]> git.proxmox.com Git - qemu.git/blob - hw/ipoctal232.c
moxie: configure with default-configs file
[qemu.git] / hw / ipoctal232.c
1 /*
2 * QEMU GE IP-Octal 232 IndustryPack emulation
3 *
4 * Copyright (C) 2012 Igalia, S.L.
5 * Author: Alberto Garcia <agarcia@igalia.com>
6 *
7 * This code is licensed under the GNU GPL v2 or (at your option) any
8 * later version.
9 */
10
11 #include "hw/ipack.h"
12 #include "qemu/bitops.h"
13 #include "char/char.h"
14
15 /* #define DEBUG_IPOCTAL */
16
17 #ifdef DEBUG_IPOCTAL
18 #define DPRINTF2(fmt, ...) \
19 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
20 #else
21 #define DPRINTF2(fmt, ...) do { } while (0)
22 #endif
23
24 #define DPRINTF(fmt, ...) DPRINTF2("IP-Octal: " fmt, ## __VA_ARGS__)
25
26 #define RX_FIFO_SIZE 3
27
28 /* The IP-Octal has 8 channels (a-h)
29 divided into 4 blocks (A-D) */
30 #define N_CHANNELS 8
31 #define N_BLOCKS 4
32
33 #define REG_MRa 0x01
34 #define REG_MRb 0x11
35 #define REG_SRa 0x03
36 #define REG_SRb 0x13
37 #define REG_CSRa 0x03
38 #define REG_CSRb 0x13
39 #define REG_CRa 0x05
40 #define REG_CRb 0x15
41 #define REG_RHRa 0x07
42 #define REG_RHRb 0x17
43 #define REG_THRa 0x07
44 #define REG_THRb 0x17
45 #define REG_ACR 0x09
46 #define REG_ISR 0x0B
47 #define REG_IMR 0x0B
48 #define REG_OPCR 0x1B
49
50 #define CR_ENABLE_RX BIT(0)
51 #define CR_DISABLE_RX BIT(1)
52 #define CR_ENABLE_TX BIT(2)
53 #define CR_DISABLE_TX BIT(3)
54 #define CR_CMD(cr) ((cr) >> 4)
55 #define CR_NO_OP 0
56 #define CR_RESET_MR 1
57 #define CR_RESET_RX 2
58 #define CR_RESET_TX 3
59 #define CR_RESET_ERR 4
60 #define CR_RESET_BRKINT 5
61 #define CR_START_BRK 6
62 #define CR_STOP_BRK 7
63 #define CR_ASSERT_RTSN 8
64 #define CR_NEGATE_RTSN 9
65 #define CR_TIMEOUT_ON 10
66 #define CR_TIMEOUT_OFF 12
67
68 #define SR_RXRDY BIT(0)
69 #define SR_FFULL BIT(1)
70 #define SR_TXRDY BIT(2)
71 #define SR_TXEMT BIT(3)
72 #define SR_OVERRUN BIT(4)
73 #define SR_PARITY BIT(5)
74 #define SR_FRAMING BIT(6)
75 #define SR_BREAK BIT(7)
76
77 #define ISR_TXRDYA BIT(0)
78 #define ISR_RXRDYA BIT(1)
79 #define ISR_BREAKA BIT(2)
80 #define ISR_CNTRDY BIT(3)
81 #define ISR_TXRDYB BIT(4)
82 #define ISR_RXRDYB BIT(5)
83 #define ISR_BREAKB BIT(6)
84 #define ISR_MPICHG BIT(7)
85 #define ISR_TXRDY(CH) (((CH) & 1) ? BIT(4) : BIT(0))
86 #define ISR_RXRDY(CH) (((CH) & 1) ? BIT(5) : BIT(1))
87 #define ISR_BREAK(CH) (((CH) & 1) ? BIT(6) : BIT(2))
88
89 typedef struct IPOctalState IPOctalState;
90 typedef struct SCC2698Channel SCC2698Channel;
91 typedef struct SCC2698Block SCC2698Block;
92
93 struct SCC2698Channel {
94 IPOctalState *ipoctal;
95 CharDriverState *dev;
96 bool rx_enabled;
97 uint8_t mr[2];
98 uint8_t mr_idx;
99 uint8_t sr;
100 uint8_t rhr[RX_FIFO_SIZE];
101 uint8_t rhr_idx;
102 uint8_t rx_pending;
103 };
104
105 struct SCC2698Block {
106 uint8_t imr;
107 uint8_t isr;
108 };
109
110 struct IPOctalState {
111 IPackDevice dev;
112 SCC2698Channel ch[N_CHANNELS];
113 SCC2698Block blk[N_BLOCKS];
114 uint8_t irq_vector;
115 };
116
117 #define TYPE_IPOCTAL "ipoctal232"
118
119 #define IPOCTAL(obj) \
120 OBJECT_CHECK(IPOctalState, (obj), TYPE_IPOCTAL)
121
122 static const VMStateDescription vmstate_scc2698_channel = {
123 .name = "scc2698_channel",
124 .version_id = 1,
125 .minimum_version_id = 1,
126 .minimum_version_id_old = 1,
127 .fields = (VMStateField[]) {
128 VMSTATE_BOOL(rx_enabled, SCC2698Channel),
129 VMSTATE_UINT8_ARRAY(mr, SCC2698Channel, 2),
130 VMSTATE_UINT8(mr_idx, SCC2698Channel),
131 VMSTATE_UINT8(sr, SCC2698Channel),
132 VMSTATE_UINT8_ARRAY(rhr, SCC2698Channel, RX_FIFO_SIZE),
133 VMSTATE_UINT8(rhr_idx, SCC2698Channel),
134 VMSTATE_UINT8(rx_pending, SCC2698Channel),
135 VMSTATE_END_OF_LIST()
136 }
137 };
138
139 static const VMStateDescription vmstate_scc2698_block = {
140 .name = "scc2698_block",
141 .version_id = 1,
142 .minimum_version_id = 1,
143 .minimum_version_id_old = 1,
144 .fields = (VMStateField[]) {
145 VMSTATE_UINT8(imr, SCC2698Block),
146 VMSTATE_UINT8(isr, SCC2698Block),
147 VMSTATE_END_OF_LIST()
148 }
149 };
150
151 static const VMStateDescription vmstate_ipoctal = {
152 .name = "ipoctal232",
153 .version_id = 1,
154 .minimum_version_id = 1,
155 .minimum_version_id_old = 1,
156 .fields = (VMStateField[]) {
157 VMSTATE_IPACK_DEVICE(dev, IPOctalState),
158 VMSTATE_STRUCT_ARRAY(ch, IPOctalState, N_CHANNELS, 1,
159 vmstate_scc2698_channel, SCC2698Channel),
160 VMSTATE_STRUCT_ARRAY(blk, IPOctalState, N_BLOCKS, 1,
161 vmstate_scc2698_block, SCC2698Block),
162 VMSTATE_UINT8(irq_vector, IPOctalState),
163 VMSTATE_END_OF_LIST()
164 }
165 };
166
167 /* data[10] is 0x0C, not 0x0B as the doc says */
168 static const uint8_t id_prom_data[] = {
169 0x49, 0x50, 0x41, 0x43, 0xF0, 0x22,
170 0xA1, 0x00, 0x00, 0x00, 0x0C, 0xCC
171 };
172
173 static void update_irq(IPOctalState *dev, unsigned block)
174 {
175 /* Blocks A and B interrupt on INT0#, C and D on INT1#.
176 Thus, to get the status we have to check two blocks. */
177 SCC2698Block *blk0 = &dev->blk[block];
178 SCC2698Block *blk1 = &dev->blk[block^1];
179 unsigned intno = block / 2;
180
181 if ((blk0->isr & blk0->imr) || (blk1->isr & blk1->imr)) {
182 qemu_irq_raise(dev->dev.irq[intno]);
183 } else {
184 qemu_irq_lower(dev->dev.irq[intno]);
185 }
186 }
187
188 static void write_cr(IPOctalState *dev, unsigned channel, uint8_t val)
189 {
190 SCC2698Channel *ch = &dev->ch[channel];
191 SCC2698Block *blk = &dev->blk[channel / 2];
192
193 DPRINTF("Write CR%c %u: ", channel + 'a', val);
194
195 /* The lower 4 bits are used to enable and disable Tx and Rx */
196 if (val & CR_ENABLE_RX) {
197 DPRINTF2("Rx on, ");
198 ch->rx_enabled = true;
199 }
200 if (val & CR_DISABLE_RX) {
201 DPRINTF2("Rx off, ");
202 ch->rx_enabled = false;
203 }
204 if (val & CR_ENABLE_TX) {
205 DPRINTF2("Tx on, ");
206 ch->sr |= SR_TXRDY | SR_TXEMT;
207 blk->isr |= ISR_TXRDY(channel);
208 }
209 if (val & CR_DISABLE_TX) {
210 DPRINTF2("Tx off, ");
211 ch->sr &= ~(SR_TXRDY | SR_TXEMT);
212 blk->isr &= ~ISR_TXRDY(channel);
213 }
214
215 DPRINTF2("cmd: ");
216
217 /* The rest of the bits implement different commands */
218 switch (CR_CMD(val)) {
219 case CR_NO_OP:
220 DPRINTF2("none");
221 break;
222 case CR_RESET_MR:
223 DPRINTF2("reset MR");
224 ch->mr_idx = 0;
225 break;
226 case CR_RESET_RX:
227 DPRINTF2("reset Rx");
228 ch->rx_enabled = false;
229 ch->rx_pending = 0;
230 ch->sr &= ~SR_RXRDY;
231 blk->isr &= ~ISR_RXRDY(channel);
232 break;
233 case CR_RESET_TX:
234 DPRINTF2("reset Tx");
235 ch->sr &= ~(SR_TXRDY | SR_TXEMT);
236 blk->isr &= ~ISR_TXRDY(channel);
237 break;
238 case CR_RESET_ERR:
239 DPRINTF2("reset err");
240 ch->sr &= ~(SR_OVERRUN | SR_PARITY | SR_FRAMING | SR_BREAK);
241 break;
242 case CR_RESET_BRKINT:
243 DPRINTF2("reset brk ch int");
244 blk->isr &= ~(ISR_BREAKA | ISR_BREAKB);
245 break;
246 default:
247 DPRINTF2("unsupported 0x%x", CR_CMD(val));
248 }
249
250 DPRINTF2("\n");
251 }
252
253 static uint16_t io_read(IPackDevice *ip, uint8_t addr)
254 {
255 IPOctalState *dev = IPOCTAL(ip);
256 uint16_t ret = 0;
257 /* addr[7:6]: block (A-D)
258 addr[7:5]: channel (a-h)
259 addr[5:0]: register */
260 unsigned block = addr >> 5;
261 unsigned channel = addr >> 4;
262 /* Big endian, accessed using 8-bit bytes at odd locations */
263 unsigned offset = (addr & 0x1F) ^ 1;
264 SCC2698Channel *ch = &dev->ch[channel];
265 SCC2698Block *blk = &dev->blk[block];
266 uint8_t old_isr = blk->isr;
267
268 switch (offset) {
269
270 case REG_MRa:
271 case REG_MRb:
272 ret = ch->mr[ch->mr_idx];
273 DPRINTF("Read MR%u%c: 0x%x\n", ch->mr_idx + 1, channel + 'a', ret);
274 ch->mr_idx = 1;
275 break;
276
277 case REG_SRa:
278 case REG_SRb:
279 ret = ch->sr;
280 DPRINTF("Read SR%c: 0x%x\n", channel + 'a', ret);
281 break;
282
283 case REG_RHRa:
284 case REG_RHRb:
285 ret = ch->rhr[ch->rhr_idx];
286 if (ch->rx_pending > 0) {
287 ch->rx_pending--;
288 if (ch->rx_pending == 0) {
289 ch->sr &= ~SR_RXRDY;
290 blk->isr &= ~ISR_RXRDY(channel);
291 if (ch->dev) {
292 qemu_chr_accept_input(ch->dev);
293 }
294 } else {
295 ch->rhr_idx = (ch->rhr_idx + 1) % RX_FIFO_SIZE;
296 }
297 if (ch->sr & SR_BREAK) {
298 ch->sr &= ~SR_BREAK;
299 blk->isr |= ISR_BREAK(channel);
300 }
301 }
302 DPRINTF("Read RHR%c (0x%x)\n", channel + 'a', ret);
303 break;
304
305 case REG_ISR:
306 ret = blk->isr;
307 DPRINTF("Read ISR%c: 0x%x\n", block + 'A', ret);
308 break;
309
310 default:
311 DPRINTF("Read unknown/unsupported register 0x%02x\n", offset);
312 }
313
314 if (old_isr != blk->isr) {
315 update_irq(dev, block);
316 }
317
318 return ret;
319 }
320
321 static void io_write(IPackDevice *ip, uint8_t addr, uint16_t val)
322 {
323 IPOctalState *dev = IPOCTAL(ip);
324 unsigned reg = val & 0xFF;
325 /* addr[7:6]: block (A-D)
326 addr[7:5]: channel (a-h)
327 addr[5:0]: register */
328 unsigned block = addr >> 5;
329 unsigned channel = addr >> 4;
330 /* Big endian, accessed using 8-bit bytes at odd locations */
331 unsigned offset = (addr & 0x1F) ^ 1;
332 SCC2698Channel *ch = &dev->ch[channel];
333 SCC2698Block *blk = &dev->blk[block];
334 uint8_t old_isr = blk->isr;
335 uint8_t old_imr = blk->imr;
336
337 switch (offset) {
338
339 case REG_MRa:
340 case REG_MRb:
341 ch->mr[ch->mr_idx] = reg;
342 DPRINTF("Write MR%u%c 0x%x\n", ch->mr_idx + 1, channel + 'a', reg);
343 ch->mr_idx = 1;
344 break;
345
346 /* Not implemented */
347 case REG_CSRa:
348 case REG_CSRb:
349 DPRINTF("Write CSR%c: 0x%x\n", channel + 'a', reg);
350 break;
351
352 case REG_CRa:
353 case REG_CRb:
354 write_cr(dev, channel, reg);
355 break;
356
357 case REG_THRa:
358 case REG_THRb:
359 if (ch->sr & SR_TXRDY) {
360 DPRINTF("Write THR%c (0x%x)\n", channel + 'a', reg);
361 if (ch->dev) {
362 uint8_t thr = reg;
363 qemu_chr_fe_write(ch->dev, &thr, 1);
364 }
365 } else {
366 DPRINTF("Write THR%c (0x%x), Tx disabled\n", channel + 'a', reg);
367 }
368 break;
369
370 /* Not implemented */
371 case REG_ACR:
372 DPRINTF("Write ACR%c 0x%x\n", block + 'A', val);
373 break;
374
375 case REG_IMR:
376 DPRINTF("Write IMR%c 0x%x\n", block + 'A', val);
377 blk->imr = reg;
378 break;
379
380 /* Not implemented */
381 case REG_OPCR:
382 DPRINTF("Write OPCR%c 0x%x\n", block + 'A', val);
383 break;
384
385 default:
386 DPRINTF("Write unknown/unsupported register 0x%02x %u\n", offset, val);
387 }
388
389 if (old_isr != blk->isr || old_imr != blk->imr) {
390 update_irq(dev, block);
391 }
392 }
393
394 static uint16_t id_read(IPackDevice *ip, uint8_t addr)
395 {
396 uint16_t ret = 0;
397 unsigned pos = addr / 2; /* The ID PROM data is stored every other byte */
398
399 if (pos < ARRAY_SIZE(id_prom_data)) {
400 ret = id_prom_data[pos];
401 } else {
402 DPRINTF("Attempt to read unavailable PROM data at 0x%x\n", addr);
403 }
404
405 return ret;
406 }
407
408 static void id_write(IPackDevice *ip, uint8_t addr, uint16_t val)
409 {
410 IPOctalState *dev = IPOCTAL(ip);
411 if (addr == 1) {
412 DPRINTF("Write IRQ vector: %u\n", (unsigned) val);
413 dev->irq_vector = val; /* Undocumented, but the hw works like that */
414 } else {
415 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr);
416 }
417 }
418
419 static uint16_t int_read(IPackDevice *ip, uint8_t addr)
420 {
421 IPOctalState *dev = IPOCTAL(ip);
422 /* Read address 0 to ACK INT0# and address 2 to ACK INT1# */
423 if (addr != 0 && addr != 2) {
424 DPRINTF("Attempt to read from 0x%x\n", addr);
425 return 0;
426 } else {
427 /* Update interrupts if necessary */
428 update_irq(dev, addr);
429 return dev->irq_vector;
430 }
431 }
432
433 static void int_write(IPackDevice *ip, uint8_t addr, uint16_t val)
434 {
435 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr);
436 }
437
438 static uint16_t mem_read16(IPackDevice *ip, uint32_t addr)
439 {
440 DPRINTF("Attempt to read from 0x%x\n", addr);
441 return 0;
442 }
443
444 static void mem_write16(IPackDevice *ip, uint32_t addr, uint16_t val)
445 {
446 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr);
447 }
448
449 static uint8_t mem_read8(IPackDevice *ip, uint32_t addr)
450 {
451 DPRINTF("Attempt to read from 0x%x\n", addr);
452 return 0;
453 }
454
455 static void mem_write8(IPackDevice *ip, uint32_t addr, uint8_t val)
456 {
457 IPOctalState *dev = IPOCTAL(ip);
458 if (addr == 1) {
459 DPRINTF("Write IRQ vector: %u\n", (unsigned) val);
460 dev->irq_vector = val;
461 } else {
462 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr);
463 }
464 }
465
466 static int hostdev_can_receive(void *opaque)
467 {
468 SCC2698Channel *ch = opaque;
469 int available_bytes = RX_FIFO_SIZE - ch->rx_pending;
470 return ch->rx_enabled ? available_bytes : 0;
471 }
472
473 static void hostdev_receive(void *opaque, const uint8_t *buf, int size)
474 {
475 SCC2698Channel *ch = opaque;
476 IPOctalState *dev = ch->ipoctal;
477 unsigned pos = ch->rhr_idx + ch->rx_pending;
478 int i;
479
480 assert(size + ch->rx_pending <= RX_FIFO_SIZE);
481
482 /* Copy data to the RxFIFO */
483 for (i = 0; i < size; i++) {
484 pos %= RX_FIFO_SIZE;
485 ch->rhr[pos++] = buf[i];
486 }
487
488 ch->rx_pending += size;
489
490 /* If the RxFIFO was empty raise an interrupt */
491 if (!(ch->sr & SR_RXRDY)) {
492 unsigned block, channel = 0;
493 /* Find channel number to update the ISR register */
494 while (&dev->ch[channel] != ch) {
495 channel++;
496 }
497 block = channel / 2;
498 dev->blk[block].isr |= ISR_RXRDY(channel);
499 ch->sr |= SR_RXRDY;
500 update_irq(dev, block);
501 }
502 }
503
504 static void hostdev_event(void *opaque, int event)
505 {
506 SCC2698Channel *ch = opaque;
507 switch (event) {
508 case CHR_EVENT_OPENED:
509 DPRINTF("Device %s opened\n", ch->dev->label);
510 break;
511 case CHR_EVENT_BREAK: {
512 uint8_t zero = 0;
513 DPRINTF("Device %s received break\n", ch->dev->label);
514
515 if (!(ch->sr & SR_BREAK)) {
516 IPOctalState *dev = ch->ipoctal;
517 unsigned block, channel = 0;
518
519 while (&dev->ch[channel] != ch) {
520 channel++;
521 }
522 block = channel / 2;
523
524 ch->sr |= SR_BREAK;
525 dev->blk[block].isr |= ISR_BREAK(channel);
526 }
527
528 /* Put a zero character in the buffer */
529 hostdev_receive(ch, &zero, 1);
530 }
531 break;
532 default:
533 DPRINTF("Device %s received event %d\n", ch->dev->label, event);
534 }
535 }
536
537 static int ipoctal_init(IPackDevice *ip)
538 {
539 IPOctalState *s = IPOCTAL(ip);
540 unsigned i;
541
542 for (i = 0; i < N_CHANNELS; i++) {
543 SCC2698Channel *ch = &s->ch[i];
544 ch->ipoctal = s;
545
546 /* Redirect IP-Octal channels to host character devices */
547 if (ch->dev) {
548 qemu_chr_add_handlers(ch->dev, hostdev_can_receive,
549 hostdev_receive, hostdev_event, ch);
550 DPRINTF("Redirecting channel %u to %s\n", i, ch->dev->label);
551 } else {
552 DPRINTF("Could not redirect channel %u, no chardev set\n", i);
553 }
554 }
555
556 return 0;
557 }
558
559 static Property ipoctal_properties[] = {
560 DEFINE_PROP_CHR("chardev0", IPOctalState, ch[0].dev),
561 DEFINE_PROP_CHR("chardev1", IPOctalState, ch[1].dev),
562 DEFINE_PROP_CHR("chardev2", IPOctalState, ch[2].dev),
563 DEFINE_PROP_CHR("chardev3", IPOctalState, ch[3].dev),
564 DEFINE_PROP_CHR("chardev4", IPOctalState, ch[4].dev),
565 DEFINE_PROP_CHR("chardev5", IPOctalState, ch[5].dev),
566 DEFINE_PROP_CHR("chardev6", IPOctalState, ch[6].dev),
567 DEFINE_PROP_CHR("chardev7", IPOctalState, ch[7].dev),
568 DEFINE_PROP_END_OF_LIST(),
569 };
570
571 static void ipoctal_class_init(ObjectClass *klass, void *data)
572 {
573 DeviceClass *dc = DEVICE_CLASS(klass);
574 IPackDeviceClass *ic = IPACK_DEVICE_CLASS(klass);
575
576 ic->init = ipoctal_init;
577 ic->io_read = io_read;
578 ic->io_write = io_write;
579 ic->id_read = id_read;
580 ic->id_write = id_write;
581 ic->int_read = int_read;
582 ic->int_write = int_write;
583 ic->mem_read16 = mem_read16;
584 ic->mem_write16 = mem_write16;
585 ic->mem_read8 = mem_read8;
586 ic->mem_write8 = mem_write8;
587
588 dc->desc = "GE IP-Octal 232 8-channel RS-232 IndustryPack";
589 dc->props = ipoctal_properties;
590 dc->vmsd = &vmstate_ipoctal;
591 }
592
593 static const TypeInfo ipoctal_info = {
594 .name = TYPE_IPOCTAL,
595 .parent = TYPE_IPACK_DEVICE,
596 .instance_size = sizeof(IPOctalState),
597 .class_init = ipoctal_class_init,
598 };
599
600 static void ipoctal_register_types(void)
601 {
602 type_register_static(&ipoctal_info);
603 }
604
605 type_init(ipoctal_register_types)