]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
qcow2: Return real error in qcow2_update_snapshot_refcount
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/pci/msi.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/address-spaces.h"
35 #include "qemu/event_notifier.h"
36
37 /* This check must be after config-host.h is included */
38 #ifdef CONFIG_EVENTFD
39 #include <sys/eventfd.h>
40 #endif
41
42 #ifdef CONFIG_VALGRIND_H
43 #include <valgrind/memcheck.h>
44 #endif
45
46 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
47 #define PAGE_SIZE TARGET_PAGE_SIZE
48
49 //#define DEBUG_KVM
50
51 #ifdef DEBUG_KVM
52 #define DPRINTF(fmt, ...) \
53 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
54 #else
55 #define DPRINTF(fmt, ...) \
56 do { } while (0)
57 #endif
58
59 #define KVM_MSI_HASHTAB_SIZE 256
60
61 typedef struct KVMSlot
62 {
63 hwaddr start_addr;
64 ram_addr_t memory_size;
65 void *ram;
66 int slot;
67 int flags;
68 } KVMSlot;
69
70 typedef struct kvm_dirty_log KVMDirtyLog;
71
72 struct KVMState
73 {
74 KVMSlot slots[32];
75 int fd;
76 int vmfd;
77 int coalesced_mmio;
78 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
79 bool coalesced_flush_in_progress;
80 int broken_set_mem_region;
81 int migration_log;
82 int vcpu_events;
83 int robust_singlestep;
84 int debugregs;
85 #ifdef KVM_CAP_SET_GUEST_DEBUG
86 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
87 #endif
88 int pit_state2;
89 int xsave, xcrs;
90 int many_ioeventfds;
91 int intx_set_mask;
92 /* The man page (and posix) say ioctl numbers are signed int, but
93 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
94 * unsigned, and treating them as signed here can break things */
95 unsigned irq_set_ioctl;
96 #ifdef KVM_CAP_IRQ_ROUTING
97 struct kvm_irq_routing *irq_routes;
98 int nr_allocated_irq_routes;
99 uint32_t *used_gsi_bitmap;
100 unsigned int gsi_count;
101 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
102 bool direct_msi;
103 #endif
104 };
105
106 KVMState *kvm_state;
107 bool kvm_kernel_irqchip;
108 bool kvm_async_interrupts_allowed;
109 bool kvm_irqfds_allowed;
110 bool kvm_msi_via_irqfd_allowed;
111 bool kvm_gsi_routing_allowed;
112
113 static const KVMCapabilityInfo kvm_required_capabilites[] = {
114 KVM_CAP_INFO(USER_MEMORY),
115 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
116 KVM_CAP_LAST_INFO
117 };
118
119 static KVMSlot *kvm_alloc_slot(KVMState *s)
120 {
121 int i;
122
123 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
124 if (s->slots[i].memory_size == 0) {
125 return &s->slots[i];
126 }
127 }
128
129 fprintf(stderr, "%s: no free slot available\n", __func__);
130 abort();
131 }
132
133 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
134 hwaddr start_addr,
135 hwaddr end_addr)
136 {
137 int i;
138
139 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
140 KVMSlot *mem = &s->slots[i];
141
142 if (start_addr == mem->start_addr &&
143 end_addr == mem->start_addr + mem->memory_size) {
144 return mem;
145 }
146 }
147
148 return NULL;
149 }
150
151 /*
152 * Find overlapping slot with lowest start address
153 */
154 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
155 hwaddr start_addr,
156 hwaddr end_addr)
157 {
158 KVMSlot *found = NULL;
159 int i;
160
161 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
162 KVMSlot *mem = &s->slots[i];
163
164 if (mem->memory_size == 0 ||
165 (found && found->start_addr < mem->start_addr)) {
166 continue;
167 }
168
169 if (end_addr > mem->start_addr &&
170 start_addr < mem->start_addr + mem->memory_size) {
171 found = mem;
172 }
173 }
174
175 return found;
176 }
177
178 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
179 hwaddr *phys_addr)
180 {
181 int i;
182
183 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
184 KVMSlot *mem = &s->slots[i];
185
186 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
187 *phys_addr = mem->start_addr + (ram - mem->ram);
188 return 1;
189 }
190 }
191
192 return 0;
193 }
194
195 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
196 {
197 struct kvm_userspace_memory_region mem;
198
199 mem.slot = slot->slot;
200 mem.guest_phys_addr = slot->start_addr;
201 mem.memory_size = slot->memory_size;
202 mem.userspace_addr = (unsigned long)slot->ram;
203 mem.flags = slot->flags;
204 if (s->migration_log) {
205 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
206 }
207 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
208 }
209
210 static void kvm_reset_vcpu(void *opaque)
211 {
212 CPUState *cpu = opaque;
213
214 kvm_arch_reset_vcpu(cpu);
215 }
216
217 int kvm_init_vcpu(CPUState *cpu)
218 {
219 KVMState *s = kvm_state;
220 long mmap_size;
221 int ret;
222
223 DPRINTF("kvm_init_vcpu\n");
224
225 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
226 if (ret < 0) {
227 DPRINTF("kvm_create_vcpu failed\n");
228 goto err;
229 }
230
231 cpu->kvm_fd = ret;
232 cpu->kvm_state = s;
233 cpu->kvm_vcpu_dirty = true;
234
235 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
236 if (mmap_size < 0) {
237 ret = mmap_size;
238 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
239 goto err;
240 }
241
242 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
243 cpu->kvm_fd, 0);
244 if (cpu->kvm_run == MAP_FAILED) {
245 ret = -errno;
246 DPRINTF("mmap'ing vcpu state failed\n");
247 goto err;
248 }
249
250 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
251 s->coalesced_mmio_ring =
252 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
253 }
254
255 ret = kvm_arch_init_vcpu(cpu);
256 if (ret == 0) {
257 qemu_register_reset(kvm_reset_vcpu, cpu);
258 kvm_arch_reset_vcpu(cpu);
259 }
260 err:
261 return ret;
262 }
263
264 /*
265 * dirty pages logging control
266 */
267
268 static int kvm_mem_flags(KVMState *s, bool log_dirty)
269 {
270 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
271 }
272
273 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
274 {
275 KVMState *s = kvm_state;
276 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
277 int old_flags;
278
279 old_flags = mem->flags;
280
281 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
282 mem->flags = flags;
283
284 /* If nothing changed effectively, no need to issue ioctl */
285 if (s->migration_log) {
286 flags |= KVM_MEM_LOG_DIRTY_PAGES;
287 }
288
289 if (flags == old_flags) {
290 return 0;
291 }
292
293 return kvm_set_user_memory_region(s, mem);
294 }
295
296 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
297 ram_addr_t size, bool log_dirty)
298 {
299 KVMState *s = kvm_state;
300 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
301
302 if (mem == NULL) {
303 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
304 TARGET_FMT_plx "\n", __func__, phys_addr,
305 (hwaddr)(phys_addr + size - 1));
306 return -EINVAL;
307 }
308 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
309 }
310
311 static void kvm_log_start(MemoryListener *listener,
312 MemoryRegionSection *section)
313 {
314 int r;
315
316 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
317 section->size, true);
318 if (r < 0) {
319 abort();
320 }
321 }
322
323 static void kvm_log_stop(MemoryListener *listener,
324 MemoryRegionSection *section)
325 {
326 int r;
327
328 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
329 section->size, false);
330 if (r < 0) {
331 abort();
332 }
333 }
334
335 static int kvm_set_migration_log(int enable)
336 {
337 KVMState *s = kvm_state;
338 KVMSlot *mem;
339 int i, err;
340
341 s->migration_log = enable;
342
343 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
344 mem = &s->slots[i];
345
346 if (!mem->memory_size) {
347 continue;
348 }
349 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
350 continue;
351 }
352 err = kvm_set_user_memory_region(s, mem);
353 if (err) {
354 return err;
355 }
356 }
357 return 0;
358 }
359
360 /* get kvm's dirty pages bitmap and update qemu's */
361 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
362 unsigned long *bitmap)
363 {
364 unsigned int i, j;
365 unsigned long page_number, c;
366 hwaddr addr, addr1;
367 unsigned int len = ((section->size / getpagesize()) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
368 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
369
370 /*
371 * bitmap-traveling is faster than memory-traveling (for addr...)
372 * especially when most of the memory is not dirty.
373 */
374 for (i = 0; i < len; i++) {
375 if (bitmap[i] != 0) {
376 c = leul_to_cpu(bitmap[i]);
377 do {
378 j = ffsl(c) - 1;
379 c &= ~(1ul << j);
380 page_number = (i * HOST_LONG_BITS + j) * hpratio;
381 addr1 = page_number * TARGET_PAGE_SIZE;
382 addr = section->offset_within_region + addr1;
383 memory_region_set_dirty(section->mr, addr,
384 TARGET_PAGE_SIZE * hpratio);
385 } while (c != 0);
386 }
387 }
388 return 0;
389 }
390
391 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
392
393 /**
394 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
395 * This function updates qemu's dirty bitmap using
396 * memory_region_set_dirty(). This means all bits are set
397 * to dirty.
398 *
399 * @start_add: start of logged region.
400 * @end_addr: end of logged region.
401 */
402 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
403 {
404 KVMState *s = kvm_state;
405 unsigned long size, allocated_size = 0;
406 KVMDirtyLog d;
407 KVMSlot *mem;
408 int ret = 0;
409 hwaddr start_addr = section->offset_within_address_space;
410 hwaddr end_addr = start_addr + section->size;
411
412 d.dirty_bitmap = NULL;
413 while (start_addr < end_addr) {
414 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
415 if (mem == NULL) {
416 break;
417 }
418
419 /* XXX bad kernel interface alert
420 * For dirty bitmap, kernel allocates array of size aligned to
421 * bits-per-long. But for case when the kernel is 64bits and
422 * the userspace is 32bits, userspace can't align to the same
423 * bits-per-long, since sizeof(long) is different between kernel
424 * and user space. This way, userspace will provide buffer which
425 * may be 4 bytes less than the kernel will use, resulting in
426 * userspace memory corruption (which is not detectable by valgrind
427 * too, in most cases).
428 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
429 * a hope that sizeof(long) wont become >8 any time soon.
430 */
431 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
432 /*HOST_LONG_BITS*/ 64) / 8;
433 if (!d.dirty_bitmap) {
434 d.dirty_bitmap = g_malloc(size);
435 } else if (size > allocated_size) {
436 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
437 }
438 allocated_size = size;
439 memset(d.dirty_bitmap, 0, allocated_size);
440
441 d.slot = mem->slot;
442
443 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
444 DPRINTF("ioctl failed %d\n", errno);
445 ret = -1;
446 break;
447 }
448
449 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
450 start_addr = mem->start_addr + mem->memory_size;
451 }
452 g_free(d.dirty_bitmap);
453
454 return ret;
455 }
456
457 static void kvm_coalesce_mmio_region(MemoryListener *listener,
458 MemoryRegionSection *secion,
459 hwaddr start, hwaddr size)
460 {
461 KVMState *s = kvm_state;
462
463 if (s->coalesced_mmio) {
464 struct kvm_coalesced_mmio_zone zone;
465
466 zone.addr = start;
467 zone.size = size;
468 zone.pad = 0;
469
470 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
471 }
472 }
473
474 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
475 MemoryRegionSection *secion,
476 hwaddr start, hwaddr size)
477 {
478 KVMState *s = kvm_state;
479
480 if (s->coalesced_mmio) {
481 struct kvm_coalesced_mmio_zone zone;
482
483 zone.addr = start;
484 zone.size = size;
485 zone.pad = 0;
486
487 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
488 }
489 }
490
491 int kvm_check_extension(KVMState *s, unsigned int extension)
492 {
493 int ret;
494
495 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
496 if (ret < 0) {
497 ret = 0;
498 }
499
500 return ret;
501 }
502
503 static int kvm_check_many_ioeventfds(void)
504 {
505 /* Userspace can use ioeventfd for io notification. This requires a host
506 * that supports eventfd(2) and an I/O thread; since eventfd does not
507 * support SIGIO it cannot interrupt the vcpu.
508 *
509 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
510 * can avoid creating too many ioeventfds.
511 */
512 #if defined(CONFIG_EVENTFD)
513 int ioeventfds[7];
514 int i, ret = 0;
515 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
516 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
517 if (ioeventfds[i] < 0) {
518 break;
519 }
520 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
521 if (ret < 0) {
522 close(ioeventfds[i]);
523 break;
524 }
525 }
526
527 /* Decide whether many devices are supported or not */
528 ret = i == ARRAY_SIZE(ioeventfds);
529
530 while (i-- > 0) {
531 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
532 close(ioeventfds[i]);
533 }
534 return ret;
535 #else
536 return 0;
537 #endif
538 }
539
540 static const KVMCapabilityInfo *
541 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
542 {
543 while (list->name) {
544 if (!kvm_check_extension(s, list->value)) {
545 return list;
546 }
547 list++;
548 }
549 return NULL;
550 }
551
552 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
553 {
554 KVMState *s = kvm_state;
555 KVMSlot *mem, old;
556 int err;
557 MemoryRegion *mr = section->mr;
558 bool log_dirty = memory_region_is_logging(mr);
559 hwaddr start_addr = section->offset_within_address_space;
560 ram_addr_t size = section->size;
561 void *ram = NULL;
562 unsigned delta;
563
564 /* kvm works in page size chunks, but the function may be called
565 with sub-page size and unaligned start address. */
566 delta = TARGET_PAGE_ALIGN(size) - size;
567 if (delta > size) {
568 return;
569 }
570 start_addr += delta;
571 size -= delta;
572 size &= TARGET_PAGE_MASK;
573 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
574 return;
575 }
576
577 if (!memory_region_is_ram(mr)) {
578 return;
579 }
580
581 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
582
583 while (1) {
584 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
585 if (!mem) {
586 break;
587 }
588
589 if (add && start_addr >= mem->start_addr &&
590 (start_addr + size <= mem->start_addr + mem->memory_size) &&
591 (ram - start_addr == mem->ram - mem->start_addr)) {
592 /* The new slot fits into the existing one and comes with
593 * identical parameters - update flags and done. */
594 kvm_slot_dirty_pages_log_change(mem, log_dirty);
595 return;
596 }
597
598 old = *mem;
599
600 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
601 kvm_physical_sync_dirty_bitmap(section);
602 }
603
604 /* unregister the overlapping slot */
605 mem->memory_size = 0;
606 err = kvm_set_user_memory_region(s, mem);
607 if (err) {
608 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
609 __func__, strerror(-err));
610 abort();
611 }
612
613 /* Workaround for older KVM versions: we can't join slots, even not by
614 * unregistering the previous ones and then registering the larger
615 * slot. We have to maintain the existing fragmentation. Sigh.
616 *
617 * This workaround assumes that the new slot starts at the same
618 * address as the first existing one. If not or if some overlapping
619 * slot comes around later, we will fail (not seen in practice so far)
620 * - and actually require a recent KVM version. */
621 if (s->broken_set_mem_region &&
622 old.start_addr == start_addr && old.memory_size < size && add) {
623 mem = kvm_alloc_slot(s);
624 mem->memory_size = old.memory_size;
625 mem->start_addr = old.start_addr;
626 mem->ram = old.ram;
627 mem->flags = kvm_mem_flags(s, log_dirty);
628
629 err = kvm_set_user_memory_region(s, mem);
630 if (err) {
631 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
632 strerror(-err));
633 abort();
634 }
635
636 start_addr += old.memory_size;
637 ram += old.memory_size;
638 size -= old.memory_size;
639 continue;
640 }
641
642 /* register prefix slot */
643 if (old.start_addr < start_addr) {
644 mem = kvm_alloc_slot(s);
645 mem->memory_size = start_addr - old.start_addr;
646 mem->start_addr = old.start_addr;
647 mem->ram = old.ram;
648 mem->flags = kvm_mem_flags(s, log_dirty);
649
650 err = kvm_set_user_memory_region(s, mem);
651 if (err) {
652 fprintf(stderr, "%s: error registering prefix slot: %s\n",
653 __func__, strerror(-err));
654 #ifdef TARGET_PPC
655 fprintf(stderr, "%s: This is probably because your kernel's " \
656 "PAGE_SIZE is too big. Please try to use 4k " \
657 "PAGE_SIZE!\n", __func__);
658 #endif
659 abort();
660 }
661 }
662
663 /* register suffix slot */
664 if (old.start_addr + old.memory_size > start_addr + size) {
665 ram_addr_t size_delta;
666
667 mem = kvm_alloc_slot(s);
668 mem->start_addr = start_addr + size;
669 size_delta = mem->start_addr - old.start_addr;
670 mem->memory_size = old.memory_size - size_delta;
671 mem->ram = old.ram + size_delta;
672 mem->flags = kvm_mem_flags(s, log_dirty);
673
674 err = kvm_set_user_memory_region(s, mem);
675 if (err) {
676 fprintf(stderr, "%s: error registering suffix slot: %s\n",
677 __func__, strerror(-err));
678 abort();
679 }
680 }
681 }
682
683 /* in case the KVM bug workaround already "consumed" the new slot */
684 if (!size) {
685 return;
686 }
687 if (!add) {
688 return;
689 }
690 mem = kvm_alloc_slot(s);
691 mem->memory_size = size;
692 mem->start_addr = start_addr;
693 mem->ram = ram;
694 mem->flags = kvm_mem_flags(s, log_dirty);
695
696 err = kvm_set_user_memory_region(s, mem);
697 if (err) {
698 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
699 strerror(-err));
700 abort();
701 }
702 }
703
704 static void kvm_region_add(MemoryListener *listener,
705 MemoryRegionSection *section)
706 {
707 kvm_set_phys_mem(section, true);
708 }
709
710 static void kvm_region_del(MemoryListener *listener,
711 MemoryRegionSection *section)
712 {
713 kvm_set_phys_mem(section, false);
714 }
715
716 static void kvm_log_sync(MemoryListener *listener,
717 MemoryRegionSection *section)
718 {
719 int r;
720
721 r = kvm_physical_sync_dirty_bitmap(section);
722 if (r < 0) {
723 abort();
724 }
725 }
726
727 static void kvm_log_global_start(struct MemoryListener *listener)
728 {
729 int r;
730
731 r = kvm_set_migration_log(1);
732 assert(r >= 0);
733 }
734
735 static void kvm_log_global_stop(struct MemoryListener *listener)
736 {
737 int r;
738
739 r = kvm_set_migration_log(0);
740 assert(r >= 0);
741 }
742
743 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
744 MemoryRegionSection *section,
745 bool match_data, uint64_t data,
746 EventNotifier *e)
747 {
748 int fd = event_notifier_get_fd(e);
749 int r;
750
751 assert(match_data && section->size <= 8);
752
753 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
754 data, true, section->size);
755 if (r < 0) {
756 abort();
757 }
758 }
759
760 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
761 MemoryRegionSection *section,
762 bool match_data, uint64_t data,
763 EventNotifier *e)
764 {
765 int fd = event_notifier_get_fd(e);
766 int r;
767
768 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
769 data, false, section->size);
770 if (r < 0) {
771 abort();
772 }
773 }
774
775 static void kvm_io_ioeventfd_add(MemoryListener *listener,
776 MemoryRegionSection *section,
777 bool match_data, uint64_t data,
778 EventNotifier *e)
779 {
780 int fd = event_notifier_get_fd(e);
781 int r;
782
783 assert(match_data && section->size == 2);
784
785 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
786 data, true);
787 if (r < 0) {
788 abort();
789 }
790 }
791
792 static void kvm_io_ioeventfd_del(MemoryListener *listener,
793 MemoryRegionSection *section,
794 bool match_data, uint64_t data,
795 EventNotifier *e)
796
797 {
798 int fd = event_notifier_get_fd(e);
799 int r;
800
801 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
802 data, false);
803 if (r < 0) {
804 abort();
805 }
806 }
807
808 static MemoryListener kvm_memory_listener = {
809 .region_add = kvm_region_add,
810 .region_del = kvm_region_del,
811 .log_start = kvm_log_start,
812 .log_stop = kvm_log_stop,
813 .log_sync = kvm_log_sync,
814 .log_global_start = kvm_log_global_start,
815 .log_global_stop = kvm_log_global_stop,
816 .eventfd_add = kvm_mem_ioeventfd_add,
817 .eventfd_del = kvm_mem_ioeventfd_del,
818 .coalesced_mmio_add = kvm_coalesce_mmio_region,
819 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
820 .priority = 10,
821 };
822
823 static MemoryListener kvm_io_listener = {
824 .eventfd_add = kvm_io_ioeventfd_add,
825 .eventfd_del = kvm_io_ioeventfd_del,
826 .priority = 10,
827 };
828
829 static void kvm_handle_interrupt(CPUState *cpu, int mask)
830 {
831 cpu->interrupt_request |= mask;
832
833 if (!qemu_cpu_is_self(cpu)) {
834 qemu_cpu_kick(cpu);
835 }
836 }
837
838 int kvm_set_irq(KVMState *s, int irq, int level)
839 {
840 struct kvm_irq_level event;
841 int ret;
842
843 assert(kvm_async_interrupts_enabled());
844
845 event.level = level;
846 event.irq = irq;
847 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
848 if (ret < 0) {
849 perror("kvm_set_irq");
850 abort();
851 }
852
853 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
854 }
855
856 #ifdef KVM_CAP_IRQ_ROUTING
857 typedef struct KVMMSIRoute {
858 struct kvm_irq_routing_entry kroute;
859 QTAILQ_ENTRY(KVMMSIRoute) entry;
860 } KVMMSIRoute;
861
862 static void set_gsi(KVMState *s, unsigned int gsi)
863 {
864 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
865 }
866
867 static void clear_gsi(KVMState *s, unsigned int gsi)
868 {
869 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
870 }
871
872 static void kvm_init_irq_routing(KVMState *s)
873 {
874 int gsi_count, i;
875
876 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
877 if (gsi_count > 0) {
878 unsigned int gsi_bits, i;
879
880 /* Round up so we can search ints using ffs */
881 gsi_bits = ALIGN(gsi_count, 32);
882 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
883 s->gsi_count = gsi_count;
884
885 /* Mark any over-allocated bits as already in use */
886 for (i = gsi_count; i < gsi_bits; i++) {
887 set_gsi(s, i);
888 }
889 }
890
891 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
892 s->nr_allocated_irq_routes = 0;
893
894 if (!s->direct_msi) {
895 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
896 QTAILQ_INIT(&s->msi_hashtab[i]);
897 }
898 }
899
900 kvm_arch_init_irq_routing(s);
901 }
902
903 static void kvm_irqchip_commit_routes(KVMState *s)
904 {
905 int ret;
906
907 s->irq_routes->flags = 0;
908 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
909 assert(ret == 0);
910 }
911
912 static void kvm_add_routing_entry(KVMState *s,
913 struct kvm_irq_routing_entry *entry)
914 {
915 struct kvm_irq_routing_entry *new;
916 int n, size;
917
918 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
919 n = s->nr_allocated_irq_routes * 2;
920 if (n < 64) {
921 n = 64;
922 }
923 size = sizeof(struct kvm_irq_routing);
924 size += n * sizeof(*new);
925 s->irq_routes = g_realloc(s->irq_routes, size);
926 s->nr_allocated_irq_routes = n;
927 }
928 n = s->irq_routes->nr++;
929 new = &s->irq_routes->entries[n];
930 memset(new, 0, sizeof(*new));
931 new->gsi = entry->gsi;
932 new->type = entry->type;
933 new->flags = entry->flags;
934 new->u = entry->u;
935
936 set_gsi(s, entry->gsi);
937
938 kvm_irqchip_commit_routes(s);
939 }
940
941 static int kvm_update_routing_entry(KVMState *s,
942 struct kvm_irq_routing_entry *new_entry)
943 {
944 struct kvm_irq_routing_entry *entry;
945 int n;
946
947 for (n = 0; n < s->irq_routes->nr; n++) {
948 entry = &s->irq_routes->entries[n];
949 if (entry->gsi != new_entry->gsi) {
950 continue;
951 }
952
953 entry->type = new_entry->type;
954 entry->flags = new_entry->flags;
955 entry->u = new_entry->u;
956
957 kvm_irqchip_commit_routes(s);
958
959 return 0;
960 }
961
962 return -ESRCH;
963 }
964
965 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
966 {
967 struct kvm_irq_routing_entry e;
968
969 assert(pin < s->gsi_count);
970
971 e.gsi = irq;
972 e.type = KVM_IRQ_ROUTING_IRQCHIP;
973 e.flags = 0;
974 e.u.irqchip.irqchip = irqchip;
975 e.u.irqchip.pin = pin;
976 kvm_add_routing_entry(s, &e);
977 }
978
979 void kvm_irqchip_release_virq(KVMState *s, int virq)
980 {
981 struct kvm_irq_routing_entry *e;
982 int i;
983
984 for (i = 0; i < s->irq_routes->nr; i++) {
985 e = &s->irq_routes->entries[i];
986 if (e->gsi == virq) {
987 s->irq_routes->nr--;
988 *e = s->irq_routes->entries[s->irq_routes->nr];
989 }
990 }
991 clear_gsi(s, virq);
992 }
993
994 static unsigned int kvm_hash_msi(uint32_t data)
995 {
996 /* This is optimized for IA32 MSI layout. However, no other arch shall
997 * repeat the mistake of not providing a direct MSI injection API. */
998 return data & 0xff;
999 }
1000
1001 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1002 {
1003 KVMMSIRoute *route, *next;
1004 unsigned int hash;
1005
1006 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1007 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1008 kvm_irqchip_release_virq(s, route->kroute.gsi);
1009 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1010 g_free(route);
1011 }
1012 }
1013 }
1014
1015 static int kvm_irqchip_get_virq(KVMState *s)
1016 {
1017 uint32_t *word = s->used_gsi_bitmap;
1018 int max_words = ALIGN(s->gsi_count, 32) / 32;
1019 int i, bit;
1020 bool retry = true;
1021
1022 again:
1023 /* Return the lowest unused GSI in the bitmap */
1024 for (i = 0; i < max_words; i++) {
1025 bit = ffs(~word[i]);
1026 if (!bit) {
1027 continue;
1028 }
1029
1030 return bit - 1 + i * 32;
1031 }
1032 if (!s->direct_msi && retry) {
1033 retry = false;
1034 kvm_flush_dynamic_msi_routes(s);
1035 goto again;
1036 }
1037 return -ENOSPC;
1038
1039 }
1040
1041 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1042 {
1043 unsigned int hash = kvm_hash_msi(msg.data);
1044 KVMMSIRoute *route;
1045
1046 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1047 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1048 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1049 route->kroute.u.msi.data == msg.data) {
1050 return route;
1051 }
1052 }
1053 return NULL;
1054 }
1055
1056 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1057 {
1058 struct kvm_msi msi;
1059 KVMMSIRoute *route;
1060
1061 if (s->direct_msi) {
1062 msi.address_lo = (uint32_t)msg.address;
1063 msi.address_hi = msg.address >> 32;
1064 msi.data = msg.data;
1065 msi.flags = 0;
1066 memset(msi.pad, 0, sizeof(msi.pad));
1067
1068 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1069 }
1070
1071 route = kvm_lookup_msi_route(s, msg);
1072 if (!route) {
1073 int virq;
1074
1075 virq = kvm_irqchip_get_virq(s);
1076 if (virq < 0) {
1077 return virq;
1078 }
1079
1080 route = g_malloc(sizeof(KVMMSIRoute));
1081 route->kroute.gsi = virq;
1082 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1083 route->kroute.flags = 0;
1084 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1085 route->kroute.u.msi.address_hi = msg.address >> 32;
1086 route->kroute.u.msi.data = msg.data;
1087
1088 kvm_add_routing_entry(s, &route->kroute);
1089
1090 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1091 entry);
1092 }
1093
1094 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1095
1096 return kvm_set_irq(s, route->kroute.gsi, 1);
1097 }
1098
1099 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1100 {
1101 struct kvm_irq_routing_entry kroute;
1102 int virq;
1103
1104 if (!kvm_gsi_routing_enabled()) {
1105 return -ENOSYS;
1106 }
1107
1108 virq = kvm_irqchip_get_virq(s);
1109 if (virq < 0) {
1110 return virq;
1111 }
1112
1113 kroute.gsi = virq;
1114 kroute.type = KVM_IRQ_ROUTING_MSI;
1115 kroute.flags = 0;
1116 kroute.u.msi.address_lo = (uint32_t)msg.address;
1117 kroute.u.msi.address_hi = msg.address >> 32;
1118 kroute.u.msi.data = msg.data;
1119
1120 kvm_add_routing_entry(s, &kroute);
1121
1122 return virq;
1123 }
1124
1125 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1126 {
1127 struct kvm_irq_routing_entry kroute;
1128
1129 if (!kvm_irqchip_in_kernel()) {
1130 return -ENOSYS;
1131 }
1132
1133 kroute.gsi = virq;
1134 kroute.type = KVM_IRQ_ROUTING_MSI;
1135 kroute.flags = 0;
1136 kroute.u.msi.address_lo = (uint32_t)msg.address;
1137 kroute.u.msi.address_hi = msg.address >> 32;
1138 kroute.u.msi.data = msg.data;
1139
1140 return kvm_update_routing_entry(s, &kroute);
1141 }
1142
1143 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1144 {
1145 struct kvm_irqfd irqfd = {
1146 .fd = fd,
1147 .gsi = virq,
1148 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1149 };
1150
1151 if (!kvm_irqfds_enabled()) {
1152 return -ENOSYS;
1153 }
1154
1155 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1156 }
1157
1158 #else /* !KVM_CAP_IRQ_ROUTING */
1159
1160 static void kvm_init_irq_routing(KVMState *s)
1161 {
1162 }
1163
1164 void kvm_irqchip_release_virq(KVMState *s, int virq)
1165 {
1166 }
1167
1168 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1169 {
1170 abort();
1171 }
1172
1173 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1174 {
1175 return -ENOSYS;
1176 }
1177
1178 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1179 {
1180 abort();
1181 }
1182
1183 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1184 {
1185 return -ENOSYS;
1186 }
1187 #endif /* !KVM_CAP_IRQ_ROUTING */
1188
1189 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1190 {
1191 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true);
1192 }
1193
1194 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1195 {
1196 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false);
1197 }
1198
1199 static int kvm_irqchip_create(KVMState *s)
1200 {
1201 QemuOptsList *list = qemu_find_opts("machine");
1202 int ret;
1203
1204 if (QTAILQ_EMPTY(&list->head) ||
1205 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1206 "kernel_irqchip", true) ||
1207 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1208 return 0;
1209 }
1210
1211 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1212 if (ret < 0) {
1213 fprintf(stderr, "Create kernel irqchip failed\n");
1214 return ret;
1215 }
1216
1217 kvm_kernel_irqchip = true;
1218 /* If we have an in-kernel IRQ chip then we must have asynchronous
1219 * interrupt delivery (though the reverse is not necessarily true)
1220 */
1221 kvm_async_interrupts_allowed = true;
1222
1223 kvm_init_irq_routing(s);
1224
1225 return 0;
1226 }
1227
1228 static int kvm_max_vcpus(KVMState *s)
1229 {
1230 int ret;
1231
1232 /* Find number of supported CPUs using the recommended
1233 * procedure from the kernel API documentation to cope with
1234 * older kernels that may be missing capabilities.
1235 */
1236 ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1237 if (ret) {
1238 return ret;
1239 }
1240 ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1241 if (ret) {
1242 return ret;
1243 }
1244
1245 return 4;
1246 }
1247
1248 int kvm_init(void)
1249 {
1250 static const char upgrade_note[] =
1251 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1252 "(see http://sourceforge.net/projects/kvm).\n";
1253 KVMState *s;
1254 const KVMCapabilityInfo *missing_cap;
1255 int ret;
1256 int i;
1257 int max_vcpus;
1258
1259 s = g_malloc0(sizeof(KVMState));
1260
1261 /*
1262 * On systems where the kernel can support different base page
1263 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1264 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1265 * page size for the system though.
1266 */
1267 assert(TARGET_PAGE_SIZE <= getpagesize());
1268
1269 #ifdef KVM_CAP_SET_GUEST_DEBUG
1270 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1271 #endif
1272 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1273 s->slots[i].slot = i;
1274 }
1275 s->vmfd = -1;
1276 s->fd = qemu_open("/dev/kvm", O_RDWR);
1277 if (s->fd == -1) {
1278 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1279 ret = -errno;
1280 goto err;
1281 }
1282
1283 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1284 if (ret < KVM_API_VERSION) {
1285 if (ret > 0) {
1286 ret = -EINVAL;
1287 }
1288 fprintf(stderr, "kvm version too old\n");
1289 goto err;
1290 }
1291
1292 if (ret > KVM_API_VERSION) {
1293 ret = -EINVAL;
1294 fprintf(stderr, "kvm version not supported\n");
1295 goto err;
1296 }
1297
1298 max_vcpus = kvm_max_vcpus(s);
1299 if (smp_cpus > max_vcpus) {
1300 ret = -EINVAL;
1301 fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
1302 "supported by KVM (%d)\n", smp_cpus, max_vcpus);
1303 goto err;
1304 }
1305
1306 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1307 if (s->vmfd < 0) {
1308 #ifdef TARGET_S390X
1309 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1310 "your host kernel command line\n");
1311 #endif
1312 ret = s->vmfd;
1313 goto err;
1314 }
1315
1316 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1317 if (!missing_cap) {
1318 missing_cap =
1319 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1320 }
1321 if (missing_cap) {
1322 ret = -EINVAL;
1323 fprintf(stderr, "kvm does not support %s\n%s",
1324 missing_cap->name, upgrade_note);
1325 goto err;
1326 }
1327
1328 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1329
1330 s->broken_set_mem_region = 1;
1331 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1332 if (ret > 0) {
1333 s->broken_set_mem_region = 0;
1334 }
1335
1336 #ifdef KVM_CAP_VCPU_EVENTS
1337 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1338 #endif
1339
1340 s->robust_singlestep =
1341 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1342
1343 #ifdef KVM_CAP_DEBUGREGS
1344 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1345 #endif
1346
1347 #ifdef KVM_CAP_XSAVE
1348 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1349 #endif
1350
1351 #ifdef KVM_CAP_XCRS
1352 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1353 #endif
1354
1355 #ifdef KVM_CAP_PIT_STATE2
1356 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1357 #endif
1358
1359 #ifdef KVM_CAP_IRQ_ROUTING
1360 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1361 #endif
1362
1363 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1364
1365 s->irq_set_ioctl = KVM_IRQ_LINE;
1366 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1367 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1368 }
1369
1370 ret = kvm_arch_init(s);
1371 if (ret < 0) {
1372 goto err;
1373 }
1374
1375 ret = kvm_irqchip_create(s);
1376 if (ret < 0) {
1377 goto err;
1378 }
1379
1380 kvm_state = s;
1381 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1382 memory_listener_register(&kvm_io_listener, &address_space_io);
1383
1384 s->many_ioeventfds = kvm_check_many_ioeventfds();
1385
1386 cpu_interrupt_handler = kvm_handle_interrupt;
1387
1388 return 0;
1389
1390 err:
1391 if (s->vmfd >= 0) {
1392 close(s->vmfd);
1393 }
1394 if (s->fd != -1) {
1395 close(s->fd);
1396 }
1397 g_free(s);
1398
1399 return ret;
1400 }
1401
1402 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1403 uint32_t count)
1404 {
1405 int i;
1406 uint8_t *ptr = data;
1407
1408 for (i = 0; i < count; i++) {
1409 if (direction == KVM_EXIT_IO_IN) {
1410 switch (size) {
1411 case 1:
1412 stb_p(ptr, cpu_inb(port));
1413 break;
1414 case 2:
1415 stw_p(ptr, cpu_inw(port));
1416 break;
1417 case 4:
1418 stl_p(ptr, cpu_inl(port));
1419 break;
1420 }
1421 } else {
1422 switch (size) {
1423 case 1:
1424 cpu_outb(port, ldub_p(ptr));
1425 break;
1426 case 2:
1427 cpu_outw(port, lduw_p(ptr));
1428 break;
1429 case 4:
1430 cpu_outl(port, ldl_p(ptr));
1431 break;
1432 }
1433 }
1434
1435 ptr += size;
1436 }
1437 }
1438
1439 static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1440 {
1441 CPUState *cpu = ENV_GET_CPU(env);
1442
1443 fprintf(stderr, "KVM internal error.");
1444 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1445 int i;
1446
1447 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1448 for (i = 0; i < run->internal.ndata; ++i) {
1449 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1450 i, (uint64_t)run->internal.data[i]);
1451 }
1452 } else {
1453 fprintf(stderr, "\n");
1454 }
1455 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1456 fprintf(stderr, "emulation failure\n");
1457 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1458 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1459 return EXCP_INTERRUPT;
1460 }
1461 }
1462 /* FIXME: Should trigger a qmp message to let management know
1463 * something went wrong.
1464 */
1465 return -1;
1466 }
1467
1468 void kvm_flush_coalesced_mmio_buffer(void)
1469 {
1470 KVMState *s = kvm_state;
1471
1472 if (s->coalesced_flush_in_progress) {
1473 return;
1474 }
1475
1476 s->coalesced_flush_in_progress = true;
1477
1478 if (s->coalesced_mmio_ring) {
1479 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1480 while (ring->first != ring->last) {
1481 struct kvm_coalesced_mmio *ent;
1482
1483 ent = &ring->coalesced_mmio[ring->first];
1484
1485 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1486 smp_wmb();
1487 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1488 }
1489 }
1490
1491 s->coalesced_flush_in_progress = false;
1492 }
1493
1494 static void do_kvm_cpu_synchronize_state(void *arg)
1495 {
1496 CPUState *cpu = arg;
1497
1498 if (!cpu->kvm_vcpu_dirty) {
1499 kvm_arch_get_registers(cpu);
1500 cpu->kvm_vcpu_dirty = true;
1501 }
1502 }
1503
1504 void kvm_cpu_synchronize_state(CPUArchState *env)
1505 {
1506 CPUState *cpu = ENV_GET_CPU(env);
1507
1508 if (!cpu->kvm_vcpu_dirty) {
1509 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1510 }
1511 }
1512
1513 void kvm_cpu_synchronize_post_reset(CPUArchState *env)
1514 {
1515 CPUState *cpu = ENV_GET_CPU(env);
1516
1517 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1518 cpu->kvm_vcpu_dirty = false;
1519 }
1520
1521 void kvm_cpu_synchronize_post_init(CPUArchState *env)
1522 {
1523 CPUState *cpu = ENV_GET_CPU(env);
1524
1525 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1526 cpu->kvm_vcpu_dirty = false;
1527 }
1528
1529 int kvm_cpu_exec(CPUArchState *env)
1530 {
1531 CPUState *cpu = ENV_GET_CPU(env);
1532 struct kvm_run *run = cpu->kvm_run;
1533 int ret, run_ret;
1534
1535 DPRINTF("kvm_cpu_exec()\n");
1536
1537 if (kvm_arch_process_async_events(cpu)) {
1538 cpu->exit_request = 0;
1539 return EXCP_HLT;
1540 }
1541
1542 do {
1543 if (cpu->kvm_vcpu_dirty) {
1544 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1545 cpu->kvm_vcpu_dirty = false;
1546 }
1547
1548 kvm_arch_pre_run(cpu, run);
1549 if (cpu->exit_request) {
1550 DPRINTF("interrupt exit requested\n");
1551 /*
1552 * KVM requires us to reenter the kernel after IO exits to complete
1553 * instruction emulation. This self-signal will ensure that we
1554 * leave ASAP again.
1555 */
1556 qemu_cpu_kick_self();
1557 }
1558 qemu_mutex_unlock_iothread();
1559
1560 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1561
1562 qemu_mutex_lock_iothread();
1563 kvm_arch_post_run(cpu, run);
1564
1565 if (run_ret < 0) {
1566 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1567 DPRINTF("io window exit\n");
1568 ret = EXCP_INTERRUPT;
1569 break;
1570 }
1571 fprintf(stderr, "error: kvm run failed %s\n",
1572 strerror(-run_ret));
1573 abort();
1574 }
1575
1576 switch (run->exit_reason) {
1577 case KVM_EXIT_IO:
1578 DPRINTF("handle_io\n");
1579 kvm_handle_io(run->io.port,
1580 (uint8_t *)run + run->io.data_offset,
1581 run->io.direction,
1582 run->io.size,
1583 run->io.count);
1584 ret = 0;
1585 break;
1586 case KVM_EXIT_MMIO:
1587 DPRINTF("handle_mmio\n");
1588 cpu_physical_memory_rw(run->mmio.phys_addr,
1589 run->mmio.data,
1590 run->mmio.len,
1591 run->mmio.is_write);
1592 ret = 0;
1593 break;
1594 case KVM_EXIT_IRQ_WINDOW_OPEN:
1595 DPRINTF("irq_window_open\n");
1596 ret = EXCP_INTERRUPT;
1597 break;
1598 case KVM_EXIT_SHUTDOWN:
1599 DPRINTF("shutdown\n");
1600 qemu_system_reset_request();
1601 ret = EXCP_INTERRUPT;
1602 break;
1603 case KVM_EXIT_UNKNOWN:
1604 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1605 (uint64_t)run->hw.hardware_exit_reason);
1606 ret = -1;
1607 break;
1608 case KVM_EXIT_INTERNAL_ERROR:
1609 ret = kvm_handle_internal_error(env, run);
1610 break;
1611 default:
1612 DPRINTF("kvm_arch_handle_exit\n");
1613 ret = kvm_arch_handle_exit(cpu, run);
1614 break;
1615 }
1616 } while (ret == 0);
1617
1618 if (ret < 0) {
1619 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1620 vm_stop(RUN_STATE_INTERNAL_ERROR);
1621 }
1622
1623 cpu->exit_request = 0;
1624 return ret;
1625 }
1626
1627 int kvm_ioctl(KVMState *s, int type, ...)
1628 {
1629 int ret;
1630 void *arg;
1631 va_list ap;
1632
1633 va_start(ap, type);
1634 arg = va_arg(ap, void *);
1635 va_end(ap);
1636
1637 ret = ioctl(s->fd, type, arg);
1638 if (ret == -1) {
1639 ret = -errno;
1640 }
1641 return ret;
1642 }
1643
1644 int kvm_vm_ioctl(KVMState *s, int type, ...)
1645 {
1646 int ret;
1647 void *arg;
1648 va_list ap;
1649
1650 va_start(ap, type);
1651 arg = va_arg(ap, void *);
1652 va_end(ap);
1653
1654 ret = ioctl(s->vmfd, type, arg);
1655 if (ret == -1) {
1656 ret = -errno;
1657 }
1658 return ret;
1659 }
1660
1661 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1662 {
1663 int ret;
1664 void *arg;
1665 va_list ap;
1666
1667 va_start(ap, type);
1668 arg = va_arg(ap, void *);
1669 va_end(ap);
1670
1671 ret = ioctl(cpu->kvm_fd, type, arg);
1672 if (ret == -1) {
1673 ret = -errno;
1674 }
1675 return ret;
1676 }
1677
1678 int kvm_has_sync_mmu(void)
1679 {
1680 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1681 }
1682
1683 int kvm_has_vcpu_events(void)
1684 {
1685 return kvm_state->vcpu_events;
1686 }
1687
1688 int kvm_has_robust_singlestep(void)
1689 {
1690 return kvm_state->robust_singlestep;
1691 }
1692
1693 int kvm_has_debugregs(void)
1694 {
1695 return kvm_state->debugregs;
1696 }
1697
1698 int kvm_has_xsave(void)
1699 {
1700 return kvm_state->xsave;
1701 }
1702
1703 int kvm_has_xcrs(void)
1704 {
1705 return kvm_state->xcrs;
1706 }
1707
1708 int kvm_has_pit_state2(void)
1709 {
1710 return kvm_state->pit_state2;
1711 }
1712
1713 int kvm_has_many_ioeventfds(void)
1714 {
1715 if (!kvm_enabled()) {
1716 return 0;
1717 }
1718 return kvm_state->many_ioeventfds;
1719 }
1720
1721 int kvm_has_gsi_routing(void)
1722 {
1723 #ifdef KVM_CAP_IRQ_ROUTING
1724 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1725 #else
1726 return false;
1727 #endif
1728 }
1729
1730 int kvm_has_intx_set_mask(void)
1731 {
1732 return kvm_state->intx_set_mask;
1733 }
1734
1735 void *kvm_vmalloc(ram_addr_t size)
1736 {
1737 #ifdef TARGET_S390X
1738 void *mem;
1739
1740 mem = kvm_arch_vmalloc(size);
1741 if (mem) {
1742 return mem;
1743 }
1744 #endif
1745 return qemu_vmalloc(size);
1746 }
1747
1748 void kvm_setup_guest_memory(void *start, size_t size)
1749 {
1750 #ifdef CONFIG_VALGRIND_H
1751 VALGRIND_MAKE_MEM_DEFINED(start, size);
1752 #endif
1753 if (!kvm_has_sync_mmu()) {
1754 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1755
1756 if (ret) {
1757 perror("qemu_madvise");
1758 fprintf(stderr,
1759 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1760 exit(1);
1761 }
1762 }
1763 }
1764
1765 #ifdef KVM_CAP_SET_GUEST_DEBUG
1766 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1767 target_ulong pc)
1768 {
1769 struct kvm_sw_breakpoint *bp;
1770
1771 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1772 if (bp->pc == pc) {
1773 return bp;
1774 }
1775 }
1776 return NULL;
1777 }
1778
1779 int kvm_sw_breakpoints_active(CPUState *cpu)
1780 {
1781 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1782 }
1783
1784 struct kvm_set_guest_debug_data {
1785 struct kvm_guest_debug dbg;
1786 CPUState *cpu;
1787 int err;
1788 };
1789
1790 static void kvm_invoke_set_guest_debug(void *data)
1791 {
1792 struct kvm_set_guest_debug_data *dbg_data = data;
1793
1794 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
1795 &dbg_data->dbg);
1796 }
1797
1798 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1799 {
1800 CPUState *cpu = ENV_GET_CPU(env);
1801 struct kvm_set_guest_debug_data data;
1802
1803 data.dbg.control = reinject_trap;
1804
1805 if (env->singlestep_enabled) {
1806 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1807 }
1808 kvm_arch_update_guest_debug(cpu, &data.dbg);
1809 data.cpu = cpu;
1810
1811 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
1812 return data.err;
1813 }
1814
1815 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1816 target_ulong len, int type)
1817 {
1818 CPUState *current_cpu = ENV_GET_CPU(current_env);
1819 struct kvm_sw_breakpoint *bp;
1820 CPUArchState *env;
1821 int err;
1822
1823 if (type == GDB_BREAKPOINT_SW) {
1824 bp = kvm_find_sw_breakpoint(current_cpu, addr);
1825 if (bp) {
1826 bp->use_count++;
1827 return 0;
1828 }
1829
1830 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1831 if (!bp) {
1832 return -ENOMEM;
1833 }
1834
1835 bp->pc = addr;
1836 bp->use_count = 1;
1837 err = kvm_arch_insert_sw_breakpoint(current_cpu, bp);
1838 if (err) {
1839 g_free(bp);
1840 return err;
1841 }
1842
1843 QTAILQ_INSERT_HEAD(&current_cpu->kvm_state->kvm_sw_breakpoints,
1844 bp, entry);
1845 } else {
1846 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1847 if (err) {
1848 return err;
1849 }
1850 }
1851
1852 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1853 err = kvm_update_guest_debug(env, 0);
1854 if (err) {
1855 return err;
1856 }
1857 }
1858 return 0;
1859 }
1860
1861 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1862 target_ulong len, int type)
1863 {
1864 CPUState *current_cpu = ENV_GET_CPU(current_env);
1865 struct kvm_sw_breakpoint *bp;
1866 CPUArchState *env;
1867 int err;
1868
1869 if (type == GDB_BREAKPOINT_SW) {
1870 bp = kvm_find_sw_breakpoint(current_cpu, addr);
1871 if (!bp) {
1872 return -ENOENT;
1873 }
1874
1875 if (bp->use_count > 1) {
1876 bp->use_count--;
1877 return 0;
1878 }
1879
1880 err = kvm_arch_remove_sw_breakpoint(current_cpu, bp);
1881 if (err) {
1882 return err;
1883 }
1884
1885 QTAILQ_REMOVE(&current_cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1886 g_free(bp);
1887 } else {
1888 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1889 if (err) {
1890 return err;
1891 }
1892 }
1893
1894 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1895 err = kvm_update_guest_debug(env, 0);
1896 if (err) {
1897 return err;
1898 }
1899 }
1900 return 0;
1901 }
1902
1903 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1904 {
1905 CPUState *current_cpu = ENV_GET_CPU(current_env);
1906 struct kvm_sw_breakpoint *bp, *next;
1907 KVMState *s = current_cpu->kvm_state;
1908 CPUArchState *env;
1909 CPUState *cpu;
1910
1911 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1912 if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) {
1913 /* Try harder to find a CPU that currently sees the breakpoint. */
1914 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1915 cpu = ENV_GET_CPU(env);
1916 if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
1917 break;
1918 }
1919 }
1920 }
1921 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
1922 g_free(bp);
1923 }
1924 kvm_arch_remove_all_hw_breakpoints();
1925
1926 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1927 kvm_update_guest_debug(env, 0);
1928 }
1929 }
1930
1931 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1932
1933 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1934 {
1935 return -EINVAL;
1936 }
1937
1938 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1939 target_ulong len, int type)
1940 {
1941 return -EINVAL;
1942 }
1943
1944 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1945 target_ulong len, int type)
1946 {
1947 return -EINVAL;
1948 }
1949
1950 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1951 {
1952 }
1953 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1954
1955 int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
1956 {
1957 CPUState *cpu = ENV_GET_CPU(env);
1958 struct kvm_signal_mask *sigmask;
1959 int r;
1960
1961 if (!sigset) {
1962 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
1963 }
1964
1965 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1966
1967 sigmask->len = 8;
1968 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1969 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
1970 g_free(sigmask);
1971
1972 return r;
1973 }
1974
1975 int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
1976 uint32_t size)
1977 {
1978 int ret;
1979 struct kvm_ioeventfd iofd;
1980
1981 iofd.datamatch = val;
1982 iofd.addr = addr;
1983 iofd.len = size;
1984 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1985 iofd.fd = fd;
1986
1987 if (!kvm_enabled()) {
1988 return -ENOSYS;
1989 }
1990
1991 if (!assign) {
1992 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1993 }
1994
1995 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1996
1997 if (ret < 0) {
1998 return -errno;
1999 }
2000
2001 return 0;
2002 }
2003
2004 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
2005 {
2006 struct kvm_ioeventfd kick = {
2007 .datamatch = val,
2008 .addr = addr,
2009 .len = 2,
2010 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
2011 .fd = fd,
2012 };
2013 int r;
2014 if (!kvm_enabled()) {
2015 return -ENOSYS;
2016 }
2017 if (!assign) {
2018 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
2019 }
2020 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
2021 if (r < 0) {
2022 return r;
2023 }
2024 return 0;
2025 }
2026
2027 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2028 {
2029 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2030 }
2031
2032 int kvm_on_sigbus(int code, void *addr)
2033 {
2034 return kvm_arch_on_sigbus(code, addr);
2035 }