]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
ahci: Fix cpu_physical_memory_unmap() argument ordering
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
30
31 /* This check must be after config-host.h is included */
32 #ifdef CONFIG_EVENTFD
33 #include <sys/eventfd.h>
34 #endif
35
36 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37 #define PAGE_SIZE TARGET_PAGE_SIZE
38
39 //#define DEBUG_KVM
40
41 #ifdef DEBUG_KVM
42 #define DPRINTF(fmt, ...) \
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
44 #else
45 #define DPRINTF(fmt, ...) \
46 do { } while (0)
47 #endif
48
49 typedef struct KVMSlot
50 {
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
53 ram_addr_t phys_offset;
54 int slot;
55 int flags;
56 } KVMSlot;
57
58 typedef struct kvm_dirty_log KVMDirtyLog;
59
60 struct KVMState
61 {
62 KVMSlot slots[32];
63 int fd;
64 int vmfd;
65 int coalesced_mmio;
66 #ifdef KVM_CAP_COALESCED_MMIO
67 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
68 #endif
69 int broken_set_mem_region;
70 int migration_log;
71 int vcpu_events;
72 int robust_singlestep;
73 int debugregs;
74 #ifdef KVM_CAP_SET_GUEST_DEBUG
75 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
76 #endif
77 int irqchip_in_kernel;
78 int pit_in_kernel;
79 int xsave, xcrs;
80 int many_ioeventfds;
81 };
82
83 static KVMState *kvm_state;
84
85 static KVMSlot *kvm_alloc_slot(KVMState *s)
86 {
87 int i;
88
89 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
90 /* KVM private memory slots */
91 if (i >= 8 && i < 12)
92 continue;
93 if (s->slots[i].memory_size == 0)
94 return &s->slots[i];
95 }
96
97 fprintf(stderr, "%s: no free slot available\n", __func__);
98 abort();
99 }
100
101 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
102 target_phys_addr_t start_addr,
103 target_phys_addr_t end_addr)
104 {
105 int i;
106
107 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
108 KVMSlot *mem = &s->slots[i];
109
110 if (start_addr == mem->start_addr &&
111 end_addr == mem->start_addr + mem->memory_size) {
112 return mem;
113 }
114 }
115
116 return NULL;
117 }
118
119 /*
120 * Find overlapping slot with lowest start address
121 */
122 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
123 target_phys_addr_t start_addr,
124 target_phys_addr_t end_addr)
125 {
126 KVMSlot *found = NULL;
127 int i;
128
129 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
130 KVMSlot *mem = &s->slots[i];
131
132 if (mem->memory_size == 0 ||
133 (found && found->start_addr < mem->start_addr)) {
134 continue;
135 }
136
137 if (end_addr > mem->start_addr &&
138 start_addr < mem->start_addr + mem->memory_size) {
139 found = mem;
140 }
141 }
142
143 return found;
144 }
145
146 int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
147 target_phys_addr_t *phys_addr)
148 {
149 int i;
150
151 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
152 KVMSlot *mem = &s->slots[i];
153
154 if (ram_addr >= mem->phys_offset &&
155 ram_addr < mem->phys_offset + mem->memory_size) {
156 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
157 return 1;
158 }
159 }
160
161 return 0;
162 }
163
164 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
165 {
166 struct kvm_userspace_memory_region mem;
167
168 mem.slot = slot->slot;
169 mem.guest_phys_addr = slot->start_addr;
170 mem.memory_size = slot->memory_size;
171 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
172 mem.flags = slot->flags;
173 if (s->migration_log) {
174 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
175 }
176 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
177 }
178
179 static void kvm_reset_vcpu(void *opaque)
180 {
181 CPUState *env = opaque;
182
183 kvm_arch_reset_vcpu(env);
184 }
185
186 int kvm_irqchip_in_kernel(void)
187 {
188 return kvm_state->irqchip_in_kernel;
189 }
190
191 int kvm_pit_in_kernel(void)
192 {
193 return kvm_state->pit_in_kernel;
194 }
195
196
197 int kvm_init_vcpu(CPUState *env)
198 {
199 KVMState *s = kvm_state;
200 long mmap_size;
201 int ret;
202
203 DPRINTF("kvm_init_vcpu\n");
204
205 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
206 if (ret < 0) {
207 DPRINTF("kvm_create_vcpu failed\n");
208 goto err;
209 }
210
211 env->kvm_fd = ret;
212 env->kvm_state = s;
213
214 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
215 if (mmap_size < 0) {
216 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
217 goto err;
218 }
219
220 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
221 env->kvm_fd, 0);
222 if (env->kvm_run == MAP_FAILED) {
223 ret = -errno;
224 DPRINTF("mmap'ing vcpu state failed\n");
225 goto err;
226 }
227
228 #ifdef KVM_CAP_COALESCED_MMIO
229 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
230 s->coalesced_mmio_ring = (void *) env->kvm_run +
231 s->coalesced_mmio * PAGE_SIZE;
232 #endif
233
234 ret = kvm_arch_init_vcpu(env);
235 if (ret == 0) {
236 qemu_register_reset(kvm_reset_vcpu, env);
237 kvm_arch_reset_vcpu(env);
238 }
239 err:
240 return ret;
241 }
242
243 /*
244 * dirty pages logging control
245 */
246 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
247 ram_addr_t size, int flags, int mask)
248 {
249 KVMState *s = kvm_state;
250 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
251 int old_flags;
252
253 if (mem == NULL) {
254 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
255 TARGET_FMT_plx "\n", __func__, phys_addr,
256 (target_phys_addr_t)(phys_addr + size - 1));
257 return -EINVAL;
258 }
259
260 old_flags = mem->flags;
261
262 flags = (mem->flags & ~mask) | flags;
263 mem->flags = flags;
264
265 /* If nothing changed effectively, no need to issue ioctl */
266 if (s->migration_log) {
267 flags |= KVM_MEM_LOG_DIRTY_PAGES;
268 }
269 if (flags == old_flags) {
270 return 0;
271 }
272
273 return kvm_set_user_memory_region(s, mem);
274 }
275
276 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
277 {
278 return kvm_dirty_pages_log_change(phys_addr, size,
279 KVM_MEM_LOG_DIRTY_PAGES,
280 KVM_MEM_LOG_DIRTY_PAGES);
281 }
282
283 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
284 {
285 return kvm_dirty_pages_log_change(phys_addr, size,
286 0,
287 KVM_MEM_LOG_DIRTY_PAGES);
288 }
289
290 static int kvm_set_migration_log(int enable)
291 {
292 KVMState *s = kvm_state;
293 KVMSlot *mem;
294 int i, err;
295
296 s->migration_log = enable;
297
298 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
299 mem = &s->slots[i];
300
301 if (!mem->memory_size) {
302 continue;
303 }
304 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
305 continue;
306 }
307 err = kvm_set_user_memory_region(s, mem);
308 if (err) {
309 return err;
310 }
311 }
312 return 0;
313 }
314
315 /* get kvm's dirty pages bitmap and update qemu's */
316 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
317 unsigned long *bitmap,
318 unsigned long offset,
319 unsigned long mem_size)
320 {
321 unsigned int i, j;
322 unsigned long page_number, addr, addr1, c;
323 ram_addr_t ram_addr;
324 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
325 HOST_LONG_BITS;
326
327 /*
328 * bitmap-traveling is faster than memory-traveling (for addr...)
329 * especially when most of the memory is not dirty.
330 */
331 for (i = 0; i < len; i++) {
332 if (bitmap[i] != 0) {
333 c = leul_to_cpu(bitmap[i]);
334 do {
335 j = ffsl(c) - 1;
336 c &= ~(1ul << j);
337 page_number = i * HOST_LONG_BITS + j;
338 addr1 = page_number * TARGET_PAGE_SIZE;
339 addr = offset + addr1;
340 ram_addr = cpu_get_physical_page_desc(addr);
341 cpu_physical_memory_set_dirty(ram_addr);
342 } while (c != 0);
343 }
344 }
345 return 0;
346 }
347
348 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
349
350 /**
351 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
352 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
353 * This means all bits are set to dirty.
354 *
355 * @start_add: start of logged region.
356 * @end_addr: end of logged region.
357 */
358 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
359 target_phys_addr_t end_addr)
360 {
361 KVMState *s = kvm_state;
362 unsigned long size, allocated_size = 0;
363 KVMDirtyLog d;
364 KVMSlot *mem;
365 int ret = 0;
366
367 d.dirty_bitmap = NULL;
368 while (start_addr < end_addr) {
369 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
370 if (mem == NULL) {
371 break;
372 }
373
374 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
375 if (!d.dirty_bitmap) {
376 d.dirty_bitmap = qemu_malloc(size);
377 } else if (size > allocated_size) {
378 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
379 }
380 allocated_size = size;
381 memset(d.dirty_bitmap, 0, allocated_size);
382
383 d.slot = mem->slot;
384
385 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
386 DPRINTF("ioctl failed %d\n", errno);
387 ret = -1;
388 break;
389 }
390
391 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
392 mem->start_addr, mem->memory_size);
393 start_addr = mem->start_addr + mem->memory_size;
394 }
395 qemu_free(d.dirty_bitmap);
396
397 return ret;
398 }
399
400 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
401 {
402 int ret = -ENOSYS;
403 #ifdef KVM_CAP_COALESCED_MMIO
404 KVMState *s = kvm_state;
405
406 if (s->coalesced_mmio) {
407 struct kvm_coalesced_mmio_zone zone;
408
409 zone.addr = start;
410 zone.size = size;
411
412 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
413 }
414 #endif
415
416 return ret;
417 }
418
419 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
420 {
421 int ret = -ENOSYS;
422 #ifdef KVM_CAP_COALESCED_MMIO
423 KVMState *s = kvm_state;
424
425 if (s->coalesced_mmio) {
426 struct kvm_coalesced_mmio_zone zone;
427
428 zone.addr = start;
429 zone.size = size;
430
431 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
432 }
433 #endif
434
435 return ret;
436 }
437
438 int kvm_check_extension(KVMState *s, unsigned int extension)
439 {
440 int ret;
441
442 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
443 if (ret < 0) {
444 ret = 0;
445 }
446
447 return ret;
448 }
449
450 static int kvm_check_many_ioeventfds(void)
451 {
452 /* Userspace can use ioeventfd for io notification. This requires a host
453 * that supports eventfd(2) and an I/O thread; since eventfd does not
454 * support SIGIO it cannot interrupt the vcpu.
455 *
456 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
457 * can avoid creating too many ioeventfds.
458 */
459 #if defined(CONFIG_EVENTFD) && defined(CONFIG_IOTHREAD)
460 int ioeventfds[7];
461 int i, ret = 0;
462 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
463 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
464 if (ioeventfds[i] < 0) {
465 break;
466 }
467 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
468 if (ret < 0) {
469 close(ioeventfds[i]);
470 break;
471 }
472 }
473
474 /* Decide whether many devices are supported or not */
475 ret = i == ARRAY_SIZE(ioeventfds);
476
477 while (i-- > 0) {
478 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
479 close(ioeventfds[i]);
480 }
481 return ret;
482 #else
483 return 0;
484 #endif
485 }
486
487 static void kvm_set_phys_mem(target_phys_addr_t start_addr,
488 ram_addr_t size,
489 ram_addr_t phys_offset)
490 {
491 KVMState *s = kvm_state;
492 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
493 KVMSlot *mem, old;
494 int err;
495
496 /* kvm works in page size chunks, but the function may be called
497 with sub-page size and unaligned start address. */
498 size = TARGET_PAGE_ALIGN(size);
499 start_addr = TARGET_PAGE_ALIGN(start_addr);
500
501 /* KVM does not support read-only slots */
502 phys_offset &= ~IO_MEM_ROM;
503
504 while (1) {
505 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
506 if (!mem) {
507 break;
508 }
509
510 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
511 (start_addr + size <= mem->start_addr + mem->memory_size) &&
512 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
513 /* The new slot fits into the existing one and comes with
514 * identical parameters - nothing to be done. */
515 return;
516 }
517
518 old = *mem;
519
520 /* unregister the overlapping slot */
521 mem->memory_size = 0;
522 err = kvm_set_user_memory_region(s, mem);
523 if (err) {
524 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
525 __func__, strerror(-err));
526 abort();
527 }
528
529 /* Workaround for older KVM versions: we can't join slots, even not by
530 * unregistering the previous ones and then registering the larger
531 * slot. We have to maintain the existing fragmentation. Sigh.
532 *
533 * This workaround assumes that the new slot starts at the same
534 * address as the first existing one. If not or if some overlapping
535 * slot comes around later, we will fail (not seen in practice so far)
536 * - and actually require a recent KVM version. */
537 if (s->broken_set_mem_region &&
538 old.start_addr == start_addr && old.memory_size < size &&
539 flags < IO_MEM_UNASSIGNED) {
540 mem = kvm_alloc_slot(s);
541 mem->memory_size = old.memory_size;
542 mem->start_addr = old.start_addr;
543 mem->phys_offset = old.phys_offset;
544 mem->flags = 0;
545
546 err = kvm_set_user_memory_region(s, mem);
547 if (err) {
548 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
549 strerror(-err));
550 abort();
551 }
552
553 start_addr += old.memory_size;
554 phys_offset += old.memory_size;
555 size -= old.memory_size;
556 continue;
557 }
558
559 /* register prefix slot */
560 if (old.start_addr < start_addr) {
561 mem = kvm_alloc_slot(s);
562 mem->memory_size = start_addr - old.start_addr;
563 mem->start_addr = old.start_addr;
564 mem->phys_offset = old.phys_offset;
565 mem->flags = 0;
566
567 err = kvm_set_user_memory_region(s, mem);
568 if (err) {
569 fprintf(stderr, "%s: error registering prefix slot: %s\n",
570 __func__, strerror(-err));
571 abort();
572 }
573 }
574
575 /* register suffix slot */
576 if (old.start_addr + old.memory_size > start_addr + size) {
577 ram_addr_t size_delta;
578
579 mem = kvm_alloc_slot(s);
580 mem->start_addr = start_addr + size;
581 size_delta = mem->start_addr - old.start_addr;
582 mem->memory_size = old.memory_size - size_delta;
583 mem->phys_offset = old.phys_offset + size_delta;
584 mem->flags = 0;
585
586 err = kvm_set_user_memory_region(s, mem);
587 if (err) {
588 fprintf(stderr, "%s: error registering suffix slot: %s\n",
589 __func__, strerror(-err));
590 abort();
591 }
592 }
593 }
594
595 /* in case the KVM bug workaround already "consumed" the new slot */
596 if (!size)
597 return;
598
599 /* KVM does not need to know about this memory */
600 if (flags >= IO_MEM_UNASSIGNED)
601 return;
602
603 mem = kvm_alloc_slot(s);
604 mem->memory_size = size;
605 mem->start_addr = start_addr;
606 mem->phys_offset = phys_offset;
607 mem->flags = 0;
608
609 err = kvm_set_user_memory_region(s, mem);
610 if (err) {
611 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
612 strerror(-err));
613 abort();
614 }
615 }
616
617 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
618 target_phys_addr_t start_addr,
619 ram_addr_t size,
620 ram_addr_t phys_offset)
621 {
622 kvm_set_phys_mem(start_addr, size, phys_offset);
623 }
624
625 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
626 target_phys_addr_t start_addr,
627 target_phys_addr_t end_addr)
628 {
629 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
630 }
631
632 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
633 int enable)
634 {
635 return kvm_set_migration_log(enable);
636 }
637
638 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
639 .set_memory = kvm_client_set_memory,
640 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
641 .migration_log = kvm_client_migration_log,
642 };
643
644 int kvm_init(int smp_cpus)
645 {
646 static const char upgrade_note[] =
647 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
648 "(see http://sourceforge.net/projects/kvm).\n";
649 KVMState *s;
650 int ret;
651 int i;
652
653 s = qemu_mallocz(sizeof(KVMState));
654
655 #ifdef KVM_CAP_SET_GUEST_DEBUG
656 QTAILQ_INIT(&s->kvm_sw_breakpoints);
657 #endif
658 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
659 s->slots[i].slot = i;
660
661 s->vmfd = -1;
662 s->fd = qemu_open("/dev/kvm", O_RDWR);
663 if (s->fd == -1) {
664 fprintf(stderr, "Could not access KVM kernel module: %m\n");
665 ret = -errno;
666 goto err;
667 }
668
669 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
670 if (ret < KVM_API_VERSION) {
671 if (ret > 0)
672 ret = -EINVAL;
673 fprintf(stderr, "kvm version too old\n");
674 goto err;
675 }
676
677 if (ret > KVM_API_VERSION) {
678 ret = -EINVAL;
679 fprintf(stderr, "kvm version not supported\n");
680 goto err;
681 }
682
683 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
684 if (s->vmfd < 0) {
685 #ifdef TARGET_S390X
686 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
687 "your host kernel command line\n");
688 #endif
689 goto err;
690 }
691
692 /* initially, KVM allocated its own memory and we had to jump through
693 * hooks to make phys_ram_base point to this. Modern versions of KVM
694 * just use a user allocated buffer so we can use regular pages
695 * unmodified. Make sure we have a sufficiently modern version of KVM.
696 */
697 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
698 ret = -EINVAL;
699 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
700 upgrade_note);
701 goto err;
702 }
703
704 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
705 * destroyed properly. Since we rely on this capability, refuse to work
706 * with any kernel without this capability. */
707 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
708 ret = -EINVAL;
709
710 fprintf(stderr,
711 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
712 upgrade_note);
713 goto err;
714 }
715
716 s->coalesced_mmio = 0;
717 #ifdef KVM_CAP_COALESCED_MMIO
718 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
719 s->coalesced_mmio_ring = NULL;
720 #endif
721
722 s->broken_set_mem_region = 1;
723 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
724 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
725 if (ret > 0) {
726 s->broken_set_mem_region = 0;
727 }
728 #endif
729
730 s->vcpu_events = 0;
731 #ifdef KVM_CAP_VCPU_EVENTS
732 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
733 #endif
734
735 s->robust_singlestep = 0;
736 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
737 s->robust_singlestep =
738 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
739 #endif
740
741 s->debugregs = 0;
742 #ifdef KVM_CAP_DEBUGREGS
743 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
744 #endif
745
746 s->xsave = 0;
747 #ifdef KVM_CAP_XSAVE
748 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
749 #endif
750
751 s->xcrs = 0;
752 #ifdef KVM_CAP_XCRS
753 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
754 #endif
755
756 ret = kvm_arch_init(s, smp_cpus);
757 if (ret < 0)
758 goto err;
759
760 kvm_state = s;
761 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
762
763 s->many_ioeventfds = kvm_check_many_ioeventfds();
764
765 return 0;
766
767 err:
768 if (s) {
769 if (s->vmfd != -1)
770 close(s->vmfd);
771 if (s->fd != -1)
772 close(s->fd);
773 }
774 qemu_free(s);
775
776 return ret;
777 }
778
779 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
780 uint32_t count)
781 {
782 int i;
783 uint8_t *ptr = data;
784
785 for (i = 0; i < count; i++) {
786 if (direction == KVM_EXIT_IO_IN) {
787 switch (size) {
788 case 1:
789 stb_p(ptr, cpu_inb(port));
790 break;
791 case 2:
792 stw_p(ptr, cpu_inw(port));
793 break;
794 case 4:
795 stl_p(ptr, cpu_inl(port));
796 break;
797 }
798 } else {
799 switch (size) {
800 case 1:
801 cpu_outb(port, ldub_p(ptr));
802 break;
803 case 2:
804 cpu_outw(port, lduw_p(ptr));
805 break;
806 case 4:
807 cpu_outl(port, ldl_p(ptr));
808 break;
809 }
810 }
811
812 ptr += size;
813 }
814
815 return 1;
816 }
817
818 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
819 static void kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
820 {
821
822 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
823 int i;
824
825 fprintf(stderr, "KVM internal error. Suberror: %d\n",
826 run->internal.suberror);
827
828 for (i = 0; i < run->internal.ndata; ++i) {
829 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
830 i, (uint64_t)run->internal.data[i]);
831 }
832 }
833 cpu_dump_state(env, stderr, fprintf, 0);
834 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
835 fprintf(stderr, "emulation failure\n");
836 if (!kvm_arch_stop_on_emulation_error(env))
837 return;
838 }
839 /* FIXME: Should trigger a qmp message to let management know
840 * something went wrong.
841 */
842 vm_stop(0);
843 }
844 #endif
845
846 void kvm_flush_coalesced_mmio_buffer(void)
847 {
848 #ifdef KVM_CAP_COALESCED_MMIO
849 KVMState *s = kvm_state;
850 if (s->coalesced_mmio_ring) {
851 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
852 while (ring->first != ring->last) {
853 struct kvm_coalesced_mmio *ent;
854
855 ent = &ring->coalesced_mmio[ring->first];
856
857 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
858 smp_wmb();
859 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
860 }
861 }
862 #endif
863 }
864
865 static void do_kvm_cpu_synchronize_state(void *_env)
866 {
867 CPUState *env = _env;
868
869 if (!env->kvm_vcpu_dirty) {
870 kvm_arch_get_registers(env);
871 env->kvm_vcpu_dirty = 1;
872 }
873 }
874
875 void kvm_cpu_synchronize_state(CPUState *env)
876 {
877 if (!env->kvm_vcpu_dirty)
878 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
879 }
880
881 void kvm_cpu_synchronize_post_reset(CPUState *env)
882 {
883 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
884 env->kvm_vcpu_dirty = 0;
885 }
886
887 void kvm_cpu_synchronize_post_init(CPUState *env)
888 {
889 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
890 env->kvm_vcpu_dirty = 0;
891 }
892
893 int kvm_cpu_exec(CPUState *env)
894 {
895 struct kvm_run *run = env->kvm_run;
896 int ret;
897
898 DPRINTF("kvm_cpu_exec()\n");
899
900 do {
901 #ifndef CONFIG_IOTHREAD
902 if (env->exit_request) {
903 DPRINTF("interrupt exit requested\n");
904 ret = 0;
905 break;
906 }
907 #endif
908
909 if (kvm_arch_process_irqchip_events(env)) {
910 ret = 0;
911 break;
912 }
913
914 if (env->kvm_vcpu_dirty) {
915 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
916 env->kvm_vcpu_dirty = 0;
917 }
918
919 kvm_arch_pre_run(env, run);
920 cpu_single_env = NULL;
921 qemu_mutex_unlock_iothread();
922 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
923 qemu_mutex_lock_iothread();
924 cpu_single_env = env;
925 kvm_arch_post_run(env, run);
926
927 if (ret == -EINTR || ret == -EAGAIN) {
928 cpu_exit(env);
929 DPRINTF("io window exit\n");
930 ret = 0;
931 break;
932 }
933
934 if (ret < 0) {
935 DPRINTF("kvm run failed %s\n", strerror(-ret));
936 abort();
937 }
938
939 kvm_flush_coalesced_mmio_buffer();
940
941 ret = 0; /* exit loop */
942 switch (run->exit_reason) {
943 case KVM_EXIT_IO:
944 DPRINTF("handle_io\n");
945 ret = kvm_handle_io(run->io.port,
946 (uint8_t *)run + run->io.data_offset,
947 run->io.direction,
948 run->io.size,
949 run->io.count);
950 break;
951 case KVM_EXIT_MMIO:
952 DPRINTF("handle_mmio\n");
953 cpu_physical_memory_rw(run->mmio.phys_addr,
954 run->mmio.data,
955 run->mmio.len,
956 run->mmio.is_write);
957 ret = 1;
958 break;
959 case KVM_EXIT_IRQ_WINDOW_OPEN:
960 DPRINTF("irq_window_open\n");
961 break;
962 case KVM_EXIT_SHUTDOWN:
963 DPRINTF("shutdown\n");
964 qemu_system_reset_request();
965 ret = 1;
966 break;
967 case KVM_EXIT_UNKNOWN:
968 DPRINTF("kvm_exit_unknown\n");
969 break;
970 case KVM_EXIT_FAIL_ENTRY:
971 DPRINTF("kvm_exit_fail_entry\n");
972 break;
973 case KVM_EXIT_EXCEPTION:
974 DPRINTF("kvm_exit_exception\n");
975 break;
976 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
977 case KVM_EXIT_INTERNAL_ERROR:
978 kvm_handle_internal_error(env, run);
979 break;
980 #endif
981 case KVM_EXIT_DEBUG:
982 DPRINTF("kvm_exit_debug\n");
983 #ifdef KVM_CAP_SET_GUEST_DEBUG
984 if (kvm_arch_debug(&run->debug.arch)) {
985 env->exception_index = EXCP_DEBUG;
986 return 0;
987 }
988 /* re-enter, this exception was guest-internal */
989 ret = 1;
990 #endif /* KVM_CAP_SET_GUEST_DEBUG */
991 break;
992 default:
993 DPRINTF("kvm_arch_handle_exit\n");
994 ret = kvm_arch_handle_exit(env, run);
995 break;
996 }
997 } while (ret > 0);
998
999 if (env->exit_request) {
1000 env->exit_request = 0;
1001 env->exception_index = EXCP_INTERRUPT;
1002 }
1003
1004 return ret;
1005 }
1006
1007 int kvm_ioctl(KVMState *s, int type, ...)
1008 {
1009 int ret;
1010 void *arg;
1011 va_list ap;
1012
1013 va_start(ap, type);
1014 arg = va_arg(ap, void *);
1015 va_end(ap);
1016
1017 ret = ioctl(s->fd, type, arg);
1018 if (ret == -1)
1019 ret = -errno;
1020
1021 return ret;
1022 }
1023
1024 int kvm_vm_ioctl(KVMState *s, int type, ...)
1025 {
1026 int ret;
1027 void *arg;
1028 va_list ap;
1029
1030 va_start(ap, type);
1031 arg = va_arg(ap, void *);
1032 va_end(ap);
1033
1034 ret = ioctl(s->vmfd, type, arg);
1035 if (ret == -1)
1036 ret = -errno;
1037
1038 return ret;
1039 }
1040
1041 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1042 {
1043 int ret;
1044 void *arg;
1045 va_list ap;
1046
1047 va_start(ap, type);
1048 arg = va_arg(ap, void *);
1049 va_end(ap);
1050
1051 ret = ioctl(env->kvm_fd, type, arg);
1052 if (ret == -1)
1053 ret = -errno;
1054
1055 return ret;
1056 }
1057
1058 int kvm_has_sync_mmu(void)
1059 {
1060 #ifdef KVM_CAP_SYNC_MMU
1061 KVMState *s = kvm_state;
1062
1063 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
1064 #else
1065 return 0;
1066 #endif
1067 }
1068
1069 int kvm_has_vcpu_events(void)
1070 {
1071 return kvm_state->vcpu_events;
1072 }
1073
1074 int kvm_has_robust_singlestep(void)
1075 {
1076 return kvm_state->robust_singlestep;
1077 }
1078
1079 int kvm_has_debugregs(void)
1080 {
1081 return kvm_state->debugregs;
1082 }
1083
1084 int kvm_has_xsave(void)
1085 {
1086 return kvm_state->xsave;
1087 }
1088
1089 int kvm_has_xcrs(void)
1090 {
1091 return kvm_state->xcrs;
1092 }
1093
1094 int kvm_has_many_ioeventfds(void)
1095 {
1096 if (!kvm_enabled()) {
1097 return 0;
1098 }
1099 return kvm_state->many_ioeventfds;
1100 }
1101
1102 void kvm_setup_guest_memory(void *start, size_t size)
1103 {
1104 if (!kvm_has_sync_mmu()) {
1105 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1106
1107 if (ret) {
1108 perror("qemu_madvise");
1109 fprintf(stderr,
1110 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1111 exit(1);
1112 }
1113 }
1114 }
1115
1116 #ifdef KVM_CAP_SET_GUEST_DEBUG
1117 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1118 target_ulong pc)
1119 {
1120 struct kvm_sw_breakpoint *bp;
1121
1122 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1123 if (bp->pc == pc)
1124 return bp;
1125 }
1126 return NULL;
1127 }
1128
1129 int kvm_sw_breakpoints_active(CPUState *env)
1130 {
1131 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1132 }
1133
1134 struct kvm_set_guest_debug_data {
1135 struct kvm_guest_debug dbg;
1136 CPUState *env;
1137 int err;
1138 };
1139
1140 static void kvm_invoke_set_guest_debug(void *data)
1141 {
1142 struct kvm_set_guest_debug_data *dbg_data = data;
1143 CPUState *env = dbg_data->env;
1144
1145 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1146 }
1147
1148 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1149 {
1150 struct kvm_set_guest_debug_data data;
1151
1152 data.dbg.control = reinject_trap;
1153
1154 if (env->singlestep_enabled) {
1155 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1156 }
1157 kvm_arch_update_guest_debug(env, &data.dbg);
1158 data.env = env;
1159
1160 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1161 return data.err;
1162 }
1163
1164 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1165 target_ulong len, int type)
1166 {
1167 struct kvm_sw_breakpoint *bp;
1168 CPUState *env;
1169 int err;
1170
1171 if (type == GDB_BREAKPOINT_SW) {
1172 bp = kvm_find_sw_breakpoint(current_env, addr);
1173 if (bp) {
1174 bp->use_count++;
1175 return 0;
1176 }
1177
1178 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1179 if (!bp)
1180 return -ENOMEM;
1181
1182 bp->pc = addr;
1183 bp->use_count = 1;
1184 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1185 if (err) {
1186 free(bp);
1187 return err;
1188 }
1189
1190 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1191 bp, entry);
1192 } else {
1193 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1194 if (err)
1195 return err;
1196 }
1197
1198 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1199 err = kvm_update_guest_debug(env, 0);
1200 if (err)
1201 return err;
1202 }
1203 return 0;
1204 }
1205
1206 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1207 target_ulong len, int type)
1208 {
1209 struct kvm_sw_breakpoint *bp;
1210 CPUState *env;
1211 int err;
1212
1213 if (type == GDB_BREAKPOINT_SW) {
1214 bp = kvm_find_sw_breakpoint(current_env, addr);
1215 if (!bp)
1216 return -ENOENT;
1217
1218 if (bp->use_count > 1) {
1219 bp->use_count--;
1220 return 0;
1221 }
1222
1223 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1224 if (err)
1225 return err;
1226
1227 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1228 qemu_free(bp);
1229 } else {
1230 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1231 if (err)
1232 return err;
1233 }
1234
1235 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1236 err = kvm_update_guest_debug(env, 0);
1237 if (err)
1238 return err;
1239 }
1240 return 0;
1241 }
1242
1243 void kvm_remove_all_breakpoints(CPUState *current_env)
1244 {
1245 struct kvm_sw_breakpoint *bp, *next;
1246 KVMState *s = current_env->kvm_state;
1247 CPUState *env;
1248
1249 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1250 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1251 /* Try harder to find a CPU that currently sees the breakpoint. */
1252 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1253 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1254 break;
1255 }
1256 }
1257 }
1258 kvm_arch_remove_all_hw_breakpoints();
1259
1260 for (env = first_cpu; env != NULL; env = env->next_cpu)
1261 kvm_update_guest_debug(env, 0);
1262 }
1263
1264 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1265
1266 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1267 {
1268 return -EINVAL;
1269 }
1270
1271 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1272 target_ulong len, int type)
1273 {
1274 return -EINVAL;
1275 }
1276
1277 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1278 target_ulong len, int type)
1279 {
1280 return -EINVAL;
1281 }
1282
1283 void kvm_remove_all_breakpoints(CPUState *current_env)
1284 {
1285 }
1286 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1287
1288 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1289 {
1290 struct kvm_signal_mask *sigmask;
1291 int r;
1292
1293 if (!sigset)
1294 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1295
1296 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1297
1298 sigmask->len = 8;
1299 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1300 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1301 free(sigmask);
1302
1303 return r;
1304 }
1305
1306 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1307 {
1308 #ifdef KVM_IOEVENTFD
1309 int ret;
1310 struct kvm_ioeventfd iofd;
1311
1312 iofd.datamatch = val;
1313 iofd.addr = addr;
1314 iofd.len = 4;
1315 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1316 iofd.fd = fd;
1317
1318 if (!kvm_enabled()) {
1319 return -ENOSYS;
1320 }
1321
1322 if (!assign) {
1323 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1324 }
1325
1326 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1327
1328 if (ret < 0) {
1329 return -errno;
1330 }
1331
1332 return 0;
1333 #else
1334 return -ENOSYS;
1335 #endif
1336 }
1337
1338 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1339 {
1340 #ifdef KVM_IOEVENTFD
1341 struct kvm_ioeventfd kick = {
1342 .datamatch = val,
1343 .addr = addr,
1344 .len = 2,
1345 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1346 .fd = fd,
1347 };
1348 int r;
1349 if (!kvm_enabled())
1350 return -ENOSYS;
1351 if (!assign)
1352 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1353 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1354 if (r < 0)
1355 return r;
1356 return 0;
1357 #else
1358 return -ENOSYS;
1359 #endif
1360 }