]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
vnc: rename vnc-encoding-* vnc-enc-*
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
30
31 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
32 #define PAGE_SIZE TARGET_PAGE_SIZE
33
34 //#define DEBUG_KVM
35
36 #ifdef DEBUG_KVM
37 #define DPRINTF(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39 #else
40 #define DPRINTF(fmt, ...) \
41 do { } while (0)
42 #endif
43
44 typedef struct KVMSlot
45 {
46 target_phys_addr_t start_addr;
47 ram_addr_t memory_size;
48 ram_addr_t phys_offset;
49 int slot;
50 int flags;
51 } KVMSlot;
52
53 typedef struct kvm_dirty_log KVMDirtyLog;
54
55 struct KVMState
56 {
57 KVMSlot slots[32];
58 int fd;
59 int vmfd;
60 int coalesced_mmio;
61 #ifdef KVM_CAP_COALESCED_MMIO
62 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
63 #endif
64 int broken_set_mem_region;
65 int migration_log;
66 int vcpu_events;
67 int robust_singlestep;
68 int debugregs;
69 #ifdef KVM_CAP_SET_GUEST_DEBUG
70 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
71 #endif
72 int irqchip_in_kernel;
73 int pit_in_kernel;
74 int xsave, xcrs;
75 };
76
77 static KVMState *kvm_state;
78
79 static KVMSlot *kvm_alloc_slot(KVMState *s)
80 {
81 int i;
82
83 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
84 /* KVM private memory slots */
85 if (i >= 8 && i < 12)
86 continue;
87 if (s->slots[i].memory_size == 0)
88 return &s->slots[i];
89 }
90
91 fprintf(stderr, "%s: no free slot available\n", __func__);
92 abort();
93 }
94
95 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
96 target_phys_addr_t start_addr,
97 target_phys_addr_t end_addr)
98 {
99 int i;
100
101 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
102 KVMSlot *mem = &s->slots[i];
103
104 if (start_addr == mem->start_addr &&
105 end_addr == mem->start_addr + mem->memory_size) {
106 return mem;
107 }
108 }
109
110 return NULL;
111 }
112
113 /*
114 * Find overlapping slot with lowest start address
115 */
116 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
117 target_phys_addr_t start_addr,
118 target_phys_addr_t end_addr)
119 {
120 KVMSlot *found = NULL;
121 int i;
122
123 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
124 KVMSlot *mem = &s->slots[i];
125
126 if (mem->memory_size == 0 ||
127 (found && found->start_addr < mem->start_addr)) {
128 continue;
129 }
130
131 if (end_addr > mem->start_addr &&
132 start_addr < mem->start_addr + mem->memory_size) {
133 found = mem;
134 }
135 }
136
137 return found;
138 }
139
140 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
141 {
142 struct kvm_userspace_memory_region mem;
143
144 mem.slot = slot->slot;
145 mem.guest_phys_addr = slot->start_addr;
146 mem.memory_size = slot->memory_size;
147 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
148 mem.flags = slot->flags;
149 if (s->migration_log) {
150 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
151 }
152 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
153 }
154
155 static void kvm_reset_vcpu(void *opaque)
156 {
157 CPUState *env = opaque;
158
159 kvm_arch_reset_vcpu(env);
160 }
161
162 int kvm_irqchip_in_kernel(void)
163 {
164 return kvm_state->irqchip_in_kernel;
165 }
166
167 int kvm_pit_in_kernel(void)
168 {
169 return kvm_state->pit_in_kernel;
170 }
171
172
173 int kvm_init_vcpu(CPUState *env)
174 {
175 KVMState *s = kvm_state;
176 long mmap_size;
177 int ret;
178
179 DPRINTF("kvm_init_vcpu\n");
180
181 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
182 if (ret < 0) {
183 DPRINTF("kvm_create_vcpu failed\n");
184 goto err;
185 }
186
187 env->kvm_fd = ret;
188 env->kvm_state = s;
189
190 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
191 if (mmap_size < 0) {
192 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
193 goto err;
194 }
195
196 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
197 env->kvm_fd, 0);
198 if (env->kvm_run == MAP_FAILED) {
199 ret = -errno;
200 DPRINTF("mmap'ing vcpu state failed\n");
201 goto err;
202 }
203
204 #ifdef KVM_CAP_COALESCED_MMIO
205 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
206 s->coalesced_mmio_ring = (void *) env->kvm_run +
207 s->coalesced_mmio * PAGE_SIZE;
208 #endif
209
210 ret = kvm_arch_init_vcpu(env);
211 if (ret == 0) {
212 qemu_register_reset(kvm_reset_vcpu, env);
213 kvm_arch_reset_vcpu(env);
214 }
215 err:
216 return ret;
217 }
218
219 /*
220 * dirty pages logging control
221 */
222 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
223 ram_addr_t size, int flags, int mask)
224 {
225 KVMState *s = kvm_state;
226 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
227 int old_flags;
228
229 if (mem == NULL) {
230 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
231 TARGET_FMT_plx "\n", __func__, phys_addr,
232 (target_phys_addr_t)(phys_addr + size - 1));
233 return -EINVAL;
234 }
235
236 old_flags = mem->flags;
237
238 flags = (mem->flags & ~mask) | flags;
239 mem->flags = flags;
240
241 /* If nothing changed effectively, no need to issue ioctl */
242 if (s->migration_log) {
243 flags |= KVM_MEM_LOG_DIRTY_PAGES;
244 }
245 if (flags == old_flags) {
246 return 0;
247 }
248
249 return kvm_set_user_memory_region(s, mem);
250 }
251
252 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
253 {
254 return kvm_dirty_pages_log_change(phys_addr, size,
255 KVM_MEM_LOG_DIRTY_PAGES,
256 KVM_MEM_LOG_DIRTY_PAGES);
257 }
258
259 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
260 {
261 return kvm_dirty_pages_log_change(phys_addr, size,
262 0,
263 KVM_MEM_LOG_DIRTY_PAGES);
264 }
265
266 static int kvm_set_migration_log(int enable)
267 {
268 KVMState *s = kvm_state;
269 KVMSlot *mem;
270 int i, err;
271
272 s->migration_log = enable;
273
274 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
275 mem = &s->slots[i];
276
277 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
278 continue;
279 }
280 err = kvm_set_user_memory_region(s, mem);
281 if (err) {
282 return err;
283 }
284 }
285 return 0;
286 }
287
288 /* get kvm's dirty pages bitmap and update qemu's */
289 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
290 unsigned long *bitmap,
291 unsigned long offset,
292 unsigned long mem_size)
293 {
294 unsigned int i, j;
295 unsigned long page_number, addr, addr1, c;
296 ram_addr_t ram_addr;
297 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
298 HOST_LONG_BITS;
299
300 /*
301 * bitmap-traveling is faster than memory-traveling (for addr...)
302 * especially when most of the memory is not dirty.
303 */
304 for (i = 0; i < len; i++) {
305 if (bitmap[i] != 0) {
306 c = leul_to_cpu(bitmap[i]);
307 do {
308 j = ffsl(c) - 1;
309 c &= ~(1ul << j);
310 page_number = i * HOST_LONG_BITS + j;
311 addr1 = page_number * TARGET_PAGE_SIZE;
312 addr = offset + addr1;
313 ram_addr = cpu_get_physical_page_desc(addr);
314 cpu_physical_memory_set_dirty(ram_addr);
315 } while (c != 0);
316 }
317 }
318 return 0;
319 }
320
321 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
322
323 /**
324 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
325 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
326 * This means all bits are set to dirty.
327 *
328 * @start_add: start of logged region.
329 * @end_addr: end of logged region.
330 */
331 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
332 target_phys_addr_t end_addr)
333 {
334 KVMState *s = kvm_state;
335 unsigned long size, allocated_size = 0;
336 KVMDirtyLog d;
337 KVMSlot *mem;
338 int ret = 0;
339
340 d.dirty_bitmap = NULL;
341 while (start_addr < end_addr) {
342 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
343 if (mem == NULL) {
344 break;
345 }
346
347 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
348 if (!d.dirty_bitmap) {
349 d.dirty_bitmap = qemu_malloc(size);
350 } else if (size > allocated_size) {
351 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
352 }
353 allocated_size = size;
354 memset(d.dirty_bitmap, 0, allocated_size);
355
356 d.slot = mem->slot;
357
358 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
359 DPRINTF("ioctl failed %d\n", errno);
360 ret = -1;
361 break;
362 }
363
364 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
365 mem->start_addr, mem->memory_size);
366 start_addr = mem->start_addr + mem->memory_size;
367 }
368 qemu_free(d.dirty_bitmap);
369
370 return ret;
371 }
372
373 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
374 {
375 int ret = -ENOSYS;
376 #ifdef KVM_CAP_COALESCED_MMIO
377 KVMState *s = kvm_state;
378
379 if (s->coalesced_mmio) {
380 struct kvm_coalesced_mmio_zone zone;
381
382 zone.addr = start;
383 zone.size = size;
384
385 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
386 }
387 #endif
388
389 return ret;
390 }
391
392 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
393 {
394 int ret = -ENOSYS;
395 #ifdef KVM_CAP_COALESCED_MMIO
396 KVMState *s = kvm_state;
397
398 if (s->coalesced_mmio) {
399 struct kvm_coalesced_mmio_zone zone;
400
401 zone.addr = start;
402 zone.size = size;
403
404 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
405 }
406 #endif
407
408 return ret;
409 }
410
411 int kvm_check_extension(KVMState *s, unsigned int extension)
412 {
413 int ret;
414
415 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
416 if (ret < 0) {
417 ret = 0;
418 }
419
420 return ret;
421 }
422
423 static void kvm_set_phys_mem(target_phys_addr_t start_addr,
424 ram_addr_t size,
425 ram_addr_t phys_offset)
426 {
427 KVMState *s = kvm_state;
428 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
429 KVMSlot *mem, old;
430 int err;
431
432 if (start_addr & ~TARGET_PAGE_MASK) {
433 if (flags >= IO_MEM_UNASSIGNED) {
434 if (!kvm_lookup_overlapping_slot(s, start_addr,
435 start_addr + size)) {
436 return;
437 }
438 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
439 } else {
440 fprintf(stderr, "Only page-aligned memory slots supported\n");
441 }
442 abort();
443 }
444
445 /* KVM does not support read-only slots */
446 phys_offset &= ~IO_MEM_ROM;
447
448 while (1) {
449 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
450 if (!mem) {
451 break;
452 }
453
454 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
455 (start_addr + size <= mem->start_addr + mem->memory_size) &&
456 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
457 /* The new slot fits into the existing one and comes with
458 * identical parameters - nothing to be done. */
459 return;
460 }
461
462 old = *mem;
463
464 /* unregister the overlapping slot */
465 mem->memory_size = 0;
466 err = kvm_set_user_memory_region(s, mem);
467 if (err) {
468 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
469 __func__, strerror(-err));
470 abort();
471 }
472
473 /* Workaround for older KVM versions: we can't join slots, even not by
474 * unregistering the previous ones and then registering the larger
475 * slot. We have to maintain the existing fragmentation. Sigh.
476 *
477 * This workaround assumes that the new slot starts at the same
478 * address as the first existing one. If not or if some overlapping
479 * slot comes around later, we will fail (not seen in practice so far)
480 * - and actually require a recent KVM version. */
481 if (s->broken_set_mem_region &&
482 old.start_addr == start_addr && old.memory_size < size &&
483 flags < IO_MEM_UNASSIGNED) {
484 mem = kvm_alloc_slot(s);
485 mem->memory_size = old.memory_size;
486 mem->start_addr = old.start_addr;
487 mem->phys_offset = old.phys_offset;
488 mem->flags = 0;
489
490 err = kvm_set_user_memory_region(s, mem);
491 if (err) {
492 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
493 strerror(-err));
494 abort();
495 }
496
497 start_addr += old.memory_size;
498 phys_offset += old.memory_size;
499 size -= old.memory_size;
500 continue;
501 }
502
503 /* register prefix slot */
504 if (old.start_addr < start_addr) {
505 mem = kvm_alloc_slot(s);
506 mem->memory_size = start_addr - old.start_addr;
507 mem->start_addr = old.start_addr;
508 mem->phys_offset = old.phys_offset;
509 mem->flags = 0;
510
511 err = kvm_set_user_memory_region(s, mem);
512 if (err) {
513 fprintf(stderr, "%s: error registering prefix slot: %s\n",
514 __func__, strerror(-err));
515 abort();
516 }
517 }
518
519 /* register suffix slot */
520 if (old.start_addr + old.memory_size > start_addr + size) {
521 ram_addr_t size_delta;
522
523 mem = kvm_alloc_slot(s);
524 mem->start_addr = start_addr + size;
525 size_delta = mem->start_addr - old.start_addr;
526 mem->memory_size = old.memory_size - size_delta;
527 mem->phys_offset = old.phys_offset + size_delta;
528 mem->flags = 0;
529
530 err = kvm_set_user_memory_region(s, mem);
531 if (err) {
532 fprintf(stderr, "%s: error registering suffix slot: %s\n",
533 __func__, strerror(-err));
534 abort();
535 }
536 }
537 }
538
539 /* in case the KVM bug workaround already "consumed" the new slot */
540 if (!size)
541 return;
542
543 /* KVM does not need to know about this memory */
544 if (flags >= IO_MEM_UNASSIGNED)
545 return;
546
547 mem = kvm_alloc_slot(s);
548 mem->memory_size = size;
549 mem->start_addr = start_addr;
550 mem->phys_offset = phys_offset;
551 mem->flags = 0;
552
553 err = kvm_set_user_memory_region(s, mem);
554 if (err) {
555 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
556 strerror(-err));
557 abort();
558 }
559 }
560
561 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
562 target_phys_addr_t start_addr,
563 ram_addr_t size,
564 ram_addr_t phys_offset)
565 {
566 kvm_set_phys_mem(start_addr, size, phys_offset);
567 }
568
569 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
570 target_phys_addr_t start_addr,
571 target_phys_addr_t end_addr)
572 {
573 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
574 }
575
576 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
577 int enable)
578 {
579 return kvm_set_migration_log(enable);
580 }
581
582 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
583 .set_memory = kvm_client_set_memory,
584 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
585 .migration_log = kvm_client_migration_log,
586 };
587
588 int kvm_init(int smp_cpus)
589 {
590 static const char upgrade_note[] =
591 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
592 "(see http://sourceforge.net/projects/kvm).\n";
593 KVMState *s;
594 int ret;
595 int i;
596
597 s = qemu_mallocz(sizeof(KVMState));
598
599 #ifdef KVM_CAP_SET_GUEST_DEBUG
600 QTAILQ_INIT(&s->kvm_sw_breakpoints);
601 #endif
602 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
603 s->slots[i].slot = i;
604
605 s->vmfd = -1;
606 s->fd = qemu_open("/dev/kvm", O_RDWR);
607 if (s->fd == -1) {
608 fprintf(stderr, "Could not access KVM kernel module: %m\n");
609 ret = -errno;
610 goto err;
611 }
612
613 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
614 if (ret < KVM_API_VERSION) {
615 if (ret > 0)
616 ret = -EINVAL;
617 fprintf(stderr, "kvm version too old\n");
618 goto err;
619 }
620
621 if (ret > KVM_API_VERSION) {
622 ret = -EINVAL;
623 fprintf(stderr, "kvm version not supported\n");
624 goto err;
625 }
626
627 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
628 if (s->vmfd < 0) {
629 #ifdef TARGET_S390X
630 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
631 "your host kernel command line\n");
632 #endif
633 goto err;
634 }
635
636 /* initially, KVM allocated its own memory and we had to jump through
637 * hooks to make phys_ram_base point to this. Modern versions of KVM
638 * just use a user allocated buffer so we can use regular pages
639 * unmodified. Make sure we have a sufficiently modern version of KVM.
640 */
641 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
642 ret = -EINVAL;
643 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
644 upgrade_note);
645 goto err;
646 }
647
648 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
649 * destroyed properly. Since we rely on this capability, refuse to work
650 * with any kernel without this capability. */
651 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
652 ret = -EINVAL;
653
654 fprintf(stderr,
655 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
656 upgrade_note);
657 goto err;
658 }
659
660 s->coalesced_mmio = 0;
661 #ifdef KVM_CAP_COALESCED_MMIO
662 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
663 s->coalesced_mmio_ring = NULL;
664 #endif
665
666 s->broken_set_mem_region = 1;
667 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
668 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
669 if (ret > 0) {
670 s->broken_set_mem_region = 0;
671 }
672 #endif
673
674 s->vcpu_events = 0;
675 #ifdef KVM_CAP_VCPU_EVENTS
676 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
677 #endif
678
679 s->robust_singlestep = 0;
680 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
681 s->robust_singlestep =
682 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
683 #endif
684
685 s->debugregs = 0;
686 #ifdef KVM_CAP_DEBUGREGS
687 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
688 #endif
689
690 s->xsave = 0;
691 #ifdef KVM_CAP_XSAVE
692 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
693 #endif
694
695 s->xcrs = 0;
696 #ifdef KVM_CAP_XCRS
697 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
698 #endif
699
700 ret = kvm_arch_init(s, smp_cpus);
701 if (ret < 0)
702 goto err;
703
704 kvm_state = s;
705 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
706
707 return 0;
708
709 err:
710 if (s) {
711 if (s->vmfd != -1)
712 close(s->vmfd);
713 if (s->fd != -1)
714 close(s->fd);
715 }
716 qemu_free(s);
717
718 return ret;
719 }
720
721 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
722 uint32_t count)
723 {
724 int i;
725 uint8_t *ptr = data;
726
727 for (i = 0; i < count; i++) {
728 if (direction == KVM_EXIT_IO_IN) {
729 switch (size) {
730 case 1:
731 stb_p(ptr, cpu_inb(port));
732 break;
733 case 2:
734 stw_p(ptr, cpu_inw(port));
735 break;
736 case 4:
737 stl_p(ptr, cpu_inl(port));
738 break;
739 }
740 } else {
741 switch (size) {
742 case 1:
743 cpu_outb(port, ldub_p(ptr));
744 break;
745 case 2:
746 cpu_outw(port, lduw_p(ptr));
747 break;
748 case 4:
749 cpu_outl(port, ldl_p(ptr));
750 break;
751 }
752 }
753
754 ptr += size;
755 }
756
757 return 1;
758 }
759
760 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
761 static void kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
762 {
763
764 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
765 int i;
766
767 fprintf(stderr, "KVM internal error. Suberror: %d\n",
768 run->internal.suberror);
769
770 for (i = 0; i < run->internal.ndata; ++i) {
771 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
772 i, (uint64_t)run->internal.data[i]);
773 }
774 }
775 cpu_dump_state(env, stderr, fprintf, 0);
776 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
777 fprintf(stderr, "emulation failure\n");
778 if (!kvm_arch_stop_on_emulation_error(env))
779 return;
780 }
781 /* FIXME: Should trigger a qmp message to let management know
782 * something went wrong.
783 */
784 vm_stop(0);
785 }
786 #endif
787
788 void kvm_flush_coalesced_mmio_buffer(void)
789 {
790 #ifdef KVM_CAP_COALESCED_MMIO
791 KVMState *s = kvm_state;
792 if (s->coalesced_mmio_ring) {
793 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
794 while (ring->first != ring->last) {
795 struct kvm_coalesced_mmio *ent;
796
797 ent = &ring->coalesced_mmio[ring->first];
798
799 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
800 smp_wmb();
801 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
802 }
803 }
804 #endif
805 }
806
807 static void do_kvm_cpu_synchronize_state(void *_env)
808 {
809 CPUState *env = _env;
810
811 if (!env->kvm_vcpu_dirty) {
812 kvm_arch_get_registers(env);
813 env->kvm_vcpu_dirty = 1;
814 }
815 }
816
817 void kvm_cpu_synchronize_state(CPUState *env)
818 {
819 if (!env->kvm_vcpu_dirty)
820 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
821 }
822
823 void kvm_cpu_synchronize_post_reset(CPUState *env)
824 {
825 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
826 env->kvm_vcpu_dirty = 0;
827 }
828
829 void kvm_cpu_synchronize_post_init(CPUState *env)
830 {
831 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
832 env->kvm_vcpu_dirty = 0;
833 }
834
835 int kvm_cpu_exec(CPUState *env)
836 {
837 struct kvm_run *run = env->kvm_run;
838 int ret;
839
840 DPRINTF("kvm_cpu_exec()\n");
841
842 do {
843 #ifndef CONFIG_IOTHREAD
844 if (env->exit_request) {
845 DPRINTF("interrupt exit requested\n");
846 ret = 0;
847 break;
848 }
849 #endif
850
851 if (kvm_arch_process_irqchip_events(env)) {
852 ret = 0;
853 break;
854 }
855
856 if (env->kvm_vcpu_dirty) {
857 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
858 env->kvm_vcpu_dirty = 0;
859 }
860
861 kvm_arch_pre_run(env, run);
862 cpu_single_env = NULL;
863 qemu_mutex_unlock_iothread();
864 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
865 qemu_mutex_lock_iothread();
866 cpu_single_env = env;
867 kvm_arch_post_run(env, run);
868
869 if (ret == -EINTR || ret == -EAGAIN) {
870 cpu_exit(env);
871 DPRINTF("io window exit\n");
872 ret = 0;
873 break;
874 }
875
876 if (ret < 0) {
877 DPRINTF("kvm run failed %s\n", strerror(-ret));
878 abort();
879 }
880
881 kvm_flush_coalesced_mmio_buffer();
882
883 ret = 0; /* exit loop */
884 switch (run->exit_reason) {
885 case KVM_EXIT_IO:
886 DPRINTF("handle_io\n");
887 ret = kvm_handle_io(run->io.port,
888 (uint8_t *)run + run->io.data_offset,
889 run->io.direction,
890 run->io.size,
891 run->io.count);
892 break;
893 case KVM_EXIT_MMIO:
894 DPRINTF("handle_mmio\n");
895 cpu_physical_memory_rw(run->mmio.phys_addr,
896 run->mmio.data,
897 run->mmio.len,
898 run->mmio.is_write);
899 ret = 1;
900 break;
901 case KVM_EXIT_IRQ_WINDOW_OPEN:
902 DPRINTF("irq_window_open\n");
903 break;
904 case KVM_EXIT_SHUTDOWN:
905 DPRINTF("shutdown\n");
906 qemu_system_reset_request();
907 ret = 1;
908 break;
909 case KVM_EXIT_UNKNOWN:
910 DPRINTF("kvm_exit_unknown\n");
911 break;
912 case KVM_EXIT_FAIL_ENTRY:
913 DPRINTF("kvm_exit_fail_entry\n");
914 break;
915 case KVM_EXIT_EXCEPTION:
916 DPRINTF("kvm_exit_exception\n");
917 break;
918 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
919 case KVM_EXIT_INTERNAL_ERROR:
920 kvm_handle_internal_error(env, run);
921 break;
922 #endif
923 case KVM_EXIT_DEBUG:
924 DPRINTF("kvm_exit_debug\n");
925 #ifdef KVM_CAP_SET_GUEST_DEBUG
926 if (kvm_arch_debug(&run->debug.arch)) {
927 env->exception_index = EXCP_DEBUG;
928 return 0;
929 }
930 /* re-enter, this exception was guest-internal */
931 ret = 1;
932 #endif /* KVM_CAP_SET_GUEST_DEBUG */
933 break;
934 default:
935 DPRINTF("kvm_arch_handle_exit\n");
936 ret = kvm_arch_handle_exit(env, run);
937 break;
938 }
939 } while (ret > 0);
940
941 if (env->exit_request) {
942 env->exit_request = 0;
943 env->exception_index = EXCP_INTERRUPT;
944 }
945
946 return ret;
947 }
948
949 int kvm_ioctl(KVMState *s, int type, ...)
950 {
951 int ret;
952 void *arg;
953 va_list ap;
954
955 va_start(ap, type);
956 arg = va_arg(ap, void *);
957 va_end(ap);
958
959 ret = ioctl(s->fd, type, arg);
960 if (ret == -1)
961 ret = -errno;
962
963 return ret;
964 }
965
966 int kvm_vm_ioctl(KVMState *s, int type, ...)
967 {
968 int ret;
969 void *arg;
970 va_list ap;
971
972 va_start(ap, type);
973 arg = va_arg(ap, void *);
974 va_end(ap);
975
976 ret = ioctl(s->vmfd, type, arg);
977 if (ret == -1)
978 ret = -errno;
979
980 return ret;
981 }
982
983 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
984 {
985 int ret;
986 void *arg;
987 va_list ap;
988
989 va_start(ap, type);
990 arg = va_arg(ap, void *);
991 va_end(ap);
992
993 ret = ioctl(env->kvm_fd, type, arg);
994 if (ret == -1)
995 ret = -errno;
996
997 return ret;
998 }
999
1000 int kvm_has_sync_mmu(void)
1001 {
1002 #ifdef KVM_CAP_SYNC_MMU
1003 KVMState *s = kvm_state;
1004
1005 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
1006 #else
1007 return 0;
1008 #endif
1009 }
1010
1011 int kvm_has_vcpu_events(void)
1012 {
1013 return kvm_state->vcpu_events;
1014 }
1015
1016 int kvm_has_robust_singlestep(void)
1017 {
1018 return kvm_state->robust_singlestep;
1019 }
1020
1021 int kvm_has_debugregs(void)
1022 {
1023 return kvm_state->debugregs;
1024 }
1025
1026 int kvm_has_xsave(void)
1027 {
1028 return kvm_state->xsave;
1029 }
1030
1031 int kvm_has_xcrs(void)
1032 {
1033 return kvm_state->xcrs;
1034 }
1035
1036 void kvm_setup_guest_memory(void *start, size_t size)
1037 {
1038 if (!kvm_has_sync_mmu()) {
1039 #ifdef MADV_DONTFORK
1040 int ret = madvise(start, size, MADV_DONTFORK);
1041
1042 if (ret) {
1043 perror("madvice");
1044 exit(1);
1045 }
1046 #else
1047 fprintf(stderr,
1048 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1049 exit(1);
1050 #endif
1051 }
1052 }
1053
1054 #ifdef KVM_CAP_SET_GUEST_DEBUG
1055 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1056 target_ulong pc)
1057 {
1058 struct kvm_sw_breakpoint *bp;
1059
1060 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1061 if (bp->pc == pc)
1062 return bp;
1063 }
1064 return NULL;
1065 }
1066
1067 int kvm_sw_breakpoints_active(CPUState *env)
1068 {
1069 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1070 }
1071
1072 struct kvm_set_guest_debug_data {
1073 struct kvm_guest_debug dbg;
1074 CPUState *env;
1075 int err;
1076 };
1077
1078 static void kvm_invoke_set_guest_debug(void *data)
1079 {
1080 struct kvm_set_guest_debug_data *dbg_data = data;
1081 CPUState *env = dbg_data->env;
1082
1083 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1084 }
1085
1086 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1087 {
1088 struct kvm_set_guest_debug_data data;
1089
1090 data.dbg.control = reinject_trap;
1091
1092 if (env->singlestep_enabled) {
1093 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1094 }
1095 kvm_arch_update_guest_debug(env, &data.dbg);
1096 data.env = env;
1097
1098 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1099 return data.err;
1100 }
1101
1102 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1103 target_ulong len, int type)
1104 {
1105 struct kvm_sw_breakpoint *bp;
1106 CPUState *env;
1107 int err;
1108
1109 if (type == GDB_BREAKPOINT_SW) {
1110 bp = kvm_find_sw_breakpoint(current_env, addr);
1111 if (bp) {
1112 bp->use_count++;
1113 return 0;
1114 }
1115
1116 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1117 if (!bp)
1118 return -ENOMEM;
1119
1120 bp->pc = addr;
1121 bp->use_count = 1;
1122 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1123 if (err) {
1124 free(bp);
1125 return err;
1126 }
1127
1128 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1129 bp, entry);
1130 } else {
1131 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1132 if (err)
1133 return err;
1134 }
1135
1136 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1137 err = kvm_update_guest_debug(env, 0);
1138 if (err)
1139 return err;
1140 }
1141 return 0;
1142 }
1143
1144 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1145 target_ulong len, int type)
1146 {
1147 struct kvm_sw_breakpoint *bp;
1148 CPUState *env;
1149 int err;
1150
1151 if (type == GDB_BREAKPOINT_SW) {
1152 bp = kvm_find_sw_breakpoint(current_env, addr);
1153 if (!bp)
1154 return -ENOENT;
1155
1156 if (bp->use_count > 1) {
1157 bp->use_count--;
1158 return 0;
1159 }
1160
1161 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1162 if (err)
1163 return err;
1164
1165 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1166 qemu_free(bp);
1167 } else {
1168 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1169 if (err)
1170 return err;
1171 }
1172
1173 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1174 err = kvm_update_guest_debug(env, 0);
1175 if (err)
1176 return err;
1177 }
1178 return 0;
1179 }
1180
1181 void kvm_remove_all_breakpoints(CPUState *current_env)
1182 {
1183 struct kvm_sw_breakpoint *bp, *next;
1184 KVMState *s = current_env->kvm_state;
1185 CPUState *env;
1186
1187 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1188 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1189 /* Try harder to find a CPU that currently sees the breakpoint. */
1190 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1191 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1192 break;
1193 }
1194 }
1195 }
1196 kvm_arch_remove_all_hw_breakpoints();
1197
1198 for (env = first_cpu; env != NULL; env = env->next_cpu)
1199 kvm_update_guest_debug(env, 0);
1200 }
1201
1202 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1203
1204 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1205 {
1206 return -EINVAL;
1207 }
1208
1209 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1210 target_ulong len, int type)
1211 {
1212 return -EINVAL;
1213 }
1214
1215 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1216 target_ulong len, int type)
1217 {
1218 return -EINVAL;
1219 }
1220
1221 void kvm_remove_all_breakpoints(CPUState *current_env)
1222 {
1223 }
1224 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1225
1226 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1227 {
1228 struct kvm_signal_mask *sigmask;
1229 int r;
1230
1231 if (!sigset)
1232 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1233
1234 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1235
1236 sigmask->len = 8;
1237 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1238 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1239 free(sigmask);
1240
1241 return r;
1242 }
1243
1244 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1245 {
1246 #ifdef KVM_IOEVENTFD
1247 struct kvm_ioeventfd kick = {
1248 .datamatch = val,
1249 .addr = addr,
1250 .len = 2,
1251 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1252 .fd = fd,
1253 };
1254 int r;
1255 if (!kvm_enabled())
1256 return -ENOSYS;
1257 if (!assign)
1258 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1259 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1260 if (r < 0)
1261 return r;
1262 return 0;
1263 #else
1264 return -ENOSYS;
1265 #endif
1266 }