]> git.proxmox.com Git - qemu.git/blob - hw/ppc/spapr.c
Merge remote-tracking branch 'mjt/trivial-patches' into staging
[qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "elf.h"
30 #include "net/net.h"
31 #include "sysemu/blockdev.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/kvm.h"
34 #include "kvm_ppc.h"
35 #include "mmu-hash64.h"
36
37 #include "hw/boards.h"
38 #include "hw/ppc/ppc.h"
39 #include "hw/loader.h"
40
41 #include "hw/ppc/spapr.h"
42 #include "hw/ppc/spapr_vio.h"
43 #include "hw/pci-host/spapr.h"
44 #include "hw/ppc/xics.h"
45 #include "hw/pci/msi.h"
46
47 #include "hw/pci/pci.h"
48
49 #include "exec/address-spaces.h"
50 #include "hw/usb.h"
51 #include "qemu/config-file.h"
52
53 #include <libfdt.h>
54
55 /* SLOF memory layout:
56 *
57 * SLOF raw image loaded at 0, copies its romfs right below the flat
58 * device-tree, then position SLOF itself 31M below that
59 *
60 * So we set FW_OVERHEAD to 40MB which should account for all of that
61 * and more
62 *
63 * We load our kernel at 4M, leaving space for SLOF initial image
64 */
65 #define FDT_MAX_SIZE 0x40000
66 #define RTAS_MAX_SIZE 0x10000
67 #define FW_MAX_SIZE 0x400000
68 #define FW_FILE_NAME "slof.bin"
69 #define FW_OVERHEAD 0x2800000
70 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
71
72 #define MIN_RMA_SLOF 128UL
73
74 #define TIMEBASE_FREQ 512000000ULL
75
76 #define MAX_CPUS 256
77 #define XICS_IRQS 1024
78
79 #define PHANDLE_XICP 0x00001111
80
81 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
82
83 sPAPREnvironment *spapr;
84
85 int spapr_allocate_irq(int hint, bool lsi)
86 {
87 int irq;
88
89 if (hint) {
90 irq = hint;
91 if (hint >= spapr->next_irq) {
92 spapr->next_irq = hint + 1;
93 }
94 /* FIXME: we should probably check for collisions somehow */
95 } else {
96 irq = spapr->next_irq++;
97 }
98
99 /* Configure irq type */
100 if (!xics_get_qirq(spapr->icp, irq)) {
101 return 0;
102 }
103
104 xics_set_irq_type(spapr->icp, irq, lsi);
105
106 return irq;
107 }
108
109 /*
110 * Allocate block of consequtive IRQs, returns a number of the first.
111 * If msi==true, aligns the first IRQ number to num.
112 */
113 int spapr_allocate_irq_block(int num, bool lsi, bool msi)
114 {
115 int first = -1;
116 int i, hint = 0;
117
118 /*
119 * MSIMesage::data is used for storing VIRQ so
120 * it has to be aligned to num to support multiple
121 * MSI vectors. MSI-X is not affected by this.
122 * The hint is used for the first IRQ, the rest should
123 * be allocated continuously.
124 */
125 if (msi) {
126 assert((num == 1) || (num == 2) || (num == 4) ||
127 (num == 8) || (num == 16) || (num == 32));
128 hint = (spapr->next_irq + num - 1) & ~(num - 1);
129 }
130
131 for (i = 0; i < num; ++i) {
132 int irq;
133
134 irq = spapr_allocate_irq(hint, lsi);
135 if (!irq) {
136 return -1;
137 }
138
139 if (0 == i) {
140 first = irq;
141 hint = 0;
142 }
143
144 /* If the above doesn't create a consecutive block then that's
145 * an internal bug */
146 assert(irq == (first + i));
147 }
148
149 return first;
150 }
151
152 static XICSState *try_create_xics(const char *type, int nr_servers,
153 int nr_irqs)
154 {
155 DeviceState *dev;
156
157 dev = qdev_create(NULL, type);
158 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
159 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
160 if (qdev_init(dev) < 0) {
161 return NULL;
162 }
163
164 return XICS_COMMON(dev);
165 }
166
167 static XICSState *xics_system_init(int nr_servers, int nr_irqs)
168 {
169 XICSState *icp = NULL;
170
171 if (kvm_enabled()) {
172 QemuOpts *machine_opts = qemu_get_machine_opts();
173 bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
174 "kernel_irqchip", true);
175 bool irqchip_required = qemu_opt_get_bool(machine_opts,
176 "kernel_irqchip", false);
177 if (irqchip_allowed) {
178 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs);
179 }
180
181 if (irqchip_required && !icp) {
182 perror("Failed to create in-kernel XICS\n");
183 abort();
184 }
185 }
186
187 if (!icp) {
188 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
189 }
190
191 if (!icp) {
192 perror("Failed to create XICS\n");
193 abort();
194 }
195
196 return icp;
197 }
198
199 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
200 {
201 int ret = 0, offset;
202 CPUState *cpu;
203 char cpu_model[32];
204 int smt = kvmppc_smt_threads();
205 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
206
207 CPU_FOREACH(cpu) {
208 DeviceClass *dc = DEVICE_GET_CLASS(cpu);
209 uint32_t associativity[] = {cpu_to_be32(0x5),
210 cpu_to_be32(0x0),
211 cpu_to_be32(0x0),
212 cpu_to_be32(0x0),
213 cpu_to_be32(cpu->numa_node),
214 cpu_to_be32(cpu->cpu_index)};
215
216 if ((cpu->cpu_index % smt) != 0) {
217 continue;
218 }
219
220 snprintf(cpu_model, 32, "/cpus/%s@%x", dc->fw_name,
221 cpu->cpu_index);
222
223 offset = fdt_path_offset(fdt, cpu_model);
224 if (offset < 0) {
225 return offset;
226 }
227
228 if (nb_numa_nodes > 1) {
229 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
230 sizeof(associativity));
231 if (ret < 0) {
232 return ret;
233 }
234 }
235
236 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
237 pft_size_prop, sizeof(pft_size_prop));
238 if (ret < 0) {
239 return ret;
240 }
241 }
242 return ret;
243 }
244
245
246 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
247 size_t maxsize)
248 {
249 size_t maxcells = maxsize / sizeof(uint32_t);
250 int i, j, count;
251 uint32_t *p = prop;
252
253 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
254 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
255
256 if (!sps->page_shift) {
257 break;
258 }
259 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
260 if (sps->enc[count].page_shift == 0) {
261 break;
262 }
263 }
264 if ((p - prop) >= (maxcells - 3 - count * 2)) {
265 break;
266 }
267 *(p++) = cpu_to_be32(sps->page_shift);
268 *(p++) = cpu_to_be32(sps->slb_enc);
269 *(p++) = cpu_to_be32(count);
270 for (j = 0; j < count; j++) {
271 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
272 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
273 }
274 }
275
276 return (p - prop) * sizeof(uint32_t);
277 }
278
279 #define _FDT(exp) \
280 do { \
281 int ret = (exp); \
282 if (ret < 0) { \
283 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
284 #exp, fdt_strerror(ret)); \
285 exit(1); \
286 } \
287 } while (0)
288
289
290 static void *spapr_create_fdt_skel(hwaddr initrd_base,
291 hwaddr initrd_size,
292 hwaddr kernel_size,
293 bool little_endian,
294 const char *boot_device,
295 const char *kernel_cmdline,
296 uint32_t epow_irq)
297 {
298 void *fdt;
299 CPUState *cs;
300 uint32_t start_prop = cpu_to_be32(initrd_base);
301 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
302 char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
303 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk\0hcall-set-mode";
304 char qemu_hypertas_prop[] = "hcall-memop1";
305 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
306 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
307 int i, smt = kvmppc_smt_threads();
308 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
309
310 fdt = g_malloc0(FDT_MAX_SIZE);
311 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
312
313 if (kernel_size) {
314 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
315 }
316 if (initrd_size) {
317 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
318 }
319 _FDT((fdt_finish_reservemap(fdt)));
320
321 /* Root node */
322 _FDT((fdt_begin_node(fdt, "")));
323 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
324 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
325 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
326
327 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
328 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
329
330 /* /chosen */
331 _FDT((fdt_begin_node(fdt, "chosen")));
332
333 /* Set Form1_affinity */
334 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
335
336 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
337 _FDT((fdt_property(fdt, "linux,initrd-start",
338 &start_prop, sizeof(start_prop))));
339 _FDT((fdt_property(fdt, "linux,initrd-end",
340 &end_prop, sizeof(end_prop))));
341 if (kernel_size) {
342 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
343 cpu_to_be64(kernel_size) };
344
345 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
346 if (little_endian) {
347 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
348 }
349 }
350 if (boot_device) {
351 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
352 }
353 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
354 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
355 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
356
357 _FDT((fdt_end_node(fdt)));
358
359 /* cpus */
360 _FDT((fdt_begin_node(fdt, "cpus")));
361
362 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
363 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
364
365 CPU_FOREACH(cs) {
366 PowerPCCPU *cpu = POWERPC_CPU(cs);
367 CPUPPCState *env = &cpu->env;
368 DeviceClass *dc = DEVICE_GET_CLASS(cs);
369 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
370 int index = cs->cpu_index;
371 uint32_t servers_prop[smp_threads];
372 uint32_t gservers_prop[smp_threads * 2];
373 char *nodename;
374 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
375 0xffffffff, 0xffffffff};
376 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
377 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
378 uint32_t page_sizes_prop[64];
379 size_t page_sizes_prop_size;
380
381 if ((index % smt) != 0) {
382 continue;
383 }
384
385 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
386
387 _FDT((fdt_begin_node(fdt, nodename)));
388
389 g_free(nodename);
390
391 _FDT((fdt_property_cell(fdt, "reg", index)));
392 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
393
394 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
395 _FDT((fdt_property_cell(fdt, "d-cache-block-size",
396 env->dcache_line_size)));
397 _FDT((fdt_property_cell(fdt, "d-cache-line-size",
398 env->dcache_line_size)));
399 _FDT((fdt_property_cell(fdt, "i-cache-block-size",
400 env->icache_line_size)));
401 _FDT((fdt_property_cell(fdt, "i-cache-line-size",
402 env->icache_line_size)));
403
404 if (pcc->l1_dcache_size) {
405 _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
406 } else {
407 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
408 }
409 if (pcc->l1_icache_size) {
410 _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
411 } else {
412 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
413 }
414
415 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
416 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
417 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
418 _FDT((fdt_property_string(fdt, "status", "okay")));
419 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
420
421 /* Build interrupt servers and gservers properties */
422 for (i = 0; i < smp_threads; i++) {
423 servers_prop[i] = cpu_to_be32(index + i);
424 /* Hack, direct the group queues back to cpu 0 */
425 gservers_prop[i*2] = cpu_to_be32(index + i);
426 gservers_prop[i*2 + 1] = 0;
427 }
428 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
429 servers_prop, sizeof(servers_prop))));
430 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
431 gservers_prop, sizeof(gservers_prop))));
432
433 if (env->spr_cb[SPR_PURR].oea_read) {
434 _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
435 }
436
437 if (env->mmu_model & POWERPC_MMU_1TSEG) {
438 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
439 segs, sizeof(segs))));
440 }
441
442 /* Advertise VMX/VSX (vector extensions) if available
443 * 0 / no property == no vector extensions
444 * 1 == VMX / Altivec available
445 * 2 == VSX available */
446 if (env->insns_flags & PPC_ALTIVEC) {
447 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
448
449 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
450 }
451
452 /* Advertise DFP (Decimal Floating Point) if available
453 * 0 / no property == no DFP
454 * 1 == DFP available */
455 if (env->insns_flags2 & PPC2_DFP) {
456 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
457 }
458
459 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
460 sizeof(page_sizes_prop));
461 if (page_sizes_prop_size) {
462 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
463 page_sizes_prop, page_sizes_prop_size)));
464 }
465
466 _FDT((fdt_end_node(fdt)));
467 }
468
469 _FDT((fdt_end_node(fdt)));
470
471 /* RTAS */
472 _FDT((fdt_begin_node(fdt, "rtas")));
473
474 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
475 sizeof(hypertas_prop))));
476 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
477 sizeof(qemu_hypertas_prop))));
478
479 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
480 refpoints, sizeof(refpoints))));
481
482 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
483
484 _FDT((fdt_end_node(fdt)));
485
486 /* interrupt controller */
487 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
488
489 _FDT((fdt_property_string(fdt, "device_type",
490 "PowerPC-External-Interrupt-Presentation")));
491 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
492 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
493 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
494 interrupt_server_ranges_prop,
495 sizeof(interrupt_server_ranges_prop))));
496 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
497 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
498 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
499
500 _FDT((fdt_end_node(fdt)));
501
502 /* vdevice */
503 _FDT((fdt_begin_node(fdt, "vdevice")));
504
505 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
506 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
507 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
508 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
509 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
510 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
511
512 _FDT((fdt_end_node(fdt)));
513
514 /* event-sources */
515 spapr_events_fdt_skel(fdt, epow_irq);
516
517 _FDT((fdt_end_node(fdt))); /* close root node */
518 _FDT((fdt_finish(fdt)));
519
520 return fdt;
521 }
522
523 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
524 {
525 uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
526 cpu_to_be32(0x0), cpu_to_be32(0x0),
527 cpu_to_be32(0x0)};
528 char mem_name[32];
529 hwaddr node0_size, mem_start;
530 uint64_t mem_reg_property[2];
531 int i, off;
532
533 /* memory node(s) */
534 node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
535 if (spapr->rma_size > node0_size) {
536 spapr->rma_size = node0_size;
537 }
538
539 /* RMA */
540 mem_reg_property[0] = 0;
541 mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
542 off = fdt_add_subnode(fdt, 0, "memory@0");
543 _FDT(off);
544 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
545 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
546 sizeof(mem_reg_property))));
547 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
548 sizeof(associativity))));
549
550 /* RAM: Node 0 */
551 if (node0_size > spapr->rma_size) {
552 mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
553 mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
554
555 sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
556 off = fdt_add_subnode(fdt, 0, mem_name);
557 _FDT(off);
558 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
559 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
560 sizeof(mem_reg_property))));
561 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
562 sizeof(associativity))));
563 }
564
565 /* RAM: Node 1 and beyond */
566 mem_start = node0_size;
567 for (i = 1; i < nb_numa_nodes; i++) {
568 mem_reg_property[0] = cpu_to_be64(mem_start);
569 mem_reg_property[1] = cpu_to_be64(node_mem[i]);
570 associativity[3] = associativity[4] = cpu_to_be32(i);
571 sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
572 off = fdt_add_subnode(fdt, 0, mem_name);
573 _FDT(off);
574 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
575 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
576 sizeof(mem_reg_property))));
577 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
578 sizeof(associativity))));
579 mem_start += node_mem[i];
580 }
581
582 return 0;
583 }
584
585 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
586 hwaddr fdt_addr,
587 hwaddr rtas_addr,
588 hwaddr rtas_size)
589 {
590 int ret;
591 void *fdt;
592 sPAPRPHBState *phb;
593
594 fdt = g_malloc(FDT_MAX_SIZE);
595
596 /* open out the base tree into a temp buffer for the final tweaks */
597 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
598
599 ret = spapr_populate_memory(spapr, fdt);
600 if (ret < 0) {
601 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
602 exit(1);
603 }
604
605 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
606 if (ret < 0) {
607 fprintf(stderr, "couldn't setup vio devices in fdt\n");
608 exit(1);
609 }
610
611 QLIST_FOREACH(phb, &spapr->phbs, list) {
612 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
613 }
614
615 if (ret < 0) {
616 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
617 exit(1);
618 }
619
620 /* RTAS */
621 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
622 if (ret < 0) {
623 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
624 }
625
626 /* Advertise NUMA via ibm,associativity */
627 ret = spapr_fixup_cpu_dt(fdt, spapr);
628 if (ret < 0) {
629 fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
630 }
631
632 if (!spapr->has_graphics) {
633 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
634 }
635
636 _FDT((fdt_pack(fdt)));
637
638 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
639 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
640 fdt_totalsize(fdt), FDT_MAX_SIZE);
641 exit(1);
642 }
643
644 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
645
646 g_free(fdt);
647 }
648
649 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
650 {
651 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
652 }
653
654 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
655 {
656 CPUPPCState *env = &cpu->env;
657
658 if (msr_pr) {
659 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
660 env->gpr[3] = H_PRIVILEGE;
661 } else {
662 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
663 }
664 }
665
666 static void spapr_reset_htab(sPAPREnvironment *spapr)
667 {
668 long shift;
669
670 /* allocate hash page table. For now we always make this 16mb,
671 * later we should probably make it scale to the size of guest
672 * RAM */
673
674 shift = kvmppc_reset_htab(spapr->htab_shift);
675
676 if (shift > 0) {
677 /* Kernel handles htab, we don't need to allocate one */
678 spapr->htab_shift = shift;
679 } else {
680 if (!spapr->htab) {
681 /* Allocate an htab if we don't yet have one */
682 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
683 }
684
685 /* And clear it */
686 memset(spapr->htab, 0, HTAB_SIZE(spapr));
687 }
688
689 /* Update the RMA size if necessary */
690 if (spapr->vrma_adjust) {
691 spapr->rma_size = kvmppc_rma_size(ram_size, spapr->htab_shift);
692 }
693 }
694
695 static void ppc_spapr_reset(void)
696 {
697 PowerPCCPU *first_ppc_cpu;
698
699 /* Reset the hash table & recalc the RMA */
700 spapr_reset_htab(spapr);
701
702 qemu_devices_reset();
703
704 /* Load the fdt */
705 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
706 spapr->rtas_size);
707
708 /* Set up the entry state */
709 first_ppc_cpu = POWERPC_CPU(first_cpu);
710 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
711 first_ppc_cpu->env.gpr[5] = 0;
712 first_cpu->halted = 0;
713 first_ppc_cpu->env.nip = spapr->entry_point;
714
715 }
716
717 static void spapr_cpu_reset(void *opaque)
718 {
719 PowerPCCPU *cpu = opaque;
720 CPUState *cs = CPU(cpu);
721 CPUPPCState *env = &cpu->env;
722
723 cpu_reset(cs);
724
725 /* All CPUs start halted. CPU0 is unhalted from the machine level
726 * reset code and the rest are explicitly started up by the guest
727 * using an RTAS call */
728 cs->halted = 1;
729
730 env->spr[SPR_HIOR] = 0;
731
732 env->external_htab = (uint8_t *)spapr->htab;
733 env->htab_base = -1;
734 env->htab_mask = HTAB_SIZE(spapr) - 1;
735 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
736 (spapr->htab_shift - 18);
737 }
738
739 static void spapr_create_nvram(sPAPREnvironment *spapr)
740 {
741 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
742 const char *drivename = qemu_opt_get(qemu_get_machine_opts(), "nvram");
743
744 if (drivename) {
745 BlockDriverState *bs;
746
747 bs = bdrv_find(drivename);
748 if (!bs) {
749 fprintf(stderr, "No such block device \"%s\" for nvram\n",
750 drivename);
751 exit(1);
752 }
753 qdev_prop_set_drive_nofail(dev, "drive", bs);
754 }
755
756 qdev_init_nofail(dev);
757
758 spapr->nvram = (struct sPAPRNVRAM *)dev;
759 }
760
761 /* Returns whether we want to use VGA or not */
762 static int spapr_vga_init(PCIBus *pci_bus)
763 {
764 switch (vga_interface_type) {
765 case VGA_NONE:
766 case VGA_STD:
767 return pci_vga_init(pci_bus) != NULL;
768 default:
769 fprintf(stderr, "This vga model is not supported,"
770 "currently it only supports -vga std\n");
771 exit(0);
772 break;
773 }
774 }
775
776 static const VMStateDescription vmstate_spapr = {
777 .name = "spapr",
778 .version_id = 1,
779 .minimum_version_id = 1,
780 .minimum_version_id_old = 1,
781 .fields = (VMStateField []) {
782 VMSTATE_UINT32(next_irq, sPAPREnvironment),
783
784 /* RTC offset */
785 VMSTATE_UINT64(rtc_offset, sPAPREnvironment),
786
787 VMSTATE_END_OF_LIST()
788 },
789 };
790
791 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
792 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
793 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
794 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
795
796 static int htab_save_setup(QEMUFile *f, void *opaque)
797 {
798 sPAPREnvironment *spapr = opaque;
799
800 /* "Iteration" header */
801 qemu_put_be32(f, spapr->htab_shift);
802
803 if (spapr->htab) {
804 spapr->htab_save_index = 0;
805 spapr->htab_first_pass = true;
806 } else {
807 assert(kvm_enabled());
808
809 spapr->htab_fd = kvmppc_get_htab_fd(false);
810 if (spapr->htab_fd < 0) {
811 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
812 strerror(errno));
813 return -1;
814 }
815 }
816
817
818 return 0;
819 }
820
821 static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
822 int64_t max_ns)
823 {
824 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
825 int index = spapr->htab_save_index;
826 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
827
828 assert(spapr->htab_first_pass);
829
830 do {
831 int chunkstart;
832
833 /* Consume invalid HPTEs */
834 while ((index < htabslots)
835 && !HPTE_VALID(HPTE(spapr->htab, index))) {
836 index++;
837 CLEAN_HPTE(HPTE(spapr->htab, index));
838 }
839
840 /* Consume valid HPTEs */
841 chunkstart = index;
842 while ((index < htabslots)
843 && HPTE_VALID(HPTE(spapr->htab, index))) {
844 index++;
845 CLEAN_HPTE(HPTE(spapr->htab, index));
846 }
847
848 if (index > chunkstart) {
849 int n_valid = index - chunkstart;
850
851 qemu_put_be32(f, chunkstart);
852 qemu_put_be16(f, n_valid);
853 qemu_put_be16(f, 0);
854 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
855 HASH_PTE_SIZE_64 * n_valid);
856
857 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
858 break;
859 }
860 }
861 } while ((index < htabslots) && !qemu_file_rate_limit(f));
862
863 if (index >= htabslots) {
864 assert(index == htabslots);
865 index = 0;
866 spapr->htab_first_pass = false;
867 }
868 spapr->htab_save_index = index;
869 }
870
871 static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
872 int64_t max_ns)
873 {
874 bool final = max_ns < 0;
875 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
876 int examined = 0, sent = 0;
877 int index = spapr->htab_save_index;
878 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
879
880 assert(!spapr->htab_first_pass);
881
882 do {
883 int chunkstart, invalidstart;
884
885 /* Consume non-dirty HPTEs */
886 while ((index < htabslots)
887 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
888 index++;
889 examined++;
890 }
891
892 chunkstart = index;
893 /* Consume valid dirty HPTEs */
894 while ((index < htabslots)
895 && HPTE_DIRTY(HPTE(spapr->htab, index))
896 && HPTE_VALID(HPTE(spapr->htab, index))) {
897 CLEAN_HPTE(HPTE(spapr->htab, index));
898 index++;
899 examined++;
900 }
901
902 invalidstart = index;
903 /* Consume invalid dirty HPTEs */
904 while ((index < htabslots)
905 && HPTE_DIRTY(HPTE(spapr->htab, index))
906 && !HPTE_VALID(HPTE(spapr->htab, index))) {
907 CLEAN_HPTE(HPTE(spapr->htab, index));
908 index++;
909 examined++;
910 }
911
912 if (index > chunkstart) {
913 int n_valid = invalidstart - chunkstart;
914 int n_invalid = index - invalidstart;
915
916 qemu_put_be32(f, chunkstart);
917 qemu_put_be16(f, n_valid);
918 qemu_put_be16(f, n_invalid);
919 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
920 HASH_PTE_SIZE_64 * n_valid);
921 sent += index - chunkstart;
922
923 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
924 break;
925 }
926 }
927
928 if (examined >= htabslots) {
929 break;
930 }
931
932 if (index >= htabslots) {
933 assert(index == htabslots);
934 index = 0;
935 }
936 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
937
938 if (index >= htabslots) {
939 assert(index == htabslots);
940 index = 0;
941 }
942
943 spapr->htab_save_index = index;
944
945 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
946 }
947
948 #define MAX_ITERATION_NS 5000000 /* 5 ms */
949 #define MAX_KVM_BUF_SIZE 2048
950
951 static int htab_save_iterate(QEMUFile *f, void *opaque)
952 {
953 sPAPREnvironment *spapr = opaque;
954 int rc = 0;
955
956 /* Iteration header */
957 qemu_put_be32(f, 0);
958
959 if (!spapr->htab) {
960 assert(kvm_enabled());
961
962 rc = kvmppc_save_htab(f, spapr->htab_fd,
963 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
964 if (rc < 0) {
965 return rc;
966 }
967 } else if (spapr->htab_first_pass) {
968 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
969 } else {
970 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
971 }
972
973 /* End marker */
974 qemu_put_be32(f, 0);
975 qemu_put_be16(f, 0);
976 qemu_put_be16(f, 0);
977
978 return rc;
979 }
980
981 static int htab_save_complete(QEMUFile *f, void *opaque)
982 {
983 sPAPREnvironment *spapr = opaque;
984
985 /* Iteration header */
986 qemu_put_be32(f, 0);
987
988 if (!spapr->htab) {
989 int rc;
990
991 assert(kvm_enabled());
992
993 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
994 if (rc < 0) {
995 return rc;
996 }
997 close(spapr->htab_fd);
998 spapr->htab_fd = -1;
999 } else {
1000 htab_save_later_pass(f, spapr, -1);
1001 }
1002
1003 /* End marker */
1004 qemu_put_be32(f, 0);
1005 qemu_put_be16(f, 0);
1006 qemu_put_be16(f, 0);
1007
1008 return 0;
1009 }
1010
1011 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1012 {
1013 sPAPREnvironment *spapr = opaque;
1014 uint32_t section_hdr;
1015 int fd = -1;
1016
1017 if (version_id < 1 || version_id > 1) {
1018 fprintf(stderr, "htab_load() bad version\n");
1019 return -EINVAL;
1020 }
1021
1022 section_hdr = qemu_get_be32(f);
1023
1024 if (section_hdr) {
1025 /* First section, just the hash shift */
1026 if (spapr->htab_shift != section_hdr) {
1027 return -EINVAL;
1028 }
1029 return 0;
1030 }
1031
1032 if (!spapr->htab) {
1033 assert(kvm_enabled());
1034
1035 fd = kvmppc_get_htab_fd(true);
1036 if (fd < 0) {
1037 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1038 strerror(errno));
1039 }
1040 }
1041
1042 while (true) {
1043 uint32_t index;
1044 uint16_t n_valid, n_invalid;
1045
1046 index = qemu_get_be32(f);
1047 n_valid = qemu_get_be16(f);
1048 n_invalid = qemu_get_be16(f);
1049
1050 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1051 /* End of Stream */
1052 break;
1053 }
1054
1055 if ((index + n_valid + n_invalid) >
1056 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1057 /* Bad index in stream */
1058 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1059 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1060 spapr->htab_shift);
1061 return -EINVAL;
1062 }
1063
1064 if (spapr->htab) {
1065 if (n_valid) {
1066 qemu_get_buffer(f, HPTE(spapr->htab, index),
1067 HASH_PTE_SIZE_64 * n_valid);
1068 }
1069 if (n_invalid) {
1070 memset(HPTE(spapr->htab, index + n_valid), 0,
1071 HASH_PTE_SIZE_64 * n_invalid);
1072 }
1073 } else {
1074 int rc;
1075
1076 assert(fd >= 0);
1077
1078 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1079 if (rc < 0) {
1080 return rc;
1081 }
1082 }
1083 }
1084
1085 if (!spapr->htab) {
1086 assert(fd >= 0);
1087 close(fd);
1088 }
1089
1090 return 0;
1091 }
1092
1093 static SaveVMHandlers savevm_htab_handlers = {
1094 .save_live_setup = htab_save_setup,
1095 .save_live_iterate = htab_save_iterate,
1096 .save_live_complete = htab_save_complete,
1097 .load_state = htab_load,
1098 };
1099
1100 /* pSeries LPAR / sPAPR hardware init */
1101 static void ppc_spapr_init(QEMUMachineInitArgs *args)
1102 {
1103 ram_addr_t ram_size = args->ram_size;
1104 const char *cpu_model = args->cpu_model;
1105 const char *kernel_filename = args->kernel_filename;
1106 const char *kernel_cmdline = args->kernel_cmdline;
1107 const char *initrd_filename = args->initrd_filename;
1108 const char *boot_device = args->boot_order;
1109 PowerPCCPU *cpu;
1110 CPUPPCState *env;
1111 PCIHostState *phb;
1112 int i;
1113 MemoryRegion *sysmem = get_system_memory();
1114 MemoryRegion *ram = g_new(MemoryRegion, 1);
1115 hwaddr rma_alloc_size;
1116 uint32_t initrd_base = 0;
1117 long kernel_size = 0, initrd_size = 0;
1118 long load_limit, rtas_limit, fw_size;
1119 bool kernel_le = false;
1120 char *filename;
1121
1122 msi_supported = true;
1123
1124 spapr = g_malloc0(sizeof(*spapr));
1125 QLIST_INIT(&spapr->phbs);
1126
1127 cpu_ppc_hypercall = emulate_spapr_hypercall;
1128
1129 /* Allocate RMA if necessary */
1130 rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
1131
1132 if (rma_alloc_size == -1) {
1133 hw_error("qemu: Unable to create RMA\n");
1134 exit(1);
1135 }
1136
1137 if (rma_alloc_size && (rma_alloc_size < ram_size)) {
1138 spapr->rma_size = rma_alloc_size;
1139 } else {
1140 spapr->rma_size = ram_size;
1141
1142 /* With KVM, we don't actually know whether KVM supports an
1143 * unbounded RMA (PR KVM) or is limited by the hash table size
1144 * (HV KVM using VRMA), so we always assume the latter
1145 *
1146 * In that case, we also limit the initial allocations for RTAS
1147 * etc... to 256M since we have no way to know what the VRMA size
1148 * is going to be as it depends on the size of the hash table
1149 * isn't determined yet.
1150 */
1151 if (kvm_enabled()) {
1152 spapr->vrma_adjust = 1;
1153 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1154 }
1155 }
1156
1157 /* We place the device tree and RTAS just below either the top of the RMA,
1158 * or just below 2GB, whichever is lowere, so that it can be
1159 * processed with 32-bit real mode code if necessary */
1160 rtas_limit = MIN(spapr->rma_size, 0x80000000);
1161 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1162 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1163 load_limit = spapr->fdt_addr - FW_OVERHEAD;
1164
1165 /* We aim for a hash table of size 1/128 the size of RAM. The
1166 * normal rule of thumb is 1/64 the size of RAM, but that's much
1167 * more than needed for the Linux guests we support. */
1168 spapr->htab_shift = 18; /* Minimum architected size */
1169 while (spapr->htab_shift <= 46) {
1170 if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
1171 break;
1172 }
1173 spapr->htab_shift++;
1174 }
1175
1176 /* Set up Interrupt Controller before we create the VCPUs */
1177 spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
1178 XICS_IRQS);
1179 spapr->next_irq = XICS_IRQ_BASE;
1180
1181 /* init CPUs */
1182 if (cpu_model == NULL) {
1183 cpu_model = kvm_enabled() ? "host" : "POWER7";
1184 }
1185 for (i = 0; i < smp_cpus; i++) {
1186 cpu = cpu_ppc_init(cpu_model);
1187 if (cpu == NULL) {
1188 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1189 exit(1);
1190 }
1191 env = &cpu->env;
1192
1193 /* Set time-base frequency to 512 MHz */
1194 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1195
1196 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1197 * MSR[IP] should never be set.
1198 */
1199 env->msr_mask &= ~(1 << 6);
1200
1201 /* Tell KVM that we're in PAPR mode */
1202 if (kvm_enabled()) {
1203 kvmppc_set_papr(cpu);
1204 }
1205
1206 xics_cpu_setup(spapr->icp, cpu);
1207
1208 qemu_register_reset(spapr_cpu_reset, cpu);
1209 }
1210
1211 /* allocate RAM */
1212 spapr->ram_limit = ram_size;
1213 if (spapr->ram_limit > rma_alloc_size) {
1214 ram_addr_t nonrma_base = rma_alloc_size;
1215 ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
1216
1217 memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size);
1218 vmstate_register_ram_global(ram);
1219 memory_region_add_subregion(sysmem, nonrma_base, ram);
1220 }
1221
1222 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1223 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
1224 rtas_limit - spapr->rtas_addr);
1225 if (spapr->rtas_size < 0) {
1226 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1227 exit(1);
1228 }
1229 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1230 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
1231 spapr->rtas_size, RTAS_MAX_SIZE);
1232 exit(1);
1233 }
1234 g_free(filename);
1235
1236 /* Set up EPOW events infrastructure */
1237 spapr_events_init(spapr);
1238
1239 /* Set up VIO bus */
1240 spapr->vio_bus = spapr_vio_bus_init();
1241
1242 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1243 if (serial_hds[i]) {
1244 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1245 }
1246 }
1247
1248 /* We always have at least the nvram device on VIO */
1249 spapr_create_nvram(spapr);
1250
1251 /* Set up PCI */
1252 spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW);
1253 spapr_pci_rtas_init();
1254
1255 phb = spapr_create_phb(spapr, 0);
1256
1257 for (i = 0; i < nb_nics; i++) {
1258 NICInfo *nd = &nd_table[i];
1259
1260 if (!nd->model) {
1261 nd->model = g_strdup("ibmveth");
1262 }
1263
1264 if (strcmp(nd->model, "ibmveth") == 0) {
1265 spapr_vlan_create(spapr->vio_bus, nd);
1266 } else {
1267 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1268 }
1269 }
1270
1271 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1272 spapr_vscsi_create(spapr->vio_bus);
1273 }
1274
1275 /* Graphics */
1276 if (spapr_vga_init(phb->bus)) {
1277 spapr->has_graphics = true;
1278 }
1279
1280 if (usb_enabled(spapr->has_graphics)) {
1281 pci_create_simple(phb->bus, -1, "pci-ohci");
1282 if (spapr->has_graphics) {
1283 usbdevice_create("keyboard");
1284 usbdevice_create("mouse");
1285 }
1286 }
1287
1288 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1289 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1290 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1291 exit(1);
1292 }
1293
1294 if (kernel_filename) {
1295 uint64_t lowaddr = 0;
1296
1297 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1298 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1299 if (kernel_size < 0) {
1300 kernel_size = load_elf(kernel_filename,
1301 translate_kernel_address, NULL,
1302 NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
1303 kernel_le = kernel_size > 0;
1304 }
1305 if (kernel_size < 0) {
1306 kernel_size = load_image_targphys(kernel_filename,
1307 KERNEL_LOAD_ADDR,
1308 load_limit - KERNEL_LOAD_ADDR);
1309 }
1310 if (kernel_size < 0) {
1311 fprintf(stderr, "qemu: could not load kernel '%s'\n",
1312 kernel_filename);
1313 exit(1);
1314 }
1315
1316 /* load initrd */
1317 if (initrd_filename) {
1318 /* Try to locate the initrd in the gap between the kernel
1319 * and the firmware. Add a bit of space just in case
1320 */
1321 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1322 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1323 load_limit - initrd_base);
1324 if (initrd_size < 0) {
1325 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1326 initrd_filename);
1327 exit(1);
1328 }
1329 } else {
1330 initrd_base = 0;
1331 initrd_size = 0;
1332 }
1333 }
1334
1335 if (bios_name == NULL) {
1336 bios_name = FW_FILE_NAME;
1337 }
1338 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1339 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1340 if (fw_size < 0) {
1341 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1342 exit(1);
1343 }
1344 g_free(filename);
1345
1346 spapr->entry_point = 0x100;
1347
1348 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1349 register_savevm_live(NULL, "spapr/htab", -1, 1,
1350 &savevm_htab_handlers, spapr);
1351
1352 /* Prepare the device tree */
1353 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1354 kernel_size, kernel_le,
1355 boot_device, kernel_cmdline,
1356 spapr->epow_irq);
1357 assert(spapr->fdt_skel != NULL);
1358 }
1359
1360 static QEMUMachine spapr_machine = {
1361 .name = "pseries",
1362 .desc = "pSeries Logical Partition (PAPR compliant)",
1363 .is_default = 1,
1364 .init = ppc_spapr_init,
1365 .reset = ppc_spapr_reset,
1366 .block_default_type = IF_SCSI,
1367 .max_cpus = MAX_CPUS,
1368 .no_parallel = 1,
1369 .default_boot_order = NULL,
1370 };
1371
1372 static void spapr_machine_init(void)
1373 {
1374 qemu_register_machine(&spapr_machine);
1375 }
1376
1377 machine_init(spapr_machine_init);