flush_page(env, addr);
458
459 if (watchpoint)
460 *watchpoint = wp;
461 return 0;
462 }
463
464 /* Remove a specific watchpoint. */
465 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
466 int flags)
467 {
468 target_ulong len_mask = ~(len - 1);
469 CPUWatchpoint *wp;
470
471 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
472 if (addr == wp->vaddr && len_mask == wp->len_mask
473 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
474 cpu_watchpoint_remove_by_ref(env, wp);
475 return 0;
476 }
477 }
478 return -ENOENT;
479 }
480
481 /* Remove a specific watchpoint by reference. */
482 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
483 {
484 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
485
486 tlb_flush_page(env, watchpoint->vaddr);
487
488 g_free(watchpoint);
489 }
490
491 /* Remove all matching watchpoints. */
492 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
493 {
494 CPUWatchpoint *wp, *next;
495
496 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
497 if (wp->flags & mask)
498 cpu_watchpoint_remove_by_ref(env, wp);
499 }
500 }
501 #endif
502
503 /* Add a breakpoint. */
504 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
505 CPUBreakpoint **breakpoint)
506 {
507 #if defined(TARGET_HAS_ICE)
508 CPUBreakpoint *bp;
509
510 bp = g_malloc(sizeof(*bp));
511
512 bp->pc = pc;
513 bp->flags = flags;
514
515 /* keep all GDB-injected breakpoints in front */
516 if (flags & BP_GDB) {
517 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
518 } else {
519 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
520 }
521
522 breakpoint_invalidate(ENV_GET_CPU(env), pc);
523
524 if (breakpoint) {
525 *breakpoint = bp;
526 }
527 return 0;
528 #else
529 return -ENOSYS;
530 #endif
531 }
532
533 /* Remove a specific breakpoint. */
534 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
535 {
536 #if defined(TARGET_HAS_ICE)
537 CPUBreakpoint *bp;
538
539 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
540 if (bp->pc == pc && bp->flags == flags) {
541 cpu_breakpoint_remove_by_ref(env, bp);
542 return 0;
543 }
544 }
545 return -ENOENT;
546 #else
547 return -ENOSYS;
548 #endif
549 }
550
551 /* Remove a specific breakpoint by reference. */
552 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
553 {
554 #if defined(TARGET_HAS_ICE)
555 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
556
557 breakpoint_invalidate(ENV_GET_CPU(env), breakpoint->pc);
558
559 g_free(breakpoint);
560 #endif
561 }
562
563 /* Remove all matching breakpoints. */
564 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
565 {
566 #if defined(TARGET_HAS_ICE)
567 CPUBreakpoint *bp, *next;
568
569 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
570 if (bp->flags & mask)
571 cpu_breakpoint_remove_by_ref(env, bp);
572 }
573 #endif
574 }
575
576 /* enable or disable single step mode. EXCP_DEBUG is returned by the
577 CPU loop after each instruction */
578 void cpu_single_step(CPUState *cpu, int enabled)
579 {
580 #if defined(TARGET_HAS_ICE)
581 if (cpu->singlestep_enabled != enabled) {
582 cpu->singlestep_enabled = enabled;
583 if (kvm_enabled()) {
584 kvm_update_guest_debug(cpu, 0);
585 } else {
586 /* must flush all the translated code to avoid inconsistencies */
587 /* XXX: only flush what is necessary */
588 CPUArchState *env = cpu->env_ptr;
589 tb_flush(env);
590 }
591 }
592 #endif
593 }
594
595 void cpu_abort(CPUArchState *env, const char *fmt, ...)
596 {
597 CPUState *cpu = ENV_GET_CPU(env);
598 va_list ap;
599 va_list ap2;
600
601 va_start(ap, fmt);
602 va_copy(ap2, ap);
603 fprintf(stderr, "qemu: fatal: ");
604 vfprintf(stderr, fmt, ap);
605 fprintf(stderr, "\n");
606 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
607 if (qemu_log_enabled()) {
608 qemu_log("qemu: fatal: ");
609 qemu_log_vprintf(fmt, ap2);
610 qemu_log("\n");
611 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
612 qemu_log_flush();
613 qemu_log_close();
614 }
615 va_end(ap2);
616 va_end(ap);
617 #if defined(CONFIG_USER_ONLY)
618 {
619 struct sigaction act;
620 sigfillset(&act.sa_mask);
621 act.sa_handler = SIG_DFL;
622 sigaction(SIGABRT, &act, NULL);
623 }
624 #endif
625 abort();
626 }
627
628 CPUArchState *cpu_copy(CPUArchState *env)
629 {
630 CPUArchState *new_env = cpu_init(env->cpu_model_str);
631 #if defined(TARGET_HAS_ICE)
632 CPUBreakpoint *bp;
633 CPUWatchpoint *wp;
634 #endif
635
636 /* Reset non arch specific state */
637 cpu_reset(ENV_GET_CPU(new_env));
638
639 /* Copy arch specific state into the new CPU */
640 memcpy(new_env, env, sizeof(CPUArchState));
641
642 /* Clone all break/watchpoints.
643 Note: Once we support ptrace with hw-debug register access, make sure
644 BP_CPU break/watchpoints are handled correctly on clone. */
645 QTAILQ_INIT(&env->breakpoints);
646 QTAILQ_INIT(&env->watchpoints);
647 #if defined(TARGET_HAS_ICE)
648 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
649 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
650 }
651 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
652 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
653 wp->flags, NULL);
654 }
655 #endif
656
657 return new_env;
658 }
659
660 #if !defined(CONFIG_USER_ONLY)
661 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
662 uintptr_t length)
663 {
664 uintptr_t start1;
665
666 /* we modify the TLB cache so that the dirty bit will be set again
667 when accessing the range */
668 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
669 /* Check that we don't span multiple blocks - this breaks the
670 address comparisons below. */
671 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
672 != (end - 1) - start) {
673 abort();
674 }
675 cpu_tlb_reset_dirty_all(start1, length);
676
677 }
678
679 /* Note: start and end must be within the same ram block. */
680 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
681 int dirty_flags)
682 {
683 uintptr_t length;
684
685 start &= TARGET_PAGE_MASK;
686 end = TARGET_PAGE_ALIGN(end);
687
688 length = end - start;
689 if (length == 0)
690 return;
691 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
692
693 if (tcg_enabled()) {
694 tlb_reset_dirty_range_all(start, end, length);
695 }
696 }
697
698 static int cpu_physical_memory_set_dirty_tracking(int enable)
699 {
700 int ret = 0;
701 in_migration = enable;
702 return ret;
703 }
704
705 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
706 MemoryRegionSection *section,
707 target_ulong vaddr,
708 hwaddr paddr, hwaddr xlat,
709 int prot,
710 target_ulong *address)
711 {
712 hwaddr iotlb;
713 CPUWatchpoint *wp;
714
715 if (memory_region_is_ram(section->mr)) {
716 /* Normal RAM. */
717 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
718 + xlat;
719 if (!section->readonly) {
720 iotlb |= PHYS_SECTION_NOTDIRTY;
721 } else {
722 iotlb |= PHYS_SECTION_ROM;
723 }
724 } else {
725 iotlb = section - address_space_memory.dispatch->sections;
726 iotlb += xlat;
727 }
728
729 /* Make accesses to pages with watchpoints go via the
730 watchpoint trap routines. */
731 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
732 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
733 /* Avoid trapping reads of pages with a write breakpoint. */
734 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
735 iotlb = PHYS_SECTION_WATCH + paddr;
736 *address |= TLB_MMIO;
737 break;
738 }
739 }
740 }
741
742 return iotlb;
743 }
744 #endif /* defined(CONFIG_USER_ONLY) */
745
746 #if !defined(CONFIG_USER_ONLY)
747
748 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
749 uint16_t section);
750 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
751
752 static void *(*phys_mem_alloc)(ram_addr_t size) = qemu_anon_ram_alloc;
753
754 /*
755 * Set a custom physical guest memory alloator.
756 * Accelerators with unusual needs may need this. Hopefully, we can
757 * get rid of it eventually.
758 */
759 void phys_mem_set_alloc(void *(*alloc)(ram_addr_t))
760 {
761 phys_mem_alloc = alloc;
762 }
763
764 static uint16_t phys_section_add(MemoryRegionSection *section)
765 {
766 /* The physical section number is ORed with a page-aligned
767 * pointer to produce the iotlb entries. Thus it should
768 * never overflow into the page-aligned value.
769 */
770 assert(next_map.sections_nb < TARGET_PAGE_SIZE);
771
772 if (next_map.sections_nb == next_map.sections_nb_alloc) {
773 next_map.sections_nb_alloc = MAX(next_map.sections_nb_alloc * 2,
774 16);
775 next_map.sections = g_renew(MemoryRegionSection, next_map.sections,
776 next_map.sections_nb_alloc);
777 }
778 next_map.sections[next_map.sections_nb] = *section;
779 memory_region_ref(section->mr);
780 return next_map.sections_nb++;
781 }
782
783 static void phys_section_destroy(MemoryRegion *mr)
784 {
785 memory_region_unref(mr);
786
787 if (mr->subpage) {
788 subpage_t *subpage = container_of(mr, subpage_t, iomem);
789 memory_region_destroy(&subpage->iomem);
790 g_free(subpage);
791 }
792 }
793
794 static void phys_sections_free(PhysPageMap *map)
795 {
796 while (map->sections_nb > 0) {
797 MemoryRegionSection *section = &map->sections[--map->sections_nb];
798 phys_section_destroy(section->mr);
799 }
800 g_free(map->sections);
801 g_free(map->nodes);
802 g_free(map);
803 }
804
805 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
806 {
807 subpage_t *subpage;
808 hwaddr base = section->offset_within_address_space
809 & TARGET_PAGE_MASK;
810 MemoryRegionSection *existing = phys_page_find(d->phys_map, base >> TARGET_PAGE_BITS,
811 next_map.nodes, next_map.sections);
812 MemoryRegionSection subsection = {
813 .offset_within_address_space = base,
814 .size = int128_make64(TARGET_PAGE_SIZE),
815 };
816 hwaddr start, end;
817
818 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
819
820 if (!(existing->mr->subpage)) {
821 subpage = subpage_init(d->as, base);
822 subsection.mr = &subpage->iomem;
823 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
824 phys_section_add(&subsection));
825 } else {
826 subpage = container_of(existing->mr, subpage_t, iomem);
827 }
828 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
829 end = start + int128_get64(section->size) - 1;
830 subpage_register(subpage, start, end, phys_section_add(section));
831 }
832
833
834 static void register_multipage(AddressSpaceDispatch *d,
835 MemoryRegionSection *section)
836 {
837 hwaddr start_addr = section->offset_within_address_space;
838 uint16_t section_index = phys_section_add(section);
839 uint64_t num_pages = int128_get64(int128_rshift(section->size,
840 TARGET_PAGE_BITS));
841
842 assert(num_pages);
843 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
844 }
845
846 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
847 {
848 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
849 AddressSpaceDispatch *d = as->next_dispatch;
850 MemoryRegionSection now = *section, remain = *section;
851 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
852
853 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
854 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
855 - now.offset_within_address_space;
856
857 now.size = int128_min(int128_make64(left), now.size);
858 register_subpage(d, &now);
859 } else {
860 now.size = int128_zero();
861 }
862 while (int128_ne(remain.size, now.size)) {
863 remain.size = int128_sub(remain.size, now.size);
864 remain.offset_within_address_space += int128_get64(now.size);
865 remain.offset_within_region += int128_get64(now.size);
866 now = remain;
867 if (int128_lt(remain.size, page_size)) {
868 register_subpage(d, &now);
869 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
870 now.size = page_size;
871 register_subpage(d, &now);
872 } else {
873 now.size = int128_and(now.size, int128_neg(page_size));
874 register_multipage(d, &now);
875 }
876 }
877 }
878
879 void qemu_flush_coalesced_mmio_buffer(void)
880 {
881 if (kvm_enabled())
882 kvm_flush_coalesced_mmio_buffer();
883 }
884
885 void qemu_mutex_lock_ramlist(void)
886 {
887 qemu_mutex_lock(&ram_list.mutex);
888 }
889
890 void qemu_mutex_unlock_ramlist(void)
891 {
892 qemu_mutex_unlock(&ram_list.mutex);
893 }
894
895 #if defined(__linux__) && !defined(TARGET_S390X)
896
897 #include <sys/vfs.h>
898
899 #define HUGETLBFS_MAGIC 0x958458f6
900
901 static long gethugepagesize(const char *path)
902 {
903 struct statfs fs;
904 int ret;
905
906 do {
907 ret = statfs(path, &fs);
908 } while (ret != 0 && errno == EINTR);
909
910 if (ret != 0) {
911 perror(path);
912 return 0;
913 }
914
915 if (fs.f_type != HUGETLBFS_MAGIC)
916 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
917
918 return fs.f_bsize;
919 }
920
921 static void *file_ram_alloc(RAMBlock *block,
922 ram_addr_t memory,
923 const char *path)
924 {
925 char *filename;
926 char *sanitized_name;
927 char *c;
928 void *area;
929 int fd;
930 #ifdef MAP_POPULATE
931 int flags;
932 #endif
933 unsigned long hpagesize;
934
935 hpagesize = gethugepagesize(path);
936 if (!hpagesize) {
937 return NULL;
938 }
939
940 if (memory < hpagesize) {
941 return NULL;
942 }
943
944 if (kvm_enabled() && !kvm_has_sync_mmu()) {
945 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
946 return NULL;
947 }
948
949 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
950 sanitized_name = g_strdup(block->mr->name);
951 for (c = sanitized_name; *c != '\0'; c++) {
952 if (*c == '/')
953 *c = '_';
954 }
955
956 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
957 sanitized_name);
958 g_free(sanitized_name);
959
960 fd = mkstemp(filename);
961 if (fd < 0) {
962 perror("unable to create backing store for hugepages");
963 g_free(filename);
964 return NULL;
965 }
966 unlink(filename);
967 g_free(filename);
968
969 memory = (memory+hpagesize-1) & ~(hpagesize-1);
970
971 /*
972 * ftruncate is not supported by hugetlbfs in older
973 * hosts, so don't bother bailing out on errors.
974 * If anything goes wrong with it under other filesystems,
975 * mmap will fail.
976 */
977 if (ftruncate(fd, memory))
978 perror("ftruncate");
979
980 #ifdef MAP_POPULATE
981 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
982 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
983 * to sidestep this quirk.
984 */
985 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
986 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
987 #else
988 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
989 #endif
990 if (area == MAP_FAILED) {
991 perror("file_ram_alloc: can't mmap RAM pages");
992 close(fd);
993 return (NULL);
994 }
995 block->fd = fd;
996 return area;
997 }
998 #endif
999
1000 static ram_addr_t find_ram_offset(ram_addr_t size)
1001 {
1002 RAMBlock *block, *next_block;
1003 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1004
1005 assert(size != 0); /* it would hand out same offset multiple times */
1006
1007 if (QTAILQ_EMPTY(&ram_list.blocks))
1008 return 0;
1009
1010 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1011 ram_addr_t end, next = RAM_ADDR_MAX;
1012
1013 end = block->offset + block->length;
1014
1015 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
1016 if (next_block->offset >= end) {
1017 next = MIN(next, next_block->offset);
1018 }
1019 }
1020 if (next - end >= size && next - end < mingap) {
1021 offset = end;
1022 mingap = next - end;
1023 }
1024 }
1025
1026 if (offset == RAM_ADDR_MAX) {
1027 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1028 (uint64_t)size);
1029 abort();
1030 }
1031
1032 return offset;
1033 }
1034
1035 ram_addr_t last_ram_offset(void)
1036 {
1037 RAMBlock *block;
1038 ram_addr_t last = 0;
1039
1040 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1041 last = MAX(last, block->offset + block->length);
1042
1043 return last;
1044 }
1045
1046 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1047 {
1048 int ret;
1049
1050 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1051 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1052 "dump-guest-core", true)) {
1053 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1054 if (ret) {
1055 perror("qemu_madvise");
1056 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1057 "but dump_guest_core=off specified\n");
1058 }
1059 }
1060 }
1061
1062 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1063 {
1064 RAMBlock *new_block, *block;
1065
1066 new_block = NULL;
1067 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1068 if (block->offset == addr) {
1069 new_block = block;
1070 break;
1071 }
1072 }
1073 assert(new_block);
1074 assert(!new_block->idstr[0]);
1075
1076 if (dev) {
1077 char *id = qdev_get_dev_path(dev);
1078 if (id) {
1079 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1080 g_free(id);
1081 }
1082 }
1083 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1084
1085 /* This assumes the iothread lock is taken here too. */
1086 qemu_mutex_lock_ramlist();
1087 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1088 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1089 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1090 new_block->idstr);
1091 abort();
1092 }
1093 }
1094 qemu_mutex_unlock_ramlist();
1095 }
1096
1097 static int memory_try_enable_merging(void *addr, size_t len)
1098 {
1099 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
1100 /* disabled by the user */
1101 return 0;
1102 }
1103
1104 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1105 }
1106
1107 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1108 MemoryRegion *mr)
1109 {
1110 RAMBlock *block, *new_block;
1111
1112 size = TARGET_PAGE_ALIGN(size);
1113 new_block = g_malloc0(sizeof(*new_block));
1114 new_block->fd = -1;
1115
1116 /* This assumes the iothread lock is taken here too. */
1117 qemu_mutex_lock_ramlist();
1118 new_block->mr = mr;
1119 new_block->offset = find_ram_offset(size);
1120 if (host) {
1121 new_block->host = host;
1122 new_block->flags |= RAM_PREALLOC_MASK;
1123 } else if (xen_enabled()) {
1124 if (mem_path) {
1125 fprintf(stderr, "-mem-path not supported with Xen\n");
1126 exit(1);
1127 }
1128 xen_ram_alloc(new_block->offset, size, mr);
1129 } else {
1130 if (mem_path) {
1131 #if defined (__linux__) && !defined(TARGET_S390X)
1132 new_block->host = file_ram_alloc(new_block, size, mem_path);
1133 #else
1134 fprintf(stderr, "-mem-path option unsupported\n");
1135 exit(1);
1136 #endif
1137 }
1138 if (!new_block->host) {
1139 new_block->host = phys_mem_alloc(size);
1140 memory_try_enable_merging(new_block->host, size);
1141 }
1142 }
1143 new_block->length = size;
1144
1145 /* Keep the list sorted from biggest to smallest block. */
1146 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1147 if (block->length < new_block->length) {
1148 break;
1149 }
1150 }
1151 if (block) {
1152 QTAILQ_INSERT_BEFORE(block, new_block, next);
1153 } else {
1154 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1155 }
1156 ram_list.mru_block = NULL;
1157
1158 ram_list.version++;
1159 qemu_mutex_unlock_ramlist();
1160
1161 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1162 last_ram_offset() >> TARGET_PAGE_BITS);
1163 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1164 0, size >> TARGET_PAGE_BITS);
1165 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1166
1167 qemu_ram_setup_dump(new_block->host, size);
1168 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1169
1170 if (kvm_enabled())
1171 kvm_setup_guest_memory(new_block->host, size);
1172
1173 return new_block->offset;
1174 }
1175
1176 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1177 {
1178 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1179 }
1180
1181 void qemu_ram_free_from_ptr(ram_addr_t addr)
1182 {
1183 RAMBlock *block;
1184
1185 /* This assumes the iothread lock is taken here too. */
1186 qemu_mutex_lock_ramlist();
1187 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1188 if (addr == block->offset) {
1189 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1190 ram_list.mru_block = NULL;
1191 ram_list.version++;
1192 g_free(block);
1193 break;
1194 }
1195 }
1196 qemu_mutex_unlock_ramlist();
1197 }
1198
1199 void qemu_ram_free(ram_addr_t addr)
1200 {
1201 RAMBlock *block;
1202
1203 /* This assumes the iothread lock is taken here too. */
1204 qemu_mutex_lock_ramlist();
1205 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1206 if (addr == block->offset) {
1207 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1208 ram_list.mru_block = NULL;
1209 ram_list.version++;
1210 if (block->flags & RAM_PREALLOC_MASK) {
1211 ;
1212 } else if (xen_enabled()) {
1213 xen_invalidate_map_cache_entry(block->host);
1214 } else if (block->fd >= 0) {
1215 munmap(block->host, block->length);
1216 close(block->fd);
1217 } else {
1218 qemu_anon_ram_free(block->host, block->length);
1219 }
1220 g_free(block);
1221 break;
1222 }
1223 }
1224 qemu_mutex_unlock_ramlist();
1225
1226 }
1227
1228 #ifndef _WIN32
1229 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1230 {
1231 RAMBlock *block;
1232 ram_addr_t offset;
1233 int flags;
1234 void *area, *vaddr;
1235
1236 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1237 offset = addr - block->offset;
1238 if (offset < block->length) {
1239 vaddr = block->host + offset;
1240 if (block->flags & RAM_PREALLOC_MASK) {
1241 ;
1242 } else if (xen_enabled()) {
1243 abort();
1244 } else {
1245 flags = MAP_FIXED;
1246 munmap(vaddr, length);
1247 if (block->fd >= 0) {
1248 #ifdef MAP_POPULATE
1249 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1250 MAP_PRIVATE;
1251 #else
1252 flags |= MAP_PRIVATE;
1253 #endif
1254 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1255 flags, block->fd, offset);
1256 } else {
1257 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1258 flags |= MAP_SHARED | MAP_ANONYMOUS;
1259 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1260 flags, -1, 0);
1261 #else
1262 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1263 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1264 flags, -1, 0);
1265 #endif
1266 }
1267 if (area != vaddr) {
1268 fprintf(stderr, "Could not remap addr: "
1269 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1270 length, addr);
1271 exit(1);
1272 }
1273 memory_try_enable_merging(vaddr, length);
1274 qemu_ram_setup_dump(vaddr, length);
1275 }
1276 return;
1277 }
1278 }
1279 }
1280 #endif /* !_WIN32 */
1281
1282 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1283 {
1284 RAMBlock *block;
1285
1286 /* The list is protected by the iothread lock here. */
1287 block = ram_list.mru_block;
1288 if (block && addr - block->offset < block->length) {
1289 goto found;
1290 }
1291 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1292 if (addr - block->offset < block->length) {
1293 goto found;
1294 }
1295 }
1296
1297 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1298 abort();
1299
1300 found:
1301 ram_list.mru_block = block;
1302 return block;
1303 }
1304
1305 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1306 With the exception of the softmmu code in this file, this should
1307 only be used for local memory (e.g. video ram) that the device owns,
1308 and knows it isn't going to access beyond the end of the block.
1309
1310 It should not be used for general purpose DMA.
1311 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1312 */
1313 void *qemu_get_ram_ptr(ram_addr_t addr)
1314 {
1315 RAMBlock *block = qemu_get_ram_block(addr);
1316
1317 if (xen_enabled()) {
1318 /* We need to check if the requested address is in the RAM
1319 * because we don't want to map the entire memory in QEMU.
1320 * In that case just map until the end of the page.
1321 */
1322 if (block->offset == 0) {
1323 return xen_map_cache(addr, 0, 0);
1324 } else if (block->host == NULL) {
1325 block->host =
1326 xen_map_cache(block->offset, block->length, 1);
1327 }
1328 }
1329 return block->host + (addr - block->offset);
1330 }
1331
1332 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1333 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1334 *
1335 * ??? Is this still necessary?
1336 */
1337 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1338 {
1339 RAMBlock *block;
1340
1341 /* The list is protected by the iothread lock here. */
1342 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1343 if (addr - block->offset < block->length) {
1344 if (xen_enabled()) {
1345 /* We need to check if the requested address is in the RAM
1346 * because we don't want to map the entire memory in QEMU.
1347 * In that case just map until the end of the page.
1348 */
1349 if (block->offset == 0) {
1350 return xen_map_cache(addr, 0, 0);
1351 } else if (block->host == NULL) {
1352 block->host =
1353 xen_map_cache(block->offset, block->length, 1);
1354 }
1355 }
1356 return block->host + (addr - block->offset);
1357 }
1358 }
1359
1360 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1361 abort();
1362
1363 return NULL;
1364 }
1365
1366 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1367 * but takes a size argument */
1368 static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
1369 {
1370 if (*size == 0) {
1371 return NULL;
1372 }
1373 if (xen_enabled()) {
1374 return xen_map_cache(addr, *size, 1);
1375 } else {
1376 RAMBlock *block;
1377
1378 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1379 if (addr - block->offset < block->length) {
1380 if (addr - block->offset + *size > block->length)
1381 *size = block->length - addr + block->offset;
1382 return block->host + (addr - block->offset);
1383 }
1384 }
1385
1386 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1387 abort();
1388 }
1389 }
1390
1391 /* Some of the softmmu routines need to translate from a host pointer
1392 (typically a TLB entry) back to a ram offset. */
1393 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1394 {
1395 RAMBlock *block;
1396 uint8_t *host = ptr;
1397
1398 if (xen_enabled()) {
1399 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1400 return qemu_get_ram_block(*ram_addr)->mr;
1401 }
1402
1403 block = ram_list.mru_block;
1404 if (block && block->host && host - block->host < block->length) {
1405 goto found;
1406 }
1407
1408 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1409 /* This case append when the block is not mapped. */
1410 if (block->host == NULL) {
1411 continue;
1412 }
1413 if (host - block->host < block->length) {
1414 goto found;
1415 }
1416 }
1417
1418 return NULL;
1419
1420 found:
1421 *ram_addr = block->offset + (host - block->host);
1422 return block->mr;
1423 }
1424
1425 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1426 uint64_t val, unsigned size)
1427 {
1428 int dirty_flags;
1429 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1430 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1431 tb_invalidate_phys_page_fast(ram_addr, size);
1432 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1433 }
1434 switch (size) {
1435 case 1:
1436 stb_p(qemu_get_ram_ptr(ram_addr), val);
1437 break;
1438 case 2:
1439 stw_p(qemu_get_ram_ptr(ram_addr), val);
1440 break;
1441 case 4:
1442 stl_p(qemu_get_ram_ptr(ram_addr), val);
1443 break;
1444 default:
1445 abort();
1446 }
1447 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1448 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1449 /* we remove the notdirty callback only if the code has been
1450 flushed */
1451 if (dirty_flags == 0xff) {
1452 CPUArchState *env = current_cpu->env_ptr;
1453 tlb_set_dirty(env, env->mem_io_vaddr);
1454 }
1455 }
1456
1457 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1458 unsigned size, bool is_write)
1459 {
1460 return is_write;
1461 }
1462
1463 static const MemoryRegionOps notdirty_mem_ops = {
1464 .write = notdirty_mem_write,
1465 .valid.accepts = notdirty_mem_accepts,
1466 .endianness = DEVICE_NATIVE_ENDIAN,
1467 };
1468
1469 /* Generate a debug exception if a watchpoint has been hit. */
1470 static void check_watchpoint(int offset, int len_mask, int flags)
1471 {
1472 CPUArchState *env = current_cpu->env_ptr;
1473 target_ulong pc, cs_base;
1474 target_ulong vaddr;
1475 CPUWatchpoint *wp;
1476 int cpu_flags;
1477
1478 if (env->watchpoint_hit) {
1479 /* We re-entered the check after replacing the TB. Now raise
1480 * the debug interrupt so that is will trigger after the
1481 * current instruction. */
1482 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1483 return;
1484 }
1485 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1486 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1487 if ((vaddr == (wp->vaddr & len_mask) ||
1488 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1489 wp->flags |= BP_WATCHPOINT_HIT;
1490 if (!env->watchpoint_hit) {
1491 env->watchpoint_hit = wp;
1492 tb_check_watchpoint(env);
1493 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1494 env->exception_index = EXCP_DEBUG;
1495 cpu_loop_exit(env);
1496 } else {
1497 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1498 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1499 cpu_resume_from_signal(env, NULL);
1500 }
1501 }
1502 } else {
1503 wp->flags &= ~BP_WATCHPOINT_HIT;
1504 }
1505 }
1506 }
1507
1508 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1509 so these check for a hit then pass through to the normal out-of-line
1510 phys routines. */
1511 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1512 unsigned size)
1513 {
1514 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1515 switch (size) {
1516 case 1: return ldub_phys(addr);
1517 case 2: return lduw_phys(addr);
1518 case 4: return ldl_phys(addr);
1519 default: abort();
1520 }
1521 }
1522
1523 static void watch_mem_write(void *opaque, hwaddr addr,
1524 uint64_t val, unsigned size)
1525 {
1526 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1527 switch (size) {
1528 case 1:
1529 stb_phys(addr, val);
1530 break;
1531 case 2:
1532 stw_phys(addr, val);
1533 break;
1534 case 4:
1535 stl_phys(addr, val);
1536 break;
1537 default: abort();
1538 }
1539 }
1540
1541 static const MemoryRegionOps watch_mem_ops = {
1542 .read = watch_mem_read,
1543 .write = watch_mem_write,
1544 .endianness = DEVICE_NATIVE_ENDIAN,
1545 };
1546
1547 static uint64_t subpage_read(void *opaque, hwaddr addr,
1548 unsigned len)
1549 {
1550 subpage_t *subpage = opaque;
1551 uint8_t buf[4];
1552
1553 #if defined(DEBUG_SUBPAGE)
1554 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1555 subpage, len, addr);
1556 #endif
1557 address_space_read(subpage->as, addr + subpage->base, buf, len);
1558 switch (len) {
1559 case 1:
1560 return ldub_p(buf);
1561 case 2:
1562 return lduw_p(buf);
1563 case 4:
1564 return ldl_p(buf);
1565 default:
1566 abort();
1567 }
1568 }
1569
1570 static void subpage_write(void *opaque, hwaddr addr,
1571 uint64_t value, unsigned len)
1572 {
1573 subpage_t *subpage = opaque;
1574 uint8_t buf[4];
1575
1576 #if defined(DEBUG_SUBPAGE)
1577 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1578 " value %"PRIx64"\n",
1579 __func__, subpage, len, addr, value);
1580 #endif
1581 switch (len) {
1582 case 1:
1583 stb_p(buf, value);
1584 break;
1585 case 2:
1586 stw_p(buf, value);
1587 break;
1588 case 4:
1589 stl_p(buf, value);
1590 break;
1591 default:
1592 abort();
1593 }
1594 address_space_write(subpage->as, addr + subpage->base, buf, len);
1595 }
1596
1597 static bool subpage_accepts(void *opaque, hwaddr addr,
1598 unsigned size, bool is_write)
1599 {
1600 subpage_t *subpage = opaque;
1601 #if defined(DEBUG_SUBPAGE)
1602 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1603 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1604 #endif
1605
1606 return address_space_access_valid(subpage->as, addr + subpage->base,
1607 size, is_write);
1608 }
1609
1610 static const MemoryRegionOps subpage_ops = {
1611 .read = subpage_read,
1612 .write = subpage_write,
1613 .valid.accepts = subpage_accepts,
1614 .endianness = DEVICE_NATIVE_ENDIAN,
1615 };
1616
1617 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1618 uint16_t section)
1619 {
1620 int idx, eidx;
1621
1622 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1623 return -1;
1624 idx = SUBPAGE_IDX(start);
1625 eidx = SUBPAGE_IDX(end);
1626 #if defined(DEBUG_SUBPAGE)
1627 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1628 mmio, start, end, idx, eidx, memory);
1629 #endif
1630 for (; idx <= eidx; idx++) {
1631 mmio->sub_section[idx] = section;
1632 }
1633
1634 return 0;
1635 }
1636
1637 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1638 {
1639 subpage_t *mmio;
1640
1641 mmio = g_malloc0(sizeof(subpage_t));
1642
1643 mmio->as = as;
1644 mmio->base = base;
1645 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1646 "subpage", TARGET_PAGE_SIZE);
1647 mmio->iomem.subpage = true;
1648 #if defined(DEBUG_SUBPAGE)
1649 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1650 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1651 #endif
1652 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
1653
1654 return mmio;
1655 }
1656
1657 static uint16_t dummy_section(MemoryRegion *mr)
1658 {
1659 MemoryRegionSection section = {
1660 .mr = mr,
1661 .offset_within_address_space = 0,
1662 .offset_within_region = 0,
1663 .size = int128_2_64(),
1664 };
1665
1666 return phys_section_add(&section);
1667 }
1668
1669 MemoryRegion *iotlb_to_region(hwaddr index)
1670 {
1671 return address_space_memory.dispatch->sections[index & ~TARGET_PAGE_MASK].mr;
1672 }
1673
1674 static void io_mem_init(void)
1675 {
1676 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1677 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1678 "unassigned", UINT64_MAX);
1679 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1680 "notdirty", UINT64_MAX);
1681 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1682 "watch", UINT64_MAX);
1683 }
1684
1685 static void mem_begin(MemoryListener *listener)
1686 {
1687 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1688 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1689
1690 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1691 d->as = as;
1692 as->next_dispatch = d;
1693 }
1694
1695 static void mem_commit(MemoryListener *listener)
1696 {
1697 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1698 AddressSpaceDispatch *cur = as->dispatch;
1699 AddressSpaceDispatch *next = as->next_dispatch;
1700
1701 next->nodes = next_map.nodes;
1702 next->sections = next_map.sections;
1703
1704 as->dispatch = next;
1705 g_free(cur);
1706 }
1707
1708 static void core_begin(MemoryListener *listener)
1709 {
1710 uint16_t n;
1711
1712 prev_map = g_new(PhysPageMap, 1);
1713 *prev_map = next_map;
1714
1715 memset(&next_map, 0, sizeof(next_map));
1716 n = dummy_section(&io_mem_unassigned);
1717 assert(n == PHYS_SECTION_UNASSIGNED);
1718 n = dummy_section(&io_mem_notdirty);
1719 assert(n == PHYS_SECTION_NOTDIRTY);
1720 n = dummy_section(&io_mem_rom);
1721 assert(n == PHYS_SECTION_ROM);
1722 n = dummy_section(&io_mem_watch);
1723 assert(n == PHYS_SECTION_WATCH);
1724 }
1725
1726 /* This listener's commit run after the other AddressSpaceDispatch listeners'.
1727 * All AddressSpaceDispatch instances have switched to the next map.
1728 */
1729 static void core_commit(MemoryListener *listener)
1730 {
1731 phys_sections_free(prev_map);
1732 }
1733
1734 static void tcg_commit(MemoryListener *listener)
1735 {
1736 CPUState *cpu;
1737
1738 /* since each CPU stores ram addresses in its TLB cache, we must
1739 reset the modified entries */
1740 /* XXX: slow ! */
1741 CPU_FOREACH(cpu) {
1742 CPUArchState *env = cpu->env_ptr;
1743
1744 tlb_flush(env, 1);
1745 }
1746 }
1747
1748 static void core_log_global_start(MemoryListener *listener)
1749 {
1750 cpu_physical_memory_set_dirty_tracking(1);
1751 }
1752
1753 static void core_log_global_stop(MemoryListener *listener)
1754 {
1755 cpu_physical_memory_set_dirty_tracking(0);
1756 }
1757
1758 static MemoryListener core_memory_listener = {
1759 .begin = core_begin,
1760 .commit = core_commit,
1761 .log_global_start = core_log_global_start,
1762 .log_global_stop = core_log_global_stop,
1763 .priority = 1,
1764 };
1765
1766 static MemoryListener tcg_memory_listener = {
1767 .commit = tcg_commit,
1768 };
1769
1770 void address_space_init_dispatch(AddressSpace *as)
1771 {
1772 as->dispatch = NULL;
1773 as->dispatch_listener = (MemoryListener) {
1774 .begin = mem_begin,
1775 .commit = mem_commit,
1776 .region_add = mem_add,
1777 .region_nop = mem_add,
1778 .priority = 0,
1779 };
1780 memory_listener_register(&as->dispatch_listener, as);
1781 }
1782
1783 void address_space_destroy_dispatch(AddressSpace *as)
1784 {
1785 AddressSpaceDispatch *d = as->dispatch;
1786
1787 memory_listener_unregister(&as->dispatch_listener);
1788 g_free(d);
1789 as->dispatch = NULL;
1790 }
1791
1792 static void memory_map_init(void)
1793 {
1794 system_memory = g_malloc(sizeof(*system_memory));
1795 memory_region_init(system_memory, NULL, "system", INT64_MAX);
1796 address_space_init(&address_space_memory, system_memory, "memory");
1797
1798 system_io = g_malloc(sizeof(*system_io));
1799 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
1800 65536);
1801 address_space_init(&address_space_io, system_io, "I/O");
1802
1803 memory_listener_register(&core_memory_listener, &address_space_memory);
1804 if (tcg_enabled()) {
1805 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1806 }
1807 }
1808
1809 MemoryRegion *get_system_memory(void)
1810 {
1811 return system_memory;
1812 }
1813
1814 MemoryRegion *get_system_io(void)
1815 {
1816 return system_io;
1817 }
1818
1819 #endif /* !defined(CONFIG_USER_ONLY) */
1820
1821 /* physical memory access (slow version, mainly for debug) */
1822 #if defined(CONFIG_USER_ONLY)
1823 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
1824 uint8_t *buf, int len, int is_write)
1825 {
1826 int l, flags;
1827 target_ulong page;
1828 void * p;
1829
1830 while (len > 0) {
1831 page = addr & TARGET_PAGE_MASK;
1832 l = (page + TARGET_PAGE_SIZE) - addr;
1833 if (l > len)
1834 l = len;
1835 flags = page_get_flags(page);
1836 if (!(flags & PAGE_VALID))
1837 return -1;
1838 if (is_write) {
1839 if (!(flags & PAGE_WRITE))
1840 return -1;
1841 /* XXX: this code should not depend on lock_user */
1842 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1843 return -1;
1844 memcpy(p, buf, l);
1845 unlock_user(p, addr, l);
1846 } else {
1847 if (!(flags & PAGE_READ))
1848 return -1;
1849 /* XXX: this code should not depend on lock_user */
1850 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1851 return -1;
1852 memcpy(buf, p, l);
1853 unlock_user(p, addr, 0);
1854 }
1855 len -= l;
1856 buf += l;
1857 addr += l;
1858 }
1859 return 0;
1860 }
1861
1862 #else
1863
1864 static void invalidate_and_set_dirty(hwaddr addr,
1865 hwaddr length)
1866 {
1867 if (!cpu_physical_memory_is_dirty(addr)) {
1868 /* invalidate code */
1869 tb_invalidate_phys_page_range(addr, addr + length, 0);
1870 /* set dirty bit */
1871 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1872 }
1873 xen_modified_memory(addr, length);
1874 }
1875
1876 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1877 {
1878 if (memory_region_is_ram(mr)) {
1879 return !(is_write && mr->readonly);
1880 }
1881 if (memory_region_is_romd(mr)) {
1882 return !is_write;
1883 }
1884
1885 return false;
1886 }
1887
1888 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
1889 {
1890 unsigned access_size_max = mr->ops->valid.max_access_size;
1891
1892 /* Regions are assumed to support 1-4 byte accesses unless
1893 otherwise specified. */
1894 if (access_size_max == 0) {
1895 access_size_max = 4;
1896 }
1897
1898 /* Bound the maximum access by the alignment of the address. */
1899 if (!mr->ops->impl.unaligned) {
1900 unsigned align_size_max = addr & -addr;
1901 if (align_size_max != 0 && align_size_max < access_size_max) {
1902 access_size_max = align_size_max;
1903 }
1904 }
1905
1906 /* Don't attempt accesses larger than the maximum. */
1907 if (l > access_size_max) {
1908 l = access_size_max;
1909 }
1910 if (l & (l - 1)) {
1911 l = 1 << (qemu_fls(l) - 1);
1912 }
1913
1914 return l;
1915 }
1916
1917 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1918 int len, bool is_write)
1919 {
1920 hwaddr l;
1921 uint8_t *ptr;
1922 uint64_t val;
1923 hwaddr addr1;
1924 MemoryRegion *mr;
1925 bool error = false;
1926
1927 while (len > 0) {
1928 l = len;
1929 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1930
1931 if (is_write) {
1932 if (!memory_access_is_direct(mr, is_write)) {
1933 l = memory_access_size(mr, l, addr1);
1934 /* XXX: could force current_cpu to NULL to avoid
1935 potential bugs */
1936 switch (l) {
1937 case 8:
1938 /* 64 bit write access */
1939 val = ldq_p(buf);
1940 error |= io_mem_write(mr, addr1, val, 8);
1941 break;
1942 case 4:
1943 /* 32 bit write access */
1944 val = ldl_p(buf);
1945 error |= io_mem_write(mr, addr1, val, 4);
1946 break;
1947 case 2:
1948 /* 16 bit write access */
1949 val = lduw_p(buf);
1950 error |= io_mem_write(mr, addr1, val, 2);
1951 break;
1952 case 1:
1953 /* 8 bit write access */
1954 val = ldub_p(buf);
1955 error |= io_mem_write(mr, addr1, val, 1);
1956 break;
1957 default:
1958 abort();
1959 }
1960 } else {
1961 addr1 += memory_region_get_ram_addr(mr);
1962 /* RAM case */
1963 ptr = qemu_get_ram_ptr(addr1);
1964 memcpy(ptr, buf, l);
1965 invalidate_and_set_dirty(addr1, l);
1966 }
1967 } else {
1968 if (!memory_access_is_direct(mr, is_write)) {
1969 /* I/O case */
1970 l = memory_access_size(mr, l, addr1);
1971 switch (l) {
1972 case 8:
1973 /* 64 bit read access */
1974 error |= io_mem_read(mr, addr1, &val, 8);
1975 stq_p(buf, val);
1976 break;
1977 case 4:
1978 /* 32 bit read access */
1979 error |= io_mem_read(mr, addr1, &val, 4);
1980 stl_p(buf, val);
1981 break;
1982 case 2:
1983 /* 16 bit read access */
1984 error |= io_mem_read(mr, addr1, &val, 2);
1985 stw_p(buf, val);
1986 break;
1987 case 1:
1988 /* 8 bit read access */
1989 error |= io_mem_read(mr, addr1, &val, 1);
1990 stb_p(buf, val);
1991 break;
1992 default:
1993 abort();
1994 }
1995 } else {
1996 /* RAM case */
1997 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
1998 memcpy(buf, ptr, l);
1999 }
2000 }
2001 len -= l;
2002 buf += l;
2003 addr += l;
2004 }
2005
2006 return error;
2007 }
2008
2009 bool address_space_write(AddressSpace *as, hwaddr addr,
2010 const uint8_t *buf, int len)
2011 {
2012 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
2013 }
2014
2015 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
2016 {
2017 return address_space_rw(as, addr, buf, len, false);
2018 }
2019
2020
2021 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2022 int len, int is_write)
2023 {
2024 address_space_rw(&address_space_memory, addr, buf, len, is_write);
2025 }
2026
2027 /* used for ROM loading : can write in RAM and ROM */
2028 void cpu_physical_memory_write_rom(hwaddr addr,
2029 const uint8_t *buf, int len)
2030 {
2031 hwaddr l;
2032 uint8_t *ptr;
2033 hwaddr addr1;
2034 MemoryRegion *mr;
2035
2036 while (len > 0) {
2037 l = len;
2038 mr = address_space_translate(&address_space_memory,
2039 addr, &addr1, &l, true);
2040
2041 if (!(memory_region_is_ram(mr) ||
2042 memory_region_is_romd(mr))) {
2043 /* do nothing */
2044 } else {
2045 addr1 += memory_region_get_ram_addr(mr);
2046 /* ROM/RAM case */
2047 ptr = qemu_get_ram_ptr(addr1);
2048 memcpy(ptr, buf, l);
2049 invalidate_and_set_dirty(addr1, l);
2050 }
2051 len -= l;
2052 buf += l;
2053 addr += l;
2054 }
2055 }
2056
2057 typedef struct {
2058 MemoryRegion *mr;
2059 void *buffer;
2060 hwaddr addr;
2061 hwaddr len;
2062 } BounceBuffer;
2063
2064 static BounceBuffer bounce;
2065
2066 typedef struct MapClient {
2067 void *opaque;
2068 void (*callback)(void *opaque);
2069 QLIST_ENTRY(MapClient) link;
2070 } MapClient;
2071
2072 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2073 = QLIST_HEAD_INITIALIZER(map_client_list);
2074
2075 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2076 {
2077 MapClient *client = g_malloc(sizeof(*client));
2078
2079 client->opaque = opaque;
2080 client->callback = callback;
2081 QLIST_INSERT_HEAD(&map_client_list, client, link);
2082 return client;
2083 }
2084
2085 static void cpu_unregister_map_client(void *_client)
2086 {
2087 MapClient *client = (MapClient *)_client;
2088
2089 QLIST_REMOVE(client, link);
2090 g_free(client);
2091 }
2092
2093 static void cpu_notify_map_clients(void)
2094 {
2095 MapClient *client;
2096
2097 while (!QLIST_EMPTY(&map_client_list)) {
2098 client = QLIST_FIRST(&map_client_list);
2099 client->callback(client->opaque);
2100 cpu_unregister_map_client(client);
2101 }
2102 }
2103
2104 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2105 {
2106 MemoryRegion *mr;
2107 hwaddr l, xlat;
2108
2109 while (len > 0) {
2110 l = len;
2111 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2112 if (!memory_access_is_direct(mr, is_write)) {
2113 l = memory_access_size(mr, l, addr);
2114 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2115 return false;
2116 }
2117 }
2118
2119 len -= l;
2120 addr += l;
2121 }
2122 return true;
2123 }
2124
2125 /* Map a physical memory region into a host virtual address.
2126 * May map a subset of the requested range, given by and returned in *plen.
2127 * May return NULL if resources needed to perform the mapping are exhausted.
2128 * Use only for reads OR writes - not for read-modify-write operations.
2129 * Use cpu_register_map_client() to know when retrying the map operation is
2130 * likely to succeed.
2131 */
2132 void *address_space_map(AddressSpace *as,
2133 hwaddr addr,
2134 hwaddr *plen,
2135 bool is_write)
2136 {
2137 hwaddr len = *plen;
2138 hwaddr done = 0;
2139 hwaddr l, xlat, base;
2140 MemoryRegion *mr, *this_mr;
2141 ram_addr_t raddr;
2142
2143 if (len == 0) {
2144 return NULL;
2145 }
2146
2147 l = len;
2148 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2149 if (!memory_access_is_direct(mr, is_write)) {
2150 if (bounce.buffer) {
2151 return NULL;
2152 }
2153 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2154 bounce.addr = addr;
2155 bounce.len = l;
2156
2157 memory_region_ref(mr);
2158 bounce.mr = mr;
2159 if (!is_write) {
2160 address_space_read(as, addr, bounce.buffer, l);
2161 }
2162
2163 *plen = l;
2164 return bounce.buffer;
2165 }
2166
2167 base = xlat;
2168 raddr = memory_region_get_ram_addr(mr);
2169
2170 for (;;) {
2171 len -= l;
2172 addr += l;
2173 done += l;
2174 if (len == 0) {
2175 break;
2176 }
2177
2178 l = len;
2179 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2180 if (this_mr != mr || xlat != base + done) {
2181 break;
2182 }
2183 }
2184
2185 memory_region_ref(mr);
2186 *plen = done;
2187 return qemu_ram_ptr_length(raddr + base, plen);
2188 }
2189
2190 /* Unmaps a memory region previously mapped by address_space_map().
2191 * Will also mark the memory as dirty if is_write == 1. access_len gives
2192 * the amount of memory that was actually read or written by the caller.
2193 */
2194 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2195 int is_write, hwaddr access_len)
2196 {
2197 if (buffer != bounce.buffer) {
2198 MemoryRegion *mr;
2199 ram_addr_t addr1;
2200
2201 mr = qemu_ram_addr_from_host(buffer, &addr1);
2202 assert(mr != NULL);
2203 if (is_write) {
2204 while (access_len) {
2205 unsigned l;
2206 l = TARGET_PAGE_SIZE;
2207 if (l > access_len)
2208 l = access_len;
2209 invalidate_and_set_dirty(addr1, l);
2210 addr1 += l;
2211 access_len -= l;
2212 }
2213 }
2214 if (xen_enabled()) {
2215 xen_invalidate_map_cache_entry(buffer);
2216 }
2217 memory_region_unref(mr);
2218 return;
2219 }
2220 if (is_write) {
2221 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2222 }
2223 qemu_vfree(bounce.buffer);
2224 bounce.buffer = NULL;
2225 memory_region_unref(bounce.mr);
2226 cpu_notify_map_clients();
2227 }
2228
2229 void *cpu_physical_memory_map(hwaddr addr,
2230 hwaddr *plen,
2231 int is_write)
2232 {
2233 return address_space_map(&address_space_memory, addr, plen, is_write);
2234 }
2235
2236 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2237 int is_write, hwaddr access_len)
2238 {
2239 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2240 }
2241
2242 /* warning: addr must be aligned */
2243 static inline uint32_t ldl_phys_internal(hwaddr addr,
2244 enum device_endian endian)
2245 {
2246 uint8_t *ptr;
2247 uint64_t val;
2248 MemoryRegion *mr;
2249 hwaddr l = 4;
2250 hwaddr addr1;
2251
2252 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2253 false);
2254 if (l < 4 || !memory_access_is_direct(mr, false)) {
2255 /* I/O case */
2256 io_mem_read(mr, addr1, &val, 4);
2257 #if defined(TARGET_WORDS_BIGENDIAN)
2258 if (endian == DEVICE_LITTLE_ENDIAN) {
2259 val = bswap32(val);
2260 }
2261 #else
2262 if (endian == DEVICE_BIG_ENDIAN) {
2263 val = bswap32(val);
2264 }
2265 #endif
2266 } else {
2267 /* RAM case */
2268 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2269 & TARGET_PAGE_MASK)
2270 + addr1);
2271 switch (endian) {
2272 case DEVICE_LITTLE_ENDIAN:
2273 val = ldl_le_p(ptr);
2274 break;
2275 case DEVICE_BIG_ENDIAN:
2276 val = ldl_be_p(ptr);
2277 break;
2278 default:
2279 val = ldl_p(ptr);
2280 break;
2281 }
2282 }
2283 return val;
2284 }
2285
2286 uint32_t ldl_phys(hwaddr addr)
2287 {
2288 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2289 }
2290
2291 uint32_t ldl_le_phys(hwaddr addr)
2292 {
2293 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2294 }
2295
2296 uint32_t ldl_be_phys(hwaddr addr)
2297 {
2298 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2299 }
2300
2301 /* warning: addr must be aligned */
2302 static inline uint64_t ldq_phys_internal(hwaddr addr,
2303 enum device_endian endian)
2304 {
2305 uint8_t *ptr;
2306 uint64_t val;
2307 MemoryRegion *mr;
2308 hwaddr l = 8;
2309 hwaddr addr1;
2310
2311 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2312 false);
2313 if (l < 8 || !memory_access_is_direct(mr, false)) {
2314 /* I/O case */
2315 io_mem_read(mr, addr1, &val, 8);
2316 #if defined(TARGET_WORDS_BIGENDIAN)
2317 if (endian == DEVICE_LITTLE_ENDIAN) {
2318 val = bswap64(val);
2319 }
2320 #else
2321 if (endian == DEVICE_BIG_ENDIAN) {
2322 val = bswap64(val);
2323 }
2324 #endif
2325 } else {
2326 /* RAM case */
2327 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2328 & TARGET_PAGE_MASK)
2329 + addr1);
2330 switch (endian) {
2331 case DEVICE_LITTLE_ENDIAN:
2332 val = ldq_le_p(ptr);
2333 break;
2334 case DEVICE_BIG_ENDIAN:
2335 val = ldq_be_p(ptr);
2336 break;
2337 default:
2338 val = ldq_p(ptr);
2339 break;
2340 }
2341 }
2342 return val;
2343 }
2344
2345 uint64_t ldq_phys(hwaddr addr)
2346 {
2347 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2348 }
2349
2350 uint64_t ldq_le_phys(hwaddr addr)
2351 {
2352 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2353 }
2354
2355 uint64_t ldq_be_phys(hwaddr addr)
2356 {
2357 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2358 }
2359
2360 /* XXX: optimize */
2361 uint32_t ldub_phys(hwaddr addr)
2362 {
2363 uint8_t val;
2364 cpu_physical_memory_read(addr, &val, 1);
2365 return val;
2366 }
2367
2368 /* warning: addr must be aligned */
2369 static inline uint32_t lduw_phys_internal(hwaddr addr,
2370 enum device_endian endian)
2371 {
2372 uint8_t *ptr;
2373 uint64_t val;
2374 MemoryRegion *mr;
2375 hwaddr l = 2;
2376 hwaddr addr1;
2377
2378 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2379 false);
2380 if (l < 2 || !memory_access_is_direct(mr, false)) {
2381 /* I/O case */
2382 io_mem_read(mr, addr1, &val, 2);
2383 #if defined(TARGET_WORDS_BIGENDIAN)
2384 if (endian == DEVICE_LITTLE_ENDIAN) {
2385 val = bswap16(val);
2386 }
2387 #else
2388 if (endian == DEVICE_BIG_ENDIAN) {
2389 val = bswap16(val);
2390 }
2391 #endif
2392 } else {
2393 /* RAM case */
2394 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2395 & TARGET_PAGE_MASK)
2396 + addr1);
2397 switch (endian) {
2398 case DEVICE_LITTLE_ENDIAN:
2399 val = lduw_le_p(ptr);
2400 break;
2401 case DEVICE_BIG_ENDIAN:
2402 val = lduw_be_p(ptr);
2403 break;
2404 default:
2405 val = lduw_p(ptr);
2406 break;
2407 }
2408 }
2409 return val;
2410 }
2411
2412 uint32_t lduw_phys(hwaddr addr)
2413 {
2414 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2415 }
2416
2417 uint32_t lduw_le_phys(hwaddr addr)
2418 {
2419 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2420 }
2421
2422 uint32_t lduw_be_phys(hwaddr addr)
2423 {
2424 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2425 }
2426
2427 /* warning: addr must be aligned. The ram page is not masked as dirty
2428 and the code inside is not invalidated. It is useful if the dirty
2429 bits are used to track modified PTEs */
2430 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2431 {
2432 uint8_t *ptr;
2433 MemoryRegion *mr;
2434 hwaddr l = 4;
2435 hwaddr addr1;
2436
2437 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2438 true);
2439 if (l < 4 || !memory_access_is_direct(mr, true)) {
2440 io_mem_write(mr, addr1, val, 4);
2441 } else {
2442 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2443 ptr = qemu_get_ram_ptr(addr1);
2444 stl_p(ptr, val);
2445
2446 if (unlikely(in_migration)) {
2447 if (!cpu_physical_memory_is_dirty(addr1)) {
2448 /* invalidate code */
2449 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2450 /* set dirty bit */
2451 cpu_physical_memory_set_dirty_flags(
2452 addr1, (0xff & ~CODE_DIRTY_FLAG));
2453 }
2454 }
2455 }
2456 }
2457
2458 /* warning: addr must be aligned */
2459 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2460 enum device_endian endian)
2461 {
2462 uint8_t *ptr;
2463 MemoryRegion *mr;
2464 hwaddr l = 4;
2465 hwaddr addr1;
2466
2467 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2468 true);
2469 if (l < 4 || !memory_access_is_direct(mr, true)) {
2470 #if defined(TARGET_WORDS_BIGENDIAN)
2471 if (endian == DEVICE_LITTLE_ENDIAN) {
2472 val = bswap32(val);
2473 }
2474 #else
2475 if (endian == DEVICE_BIG_ENDIAN) {
2476 val = bswap32(val);
2477 }
2478 #endif
2479 io_mem_write(mr, addr1, val, 4);
2480 } else {
2481 /* RAM case */
2482 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2483 ptr = qemu_get_ram_ptr(addr1);
2484 switch (endian) {
2485 case DEVICE_LITTLE_ENDIAN:
2486 stl_le_p(ptr, val);
2487 break;
2488 case DEVICE_BIG_ENDIAN:
2489 stl_be_p(ptr, val);
2490 break;
2491 default:
2492 stl_p(ptr, val);
2493 break;
2494 }
2495 invalidate_and_set_dirty(addr1, 4);
2496 }
2497 }
2498
2499 void stl_phys(hwaddr addr, uint32_t val)
2500 {
2501 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2502 }
2503
2504 void stl_le_phys(hwaddr addr, uint32_t val)
2505 {
2506 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2507 }
2508
2509 void stl_be_phys(hwaddr addr, uint32_t val)
2510 {
2511 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2512 }
2513
2514 /* XXX: optimize */
2515 void stb_phys(hwaddr addr, uint32_t val)
2516 {
2517 uint8_t v = val;
2518 cpu_physical_memory_write(addr, &v, 1);
2519 }
2520
2521 /* warning: addr must be aligned */
2522 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2523 enum device_endian endian)
2524 {
2525 uint8_t *ptr;
2526 MemoryRegion *mr;
2527 hwaddr l = 2;
2528 hwaddr addr1;
2529
2530 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2531 true);
2532 if (l < 2 || !memory_access_is_direct(mr, true)) {
2533 #if defined(TARGET_WORDS_BIGENDIAN)
2534 if (endian == DEVICE_LITTLE_ENDIAN) {
2535 val = bswap16(val);
2536 }
2537 #else
2538 if (endian == DEVICE_BIG_ENDIAN) {
2539 val = bswap16(val);
2540 }
2541 #endif
2542 io_mem_write(mr, addr1, val, 2);
2543 } else {
2544 /* RAM case */
2545 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2546 ptr = qemu_get_ram_ptr(addr1);
2547 switch (endian) {
2548 case DEVICE_LITTLE_ENDIAN:
2549 stw_le_p(ptr, val);
2550 break;
2551 case DEVICE_BIG_ENDIAN:
2552 stw_be_p(ptr, val);
2553 break;
2554 default:
2555 stw_p(ptr, val);
2556 break;
2557 }
2558 invalidate_and_set_dirty(addr1, 2);
2559 }
2560 }
2561
2562 void stw_phys(hwaddr addr, uint32_t val)
2563 {
2564 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2565 }
2566
2567 void stw_le_phys(hwaddr addr, uint32_t val)
2568 {
2569 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2570 }
2571
2572 void stw_be_phys(hwaddr addr, uint32_t val)
2573 {
2574 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2575 }
2576
2577 /* XXX: optimize */
2578 void stq_phys(hwaddr addr, uint64_t val)
2579 {
2580 val = tswap64(val);
2581 cpu_physical_memory_write(addr, &val, 8);
2582 }
2583
2584 void stq_le_phys(hwaddr addr, uint64_t val)
2585 {
2586 val = cpu_to_le64(val);
2587 cpu_physical_memory_write(addr, &val, 8);
2588 }
2589
2590 void stq_be_phys(hwaddr addr, uint64_t val)
2591 {
2592 val = cpu_to_be64(val);
2593 cpu_physical_memory_write(addr, &val, 8);
2594 }
2595
2596 /* virtual memory access for debug (includes writing to ROM) */
2597 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2598 uint8_t *buf, int len, int is_write)
2599 {
2600 int l;
2601 hwaddr phys_addr;
2602 target_ulong page;
2603
2604 while (len > 0) {
2605 page = addr & TARGET_PAGE_MASK;
2606 phys_addr = cpu_get_phys_page_debug(cpu, page);
2607 /* if no physical page mapped, return an error */
2608 if (phys_addr == -1)
2609 return -1;
2610 l = (page + TARGET_PAGE_SIZE) - addr;
2611 if (l > len)
2612 l = len;
2613 phys_addr += (addr & ~TARGET_PAGE_MASK);
2614 if (is_write)
2615 cpu_physical_memory_write_rom(phys_addr, buf, l);
2616 else
2617 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2618 len -= l;
2619 buf += l;
2620 addr += l;
2621 }
2622 return 0;
2623 }
2624 #endif
2625
2626 #if !defined(CONFIG_USER_ONLY)
2627
2628 /*
2629 * A helper function for the _utterly broken_ virtio device model to find out if
2630 * it's running on a big endian machine. Don't do this at home kids!
2631 */
2632 bool virtio_is_big_endian(void);
2633 bool virtio_is_big_endian(void)
2634 {
2635 #if defined(TARGET_WORDS_BIGENDIAN)
2636 return true;
2637 #else
2638 return false;
2639 #endif
2640 }
2641
2642 #endif
2643
2644 #ifndef CONFIG_USER_ONLY
2645 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2646 {
2647 MemoryRegion*mr;
2648 hwaddr l = 1;
2649
2650 mr = address_space_translate(&address_space_memory,
2651 phys_addr, &phys_addr, &l, false);
2652
2653 return !(memory_region_is_ram(mr) ||
2654 memory_region_is_romd(mr));
2655 }
2656
2657 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2658 {
2659 RAMBlock *block;
2660
2661 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2662 func(block->host, block->offset, block->length, opaque);
2663 }
2664 }
2665 #endif