]> git.proxmox.com Git - qemu.git/blob - hw/intc/arm_gic.c
cpu: Replace cpu_single_env with CPUState current_cpu
[qemu.git] / hw / intc / arm_gic.c
1 /*
2 * ARM Generic/Distributed Interrupt Controller
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licensed under the GPL.
8 */
9
10 /* This file contains implementation code for the RealView EB interrupt
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
18 * armv7m_nvic device.
19 */
20
21 #include "hw/sysbus.h"
22 #include "gic_internal.h"
23
24 //#define DEBUG_GIC
25
26 #ifdef DEBUG_GIC
27 #define DPRINTF(fmt, ...) \
28 do { fprintf(stderr, "arm_gic: " fmt , ## __VA_ARGS__); } while (0)
29 #else
30 #define DPRINTF(fmt, ...) do {} while(0)
31 #endif
32
33 static const uint8_t gic_id[] = {
34 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
35 };
36
37 #define NUM_CPU(s) ((s)->num_cpu)
38
39 static inline int gic_get_current_cpu(GICState *s)
40 {
41 if (s->num_cpu > 1) {
42 return current_cpu->cpu_index;
43 }
44 return 0;
45 }
46
47 /* TODO: Many places that call this routine could be optimized. */
48 /* Update interrupt status after enabled or pending bits have been changed. */
49 void gic_update(GICState *s)
50 {
51 int best_irq;
52 int best_prio;
53 int irq;
54 int level;
55 int cpu;
56 int cm;
57
58 for (cpu = 0; cpu < NUM_CPU(s); cpu++) {
59 cm = 1 << cpu;
60 s->current_pending[cpu] = 1023;
61 if (!s->enabled || !s->cpu_enabled[cpu]) {
62 qemu_irq_lower(s->parent_irq[cpu]);
63 return;
64 }
65 best_prio = 0x100;
66 best_irq = 1023;
67 for (irq = 0; irq < s->num_irq; irq++) {
68 if (GIC_TEST_ENABLED(irq, cm) && GIC_TEST_PENDING(irq, cm)) {
69 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
70 best_prio = GIC_GET_PRIORITY(irq, cpu);
71 best_irq = irq;
72 }
73 }
74 }
75 level = 0;
76 if (best_prio < s->priority_mask[cpu]) {
77 s->current_pending[cpu] = best_irq;
78 if (best_prio < s->running_priority[cpu]) {
79 DPRINTF("Raised pending IRQ %d (cpu %d)\n", best_irq, cpu);
80 level = 1;
81 }
82 }
83 qemu_set_irq(s->parent_irq[cpu], level);
84 }
85 }
86
87 void gic_set_pending_private(GICState *s, int cpu, int irq)
88 {
89 int cm = 1 << cpu;
90
91 if (GIC_TEST_PENDING(irq, cm))
92 return;
93
94 DPRINTF("Set %d pending cpu %d\n", irq, cpu);
95 GIC_SET_PENDING(irq, cm);
96 gic_update(s);
97 }
98
99 /* Process a change in an external IRQ input. */
100 static void gic_set_irq(void *opaque, int irq, int level)
101 {
102 /* Meaning of the 'irq' parameter:
103 * [0..N-1] : external interrupts
104 * [N..N+31] : PPI (internal) interrupts for CPU 0
105 * [N+32..N+63] : PPI (internal interrupts for CPU 1
106 * ...
107 */
108 GICState *s = (GICState *)opaque;
109 int cm, target;
110 if (irq < (s->num_irq - GIC_INTERNAL)) {
111 /* The first external input line is internal interrupt 32. */
112 cm = ALL_CPU_MASK;
113 irq += GIC_INTERNAL;
114 target = GIC_TARGET(irq);
115 } else {
116 int cpu;
117 irq -= (s->num_irq - GIC_INTERNAL);
118 cpu = irq / GIC_INTERNAL;
119 irq %= GIC_INTERNAL;
120 cm = 1 << cpu;
121 target = cm;
122 }
123
124 if (level == GIC_TEST_LEVEL(irq, cm)) {
125 return;
126 }
127
128 if (level) {
129 GIC_SET_LEVEL(irq, cm);
130 if (GIC_TEST_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
131 DPRINTF("Set %d pending mask %x\n", irq, target);
132 GIC_SET_PENDING(irq, target);
133 }
134 } else {
135 GIC_CLEAR_LEVEL(irq, cm);
136 }
137 gic_update(s);
138 }
139
140 static void gic_set_running_irq(GICState *s, int cpu, int irq)
141 {
142 s->running_irq[cpu] = irq;
143 if (irq == 1023) {
144 s->running_priority[cpu] = 0x100;
145 } else {
146 s->running_priority[cpu] = GIC_GET_PRIORITY(irq, cpu);
147 }
148 gic_update(s);
149 }
150
151 uint32_t gic_acknowledge_irq(GICState *s, int cpu)
152 {
153 int new_irq;
154 int cm = 1 << cpu;
155 new_irq = s->current_pending[cpu];
156 if (new_irq == 1023
157 || GIC_GET_PRIORITY(new_irq, cpu) >= s->running_priority[cpu]) {
158 DPRINTF("ACK no pending IRQ\n");
159 return 1023;
160 }
161 s->last_active[new_irq][cpu] = s->running_irq[cpu];
162 /* Clear pending flags for both level and edge triggered interrupts.
163 Level triggered IRQs will be reasserted once they become inactive. */
164 GIC_CLEAR_PENDING(new_irq, GIC_TEST_MODEL(new_irq) ? ALL_CPU_MASK : cm);
165 gic_set_running_irq(s, cpu, new_irq);
166 DPRINTF("ACK %d\n", new_irq);
167 return new_irq;
168 }
169
170 void gic_complete_irq(GICState *s, int cpu, int irq)
171 {
172 int update = 0;
173 int cm = 1 << cpu;
174 DPRINTF("EOI %d\n", irq);
175 if (irq >= s->num_irq) {
176 /* This handles two cases:
177 * 1. If software writes the ID of a spurious interrupt [ie 1023]
178 * to the GICC_EOIR, the GIC ignores that write.
179 * 2. If software writes the number of a non-existent interrupt
180 * this must be a subcase of "value written does not match the last
181 * valid interrupt value read from the Interrupt Acknowledge
182 * register" and so this is UNPREDICTABLE. We choose to ignore it.
183 */
184 return;
185 }
186 if (s->running_irq[cpu] == 1023)
187 return; /* No active IRQ. */
188 /* Mark level triggered interrupts as pending if they are still
189 raised. */
190 if (!GIC_TEST_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
191 && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
192 DPRINTF("Set %d pending mask %x\n", irq, cm);
193 GIC_SET_PENDING(irq, cm);
194 update = 1;
195 }
196 if (irq != s->running_irq[cpu]) {
197 /* Complete an IRQ that is not currently running. */
198 int tmp = s->running_irq[cpu];
199 while (s->last_active[tmp][cpu] != 1023) {
200 if (s->last_active[tmp][cpu] == irq) {
201 s->last_active[tmp][cpu] = s->last_active[irq][cpu];
202 break;
203 }
204 tmp = s->last_active[tmp][cpu];
205 }
206 if (update) {
207 gic_update(s);
208 }
209 } else {
210 /* Complete the current running IRQ. */
211 gic_set_running_irq(s, cpu, s->last_active[s->running_irq[cpu]][cpu]);
212 }
213 }
214
215 static uint32_t gic_dist_readb(void *opaque, hwaddr offset)
216 {
217 GICState *s = (GICState *)opaque;
218 uint32_t res;
219 int irq;
220 int i;
221 int cpu;
222 int cm;
223 int mask;
224
225 cpu = gic_get_current_cpu(s);
226 cm = 1 << cpu;
227 if (offset < 0x100) {
228 if (offset == 0)
229 return s->enabled;
230 if (offset == 4)
231 return ((s->num_irq / 32) - 1) | ((NUM_CPU(s) - 1) << 5);
232 if (offset < 0x08)
233 return 0;
234 if (offset >= 0x80) {
235 /* Interrupt Security , RAZ/WI */
236 return 0;
237 }
238 goto bad_reg;
239 } else if (offset < 0x200) {
240 /* Interrupt Set/Clear Enable. */
241 if (offset < 0x180)
242 irq = (offset - 0x100) * 8;
243 else
244 irq = (offset - 0x180) * 8;
245 irq += GIC_BASE_IRQ;
246 if (irq >= s->num_irq)
247 goto bad_reg;
248 res = 0;
249 for (i = 0; i < 8; i++) {
250 if (GIC_TEST_ENABLED(irq + i, cm)) {
251 res |= (1 << i);
252 }
253 }
254 } else if (offset < 0x300) {
255 /* Interrupt Set/Clear Pending. */
256 if (offset < 0x280)
257 irq = (offset - 0x200) * 8;
258 else
259 irq = (offset - 0x280) * 8;
260 irq += GIC_BASE_IRQ;
261 if (irq >= s->num_irq)
262 goto bad_reg;
263 res = 0;
264 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
265 for (i = 0; i < 8; i++) {
266 if (GIC_TEST_PENDING(irq + i, mask)) {
267 res |= (1 << i);
268 }
269 }
270 } else if (offset < 0x400) {
271 /* Interrupt Active. */
272 irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
273 if (irq >= s->num_irq)
274 goto bad_reg;
275 res = 0;
276 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
277 for (i = 0; i < 8; i++) {
278 if (GIC_TEST_ACTIVE(irq + i, mask)) {
279 res |= (1 << i);
280 }
281 }
282 } else if (offset < 0x800) {
283 /* Interrupt Priority. */
284 irq = (offset - 0x400) + GIC_BASE_IRQ;
285 if (irq >= s->num_irq)
286 goto bad_reg;
287 res = GIC_GET_PRIORITY(irq, cpu);
288 } else if (offset < 0xc00) {
289 /* Interrupt CPU Target. */
290 if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
291 /* For uniprocessor GICs these RAZ/WI */
292 res = 0;
293 } else {
294 irq = (offset - 0x800) + GIC_BASE_IRQ;
295 if (irq >= s->num_irq) {
296 goto bad_reg;
297 }
298 if (irq >= 29 && irq <= 31) {
299 res = cm;
300 } else {
301 res = GIC_TARGET(irq);
302 }
303 }
304 } else if (offset < 0xf00) {
305 /* Interrupt Configuration. */
306 irq = (offset - 0xc00) * 2 + GIC_BASE_IRQ;
307 if (irq >= s->num_irq)
308 goto bad_reg;
309 res = 0;
310 for (i = 0; i < 4; i++) {
311 if (GIC_TEST_MODEL(irq + i))
312 res |= (1 << (i * 2));
313 if (GIC_TEST_TRIGGER(irq + i))
314 res |= (2 << (i * 2));
315 }
316 } else if (offset < 0xfe0) {
317 goto bad_reg;
318 } else /* offset >= 0xfe0 */ {
319 if (offset & 3) {
320 res = 0;
321 } else {
322 res = gic_id[(offset - 0xfe0) >> 2];
323 }
324 }
325 return res;
326 bad_reg:
327 qemu_log_mask(LOG_GUEST_ERROR,
328 "gic_dist_readb: Bad offset %x\n", (int)offset);
329 return 0;
330 }
331
332 static uint32_t gic_dist_readw(void *opaque, hwaddr offset)
333 {
334 uint32_t val;
335 val = gic_dist_readb(opaque, offset);
336 val |= gic_dist_readb(opaque, offset + 1) << 8;
337 return val;
338 }
339
340 static uint32_t gic_dist_readl(void *opaque, hwaddr offset)
341 {
342 uint32_t val;
343 val = gic_dist_readw(opaque, offset);
344 val |= gic_dist_readw(opaque, offset + 2) << 16;
345 return val;
346 }
347
348 static void gic_dist_writeb(void *opaque, hwaddr offset,
349 uint32_t value)
350 {
351 GICState *s = (GICState *)opaque;
352 int irq;
353 int i;
354 int cpu;
355
356 cpu = gic_get_current_cpu(s);
357 if (offset < 0x100) {
358 if (offset == 0) {
359 s->enabled = (value & 1);
360 DPRINTF("Distribution %sabled\n", s->enabled ? "En" : "Dis");
361 } else if (offset < 4) {
362 /* ignored. */
363 } else if (offset >= 0x80) {
364 /* Interrupt Security Registers, RAZ/WI */
365 } else {
366 goto bad_reg;
367 }
368 } else if (offset < 0x180) {
369 /* Interrupt Set Enable. */
370 irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
371 if (irq >= s->num_irq)
372 goto bad_reg;
373 if (irq < 16)
374 value = 0xff;
375 for (i = 0; i < 8; i++) {
376 if (value & (1 << i)) {
377 int mask =
378 (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
379 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
380
381 if (!GIC_TEST_ENABLED(irq + i, cm)) {
382 DPRINTF("Enabled IRQ %d\n", irq + i);
383 }
384 GIC_SET_ENABLED(irq + i, cm);
385 /* If a raised level triggered IRQ enabled then mark
386 is as pending. */
387 if (GIC_TEST_LEVEL(irq + i, mask)
388 && !GIC_TEST_TRIGGER(irq + i)) {
389 DPRINTF("Set %d pending mask %x\n", irq + i, mask);
390 GIC_SET_PENDING(irq + i, mask);
391 }
392 }
393 }
394 } else if (offset < 0x200) {
395 /* Interrupt Clear Enable. */
396 irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
397 if (irq >= s->num_irq)
398 goto bad_reg;
399 if (irq < 16)
400 value = 0;
401 for (i = 0; i < 8; i++) {
402 if (value & (1 << i)) {
403 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
404
405 if (GIC_TEST_ENABLED(irq + i, cm)) {
406 DPRINTF("Disabled IRQ %d\n", irq + i);
407 }
408 GIC_CLEAR_ENABLED(irq + i, cm);
409 }
410 }
411 } else if (offset < 0x280) {
412 /* Interrupt Set Pending. */
413 irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
414 if (irq >= s->num_irq)
415 goto bad_reg;
416 if (irq < 16)
417 irq = 0;
418
419 for (i = 0; i < 8; i++) {
420 if (value & (1 << i)) {
421 GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
422 }
423 }
424 } else if (offset < 0x300) {
425 /* Interrupt Clear Pending. */
426 irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
427 if (irq >= s->num_irq)
428 goto bad_reg;
429 for (i = 0; i < 8; i++) {
430 /* ??? This currently clears the pending bit for all CPUs, even
431 for per-CPU interrupts. It's unclear whether this is the
432 corect behavior. */
433 if (value & (1 << i)) {
434 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
435 }
436 }
437 } else if (offset < 0x400) {
438 /* Interrupt Active. */
439 goto bad_reg;
440 } else if (offset < 0x800) {
441 /* Interrupt Priority. */
442 irq = (offset - 0x400) + GIC_BASE_IRQ;
443 if (irq >= s->num_irq)
444 goto bad_reg;
445 if (irq < GIC_INTERNAL) {
446 s->priority1[irq][cpu] = value;
447 } else {
448 s->priority2[irq - GIC_INTERNAL] = value;
449 }
450 } else if (offset < 0xc00) {
451 /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
452 * annoying exception of the 11MPCore's GIC.
453 */
454 if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
455 irq = (offset - 0x800) + GIC_BASE_IRQ;
456 if (irq >= s->num_irq) {
457 goto bad_reg;
458 }
459 if (irq < 29) {
460 value = 0;
461 } else if (irq < GIC_INTERNAL) {
462 value = ALL_CPU_MASK;
463 }
464 s->irq_target[irq] = value & ALL_CPU_MASK;
465 }
466 } else if (offset < 0xf00) {
467 /* Interrupt Configuration. */
468 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
469 if (irq >= s->num_irq)
470 goto bad_reg;
471 if (irq < GIC_INTERNAL)
472 value |= 0xaa;
473 for (i = 0; i < 4; i++) {
474 if (value & (1 << (i * 2))) {
475 GIC_SET_MODEL(irq + i);
476 } else {
477 GIC_CLEAR_MODEL(irq + i);
478 }
479 if (value & (2 << (i * 2))) {
480 GIC_SET_TRIGGER(irq + i);
481 } else {
482 GIC_CLEAR_TRIGGER(irq + i);
483 }
484 }
485 } else {
486 /* 0xf00 is only handled for 32-bit writes. */
487 goto bad_reg;
488 }
489 gic_update(s);
490 return;
491 bad_reg:
492 qemu_log_mask(LOG_GUEST_ERROR,
493 "gic_dist_writeb: Bad offset %x\n", (int)offset);
494 }
495
496 static void gic_dist_writew(void *opaque, hwaddr offset,
497 uint32_t value)
498 {
499 gic_dist_writeb(opaque, offset, value & 0xff);
500 gic_dist_writeb(opaque, offset + 1, value >> 8);
501 }
502
503 static void gic_dist_writel(void *opaque, hwaddr offset,
504 uint32_t value)
505 {
506 GICState *s = (GICState *)opaque;
507 if (offset == 0xf00) {
508 int cpu;
509 int irq;
510 int mask;
511
512 cpu = gic_get_current_cpu(s);
513 irq = value & 0x3ff;
514 switch ((value >> 24) & 3) {
515 case 0:
516 mask = (value >> 16) & ALL_CPU_MASK;
517 break;
518 case 1:
519 mask = ALL_CPU_MASK ^ (1 << cpu);
520 break;
521 case 2:
522 mask = 1 << cpu;
523 break;
524 default:
525 DPRINTF("Bad Soft Int target filter\n");
526 mask = ALL_CPU_MASK;
527 break;
528 }
529 GIC_SET_PENDING(irq, mask);
530 gic_update(s);
531 return;
532 }
533 gic_dist_writew(opaque, offset, value & 0xffff);
534 gic_dist_writew(opaque, offset + 2, value >> 16);
535 }
536
537 static const MemoryRegionOps gic_dist_ops = {
538 .old_mmio = {
539 .read = { gic_dist_readb, gic_dist_readw, gic_dist_readl, },
540 .write = { gic_dist_writeb, gic_dist_writew, gic_dist_writel, },
541 },
542 .endianness = DEVICE_NATIVE_ENDIAN,
543 };
544
545 static uint32_t gic_cpu_read(GICState *s, int cpu, int offset)
546 {
547 switch (offset) {
548 case 0x00: /* Control */
549 return s->cpu_enabled[cpu];
550 case 0x04: /* Priority mask */
551 return s->priority_mask[cpu];
552 case 0x08: /* Binary Point */
553 /* ??? Not implemented. */
554 return 0;
555 case 0x0c: /* Acknowledge */
556 return gic_acknowledge_irq(s, cpu);
557 case 0x14: /* Running Priority */
558 return s->running_priority[cpu];
559 case 0x18: /* Highest Pending Interrupt */
560 return s->current_pending[cpu];
561 default:
562 qemu_log_mask(LOG_GUEST_ERROR,
563 "gic_cpu_read: Bad offset %x\n", (int)offset);
564 return 0;
565 }
566 }
567
568 static void gic_cpu_write(GICState *s, int cpu, int offset, uint32_t value)
569 {
570 switch (offset) {
571 case 0x00: /* Control */
572 s->cpu_enabled[cpu] = (value & 1);
573 DPRINTF("CPU %d %sabled\n", cpu, s->cpu_enabled[cpu] ? "En" : "Dis");
574 break;
575 case 0x04: /* Priority mask */
576 s->priority_mask[cpu] = (value & 0xff);
577 break;
578 case 0x08: /* Binary Point */
579 /* ??? Not implemented. */
580 break;
581 case 0x10: /* End Of Interrupt */
582 return gic_complete_irq(s, cpu, value & 0x3ff);
583 default:
584 qemu_log_mask(LOG_GUEST_ERROR,
585 "gic_cpu_write: Bad offset %x\n", (int)offset);
586 return;
587 }
588 gic_update(s);
589 }
590
591 /* Wrappers to read/write the GIC CPU interface for the current CPU */
592 static uint64_t gic_thiscpu_read(void *opaque, hwaddr addr,
593 unsigned size)
594 {
595 GICState *s = (GICState *)opaque;
596 return gic_cpu_read(s, gic_get_current_cpu(s), addr);
597 }
598
599 static void gic_thiscpu_write(void *opaque, hwaddr addr,
600 uint64_t value, unsigned size)
601 {
602 GICState *s = (GICState *)opaque;
603 gic_cpu_write(s, gic_get_current_cpu(s), addr, value);
604 }
605
606 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
607 * These just decode the opaque pointer into GICState* + cpu id.
608 */
609 static uint64_t gic_do_cpu_read(void *opaque, hwaddr addr,
610 unsigned size)
611 {
612 GICState **backref = (GICState **)opaque;
613 GICState *s = *backref;
614 int id = (backref - s->backref);
615 return gic_cpu_read(s, id, addr);
616 }
617
618 static void gic_do_cpu_write(void *opaque, hwaddr addr,
619 uint64_t value, unsigned size)
620 {
621 GICState **backref = (GICState **)opaque;
622 GICState *s = *backref;
623 int id = (backref - s->backref);
624 gic_cpu_write(s, id, addr, value);
625 }
626
627 static const MemoryRegionOps gic_thiscpu_ops = {
628 .read = gic_thiscpu_read,
629 .write = gic_thiscpu_write,
630 .endianness = DEVICE_NATIVE_ENDIAN,
631 };
632
633 static const MemoryRegionOps gic_cpu_ops = {
634 .read = gic_do_cpu_read,
635 .write = gic_do_cpu_write,
636 .endianness = DEVICE_NATIVE_ENDIAN,
637 };
638
639 void gic_init_irqs_and_distributor(GICState *s, int num_irq)
640 {
641 int i;
642
643 i = s->num_irq - GIC_INTERNAL;
644 /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
645 * GPIO array layout is thus:
646 * [0..N-1] SPIs
647 * [N..N+31] PPIs for CPU 0
648 * [N+32..N+63] PPIs for CPU 1
649 * ...
650 */
651 if (s->revision != REV_NVIC) {
652 i += (GIC_INTERNAL * s->num_cpu);
653 }
654 qdev_init_gpio_in(&s->busdev.qdev, gic_set_irq, i);
655 for (i = 0; i < NUM_CPU(s); i++) {
656 sysbus_init_irq(&s->busdev, &s->parent_irq[i]);
657 }
658 memory_region_init_io(&s->iomem, OBJECT(s), &gic_dist_ops, s,
659 "gic_dist", 0x1000);
660 }
661
662 static void arm_gic_realize(DeviceState *dev, Error **errp)
663 {
664 /* Device instance realize function for the GIC sysbus device */
665 int i;
666 GICState *s = ARM_GIC(dev);
667 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
668 ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
669
670 agc->parent_realize(dev, errp);
671 if (error_is_set(errp)) {
672 return;
673 }
674
675 gic_init_irqs_and_distributor(s, s->num_irq);
676
677 /* Memory regions for the CPU interfaces (NVIC doesn't have these):
678 * a region for "CPU interface for this core", then a region for
679 * "CPU interface for core 0", "for core 1", ...
680 * NB that the memory region size of 0x100 applies for the 11MPCore
681 * and also cores following the GIC v1 spec (ie A9).
682 * GIC v2 defines a larger memory region (0x1000) so this will need
683 * to be extended when we implement A15.
684 */
685 memory_region_init_io(&s->cpuiomem[0], OBJECT(s), &gic_thiscpu_ops, s,
686 "gic_cpu", 0x100);
687 for (i = 0; i < NUM_CPU(s); i++) {
688 s->backref[i] = s;
689 memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
690 &s->backref[i], "gic_cpu", 0x100);
691 }
692 /* Distributor */
693 sysbus_init_mmio(sbd, &s->iomem);
694 /* cpu interfaces (one for "current cpu" plus one per cpu) */
695 for (i = 0; i <= NUM_CPU(s); i++) {
696 sysbus_init_mmio(sbd, &s->cpuiomem[i]);
697 }
698 }
699
700 static void arm_gic_class_init(ObjectClass *klass, void *data)
701 {
702 DeviceClass *dc = DEVICE_CLASS(klass);
703 ARMGICClass *agc = ARM_GIC_CLASS(klass);
704
705 dc->no_user = 1;
706 agc->parent_realize = dc->realize;
707 dc->realize = arm_gic_realize;
708 }
709
710 static const TypeInfo arm_gic_info = {
711 .name = TYPE_ARM_GIC,
712 .parent = TYPE_ARM_GIC_COMMON,
713 .instance_size = sizeof(GICState),
714 .class_init = arm_gic_class_init,
715 .class_size = sizeof(ARMGICClass),
716 };
717
718 static void arm_gic_register_types(void)
719 {
720 type_register_static(&arm_gic_info);
721 }
722
723 type_init(arm_gic_register_types)