]> git.proxmox.com Git - qemu.git/blob - hw/xen_pt.c
Merge remote-tracking branch 'sstabellini/compile-xs' into staging
[qemu.git] / hw / xen_pt.c
1 /*
2 * Copyright (c) 2007, Neocleus Corporation.
3 * Copyright (c) 2007, Intel Corporation.
4 *
5 * This work is licensed under the terms of the GNU GPL, version 2. See
6 * the COPYING file in the top-level directory.
7 *
8 * Alex Novik <alex@neocleus.com>
9 * Allen Kay <allen.m.kay@intel.com>
10 * Guy Zana <guy@neocleus.com>
11 *
12 * This file implements direct PCI assignment to a HVM guest
13 */
14
15 /*
16 * Interrupt Disable policy:
17 *
18 * INTx interrupt:
19 * Initialize(register_real_device)
20 * Map INTx(xc_physdev_map_pirq):
21 * <fail>
22 * - Set real Interrupt Disable bit to '1'.
23 * - Set machine_irq and assigned_device->machine_irq to '0'.
24 * * Don't bind INTx.
25 *
26 * Bind INTx(xc_domain_bind_pt_pci_irq):
27 * <fail>
28 * - Set real Interrupt Disable bit to '1'.
29 * - Unmap INTx.
30 * - Decrement xen_pt_mapped_machine_irq[machine_irq]
31 * - Set assigned_device->machine_irq to '0'.
32 *
33 * Write to Interrupt Disable bit by guest software(xen_pt_cmd_reg_write)
34 * Write '0'
35 * - Set real bit to '0' if assigned_device->machine_irq isn't '0'.
36 *
37 * Write '1'
38 * - Set real bit to '1'.
39 *
40 * MSI interrupt:
41 * Initialize MSI register(xen_pt_msi_setup, xen_pt_msi_update)
42 * Bind MSI(xc_domain_update_msi_irq)
43 * <fail>
44 * - Unmap MSI.
45 * - Set dev->msi->pirq to '-1'.
46 *
47 * MSI-X interrupt:
48 * Initialize MSI-X register(xen_pt_msix_update_one)
49 * Bind MSI-X(xc_domain_update_msi_irq)
50 * <fail>
51 * - Unmap MSI-X.
52 * - Set entry->pirq to '-1'.
53 */
54
55 #include <sys/ioctl.h>
56
57 #include "pci.h"
58 #include "xen.h"
59 #include "xen_backend.h"
60 #include "xen_pt.h"
61 #include "range.h"
62
63 #define XEN_PT_NR_IRQS (256)
64 static uint8_t xen_pt_mapped_machine_irq[XEN_PT_NR_IRQS] = {0};
65
66 void xen_pt_log(const PCIDevice *d, const char *f, ...)
67 {
68 va_list ap;
69
70 va_start(ap, f);
71 if (d) {
72 fprintf(stderr, "[%02x:%02x.%d] ", pci_bus_num(d->bus),
73 PCI_SLOT(d->devfn), PCI_FUNC(d->devfn));
74 }
75 vfprintf(stderr, f, ap);
76 va_end(ap);
77 }
78
79 /* Config Space */
80
81 static int xen_pt_pci_config_access_check(PCIDevice *d, uint32_t addr, int len)
82 {
83 /* check offset range */
84 if (addr >= 0xFF) {
85 XEN_PT_ERR(d, "Failed to access register with offset exceeding 0xFF. "
86 "(addr: 0x%02x, len: %d)\n", addr, len);
87 return -1;
88 }
89
90 /* check read size */
91 if ((len != 1) && (len != 2) && (len != 4)) {
92 XEN_PT_ERR(d, "Failed to access register with invalid access length. "
93 "(addr: 0x%02x, len: %d)\n", addr, len);
94 return -1;
95 }
96
97 /* check offset alignment */
98 if (addr & (len - 1)) {
99 XEN_PT_ERR(d, "Failed to access register with invalid access size "
100 "alignment. (addr: 0x%02x, len: %d)\n", addr, len);
101 return -1;
102 }
103
104 return 0;
105 }
106
107 int xen_pt_bar_offset_to_index(uint32_t offset)
108 {
109 int index = 0;
110
111 /* check Exp ROM BAR */
112 if (offset == PCI_ROM_ADDRESS) {
113 return PCI_ROM_SLOT;
114 }
115
116 /* calculate BAR index */
117 index = (offset - PCI_BASE_ADDRESS_0) >> 2;
118 if (index >= PCI_NUM_REGIONS) {
119 return -1;
120 }
121
122 return index;
123 }
124
125 static uint32_t xen_pt_pci_read_config(PCIDevice *d, uint32_t addr, int len)
126 {
127 XenPCIPassthroughState *s = DO_UPCAST(XenPCIPassthroughState, dev, d);
128 uint32_t val = 0;
129 XenPTRegGroup *reg_grp_entry = NULL;
130 XenPTReg *reg_entry = NULL;
131 int rc = 0;
132 int emul_len = 0;
133 uint32_t find_addr = addr;
134
135 if (xen_pt_pci_config_access_check(d, addr, len)) {
136 goto exit;
137 }
138
139 /* find register group entry */
140 reg_grp_entry = xen_pt_find_reg_grp(s, addr);
141 if (reg_grp_entry) {
142 /* check 0-Hardwired register group */
143 if (reg_grp_entry->reg_grp->grp_type == XEN_PT_GRP_TYPE_HARDWIRED) {
144 /* no need to emulate, just return 0 */
145 val = 0;
146 goto exit;
147 }
148 }
149
150 /* read I/O device register value */
151 rc = xen_host_pci_get_block(&s->real_device, addr, (uint8_t *)&val, len);
152 if (rc < 0) {
153 XEN_PT_ERR(d, "pci_read_block failed. return value: %d.\n", rc);
154 memset(&val, 0xff, len);
155 }
156
157 /* just return the I/O device register value for
158 * passthrough type register group */
159 if (reg_grp_entry == NULL) {
160 goto exit;
161 }
162
163 /* adjust the read value to appropriate CFC-CFF window */
164 val <<= (addr & 3) << 3;
165 emul_len = len;
166
167 /* loop around the guest requested size */
168 while (emul_len > 0) {
169 /* find register entry to be emulated */
170 reg_entry = xen_pt_find_reg(reg_grp_entry, find_addr);
171 if (reg_entry) {
172 XenPTRegInfo *reg = reg_entry->reg;
173 uint32_t real_offset = reg_grp_entry->base_offset + reg->offset;
174 uint32_t valid_mask = 0xFFFFFFFF >> ((4 - emul_len) << 3);
175 uint8_t *ptr_val = NULL;
176
177 valid_mask <<= (find_addr - real_offset) << 3;
178 ptr_val = (uint8_t *)&val + (real_offset & 3);
179
180 /* do emulation based on register size */
181 switch (reg->size) {
182 case 1:
183 if (reg->u.b.read) {
184 rc = reg->u.b.read(s, reg_entry, ptr_val, valid_mask);
185 }
186 break;
187 case 2:
188 if (reg->u.w.read) {
189 rc = reg->u.w.read(s, reg_entry,
190 (uint16_t *)ptr_val, valid_mask);
191 }
192 break;
193 case 4:
194 if (reg->u.dw.read) {
195 rc = reg->u.dw.read(s, reg_entry,
196 (uint32_t *)ptr_val, valid_mask);
197 }
198 break;
199 }
200
201 if (rc < 0) {
202 xen_shutdown_fatal_error("Internal error: Invalid read "
203 "emulation. (%s, rc: %d)\n",
204 __func__, rc);
205 return 0;
206 }
207
208 /* calculate next address to find */
209 emul_len -= reg->size;
210 if (emul_len > 0) {
211 find_addr = real_offset + reg->size;
212 }
213 } else {
214 /* nothing to do with passthrough type register,
215 * continue to find next byte */
216 emul_len--;
217 find_addr++;
218 }
219 }
220
221 /* need to shift back before returning them to pci bus emulator */
222 val >>= ((addr & 3) << 3);
223
224 exit:
225 XEN_PT_LOG_CONFIG(d, addr, val, len);
226 return val;
227 }
228
229 static void xen_pt_pci_write_config(PCIDevice *d, uint32_t addr,
230 uint32_t val, int len)
231 {
232 XenPCIPassthroughState *s = DO_UPCAST(XenPCIPassthroughState, dev, d);
233 int index = 0;
234 XenPTRegGroup *reg_grp_entry = NULL;
235 int rc = 0;
236 uint32_t read_val = 0;
237 int emul_len = 0;
238 XenPTReg *reg_entry = NULL;
239 uint32_t find_addr = addr;
240 XenPTRegInfo *reg = NULL;
241
242 if (xen_pt_pci_config_access_check(d, addr, len)) {
243 return;
244 }
245
246 XEN_PT_LOG_CONFIG(d, addr, val, len);
247
248 /* check unused BAR register */
249 index = xen_pt_bar_offset_to_index(addr);
250 if ((index >= 0) && (val > 0 && val < XEN_PT_BAR_ALLF) &&
251 (s->bases[index].bar_flag == XEN_PT_BAR_FLAG_UNUSED)) {
252 XEN_PT_WARN(d, "Guest attempt to set address to unused Base Address "
253 "Register. (addr: 0x%02x, len: %d)\n", addr, len);
254 }
255
256 /* find register group entry */
257 reg_grp_entry = xen_pt_find_reg_grp(s, addr);
258 if (reg_grp_entry) {
259 /* check 0-Hardwired register group */
260 if (reg_grp_entry->reg_grp->grp_type == XEN_PT_GRP_TYPE_HARDWIRED) {
261 /* ignore silently */
262 XEN_PT_WARN(d, "Access to 0-Hardwired register. "
263 "(addr: 0x%02x, len: %d)\n", addr, len);
264 return;
265 }
266 }
267
268 rc = xen_host_pci_get_block(&s->real_device, addr,
269 (uint8_t *)&read_val, len);
270 if (rc < 0) {
271 XEN_PT_ERR(d, "pci_read_block failed. return value: %d.\n", rc);
272 memset(&read_val, 0xff, len);
273 }
274
275 /* pass directly to the real device for passthrough type register group */
276 if (reg_grp_entry == NULL) {
277 goto out;
278 }
279
280 memory_region_transaction_begin();
281 pci_default_write_config(d, addr, val, len);
282
283 /* adjust the read and write value to appropriate CFC-CFF window */
284 read_val <<= (addr & 3) << 3;
285 val <<= (addr & 3) << 3;
286 emul_len = len;
287
288 /* loop around the guest requested size */
289 while (emul_len > 0) {
290 /* find register entry to be emulated */
291 reg_entry = xen_pt_find_reg(reg_grp_entry, find_addr);
292 if (reg_entry) {
293 reg = reg_entry->reg;
294 uint32_t real_offset = reg_grp_entry->base_offset + reg->offset;
295 uint32_t valid_mask = 0xFFFFFFFF >> ((4 - emul_len) << 3);
296 uint8_t *ptr_val = NULL;
297
298 valid_mask <<= (find_addr - real_offset) << 3;
299 ptr_val = (uint8_t *)&val + (real_offset & 3);
300
301 /* do emulation based on register size */
302 switch (reg->size) {
303 case 1:
304 if (reg->u.b.write) {
305 rc = reg->u.b.write(s, reg_entry, ptr_val,
306 read_val >> ((real_offset & 3) << 3),
307 valid_mask);
308 }
309 break;
310 case 2:
311 if (reg->u.w.write) {
312 rc = reg->u.w.write(s, reg_entry, (uint16_t *)ptr_val,
313 (read_val >> ((real_offset & 3) << 3)),
314 valid_mask);
315 }
316 break;
317 case 4:
318 if (reg->u.dw.write) {
319 rc = reg->u.dw.write(s, reg_entry, (uint32_t *)ptr_val,
320 (read_val >> ((real_offset & 3) << 3)),
321 valid_mask);
322 }
323 break;
324 }
325
326 if (rc < 0) {
327 xen_shutdown_fatal_error("Internal error: Invalid write"
328 " emulation. (%s, rc: %d)\n",
329 __func__, rc);
330 return;
331 }
332
333 /* calculate next address to find */
334 emul_len -= reg->size;
335 if (emul_len > 0) {
336 find_addr = real_offset + reg->size;
337 }
338 } else {
339 /* nothing to do with passthrough type register,
340 * continue to find next byte */
341 emul_len--;
342 find_addr++;
343 }
344 }
345
346 /* need to shift back before passing them to xen_host_pci_device */
347 val >>= (addr & 3) << 3;
348
349 memory_region_transaction_commit();
350
351 out:
352 if (!(reg && reg->no_wb)) {
353 /* unknown regs are passed through */
354 rc = xen_host_pci_set_block(&s->real_device, addr,
355 (uint8_t *)&val, len);
356
357 if (rc < 0) {
358 XEN_PT_ERR(d, "pci_write_block failed. return value: %d.\n", rc);
359 }
360 }
361 }
362
363 /* register regions */
364
365 static uint64_t xen_pt_bar_read(void *o, target_phys_addr_t addr,
366 unsigned size)
367 {
368 PCIDevice *d = o;
369 /* if this function is called, that probably means that there is a
370 * misconfiguration of the IOMMU. */
371 XEN_PT_ERR(d, "Should not read BAR through QEMU. @0x"TARGET_FMT_plx"\n",
372 addr);
373 return 0;
374 }
375 static void xen_pt_bar_write(void *o, target_phys_addr_t addr, uint64_t val,
376 unsigned size)
377 {
378 PCIDevice *d = o;
379 /* Same comment as xen_pt_bar_read function */
380 XEN_PT_ERR(d, "Should not write BAR through QEMU. @0x"TARGET_FMT_plx"\n",
381 addr);
382 }
383
384 static const MemoryRegionOps ops = {
385 .endianness = DEVICE_NATIVE_ENDIAN,
386 .read = xen_pt_bar_read,
387 .write = xen_pt_bar_write,
388 };
389
390 static int xen_pt_register_regions(XenPCIPassthroughState *s)
391 {
392 int i = 0;
393 XenHostPCIDevice *d = &s->real_device;
394
395 /* Register PIO/MMIO BARs */
396 for (i = 0; i < PCI_ROM_SLOT; i++) {
397 XenHostPCIIORegion *r = &d->io_regions[i];
398 uint8_t type;
399
400 if (r->base_addr == 0 || r->size == 0) {
401 continue;
402 }
403
404 s->bases[i].access.u = r->base_addr;
405
406 if (r->type & XEN_HOST_PCI_REGION_TYPE_IO) {
407 type = PCI_BASE_ADDRESS_SPACE_IO;
408 } else {
409 type = PCI_BASE_ADDRESS_SPACE_MEMORY;
410 if (r->type & XEN_HOST_PCI_REGION_TYPE_PREFETCH) {
411 type |= PCI_BASE_ADDRESS_MEM_PREFETCH;
412 }
413 }
414
415 memory_region_init_io(&s->bar[i], &ops, &s->dev,
416 "xen-pci-pt-bar", r->size);
417 pci_register_bar(&s->dev, i, type, &s->bar[i]);
418
419 XEN_PT_LOG(&s->dev, "IO region %i registered (size=0x%08"PRIx64
420 " base_addr=0x%08"PRIx64" type: %#x)\n",
421 i, r->size, r->base_addr, type);
422 }
423
424 /* Register expansion ROM address */
425 if (d->rom.base_addr && d->rom.size) {
426 uint32_t bar_data = 0;
427
428 /* Re-set BAR reported by OS, otherwise ROM can't be read. */
429 if (xen_host_pci_get_long(d, PCI_ROM_ADDRESS, &bar_data)) {
430 return 0;
431 }
432 if ((bar_data & PCI_ROM_ADDRESS_MASK) == 0) {
433 bar_data |= d->rom.base_addr & PCI_ROM_ADDRESS_MASK;
434 xen_host_pci_set_long(d, PCI_ROM_ADDRESS, bar_data);
435 }
436
437 s->bases[PCI_ROM_SLOT].access.maddr = d->rom.base_addr;
438
439 memory_region_init_rom_device(&s->rom, NULL, NULL,
440 "xen-pci-pt-rom", d->rom.size);
441 pci_register_bar(&s->dev, PCI_ROM_SLOT, PCI_BASE_ADDRESS_MEM_PREFETCH,
442 &s->rom);
443
444 XEN_PT_LOG(&s->dev, "Expansion ROM registered (size=0x%08"PRIx64
445 " base_addr=0x%08"PRIx64")\n",
446 d->rom.size, d->rom.base_addr);
447 }
448
449 return 0;
450 }
451
452 static void xen_pt_unregister_regions(XenPCIPassthroughState *s)
453 {
454 XenHostPCIDevice *d = &s->real_device;
455 int i;
456
457 for (i = 0; i < PCI_NUM_REGIONS - 1; i++) {
458 XenHostPCIIORegion *r = &d->io_regions[i];
459
460 if (r->base_addr == 0 || r->size == 0) {
461 continue;
462 }
463
464 memory_region_destroy(&s->bar[i]);
465 }
466 if (d->rom.base_addr && d->rom.size) {
467 memory_region_destroy(&s->rom);
468 }
469 }
470
471 /* region mapping */
472
473 static int xen_pt_bar_from_region(XenPCIPassthroughState *s, MemoryRegion *mr)
474 {
475 int i = 0;
476
477 for (i = 0; i < PCI_NUM_REGIONS - 1; i++) {
478 if (mr == &s->bar[i]) {
479 return i;
480 }
481 }
482 if (mr == &s->rom) {
483 return PCI_ROM_SLOT;
484 }
485 return -1;
486 }
487
488 /*
489 * This function checks if an io_region overlaps an io_region from another
490 * device. The io_region to check is provided with (addr, size and type)
491 * A callback can be provided and will be called for every region that is
492 * overlapped.
493 * The return value indicates if the region is overlappsed */
494 struct CheckBarArgs {
495 XenPCIPassthroughState *s;
496 pcibus_t addr;
497 pcibus_t size;
498 uint8_t type;
499 bool rc;
500 };
501 static void xen_pt_check_bar_overlap(PCIBus *bus, PCIDevice *d, void *opaque)
502 {
503 struct CheckBarArgs *arg = opaque;
504 XenPCIPassthroughState *s = arg->s;
505 uint8_t type = arg->type;
506 int i;
507
508 if (d->devfn == s->dev.devfn) {
509 return;
510 }
511
512 /* xxx: This ignores bridges. */
513 for (i = 0; i < PCI_NUM_REGIONS; i++) {
514 const PCIIORegion *r = &d->io_regions[i];
515
516 if (!r->size) {
517 continue;
518 }
519 if ((type & PCI_BASE_ADDRESS_SPACE_IO)
520 != (r->type & PCI_BASE_ADDRESS_SPACE_IO)) {
521 continue;
522 }
523
524 if (ranges_overlap(arg->addr, arg->size, r->addr, r->size)) {
525 XEN_PT_WARN(&s->dev,
526 "Overlapped to device [%02x:%02x.%d] Region: %i"
527 " (addr: %#"FMT_PCIBUS", len: %#"FMT_PCIBUS")\n",
528 pci_bus_num(bus), PCI_SLOT(d->devfn),
529 PCI_FUNC(d->devfn), i, r->addr, r->size);
530 arg->rc = true;
531 }
532 }
533 }
534
535 static void xen_pt_region_update(XenPCIPassthroughState *s,
536 MemoryRegionSection *sec, bool adding)
537 {
538 PCIDevice *d = &s->dev;
539 MemoryRegion *mr = sec->mr;
540 int bar = -1;
541 int rc;
542 int op = adding ? DPCI_ADD_MAPPING : DPCI_REMOVE_MAPPING;
543 struct CheckBarArgs args = {
544 .s = s,
545 .addr = sec->offset_within_address_space,
546 .size = sec->size,
547 .rc = false,
548 };
549
550 bar = xen_pt_bar_from_region(s, mr);
551 if (bar == -1 && (!s->msix || &s->msix->mmio != mr)) {
552 return;
553 }
554
555 if (s->msix && &s->msix->mmio == mr) {
556 if (adding) {
557 s->msix->mmio_base_addr = sec->offset_within_address_space;
558 rc = xen_pt_msix_update_remap(s, s->msix->bar_index);
559 }
560 return;
561 }
562
563 args.type = d->io_regions[bar].type;
564 pci_for_each_device(d->bus, pci_bus_num(d->bus),
565 xen_pt_check_bar_overlap, &args);
566 if (args.rc) {
567 XEN_PT_WARN(d, "Region: %d (addr: %#"FMT_PCIBUS
568 ", len: %#"FMT_PCIBUS") is overlapped.\n",
569 bar, sec->offset_within_address_space, sec->size);
570 }
571
572 if (d->io_regions[bar].type & PCI_BASE_ADDRESS_SPACE_IO) {
573 uint32_t guest_port = sec->offset_within_address_space;
574 uint32_t machine_port = s->bases[bar].access.pio_base;
575 uint32_t size = sec->size;
576 rc = xc_domain_ioport_mapping(xen_xc, xen_domid,
577 guest_port, machine_port, size,
578 op);
579 if (rc) {
580 XEN_PT_ERR(d, "%s ioport mapping failed! (rc: %i)\n",
581 adding ? "create new" : "remove old", rc);
582 }
583 } else {
584 pcibus_t guest_addr = sec->offset_within_address_space;
585 pcibus_t machine_addr = s->bases[bar].access.maddr
586 + sec->offset_within_region;
587 pcibus_t size = sec->size;
588 rc = xc_domain_memory_mapping(xen_xc, xen_domid,
589 XEN_PFN(guest_addr + XC_PAGE_SIZE - 1),
590 XEN_PFN(machine_addr + XC_PAGE_SIZE - 1),
591 XEN_PFN(size + XC_PAGE_SIZE - 1),
592 op);
593 if (rc) {
594 XEN_PT_ERR(d, "%s mem mapping failed! (rc: %i)\n",
595 adding ? "create new" : "remove old", rc);
596 }
597 }
598 }
599
600 static void xen_pt_begin(MemoryListener *l)
601 {
602 }
603
604 static void xen_pt_commit(MemoryListener *l)
605 {
606 }
607
608 static void xen_pt_region_add(MemoryListener *l, MemoryRegionSection *sec)
609 {
610 XenPCIPassthroughState *s = container_of(l, XenPCIPassthroughState,
611 memory_listener);
612
613 xen_pt_region_update(s, sec, true);
614 }
615
616 static void xen_pt_region_del(MemoryListener *l, MemoryRegionSection *sec)
617 {
618 XenPCIPassthroughState *s = container_of(l, XenPCIPassthroughState,
619 memory_listener);
620
621 xen_pt_region_update(s, sec, false);
622 }
623
624 static void xen_pt_region_nop(MemoryListener *l, MemoryRegionSection *s)
625 {
626 }
627
628 static void xen_pt_log_fns(MemoryListener *l, MemoryRegionSection *s)
629 {
630 }
631
632 static void xen_pt_log_global_fns(MemoryListener *l)
633 {
634 }
635
636 static void xen_pt_eventfd_fns(MemoryListener *l, MemoryRegionSection *s,
637 bool match_data, uint64_t data, int fd)
638 {
639 }
640
641 static const MemoryListener xen_pt_memory_listener = {
642 .begin = xen_pt_begin,
643 .commit = xen_pt_commit,
644 .region_add = xen_pt_region_add,
645 .region_nop = xen_pt_region_nop,
646 .region_del = xen_pt_region_del,
647 .log_start = xen_pt_log_fns,
648 .log_stop = xen_pt_log_fns,
649 .log_sync = xen_pt_log_fns,
650 .log_global_start = xen_pt_log_global_fns,
651 .log_global_stop = xen_pt_log_global_fns,
652 .eventfd_add = xen_pt_eventfd_fns,
653 .eventfd_del = xen_pt_eventfd_fns,
654 .priority = 10,
655 };
656
657 /* init */
658
659 static int xen_pt_initfn(PCIDevice *d)
660 {
661 XenPCIPassthroughState *s = DO_UPCAST(XenPCIPassthroughState, dev, d);
662 int rc = 0;
663 uint8_t machine_irq = 0;
664 int pirq = XEN_PT_UNASSIGNED_PIRQ;
665
666 /* register real device */
667 XEN_PT_LOG(d, "Assigning real physical device %02x:%02x.%d"
668 " to devfn %#x\n",
669 s->hostaddr.bus, s->hostaddr.slot, s->hostaddr.function,
670 s->dev.devfn);
671
672 rc = xen_host_pci_device_get(&s->real_device,
673 s->hostaddr.domain, s->hostaddr.bus,
674 s->hostaddr.slot, s->hostaddr.function);
675 if (rc) {
676 XEN_PT_ERR(d, "Failed to \"open\" the real pci device. rc: %i\n", rc);
677 return -1;
678 }
679
680 s->is_virtfn = s->real_device.is_virtfn;
681 if (s->is_virtfn) {
682 XEN_PT_LOG(d, "%04x:%02x:%02x.%d is a SR-IOV Virtual Function\n",
683 s->real_device.domain, bus, slot, func);
684 }
685
686 /* Initialize virtualized PCI configuration (Extended 256 Bytes) */
687 if (xen_host_pci_get_block(&s->real_device, 0, d->config,
688 PCI_CONFIG_SPACE_SIZE) == -1) {
689 xen_host_pci_device_put(&s->real_device);
690 return -1;
691 }
692
693 s->memory_listener = xen_pt_memory_listener;
694
695 /* Handle real device's MMIO/PIO BARs */
696 xen_pt_register_regions(s);
697
698 /* reinitialize each config register to be emulated */
699 if (xen_pt_config_init(s)) {
700 XEN_PT_ERR(d, "PCI Config space initialisation failed.\n");
701 xen_host_pci_device_put(&s->real_device);
702 return -1;
703 }
704
705 /* Bind interrupt */
706 if (!s->dev.config[PCI_INTERRUPT_PIN]) {
707 XEN_PT_LOG(d, "no pin interrupt\n");
708 goto out;
709 }
710
711 machine_irq = s->real_device.irq;
712 rc = xc_physdev_map_pirq(xen_xc, xen_domid, machine_irq, &pirq);
713
714 if (rc < 0) {
715 XEN_PT_ERR(d, "Mapping machine irq %u to pirq %i failed, (rc: %d)\n",
716 machine_irq, pirq, rc);
717
718 /* Disable PCI intx assertion (turn on bit10 of devctl) */
719 xen_host_pci_set_word(&s->real_device,
720 PCI_COMMAND,
721 pci_get_word(s->dev.config + PCI_COMMAND)
722 | PCI_COMMAND_INTX_DISABLE);
723 machine_irq = 0;
724 s->machine_irq = 0;
725 } else {
726 machine_irq = pirq;
727 s->machine_irq = pirq;
728 xen_pt_mapped_machine_irq[machine_irq]++;
729 }
730
731 /* bind machine_irq to device */
732 if (machine_irq != 0) {
733 uint8_t e_intx = xen_pt_pci_intx(s);
734
735 rc = xc_domain_bind_pt_pci_irq(xen_xc, xen_domid, machine_irq,
736 pci_bus_num(d->bus),
737 PCI_SLOT(d->devfn),
738 e_intx);
739 if (rc < 0) {
740 XEN_PT_ERR(d, "Binding of interrupt %i failed! (rc: %d)\n",
741 e_intx, rc);
742
743 /* Disable PCI intx assertion (turn on bit10 of devctl) */
744 xen_host_pci_set_word(&s->real_device, PCI_COMMAND,
745 *(uint16_t *)(&s->dev.config[PCI_COMMAND])
746 | PCI_COMMAND_INTX_DISABLE);
747 xen_pt_mapped_machine_irq[machine_irq]--;
748
749 if (xen_pt_mapped_machine_irq[machine_irq] == 0) {
750 if (xc_physdev_unmap_pirq(xen_xc, xen_domid, machine_irq)) {
751 XEN_PT_ERR(d, "Unmapping of machine interrupt %i failed!"
752 " (rc: %d)\n", machine_irq, rc);
753 }
754 }
755 s->machine_irq = 0;
756 }
757 }
758
759 out:
760 memory_listener_register(&s->memory_listener, NULL);
761 XEN_PT_LOG(d, "Real physical device %02x:%02x.%d registered successfuly!\n",
762 bus, slot, func);
763
764 return 0;
765 }
766
767 static int xen_pt_unregister_device(PCIDevice *d)
768 {
769 XenPCIPassthroughState *s = DO_UPCAST(XenPCIPassthroughState, dev, d);
770 uint8_t machine_irq = s->machine_irq;
771 uint8_t intx = xen_pt_pci_intx(s);
772 int rc;
773
774 if (machine_irq) {
775 rc = xc_domain_unbind_pt_irq(xen_xc, xen_domid, machine_irq,
776 PT_IRQ_TYPE_PCI,
777 pci_bus_num(d->bus),
778 PCI_SLOT(s->dev.devfn),
779 intx,
780 0 /* isa_irq */);
781 if (rc < 0) {
782 XEN_PT_ERR(d, "unbinding of interrupt INT%c failed."
783 " (machine irq: %i, rc: %d)"
784 " But bravely continuing on..\n",
785 'a' + intx, machine_irq, rc);
786 }
787 }
788
789 if (s->msi) {
790 xen_pt_msi_disable(s);
791 }
792 if (s->msix) {
793 xen_pt_msix_disable(s);
794 }
795
796 if (machine_irq) {
797 xen_pt_mapped_machine_irq[machine_irq]--;
798
799 if (xen_pt_mapped_machine_irq[machine_irq] == 0) {
800 rc = xc_physdev_unmap_pirq(xen_xc, xen_domid, machine_irq);
801
802 if (rc < 0) {
803 XEN_PT_ERR(d, "unmapping of interrupt %i failed. (rc: %d)"
804 " But bravely continuing on..\n",
805 machine_irq, rc);
806 }
807 }
808 }
809
810 /* delete all emulated config registers */
811 xen_pt_config_delete(s);
812
813 xen_pt_unregister_regions(s);
814 memory_listener_unregister(&s->memory_listener);
815
816 xen_host_pci_device_put(&s->real_device);
817
818 return 0;
819 }
820
821 static Property xen_pci_passthrough_properties[] = {
822 DEFINE_PROP_PCI_HOST_DEVADDR("hostaddr", XenPCIPassthroughState, hostaddr),
823 DEFINE_PROP_END_OF_LIST(),
824 };
825
826 static void xen_pci_passthrough_class_init(ObjectClass *klass, void *data)
827 {
828 DeviceClass *dc = DEVICE_CLASS(klass);
829 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
830
831 k->init = xen_pt_initfn;
832 k->exit = xen_pt_unregister_device;
833 k->config_read = xen_pt_pci_read_config;
834 k->config_write = xen_pt_pci_write_config;
835 dc->desc = "Assign an host PCI device with Xen";
836 dc->props = xen_pci_passthrough_properties;
837 };
838
839 static TypeInfo xen_pci_passthrough_info = {
840 .name = "xen-pci-passthrough",
841 .parent = TYPE_PCI_DEVICE,
842 .instance_size = sizeof(XenPCIPassthroughState),
843 .class_init = xen_pci_passthrough_class_init,
844 };
845
846 static void xen_pci_passthrough_register_types(void)
847 {
848 type_register_static(&xen_pci_passthrough_info);
849 }
850
851 type_init(xen_pci_passthrough_register_types)