]> git.proxmox.com Git - qemu.git/blob - hw/slavio_timer.c
Sparc32: convert slavio timers to qdev
[qemu.git] / hw / slavio_timer.c
1 /*
2 * QEMU Sparc SLAVIO timer controller emulation
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "sun4m.h"
26 #include "qemu-timer.h"
27 #include "sysbus.h"
28
29 //#define DEBUG_TIMER
30
31 #ifdef DEBUG_TIMER
32 #define DPRINTF(fmt, ...) \
33 do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
34 #else
35 #define DPRINTF(fmt, ...) do {} while (0)
36 #endif
37
38 /*
39 * Registers of hardware timer in sun4m.
40 *
41 * This is the timer/counter part of chip STP2001 (Slave I/O), also
42 * produced as NCR89C105. See
43 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
44 *
45 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
46 * are zero. Bit 31 is 1 when count has been reached.
47 *
48 * Per-CPU timers interrupt local CPU, system timer uses normal
49 * interrupt routing.
50 *
51 */
52
53 #define MAX_CPUS 16
54
55 typedef struct SLAVIO_TIMERState {
56 SysBusDevice busdev;
57 qemu_irq irq;
58 ptimer_state *timer;
59 uint32_t count, counthigh, reached;
60 uint64_t limit;
61 // processor only
62 uint32_t running;
63 struct SLAVIO_TIMERState *master;
64 uint32_t slave_index;
65 // system only
66 uint32_t num_slaves;
67 struct SLAVIO_TIMERState *slave[MAX_CPUS];
68 uint32_t slave_mode;
69 } SLAVIO_TIMERState;
70
71 #define SYS_TIMER_SIZE 0x14
72 #define CPU_TIMER_SIZE 0x10
73
74 #define SYS_TIMER_OFFSET 0x10000ULL
75 #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
76
77 #define TIMER_LIMIT 0
78 #define TIMER_COUNTER 1
79 #define TIMER_COUNTER_NORST 2
80 #define TIMER_STATUS 3
81 #define TIMER_MODE 4
82
83 #define TIMER_COUNT_MASK32 0xfffffe00
84 #define TIMER_LIMIT_MASK32 0x7fffffff
85 #define TIMER_MAX_COUNT64 0x7ffffffffffffe00ULL
86 #define TIMER_MAX_COUNT32 0x7ffffe00ULL
87 #define TIMER_REACHED 0x80000000
88 #define TIMER_PERIOD 500ULL // 500ns
89 #define LIMIT_TO_PERIODS(l) ((l) >> 9)
90 #define PERIODS_TO_LIMIT(l) ((l) << 9)
91
92 static int slavio_timer_is_user(SLAVIO_TIMERState *s)
93 {
94 return s->master && (s->master->slave_mode & (1 << s->slave_index));
95 }
96
97 // Update count, set irq, update expire_time
98 // Convert from ptimer countdown units
99 static void slavio_timer_get_out(SLAVIO_TIMERState *s)
100 {
101 uint64_t count, limit;
102
103 if (s->limit == 0) /* free-run processor or system counter */
104 limit = TIMER_MAX_COUNT32;
105 else
106 limit = s->limit;
107
108 if (s->timer)
109 count = limit - PERIODS_TO_LIMIT(ptimer_get_count(s->timer));
110 else
111 count = 0;
112
113 DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit,
114 s->counthigh, s->count);
115 s->count = count & TIMER_COUNT_MASK32;
116 s->counthigh = count >> 32;
117 }
118
119 // timer callback
120 static void slavio_timer_irq(void *opaque)
121 {
122 SLAVIO_TIMERState *s = opaque;
123
124 slavio_timer_get_out(s);
125 DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
126 s->reached = TIMER_REACHED;
127 if (!slavio_timer_is_user(s))
128 qemu_irq_raise(s->irq);
129 }
130
131 static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
132 {
133 SLAVIO_TIMERState *s = opaque;
134 uint32_t saddr, ret;
135
136 saddr = addr >> 2;
137 switch (saddr) {
138 case TIMER_LIMIT:
139 // read limit (system counter mode) or read most signifying
140 // part of counter (user mode)
141 if (slavio_timer_is_user(s)) {
142 // read user timer MSW
143 slavio_timer_get_out(s);
144 ret = s->counthigh | s->reached;
145 } else {
146 // read limit
147 // clear irq
148 qemu_irq_lower(s->irq);
149 s->reached = 0;
150 ret = s->limit & TIMER_LIMIT_MASK32;
151 }
152 break;
153 case TIMER_COUNTER:
154 // read counter and reached bit (system mode) or read lsbits
155 // of counter (user mode)
156 slavio_timer_get_out(s);
157 if (slavio_timer_is_user(s)) // read user timer LSW
158 ret = s->count & TIMER_MAX_COUNT64;
159 else // read limit
160 ret = (s->count & TIMER_MAX_COUNT32) | s->reached;
161 break;
162 case TIMER_STATUS:
163 // only available in processor counter/timer
164 // read start/stop status
165 ret = s->running;
166 break;
167 case TIMER_MODE:
168 // only available in system counter
169 // read user/system mode
170 ret = s->slave_mode;
171 break;
172 default:
173 DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);
174 ret = 0;
175 break;
176 }
177 DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
178
179 return ret;
180 }
181
182 static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,
183 uint32_t val)
184 {
185 SLAVIO_TIMERState *s = opaque;
186 uint32_t saddr;
187
188 DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
189 saddr = addr >> 2;
190 switch (saddr) {
191 case TIMER_LIMIT:
192 if (slavio_timer_is_user(s)) {
193 uint64_t count;
194
195 // set user counter MSW, reset counter
196 s->limit = TIMER_MAX_COUNT64;
197 s->counthigh = val & (TIMER_MAX_COUNT64 >> 32);
198 s->reached = 0;
199 count = ((uint64_t)s->counthigh << 32) | s->count;
200 DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
201 count);
202 if (s->timer)
203 ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
204 } else {
205 // set limit, reset counter
206 qemu_irq_lower(s->irq);
207 s->limit = val & TIMER_MAX_COUNT32;
208 if (s->timer) {
209 if (s->limit == 0) /* free-run */
210 ptimer_set_limit(s->timer,
211 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
212 else
213 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1);
214 }
215 }
216 break;
217 case TIMER_COUNTER:
218 if (slavio_timer_is_user(s)) {
219 uint64_t count;
220
221 // set user counter LSW, reset counter
222 s->limit = TIMER_MAX_COUNT64;
223 s->count = val & TIMER_MAX_COUNT64;
224 s->reached = 0;
225 count = ((uint64_t)s->counthigh) << 32 | s->count;
226 DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
227 count);
228 if (s->timer)
229 ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
230 } else
231 DPRINTF("not user timer\n");
232 break;
233 case TIMER_COUNTER_NORST:
234 // set limit without resetting counter
235 s->limit = val & TIMER_MAX_COUNT32;
236 if (s->timer) {
237 if (s->limit == 0) /* free-run */
238 ptimer_set_limit(s->timer,
239 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
240 else
241 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 0);
242 }
243 break;
244 case TIMER_STATUS:
245 if (slavio_timer_is_user(s)) {
246 // start/stop user counter
247 if ((val & 1) && !s->running) {
248 DPRINTF("processor %d user timer started\n", s->slave_index);
249 if (s->timer)
250 ptimer_run(s->timer, 0);
251 s->running = 1;
252 } else if (!(val & 1) && s->running) {
253 DPRINTF("processor %d user timer stopped\n", s->slave_index);
254 if (s->timer)
255 ptimer_stop(s->timer);
256 s->running = 0;
257 }
258 }
259 break;
260 case TIMER_MODE:
261 if (s->master == NULL) {
262 unsigned int i;
263
264 for (i = 0; i < s->num_slaves; i++) {
265 unsigned int processor = 1 << i;
266
267 // check for a change in timer mode for this processor
268 if ((val & processor) != (s->slave_mode & processor)) {
269 if (val & processor) { // counter -> user timer
270 qemu_irq_lower(s->slave[i]->irq);
271 // counters are always running
272 ptimer_stop(s->slave[i]->timer);
273 s->slave[i]->running = 0;
274 // user timer limit is always the same
275 s->slave[i]->limit = TIMER_MAX_COUNT64;
276 ptimer_set_limit(s->slave[i]->timer,
277 LIMIT_TO_PERIODS(s->slave[i]->limit),
278 1);
279 // set this processors user timer bit in config
280 // register
281 s->slave_mode |= processor;
282 DPRINTF("processor %d changed from counter to user "
283 "timer\n", s->slave[i]->slave_index);
284 } else { // user timer -> counter
285 // stop the user timer if it is running
286 if (s->slave[i]->running)
287 ptimer_stop(s->slave[i]->timer);
288 // start the counter
289 ptimer_run(s->slave[i]->timer, 0);
290 s->slave[i]->running = 1;
291 // clear this processors user timer bit in config
292 // register
293 s->slave_mode &= ~processor;
294 DPRINTF("processor %d changed from user timer to "
295 "counter\n", s->slave[i]->slave_index);
296 }
297 }
298 }
299 } else
300 DPRINTF("not system timer\n");
301 break;
302 default:
303 DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);
304 break;
305 }
306 }
307
308 static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
309 NULL,
310 NULL,
311 slavio_timer_mem_readl,
312 };
313
314 static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
315 NULL,
316 NULL,
317 slavio_timer_mem_writel,
318 };
319
320 static void slavio_timer_save(QEMUFile *f, void *opaque)
321 {
322 SLAVIO_TIMERState *s = opaque;
323
324 qemu_put_be64s(f, &s->limit);
325 qemu_put_be32s(f, &s->count);
326 qemu_put_be32s(f, &s->counthigh);
327 qemu_put_be32s(f, &s->reached);
328 qemu_put_be32s(f, &s->running);
329 if (s->timer)
330 qemu_put_ptimer(f, s->timer);
331 }
332
333 static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
334 {
335 SLAVIO_TIMERState *s = opaque;
336
337 if (version_id != 3)
338 return -EINVAL;
339
340 qemu_get_be64s(f, &s->limit);
341 qemu_get_be32s(f, &s->count);
342 qemu_get_be32s(f, &s->counthigh);
343 qemu_get_be32s(f, &s->reached);
344 qemu_get_be32s(f, &s->running);
345 if (s->timer)
346 qemu_get_ptimer(f, s->timer);
347
348 return 0;
349 }
350
351 static void slavio_timer_reset(void *opaque)
352 {
353 SLAVIO_TIMERState *s = opaque;
354
355 s->limit = 0;
356 s->count = 0;
357 s->reached = 0;
358 s->slave_mode = 0;
359 if (!s->master || s->slave_index < s->master->num_slaves) {
360 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
361 ptimer_run(s->timer, 0);
362 }
363 s->running = 1;
364 }
365
366 static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,
367 qemu_irq irq,
368 SLAVIO_TIMERState *master,
369 uint32_t slave_index,
370 uint32_t num_slaves)
371 {
372 DeviceState *dev;
373 SysBusDevice *s;
374 SLAVIO_TIMERState *d;
375
376 dev = qdev_create(NULL, "slavio_timer");
377 qdev_set_prop_int(dev, "slave_index", slave_index);
378 qdev_set_prop_int(dev, "num_slaves", num_slaves);
379 qdev_set_prop_ptr(dev, "master", master);
380 qdev_init(dev);
381 s = sysbus_from_qdev(dev);
382 sysbus_connect_irq(s, 0, irq);
383 sysbus_mmio_map(s, 0, addr);
384
385 d = FROM_SYSBUS(SLAVIO_TIMERState, s);
386
387 return d;
388 }
389
390 static void slavio_timer_init1(SysBusDevice *dev)
391 {
392 int io;
393 SLAVIO_TIMERState *s = FROM_SYSBUS(SLAVIO_TIMERState, dev);
394 QEMUBH *bh;
395
396 sysbus_init_irq(dev, &s->irq);
397 s->num_slaves = qdev_get_prop_int(&dev->qdev, "num_slaves", 0);
398 s->slave_index = qdev_get_prop_int(&dev->qdev, "slave_index", 0);
399 s->master = qdev_get_prop_ptr(&dev->qdev, "master");
400
401 if (!s->master || s->slave_index < s->master->num_slaves) {
402 bh = qemu_bh_new(slavio_timer_irq, s);
403 s->timer = ptimer_init(bh);
404 ptimer_set_period(s->timer, TIMER_PERIOD);
405 }
406
407 io = cpu_register_io_memory(slavio_timer_mem_read, slavio_timer_mem_write,
408 s);
409 if (s->master) {
410 sysbus_init_mmio(dev, CPU_TIMER_SIZE, io);
411 } else {
412 sysbus_init_mmio(dev, SYS_TIMER_SIZE, io);
413 }
414
415 register_savevm("slavio_timer", -1, 3, slavio_timer_save,
416 slavio_timer_load, s);
417 qemu_register_reset(slavio_timer_reset, s);
418 slavio_timer_reset(s);
419 }
420
421 void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
422 qemu_irq *cpu_irqs, unsigned int num_cpus)
423 {
424 SLAVIO_TIMERState *master;
425 unsigned int i;
426
427 master = slavio_timer_init(base + SYS_TIMER_OFFSET, master_irq, NULL, 0,
428 num_cpus);
429
430 for (i = 0; i < MAX_CPUS; i++) {
431 master->slave[i] = slavio_timer_init(base + (target_phys_addr_t)
432 CPU_TIMER_OFFSET(i),
433 cpu_irqs[i], master, i, 0);
434 }
435 }
436
437 static SysBusDeviceInfo slavio_timer_info = {
438 .init = slavio_timer_init1,
439 .qdev.name = "slavio_timer",
440 .qdev.size = sizeof(SLAVIO_TIMERState),
441 .qdev.props = (DevicePropList[]) {
442 {.name = "num_slaves", .type = PROP_TYPE_INT},
443 {.name = "slave_index", .type = PROP_TYPE_INT},
444 {.name = "master", .type = PROP_TYPE_PTR},
445 {.name = NULL}
446 }
447 };
448
449 static void slavio_timer_register_devices(void)
450 {
451 sysbus_register_withprop(&slavio_timer_info);
452 }
453
454 device_init(slavio_timer_register_devices)