]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
memory: support stateless memory listeners
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
30 #include "memory.h"
31 #include "exec-memory.h"
32
33 /* This check must be after config-host.h is included */
34 #ifdef CONFIG_EVENTFD
35 #include <sys/eventfd.h>
36 #endif
37
38 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
39 #define PAGE_SIZE TARGET_PAGE_SIZE
40
41 //#define DEBUG_KVM
42
43 #ifdef DEBUG_KVM
44 #define DPRINTF(fmt, ...) \
45 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
46 #else
47 #define DPRINTF(fmt, ...) \
48 do { } while (0)
49 #endif
50
51 typedef struct KVMSlot
52 {
53 target_phys_addr_t start_addr;
54 ram_addr_t memory_size;
55 void *ram;
56 int slot;
57 int flags;
58 } KVMSlot;
59
60 typedef struct kvm_dirty_log KVMDirtyLog;
61
62 struct KVMState
63 {
64 KVMSlot slots[32];
65 int fd;
66 int vmfd;
67 int coalesced_mmio;
68 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
69 bool coalesced_flush_in_progress;
70 int broken_set_mem_region;
71 int migration_log;
72 int vcpu_events;
73 int robust_singlestep;
74 int debugregs;
75 #ifdef KVM_CAP_SET_GUEST_DEBUG
76 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
77 #endif
78 int irqchip_in_kernel;
79 int pit_in_kernel;
80 int xsave, xcrs;
81 int many_ioeventfds;
82 int irqchip_inject_ioctl;
83 #ifdef KVM_CAP_IRQ_ROUTING
84 struct kvm_irq_routing *irq_routes;
85 int nr_allocated_irq_routes;
86 uint32_t *used_gsi_bitmap;
87 unsigned int max_gsi;
88 #endif
89 };
90
91 KVMState *kvm_state;
92
93 static const KVMCapabilityInfo kvm_required_capabilites[] = {
94 KVM_CAP_INFO(USER_MEMORY),
95 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
96 KVM_CAP_LAST_INFO
97 };
98
99 static KVMSlot *kvm_alloc_slot(KVMState *s)
100 {
101 int i;
102
103 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
104 if (s->slots[i].memory_size == 0) {
105 return &s->slots[i];
106 }
107 }
108
109 fprintf(stderr, "%s: no free slot available\n", __func__);
110 abort();
111 }
112
113 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
114 target_phys_addr_t start_addr,
115 target_phys_addr_t end_addr)
116 {
117 int i;
118
119 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
120 KVMSlot *mem = &s->slots[i];
121
122 if (start_addr == mem->start_addr &&
123 end_addr == mem->start_addr + mem->memory_size) {
124 return mem;
125 }
126 }
127
128 return NULL;
129 }
130
131 /*
132 * Find overlapping slot with lowest start address
133 */
134 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
135 target_phys_addr_t start_addr,
136 target_phys_addr_t end_addr)
137 {
138 KVMSlot *found = NULL;
139 int i;
140
141 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
142 KVMSlot *mem = &s->slots[i];
143
144 if (mem->memory_size == 0 ||
145 (found && found->start_addr < mem->start_addr)) {
146 continue;
147 }
148
149 if (end_addr > mem->start_addr &&
150 start_addr < mem->start_addr + mem->memory_size) {
151 found = mem;
152 }
153 }
154
155 return found;
156 }
157
158 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
159 target_phys_addr_t *phys_addr)
160 {
161 int i;
162
163 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
164 KVMSlot *mem = &s->slots[i];
165
166 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
167 *phys_addr = mem->start_addr + (ram - mem->ram);
168 return 1;
169 }
170 }
171
172 return 0;
173 }
174
175 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
176 {
177 struct kvm_userspace_memory_region mem;
178
179 mem.slot = slot->slot;
180 mem.guest_phys_addr = slot->start_addr;
181 mem.memory_size = slot->memory_size;
182 mem.userspace_addr = (unsigned long)slot->ram;
183 mem.flags = slot->flags;
184 if (s->migration_log) {
185 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
186 }
187 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
188 }
189
190 static void kvm_reset_vcpu(void *opaque)
191 {
192 CPUState *env = opaque;
193
194 kvm_arch_reset_vcpu(env);
195 }
196
197 int kvm_irqchip_in_kernel(void)
198 {
199 return kvm_state->irqchip_in_kernel;
200 }
201
202 int kvm_pit_in_kernel(void)
203 {
204 return kvm_state->pit_in_kernel;
205 }
206
207 int kvm_init_vcpu(CPUState *env)
208 {
209 KVMState *s = kvm_state;
210 long mmap_size;
211 int ret;
212
213 DPRINTF("kvm_init_vcpu\n");
214
215 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
216 if (ret < 0) {
217 DPRINTF("kvm_create_vcpu failed\n");
218 goto err;
219 }
220
221 env->kvm_fd = ret;
222 env->kvm_state = s;
223 env->kvm_vcpu_dirty = 1;
224
225 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
226 if (mmap_size < 0) {
227 ret = mmap_size;
228 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
229 goto err;
230 }
231
232 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
233 env->kvm_fd, 0);
234 if (env->kvm_run == MAP_FAILED) {
235 ret = -errno;
236 DPRINTF("mmap'ing vcpu state failed\n");
237 goto err;
238 }
239
240 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
241 s->coalesced_mmio_ring =
242 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
243 }
244
245 ret = kvm_arch_init_vcpu(env);
246 if (ret == 0) {
247 qemu_register_reset(kvm_reset_vcpu, env);
248 kvm_arch_reset_vcpu(env);
249 }
250 err:
251 return ret;
252 }
253
254 /*
255 * dirty pages logging control
256 */
257
258 static int kvm_mem_flags(KVMState *s, bool log_dirty)
259 {
260 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
261 }
262
263 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
264 {
265 KVMState *s = kvm_state;
266 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
267 int old_flags;
268
269 old_flags = mem->flags;
270
271 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
272 mem->flags = flags;
273
274 /* If nothing changed effectively, no need to issue ioctl */
275 if (s->migration_log) {
276 flags |= KVM_MEM_LOG_DIRTY_PAGES;
277 }
278
279 if (flags == old_flags) {
280 return 0;
281 }
282
283 return kvm_set_user_memory_region(s, mem);
284 }
285
286 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
287 ram_addr_t size, bool log_dirty)
288 {
289 KVMState *s = kvm_state;
290 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
291
292 if (mem == NULL) {
293 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
294 TARGET_FMT_plx "\n", __func__, phys_addr,
295 (target_phys_addr_t)(phys_addr + size - 1));
296 return -EINVAL;
297 }
298 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
299 }
300
301 static void kvm_log_start(MemoryListener *listener,
302 MemoryRegionSection *section)
303 {
304 int r;
305
306 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
307 section->size, true);
308 if (r < 0) {
309 abort();
310 }
311 }
312
313 static void kvm_log_stop(MemoryListener *listener,
314 MemoryRegionSection *section)
315 {
316 int r;
317
318 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
319 section->size, false);
320 if (r < 0) {
321 abort();
322 }
323 }
324
325 static int kvm_set_migration_log(int enable)
326 {
327 KVMState *s = kvm_state;
328 KVMSlot *mem;
329 int i, err;
330
331 s->migration_log = enable;
332
333 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
334 mem = &s->slots[i];
335
336 if (!mem->memory_size) {
337 continue;
338 }
339 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
340 continue;
341 }
342 err = kvm_set_user_memory_region(s, mem);
343 if (err) {
344 return err;
345 }
346 }
347 return 0;
348 }
349
350 /* get kvm's dirty pages bitmap and update qemu's */
351 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
352 unsigned long *bitmap)
353 {
354 unsigned int i, j;
355 unsigned long page_number, c;
356 target_phys_addr_t addr, addr1;
357 unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
358
359 /*
360 * bitmap-traveling is faster than memory-traveling (for addr...)
361 * especially when most of the memory is not dirty.
362 */
363 for (i = 0; i < len; i++) {
364 if (bitmap[i] != 0) {
365 c = leul_to_cpu(bitmap[i]);
366 do {
367 j = ffsl(c) - 1;
368 c &= ~(1ul << j);
369 page_number = i * HOST_LONG_BITS + j;
370 addr1 = page_number * TARGET_PAGE_SIZE;
371 addr = section->offset_within_region + addr1;
372 memory_region_set_dirty(section->mr, addr, TARGET_PAGE_SIZE);
373 } while (c != 0);
374 }
375 }
376 return 0;
377 }
378
379 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
380
381 /**
382 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
383 * This function updates qemu's dirty bitmap using
384 * memory_region_set_dirty(). This means all bits are set
385 * to dirty.
386 *
387 * @start_add: start of logged region.
388 * @end_addr: end of logged region.
389 */
390 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
391 {
392 KVMState *s = kvm_state;
393 unsigned long size, allocated_size = 0;
394 KVMDirtyLog d;
395 KVMSlot *mem;
396 int ret = 0;
397 target_phys_addr_t start_addr = section->offset_within_address_space;
398 target_phys_addr_t end_addr = start_addr + section->size;
399
400 d.dirty_bitmap = NULL;
401 while (start_addr < end_addr) {
402 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
403 if (mem == NULL) {
404 break;
405 }
406
407 /* XXX bad kernel interface alert
408 * For dirty bitmap, kernel allocates array of size aligned to
409 * bits-per-long. But for case when the kernel is 64bits and
410 * the userspace is 32bits, userspace can't align to the same
411 * bits-per-long, since sizeof(long) is different between kernel
412 * and user space. This way, userspace will provide buffer which
413 * may be 4 bytes less than the kernel will use, resulting in
414 * userspace memory corruption (which is not detectable by valgrind
415 * too, in most cases).
416 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
417 * a hope that sizeof(long) wont become >8 any time soon.
418 */
419 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
420 /*HOST_LONG_BITS*/ 64) / 8;
421 if (!d.dirty_bitmap) {
422 d.dirty_bitmap = g_malloc(size);
423 } else if (size > allocated_size) {
424 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
425 }
426 allocated_size = size;
427 memset(d.dirty_bitmap, 0, allocated_size);
428
429 d.slot = mem->slot;
430
431 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
432 DPRINTF("ioctl failed %d\n", errno);
433 ret = -1;
434 break;
435 }
436
437 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
438 start_addr = mem->start_addr + mem->memory_size;
439 }
440 g_free(d.dirty_bitmap);
441
442 return ret;
443 }
444
445 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
446 {
447 int ret = -ENOSYS;
448 KVMState *s = kvm_state;
449
450 if (s->coalesced_mmio) {
451 struct kvm_coalesced_mmio_zone zone;
452
453 zone.addr = start;
454 zone.size = size;
455
456 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
457 }
458
459 return ret;
460 }
461
462 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
463 {
464 int ret = -ENOSYS;
465 KVMState *s = kvm_state;
466
467 if (s->coalesced_mmio) {
468 struct kvm_coalesced_mmio_zone zone;
469
470 zone.addr = start;
471 zone.size = size;
472
473 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
474 }
475
476 return ret;
477 }
478
479 int kvm_check_extension(KVMState *s, unsigned int extension)
480 {
481 int ret;
482
483 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
484 if (ret < 0) {
485 ret = 0;
486 }
487
488 return ret;
489 }
490
491 static int kvm_check_many_ioeventfds(void)
492 {
493 /* Userspace can use ioeventfd for io notification. This requires a host
494 * that supports eventfd(2) and an I/O thread; since eventfd does not
495 * support SIGIO it cannot interrupt the vcpu.
496 *
497 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
498 * can avoid creating too many ioeventfds.
499 */
500 #if defined(CONFIG_EVENTFD)
501 int ioeventfds[7];
502 int i, ret = 0;
503 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
504 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
505 if (ioeventfds[i] < 0) {
506 break;
507 }
508 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
509 if (ret < 0) {
510 close(ioeventfds[i]);
511 break;
512 }
513 }
514
515 /* Decide whether many devices are supported or not */
516 ret = i == ARRAY_SIZE(ioeventfds);
517
518 while (i-- > 0) {
519 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
520 close(ioeventfds[i]);
521 }
522 return ret;
523 #else
524 return 0;
525 #endif
526 }
527
528 static const KVMCapabilityInfo *
529 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
530 {
531 while (list->name) {
532 if (!kvm_check_extension(s, list->value)) {
533 return list;
534 }
535 list++;
536 }
537 return NULL;
538 }
539
540 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
541 {
542 KVMState *s = kvm_state;
543 KVMSlot *mem, old;
544 int err;
545 MemoryRegion *mr = section->mr;
546 bool log_dirty = memory_region_is_logging(mr);
547 target_phys_addr_t start_addr = section->offset_within_address_space;
548 ram_addr_t size = section->size;
549 void *ram = NULL;
550
551 /* kvm works in page size chunks, but the function may be called
552 with sub-page size and unaligned start address. */
553 size = TARGET_PAGE_ALIGN(size);
554 start_addr = TARGET_PAGE_ALIGN(start_addr);
555
556 if (!memory_region_is_ram(mr)) {
557 return;
558 }
559
560 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region;
561
562 while (1) {
563 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
564 if (!mem) {
565 break;
566 }
567
568 if (add && start_addr >= mem->start_addr &&
569 (start_addr + size <= mem->start_addr + mem->memory_size) &&
570 (ram - start_addr == mem->ram - mem->start_addr)) {
571 /* The new slot fits into the existing one and comes with
572 * identical parameters - update flags and done. */
573 kvm_slot_dirty_pages_log_change(mem, log_dirty);
574 return;
575 }
576
577 old = *mem;
578
579 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
580 kvm_physical_sync_dirty_bitmap(section);
581 }
582
583 /* unregister the overlapping slot */
584 mem->memory_size = 0;
585 err = kvm_set_user_memory_region(s, mem);
586 if (err) {
587 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
588 __func__, strerror(-err));
589 abort();
590 }
591
592 /* Workaround for older KVM versions: we can't join slots, even not by
593 * unregistering the previous ones and then registering the larger
594 * slot. We have to maintain the existing fragmentation. Sigh.
595 *
596 * This workaround assumes that the new slot starts at the same
597 * address as the first existing one. If not or if some overlapping
598 * slot comes around later, we will fail (not seen in practice so far)
599 * - and actually require a recent KVM version. */
600 if (s->broken_set_mem_region &&
601 old.start_addr == start_addr && old.memory_size < size && add) {
602 mem = kvm_alloc_slot(s);
603 mem->memory_size = old.memory_size;
604 mem->start_addr = old.start_addr;
605 mem->ram = old.ram;
606 mem->flags = kvm_mem_flags(s, log_dirty);
607
608 err = kvm_set_user_memory_region(s, mem);
609 if (err) {
610 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
611 strerror(-err));
612 abort();
613 }
614
615 start_addr += old.memory_size;
616 ram += old.memory_size;
617 size -= old.memory_size;
618 continue;
619 }
620
621 /* register prefix slot */
622 if (old.start_addr < start_addr) {
623 mem = kvm_alloc_slot(s);
624 mem->memory_size = start_addr - old.start_addr;
625 mem->start_addr = old.start_addr;
626 mem->ram = old.ram;
627 mem->flags = kvm_mem_flags(s, log_dirty);
628
629 err = kvm_set_user_memory_region(s, mem);
630 if (err) {
631 fprintf(stderr, "%s: error registering prefix slot: %s\n",
632 __func__, strerror(-err));
633 #ifdef TARGET_PPC
634 fprintf(stderr, "%s: This is probably because your kernel's " \
635 "PAGE_SIZE is too big. Please try to use 4k " \
636 "PAGE_SIZE!\n", __func__);
637 #endif
638 abort();
639 }
640 }
641
642 /* register suffix slot */
643 if (old.start_addr + old.memory_size > start_addr + size) {
644 ram_addr_t size_delta;
645
646 mem = kvm_alloc_slot(s);
647 mem->start_addr = start_addr + size;
648 size_delta = mem->start_addr - old.start_addr;
649 mem->memory_size = old.memory_size - size_delta;
650 mem->ram = old.ram + size_delta;
651 mem->flags = kvm_mem_flags(s, log_dirty);
652
653 err = kvm_set_user_memory_region(s, mem);
654 if (err) {
655 fprintf(stderr, "%s: error registering suffix slot: %s\n",
656 __func__, strerror(-err));
657 abort();
658 }
659 }
660 }
661
662 /* in case the KVM bug workaround already "consumed" the new slot */
663 if (!size) {
664 return;
665 }
666 if (!add) {
667 return;
668 }
669 mem = kvm_alloc_slot(s);
670 mem->memory_size = size;
671 mem->start_addr = start_addr;
672 mem->ram = ram;
673 mem->flags = kvm_mem_flags(s, log_dirty);
674
675 err = kvm_set_user_memory_region(s, mem);
676 if (err) {
677 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
678 strerror(-err));
679 abort();
680 }
681 }
682
683 static void kvm_begin(MemoryListener *listener)
684 {
685 }
686
687 static void kvm_commit(MemoryListener *listener)
688 {
689 }
690
691 static void kvm_region_add(MemoryListener *listener,
692 MemoryRegionSection *section)
693 {
694 kvm_set_phys_mem(section, true);
695 }
696
697 static void kvm_region_del(MemoryListener *listener,
698 MemoryRegionSection *section)
699 {
700 kvm_set_phys_mem(section, false);
701 }
702
703 static void kvm_region_nop(MemoryListener *listener,
704 MemoryRegionSection *section)
705 {
706 }
707
708 static void kvm_log_sync(MemoryListener *listener,
709 MemoryRegionSection *section)
710 {
711 int r;
712
713 r = kvm_physical_sync_dirty_bitmap(section);
714 if (r < 0) {
715 abort();
716 }
717 }
718
719 static void kvm_log_global_start(struct MemoryListener *listener)
720 {
721 int r;
722
723 r = kvm_set_migration_log(1);
724 assert(r >= 0);
725 }
726
727 static void kvm_log_global_stop(struct MemoryListener *listener)
728 {
729 int r;
730
731 r = kvm_set_migration_log(0);
732 assert(r >= 0);
733 }
734
735 static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
736 bool match_data, uint64_t data, int fd)
737 {
738 int r;
739
740 assert(match_data && section->size == 4);
741
742 r = kvm_set_ioeventfd_mmio_long(fd, section->offset_within_address_space,
743 data, true);
744 if (r < 0) {
745 abort();
746 }
747 }
748
749 static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
750 bool match_data, uint64_t data, int fd)
751 {
752 int r;
753
754 r = kvm_set_ioeventfd_mmio_long(fd, section->offset_within_address_space,
755 data, false);
756 if (r < 0) {
757 abort();
758 }
759 }
760
761 static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
762 bool match_data, uint64_t data, int fd)
763 {
764 int r;
765
766 assert(match_data && section->size == 2);
767
768 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
769 data, true);
770 if (r < 0) {
771 abort();
772 }
773 }
774
775 static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
776 bool match_data, uint64_t data, int fd)
777
778 {
779 int r;
780
781 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
782 data, false);
783 if (r < 0) {
784 abort();
785 }
786 }
787
788 static void kvm_eventfd_add(MemoryListener *listener,
789 MemoryRegionSection *section,
790 bool match_data, uint64_t data, int fd)
791 {
792 if (section->address_space == get_system_memory()) {
793 kvm_mem_ioeventfd_add(section, match_data, data, fd);
794 } else {
795 kvm_io_ioeventfd_add(section, match_data, data, fd);
796 }
797 }
798
799 static void kvm_eventfd_del(MemoryListener *listener,
800 MemoryRegionSection *section,
801 bool match_data, uint64_t data, int fd)
802 {
803 if (section->address_space == get_system_memory()) {
804 kvm_mem_ioeventfd_del(section, match_data, data, fd);
805 } else {
806 kvm_io_ioeventfd_del(section, match_data, data, fd);
807 }
808 }
809
810 static MemoryListener kvm_memory_listener = {
811 .begin = kvm_begin,
812 .commit = kvm_commit,
813 .region_add = kvm_region_add,
814 .region_del = kvm_region_del,
815 .region_nop = kvm_region_nop,
816 .log_start = kvm_log_start,
817 .log_stop = kvm_log_stop,
818 .log_sync = kvm_log_sync,
819 .log_global_start = kvm_log_global_start,
820 .log_global_stop = kvm_log_global_stop,
821 .eventfd_add = kvm_eventfd_add,
822 .eventfd_del = kvm_eventfd_del,
823 .priority = 10,
824 };
825
826 static void kvm_handle_interrupt(CPUState *env, int mask)
827 {
828 env->interrupt_request |= mask;
829
830 if (!qemu_cpu_is_self(env)) {
831 qemu_cpu_kick(env);
832 }
833 }
834
835 int kvm_irqchip_set_irq(KVMState *s, int irq, int level)
836 {
837 struct kvm_irq_level event;
838 int ret;
839
840 assert(s->irqchip_in_kernel);
841
842 event.level = level;
843 event.irq = irq;
844 ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
845 if (ret < 0) {
846 perror("kvm_set_irqchip_line");
847 abort();
848 }
849
850 return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
851 }
852
853 #ifdef KVM_CAP_IRQ_ROUTING
854 static void set_gsi(KVMState *s, unsigned int gsi)
855 {
856 assert(gsi < s->max_gsi);
857
858 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
859 }
860
861 static void kvm_init_irq_routing(KVMState *s)
862 {
863 int gsi_count;
864
865 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
866 if (gsi_count > 0) {
867 unsigned int gsi_bits, i;
868
869 /* Round up so we can search ints using ffs */
870 gsi_bits = (gsi_count + 31) / 32;
871 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
872 s->max_gsi = gsi_bits;
873
874 /* Mark any over-allocated bits as already in use */
875 for (i = gsi_count; i < gsi_bits; i++) {
876 set_gsi(s, i);
877 }
878 }
879
880 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
881 s->nr_allocated_irq_routes = 0;
882
883 kvm_arch_init_irq_routing(s);
884 }
885
886 static void kvm_add_routing_entry(KVMState *s,
887 struct kvm_irq_routing_entry *entry)
888 {
889 struct kvm_irq_routing_entry *new;
890 int n, size;
891
892 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
893 n = s->nr_allocated_irq_routes * 2;
894 if (n < 64) {
895 n = 64;
896 }
897 size = sizeof(struct kvm_irq_routing);
898 size += n * sizeof(*new);
899 s->irq_routes = g_realloc(s->irq_routes, size);
900 s->nr_allocated_irq_routes = n;
901 }
902 n = s->irq_routes->nr++;
903 new = &s->irq_routes->entries[n];
904 memset(new, 0, sizeof(*new));
905 new->gsi = entry->gsi;
906 new->type = entry->type;
907 new->flags = entry->flags;
908 new->u = entry->u;
909
910 set_gsi(s, entry->gsi);
911 }
912
913 void kvm_irqchip_add_route(KVMState *s, int irq, int irqchip, int pin)
914 {
915 struct kvm_irq_routing_entry e;
916
917 e.gsi = irq;
918 e.type = KVM_IRQ_ROUTING_IRQCHIP;
919 e.flags = 0;
920 e.u.irqchip.irqchip = irqchip;
921 e.u.irqchip.pin = pin;
922 kvm_add_routing_entry(s, &e);
923 }
924
925 int kvm_irqchip_commit_routes(KVMState *s)
926 {
927 s->irq_routes->flags = 0;
928 return kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
929 }
930
931 #else /* !KVM_CAP_IRQ_ROUTING */
932
933 static void kvm_init_irq_routing(KVMState *s)
934 {
935 }
936 #endif /* !KVM_CAP_IRQ_ROUTING */
937
938 static int kvm_irqchip_create(KVMState *s)
939 {
940 QemuOptsList *list = qemu_find_opts("machine");
941 int ret;
942
943 if (QTAILQ_EMPTY(&list->head) ||
944 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
945 "kernel_irqchip", false) ||
946 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
947 return 0;
948 }
949
950 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
951 if (ret < 0) {
952 fprintf(stderr, "Create kernel irqchip failed\n");
953 return ret;
954 }
955
956 s->irqchip_inject_ioctl = KVM_IRQ_LINE;
957 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
958 s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
959 }
960 s->irqchip_in_kernel = 1;
961
962 kvm_init_irq_routing(s);
963
964 return 0;
965 }
966
967 int kvm_init(void)
968 {
969 static const char upgrade_note[] =
970 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
971 "(see http://sourceforge.net/projects/kvm).\n";
972 KVMState *s;
973 const KVMCapabilityInfo *missing_cap;
974 int ret;
975 int i;
976
977 s = g_malloc0(sizeof(KVMState));
978
979 #ifdef KVM_CAP_SET_GUEST_DEBUG
980 QTAILQ_INIT(&s->kvm_sw_breakpoints);
981 #endif
982 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
983 s->slots[i].slot = i;
984 }
985 s->vmfd = -1;
986 s->fd = qemu_open("/dev/kvm", O_RDWR);
987 if (s->fd == -1) {
988 fprintf(stderr, "Could not access KVM kernel module: %m\n");
989 ret = -errno;
990 goto err;
991 }
992
993 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
994 if (ret < KVM_API_VERSION) {
995 if (ret > 0) {
996 ret = -EINVAL;
997 }
998 fprintf(stderr, "kvm version too old\n");
999 goto err;
1000 }
1001
1002 if (ret > KVM_API_VERSION) {
1003 ret = -EINVAL;
1004 fprintf(stderr, "kvm version not supported\n");
1005 goto err;
1006 }
1007
1008 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1009 if (s->vmfd < 0) {
1010 #ifdef TARGET_S390X
1011 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1012 "your host kernel command line\n");
1013 #endif
1014 ret = s->vmfd;
1015 goto err;
1016 }
1017
1018 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1019 if (!missing_cap) {
1020 missing_cap =
1021 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1022 }
1023 if (missing_cap) {
1024 ret = -EINVAL;
1025 fprintf(stderr, "kvm does not support %s\n%s",
1026 missing_cap->name, upgrade_note);
1027 goto err;
1028 }
1029
1030 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1031
1032 s->broken_set_mem_region = 1;
1033 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1034 if (ret > 0) {
1035 s->broken_set_mem_region = 0;
1036 }
1037
1038 #ifdef KVM_CAP_VCPU_EVENTS
1039 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1040 #endif
1041
1042 s->robust_singlestep =
1043 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1044
1045 #ifdef KVM_CAP_DEBUGREGS
1046 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1047 #endif
1048
1049 #ifdef KVM_CAP_XSAVE
1050 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1051 #endif
1052
1053 #ifdef KVM_CAP_XCRS
1054 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1055 #endif
1056
1057 ret = kvm_arch_init(s);
1058 if (ret < 0) {
1059 goto err;
1060 }
1061
1062 ret = kvm_irqchip_create(s);
1063 if (ret < 0) {
1064 goto err;
1065 }
1066
1067 kvm_state = s;
1068 memory_listener_register(&kvm_memory_listener, NULL);
1069
1070 s->many_ioeventfds = kvm_check_many_ioeventfds();
1071
1072 cpu_interrupt_handler = kvm_handle_interrupt;
1073
1074 return 0;
1075
1076 err:
1077 if (s) {
1078 if (s->vmfd >= 0) {
1079 close(s->vmfd);
1080 }
1081 if (s->fd != -1) {
1082 close(s->fd);
1083 }
1084 }
1085 g_free(s);
1086
1087 return ret;
1088 }
1089
1090 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1091 uint32_t count)
1092 {
1093 int i;
1094 uint8_t *ptr = data;
1095
1096 for (i = 0; i < count; i++) {
1097 if (direction == KVM_EXIT_IO_IN) {
1098 switch (size) {
1099 case 1:
1100 stb_p(ptr, cpu_inb(port));
1101 break;
1102 case 2:
1103 stw_p(ptr, cpu_inw(port));
1104 break;
1105 case 4:
1106 stl_p(ptr, cpu_inl(port));
1107 break;
1108 }
1109 } else {
1110 switch (size) {
1111 case 1:
1112 cpu_outb(port, ldub_p(ptr));
1113 break;
1114 case 2:
1115 cpu_outw(port, lduw_p(ptr));
1116 break;
1117 case 4:
1118 cpu_outl(port, ldl_p(ptr));
1119 break;
1120 }
1121 }
1122
1123 ptr += size;
1124 }
1125 }
1126
1127 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
1128 {
1129 fprintf(stderr, "KVM internal error.");
1130 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1131 int i;
1132
1133 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1134 for (i = 0; i < run->internal.ndata; ++i) {
1135 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1136 i, (uint64_t)run->internal.data[i]);
1137 }
1138 } else {
1139 fprintf(stderr, "\n");
1140 }
1141 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1142 fprintf(stderr, "emulation failure\n");
1143 if (!kvm_arch_stop_on_emulation_error(env)) {
1144 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1145 return EXCP_INTERRUPT;
1146 }
1147 }
1148 /* FIXME: Should trigger a qmp message to let management know
1149 * something went wrong.
1150 */
1151 return -1;
1152 }
1153
1154 void kvm_flush_coalesced_mmio_buffer(void)
1155 {
1156 KVMState *s = kvm_state;
1157
1158 if (s->coalesced_flush_in_progress) {
1159 return;
1160 }
1161
1162 s->coalesced_flush_in_progress = true;
1163
1164 if (s->coalesced_mmio_ring) {
1165 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1166 while (ring->first != ring->last) {
1167 struct kvm_coalesced_mmio *ent;
1168
1169 ent = &ring->coalesced_mmio[ring->first];
1170
1171 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1172 smp_wmb();
1173 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1174 }
1175 }
1176
1177 s->coalesced_flush_in_progress = false;
1178 }
1179
1180 static void do_kvm_cpu_synchronize_state(void *_env)
1181 {
1182 CPUState *env = _env;
1183
1184 if (!env->kvm_vcpu_dirty) {
1185 kvm_arch_get_registers(env);
1186 env->kvm_vcpu_dirty = 1;
1187 }
1188 }
1189
1190 void kvm_cpu_synchronize_state(CPUState *env)
1191 {
1192 if (!env->kvm_vcpu_dirty) {
1193 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1194 }
1195 }
1196
1197 void kvm_cpu_synchronize_post_reset(CPUState *env)
1198 {
1199 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1200 env->kvm_vcpu_dirty = 0;
1201 }
1202
1203 void kvm_cpu_synchronize_post_init(CPUState *env)
1204 {
1205 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1206 env->kvm_vcpu_dirty = 0;
1207 }
1208
1209 int kvm_cpu_exec(CPUState *env)
1210 {
1211 struct kvm_run *run = env->kvm_run;
1212 int ret, run_ret;
1213
1214 DPRINTF("kvm_cpu_exec()\n");
1215
1216 if (kvm_arch_process_async_events(env)) {
1217 env->exit_request = 0;
1218 return EXCP_HLT;
1219 }
1220
1221 cpu_single_env = env;
1222
1223 do {
1224 if (env->kvm_vcpu_dirty) {
1225 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1226 env->kvm_vcpu_dirty = 0;
1227 }
1228
1229 kvm_arch_pre_run(env, run);
1230 if (env->exit_request) {
1231 DPRINTF("interrupt exit requested\n");
1232 /*
1233 * KVM requires us to reenter the kernel after IO exits to complete
1234 * instruction emulation. This self-signal will ensure that we
1235 * leave ASAP again.
1236 */
1237 qemu_cpu_kick_self();
1238 }
1239 cpu_single_env = NULL;
1240 qemu_mutex_unlock_iothread();
1241
1242 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1243
1244 qemu_mutex_lock_iothread();
1245 cpu_single_env = env;
1246 kvm_arch_post_run(env, run);
1247
1248 kvm_flush_coalesced_mmio_buffer();
1249
1250 if (run_ret < 0) {
1251 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1252 DPRINTF("io window exit\n");
1253 ret = EXCP_INTERRUPT;
1254 break;
1255 }
1256 fprintf(stderr, "error: kvm run failed %s\n",
1257 strerror(-run_ret));
1258 abort();
1259 }
1260
1261 switch (run->exit_reason) {
1262 case KVM_EXIT_IO:
1263 DPRINTF("handle_io\n");
1264 kvm_handle_io(run->io.port,
1265 (uint8_t *)run + run->io.data_offset,
1266 run->io.direction,
1267 run->io.size,
1268 run->io.count);
1269 ret = 0;
1270 break;
1271 case KVM_EXIT_MMIO:
1272 DPRINTF("handle_mmio\n");
1273 cpu_physical_memory_rw(run->mmio.phys_addr,
1274 run->mmio.data,
1275 run->mmio.len,
1276 run->mmio.is_write);
1277 ret = 0;
1278 break;
1279 case KVM_EXIT_IRQ_WINDOW_OPEN:
1280 DPRINTF("irq_window_open\n");
1281 ret = EXCP_INTERRUPT;
1282 break;
1283 case KVM_EXIT_SHUTDOWN:
1284 DPRINTF("shutdown\n");
1285 qemu_system_reset_request();
1286 ret = EXCP_INTERRUPT;
1287 break;
1288 case KVM_EXIT_UNKNOWN:
1289 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1290 (uint64_t)run->hw.hardware_exit_reason);
1291 ret = -1;
1292 break;
1293 case KVM_EXIT_INTERNAL_ERROR:
1294 ret = kvm_handle_internal_error(env, run);
1295 break;
1296 default:
1297 DPRINTF("kvm_arch_handle_exit\n");
1298 ret = kvm_arch_handle_exit(env, run);
1299 break;
1300 }
1301 } while (ret == 0);
1302
1303 if (ret < 0) {
1304 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1305 vm_stop(RUN_STATE_INTERNAL_ERROR);
1306 }
1307
1308 env->exit_request = 0;
1309 cpu_single_env = NULL;
1310 return ret;
1311 }
1312
1313 int kvm_ioctl(KVMState *s, int type, ...)
1314 {
1315 int ret;
1316 void *arg;
1317 va_list ap;
1318
1319 va_start(ap, type);
1320 arg = va_arg(ap, void *);
1321 va_end(ap);
1322
1323 ret = ioctl(s->fd, type, arg);
1324 if (ret == -1) {
1325 ret = -errno;
1326 }
1327 return ret;
1328 }
1329
1330 int kvm_vm_ioctl(KVMState *s, int type, ...)
1331 {
1332 int ret;
1333 void *arg;
1334 va_list ap;
1335
1336 va_start(ap, type);
1337 arg = va_arg(ap, void *);
1338 va_end(ap);
1339
1340 ret = ioctl(s->vmfd, type, arg);
1341 if (ret == -1) {
1342 ret = -errno;
1343 }
1344 return ret;
1345 }
1346
1347 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1348 {
1349 int ret;
1350 void *arg;
1351 va_list ap;
1352
1353 va_start(ap, type);
1354 arg = va_arg(ap, void *);
1355 va_end(ap);
1356
1357 ret = ioctl(env->kvm_fd, type, arg);
1358 if (ret == -1) {
1359 ret = -errno;
1360 }
1361 return ret;
1362 }
1363
1364 int kvm_has_sync_mmu(void)
1365 {
1366 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1367 }
1368
1369 int kvm_has_vcpu_events(void)
1370 {
1371 return kvm_state->vcpu_events;
1372 }
1373
1374 int kvm_has_robust_singlestep(void)
1375 {
1376 return kvm_state->robust_singlestep;
1377 }
1378
1379 int kvm_has_debugregs(void)
1380 {
1381 return kvm_state->debugregs;
1382 }
1383
1384 int kvm_has_xsave(void)
1385 {
1386 return kvm_state->xsave;
1387 }
1388
1389 int kvm_has_xcrs(void)
1390 {
1391 return kvm_state->xcrs;
1392 }
1393
1394 int kvm_has_many_ioeventfds(void)
1395 {
1396 if (!kvm_enabled()) {
1397 return 0;
1398 }
1399 return kvm_state->many_ioeventfds;
1400 }
1401
1402 int kvm_has_gsi_routing(void)
1403 {
1404 #ifdef KVM_CAP_IRQ_ROUTING
1405 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1406 #else
1407 return false;
1408 #endif
1409 }
1410
1411 int kvm_allows_irq0_override(void)
1412 {
1413 return !kvm_enabled() || !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
1414 }
1415
1416 void kvm_setup_guest_memory(void *start, size_t size)
1417 {
1418 if (!kvm_has_sync_mmu()) {
1419 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1420
1421 if (ret) {
1422 perror("qemu_madvise");
1423 fprintf(stderr,
1424 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1425 exit(1);
1426 }
1427 }
1428 }
1429
1430 #ifdef KVM_CAP_SET_GUEST_DEBUG
1431 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1432 target_ulong pc)
1433 {
1434 struct kvm_sw_breakpoint *bp;
1435
1436 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1437 if (bp->pc == pc) {
1438 return bp;
1439 }
1440 }
1441 return NULL;
1442 }
1443
1444 int kvm_sw_breakpoints_active(CPUState *env)
1445 {
1446 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1447 }
1448
1449 struct kvm_set_guest_debug_data {
1450 struct kvm_guest_debug dbg;
1451 CPUState *env;
1452 int err;
1453 };
1454
1455 static void kvm_invoke_set_guest_debug(void *data)
1456 {
1457 struct kvm_set_guest_debug_data *dbg_data = data;
1458 CPUState *env = dbg_data->env;
1459
1460 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1461 }
1462
1463 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1464 {
1465 struct kvm_set_guest_debug_data data;
1466
1467 data.dbg.control = reinject_trap;
1468
1469 if (env->singlestep_enabled) {
1470 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1471 }
1472 kvm_arch_update_guest_debug(env, &data.dbg);
1473 data.env = env;
1474
1475 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1476 return data.err;
1477 }
1478
1479 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1480 target_ulong len, int type)
1481 {
1482 struct kvm_sw_breakpoint *bp;
1483 CPUState *env;
1484 int err;
1485
1486 if (type == GDB_BREAKPOINT_SW) {
1487 bp = kvm_find_sw_breakpoint(current_env, addr);
1488 if (bp) {
1489 bp->use_count++;
1490 return 0;
1491 }
1492
1493 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1494 if (!bp) {
1495 return -ENOMEM;
1496 }
1497
1498 bp->pc = addr;
1499 bp->use_count = 1;
1500 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1501 if (err) {
1502 g_free(bp);
1503 return err;
1504 }
1505
1506 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1507 bp, entry);
1508 } else {
1509 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1510 if (err) {
1511 return err;
1512 }
1513 }
1514
1515 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1516 err = kvm_update_guest_debug(env, 0);
1517 if (err) {
1518 return err;
1519 }
1520 }
1521 return 0;
1522 }
1523
1524 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1525 target_ulong len, int type)
1526 {
1527 struct kvm_sw_breakpoint *bp;
1528 CPUState *env;
1529 int err;
1530
1531 if (type == GDB_BREAKPOINT_SW) {
1532 bp = kvm_find_sw_breakpoint(current_env, addr);
1533 if (!bp) {
1534 return -ENOENT;
1535 }
1536
1537 if (bp->use_count > 1) {
1538 bp->use_count--;
1539 return 0;
1540 }
1541
1542 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1543 if (err) {
1544 return err;
1545 }
1546
1547 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1548 g_free(bp);
1549 } else {
1550 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1551 if (err) {
1552 return err;
1553 }
1554 }
1555
1556 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1557 err = kvm_update_guest_debug(env, 0);
1558 if (err) {
1559 return err;
1560 }
1561 }
1562 return 0;
1563 }
1564
1565 void kvm_remove_all_breakpoints(CPUState *current_env)
1566 {
1567 struct kvm_sw_breakpoint *bp, *next;
1568 KVMState *s = current_env->kvm_state;
1569 CPUState *env;
1570
1571 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1572 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1573 /* Try harder to find a CPU that currently sees the breakpoint. */
1574 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1575 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1576 break;
1577 }
1578 }
1579 }
1580 }
1581 kvm_arch_remove_all_hw_breakpoints();
1582
1583 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1584 kvm_update_guest_debug(env, 0);
1585 }
1586 }
1587
1588 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1589
1590 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1591 {
1592 return -EINVAL;
1593 }
1594
1595 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1596 target_ulong len, int type)
1597 {
1598 return -EINVAL;
1599 }
1600
1601 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1602 target_ulong len, int type)
1603 {
1604 return -EINVAL;
1605 }
1606
1607 void kvm_remove_all_breakpoints(CPUState *current_env)
1608 {
1609 }
1610 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1611
1612 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1613 {
1614 struct kvm_signal_mask *sigmask;
1615 int r;
1616
1617 if (!sigset) {
1618 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1619 }
1620
1621 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1622
1623 sigmask->len = 8;
1624 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1625 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1626 g_free(sigmask);
1627
1628 return r;
1629 }
1630
1631 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1632 {
1633 int ret;
1634 struct kvm_ioeventfd iofd;
1635
1636 iofd.datamatch = val;
1637 iofd.addr = addr;
1638 iofd.len = 4;
1639 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1640 iofd.fd = fd;
1641
1642 if (!kvm_enabled()) {
1643 return -ENOSYS;
1644 }
1645
1646 if (!assign) {
1647 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1648 }
1649
1650 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1651
1652 if (ret < 0) {
1653 return -errno;
1654 }
1655
1656 return 0;
1657 }
1658
1659 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1660 {
1661 struct kvm_ioeventfd kick = {
1662 .datamatch = val,
1663 .addr = addr,
1664 .len = 2,
1665 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1666 .fd = fd,
1667 };
1668 int r;
1669 if (!kvm_enabled()) {
1670 return -ENOSYS;
1671 }
1672 if (!assign) {
1673 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1674 }
1675 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1676 if (r < 0) {
1677 return r;
1678 }
1679 return 0;
1680 }
1681
1682 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1683 {
1684 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1685 }
1686
1687 int kvm_on_sigbus(int code, void *addr)
1688 {
1689 return kvm_arch_on_sigbus(code, addr);
1690 }