]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
Merge remote-tracking branch 'luiz/queue/qmp' into staging
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/pci/msi.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/address-spaces.h"
35 #include "qemu/event_notifier.h"
36 #include "trace.h"
37
38 /* This check must be after config-host.h is included */
39 #ifdef CONFIG_EVENTFD
40 #include <sys/eventfd.h>
41 #endif
42
43 #ifdef CONFIG_VALGRIND_H
44 #include <valgrind/memcheck.h>
45 #endif
46
47 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
48 #define PAGE_SIZE TARGET_PAGE_SIZE
49
50 //#define DEBUG_KVM
51
52 #ifdef DEBUG_KVM
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
55 #else
56 #define DPRINTF(fmt, ...) \
57 do { } while (0)
58 #endif
59
60 #define KVM_MSI_HASHTAB_SIZE 256
61
62 typedef struct KVMSlot
63 {
64 hwaddr start_addr;
65 ram_addr_t memory_size;
66 void *ram;
67 int slot;
68 int flags;
69 } KVMSlot;
70
71 typedef struct kvm_dirty_log KVMDirtyLog;
72
73 struct KVMState
74 {
75 KVMSlot slots[32];
76 int fd;
77 int vmfd;
78 int coalesced_mmio;
79 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
80 bool coalesced_flush_in_progress;
81 int broken_set_mem_region;
82 int migration_log;
83 int vcpu_events;
84 int robust_singlestep;
85 int debugregs;
86 #ifdef KVM_CAP_SET_GUEST_DEBUG
87 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
88 #endif
89 int pit_state2;
90 int xsave, xcrs;
91 int many_ioeventfds;
92 int intx_set_mask;
93 /* The man page (and posix) say ioctl numbers are signed int, but
94 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
95 * unsigned, and treating them as signed here can break things */
96 unsigned irq_set_ioctl;
97 #ifdef KVM_CAP_IRQ_ROUTING
98 struct kvm_irq_routing *irq_routes;
99 int nr_allocated_irq_routes;
100 uint32_t *used_gsi_bitmap;
101 unsigned int gsi_count;
102 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
103 bool direct_msi;
104 #endif
105 };
106
107 KVMState *kvm_state;
108 bool kvm_kernel_irqchip;
109 bool kvm_async_interrupts_allowed;
110 bool kvm_irqfds_allowed;
111 bool kvm_msi_via_irqfd_allowed;
112 bool kvm_gsi_routing_allowed;
113 bool kvm_allowed;
114 bool kvm_readonly_mem_allowed;
115
116 static const KVMCapabilityInfo kvm_required_capabilites[] = {
117 KVM_CAP_INFO(USER_MEMORY),
118 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
119 KVM_CAP_LAST_INFO
120 };
121
122 static KVMSlot *kvm_alloc_slot(KVMState *s)
123 {
124 int i;
125
126 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
127 if (s->slots[i].memory_size == 0) {
128 return &s->slots[i];
129 }
130 }
131
132 fprintf(stderr, "%s: no free slot available\n", __func__);
133 abort();
134 }
135
136 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
137 hwaddr start_addr,
138 hwaddr end_addr)
139 {
140 int i;
141
142 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
143 KVMSlot *mem = &s->slots[i];
144
145 if (start_addr == mem->start_addr &&
146 end_addr == mem->start_addr + mem->memory_size) {
147 return mem;
148 }
149 }
150
151 return NULL;
152 }
153
154 /*
155 * Find overlapping slot with lowest start address
156 */
157 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
158 hwaddr start_addr,
159 hwaddr end_addr)
160 {
161 KVMSlot *found = NULL;
162 int i;
163
164 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
165 KVMSlot *mem = &s->slots[i];
166
167 if (mem->memory_size == 0 ||
168 (found && found->start_addr < mem->start_addr)) {
169 continue;
170 }
171
172 if (end_addr > mem->start_addr &&
173 start_addr < mem->start_addr + mem->memory_size) {
174 found = mem;
175 }
176 }
177
178 return found;
179 }
180
181 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
182 hwaddr *phys_addr)
183 {
184 int i;
185
186 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
187 KVMSlot *mem = &s->slots[i];
188
189 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
190 *phys_addr = mem->start_addr + (ram - mem->ram);
191 return 1;
192 }
193 }
194
195 return 0;
196 }
197
198 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
199 {
200 struct kvm_userspace_memory_region mem;
201
202 mem.slot = slot->slot;
203 mem.guest_phys_addr = slot->start_addr;
204 mem.userspace_addr = (unsigned long)slot->ram;
205 mem.flags = slot->flags;
206 if (s->migration_log) {
207 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
208 }
209
210 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
211 /* Set the slot size to 0 before setting the slot to the desired
212 * value. This is needed based on KVM commit 75d61fbc. */
213 mem.memory_size = 0;
214 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
215 }
216 mem.memory_size = slot->memory_size;
217 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
218 }
219
220 static void kvm_reset_vcpu(void *opaque)
221 {
222 CPUState *cpu = opaque;
223
224 kvm_arch_reset_vcpu(cpu);
225 }
226
227 int kvm_init_vcpu(CPUState *cpu)
228 {
229 KVMState *s = kvm_state;
230 long mmap_size;
231 int ret;
232
233 DPRINTF("kvm_init_vcpu\n");
234
235 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
236 if (ret < 0) {
237 DPRINTF("kvm_create_vcpu failed\n");
238 goto err;
239 }
240
241 cpu->kvm_fd = ret;
242 cpu->kvm_state = s;
243 cpu->kvm_vcpu_dirty = true;
244
245 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
246 if (mmap_size < 0) {
247 ret = mmap_size;
248 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
249 goto err;
250 }
251
252 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
253 cpu->kvm_fd, 0);
254 if (cpu->kvm_run == MAP_FAILED) {
255 ret = -errno;
256 DPRINTF("mmap'ing vcpu state failed\n");
257 goto err;
258 }
259
260 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
261 s->coalesced_mmio_ring =
262 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
263 }
264
265 ret = kvm_arch_init_vcpu(cpu);
266 if (ret == 0) {
267 qemu_register_reset(kvm_reset_vcpu, cpu);
268 kvm_arch_reset_vcpu(cpu);
269 }
270 err:
271 return ret;
272 }
273
274 /*
275 * dirty pages logging control
276 */
277
278 static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
279 {
280 int flags = 0;
281 flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
282 if (readonly && kvm_readonly_mem_allowed) {
283 flags |= KVM_MEM_READONLY;
284 }
285 return flags;
286 }
287
288 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
289 {
290 KVMState *s = kvm_state;
291 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
292 int old_flags;
293
294 old_flags = mem->flags;
295
296 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
297 mem->flags = flags;
298
299 /* If nothing changed effectively, no need to issue ioctl */
300 if (s->migration_log) {
301 flags |= KVM_MEM_LOG_DIRTY_PAGES;
302 }
303
304 if (flags == old_flags) {
305 return 0;
306 }
307
308 return kvm_set_user_memory_region(s, mem);
309 }
310
311 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
312 ram_addr_t size, bool log_dirty)
313 {
314 KVMState *s = kvm_state;
315 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
316
317 if (mem == NULL) {
318 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
319 TARGET_FMT_plx "\n", __func__, phys_addr,
320 (hwaddr)(phys_addr + size - 1));
321 return -EINVAL;
322 }
323 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
324 }
325
326 static void kvm_log_start(MemoryListener *listener,
327 MemoryRegionSection *section)
328 {
329 int r;
330
331 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
332 int128_get64(section->size), true);
333 if (r < 0) {
334 abort();
335 }
336 }
337
338 static void kvm_log_stop(MemoryListener *listener,
339 MemoryRegionSection *section)
340 {
341 int r;
342
343 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
344 int128_get64(section->size), false);
345 if (r < 0) {
346 abort();
347 }
348 }
349
350 static int kvm_set_migration_log(int enable)
351 {
352 KVMState *s = kvm_state;
353 KVMSlot *mem;
354 int i, err;
355
356 s->migration_log = enable;
357
358 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
359 mem = &s->slots[i];
360
361 if (!mem->memory_size) {
362 continue;
363 }
364 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
365 continue;
366 }
367 err = kvm_set_user_memory_region(s, mem);
368 if (err) {
369 return err;
370 }
371 }
372 return 0;
373 }
374
375 /* get kvm's dirty pages bitmap and update qemu's */
376 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
377 unsigned long *bitmap)
378 {
379 unsigned int i, j;
380 unsigned long page_number, c;
381 hwaddr addr, addr1;
382 unsigned int pages = int128_get64(section->size) / getpagesize();
383 unsigned int len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
384 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
385
386 /*
387 * bitmap-traveling is faster than memory-traveling (for addr...)
388 * especially when most of the memory is not dirty.
389 */
390 for (i = 0; i < len; i++) {
391 if (bitmap[i] != 0) {
392 c = leul_to_cpu(bitmap[i]);
393 do {
394 j = ffsl(c) - 1;
395 c &= ~(1ul << j);
396 page_number = (i * HOST_LONG_BITS + j) * hpratio;
397 addr1 = page_number * TARGET_PAGE_SIZE;
398 addr = section->offset_within_region + addr1;
399 memory_region_set_dirty(section->mr, addr,
400 TARGET_PAGE_SIZE * hpratio);
401 } while (c != 0);
402 }
403 }
404 return 0;
405 }
406
407 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
408
409 /**
410 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
411 * This function updates qemu's dirty bitmap using
412 * memory_region_set_dirty(). This means all bits are set
413 * to dirty.
414 *
415 * @start_add: start of logged region.
416 * @end_addr: end of logged region.
417 */
418 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
419 {
420 KVMState *s = kvm_state;
421 unsigned long size, allocated_size = 0;
422 KVMDirtyLog d;
423 KVMSlot *mem;
424 int ret = 0;
425 hwaddr start_addr = section->offset_within_address_space;
426 hwaddr end_addr = start_addr + int128_get64(section->size);
427
428 d.dirty_bitmap = NULL;
429 while (start_addr < end_addr) {
430 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
431 if (mem == NULL) {
432 break;
433 }
434
435 /* XXX bad kernel interface alert
436 * For dirty bitmap, kernel allocates array of size aligned to
437 * bits-per-long. But for case when the kernel is 64bits and
438 * the userspace is 32bits, userspace can't align to the same
439 * bits-per-long, since sizeof(long) is different between kernel
440 * and user space. This way, userspace will provide buffer which
441 * may be 4 bytes less than the kernel will use, resulting in
442 * userspace memory corruption (which is not detectable by valgrind
443 * too, in most cases).
444 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
445 * a hope that sizeof(long) wont become >8 any time soon.
446 */
447 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
448 /*HOST_LONG_BITS*/ 64) / 8;
449 if (!d.dirty_bitmap) {
450 d.dirty_bitmap = g_malloc(size);
451 } else if (size > allocated_size) {
452 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
453 }
454 allocated_size = size;
455 memset(d.dirty_bitmap, 0, allocated_size);
456
457 d.slot = mem->slot;
458
459 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
460 DPRINTF("ioctl failed %d\n", errno);
461 ret = -1;
462 break;
463 }
464
465 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
466 start_addr = mem->start_addr + mem->memory_size;
467 }
468 g_free(d.dirty_bitmap);
469
470 return ret;
471 }
472
473 static void kvm_coalesce_mmio_region(MemoryListener *listener,
474 MemoryRegionSection *secion,
475 hwaddr start, hwaddr size)
476 {
477 KVMState *s = kvm_state;
478
479 if (s->coalesced_mmio) {
480 struct kvm_coalesced_mmio_zone zone;
481
482 zone.addr = start;
483 zone.size = size;
484 zone.pad = 0;
485
486 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
487 }
488 }
489
490 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
491 MemoryRegionSection *secion,
492 hwaddr start, hwaddr size)
493 {
494 KVMState *s = kvm_state;
495
496 if (s->coalesced_mmio) {
497 struct kvm_coalesced_mmio_zone zone;
498
499 zone.addr = start;
500 zone.size = size;
501 zone.pad = 0;
502
503 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
504 }
505 }
506
507 int kvm_check_extension(KVMState *s, unsigned int extension)
508 {
509 int ret;
510
511 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
512 if (ret < 0) {
513 ret = 0;
514 }
515
516 return ret;
517 }
518
519 static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val,
520 bool assign, uint32_t size, bool datamatch)
521 {
522 int ret;
523 struct kvm_ioeventfd iofd;
524
525 iofd.datamatch = datamatch ? val : 0;
526 iofd.addr = addr;
527 iofd.len = size;
528 iofd.flags = 0;
529 iofd.fd = fd;
530
531 if (!kvm_enabled()) {
532 return -ENOSYS;
533 }
534
535 if (datamatch) {
536 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
537 }
538 if (!assign) {
539 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
540 }
541
542 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
543
544 if (ret < 0) {
545 return -errno;
546 }
547
548 return 0;
549 }
550
551 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
552 bool assign, uint32_t size, bool datamatch)
553 {
554 struct kvm_ioeventfd kick = {
555 .datamatch = datamatch ? val : 0,
556 .addr = addr,
557 .flags = KVM_IOEVENTFD_FLAG_PIO,
558 .len = size,
559 .fd = fd,
560 };
561 int r;
562 if (!kvm_enabled()) {
563 return -ENOSYS;
564 }
565 if (datamatch) {
566 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
567 }
568 if (!assign) {
569 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
570 }
571 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
572 if (r < 0) {
573 return r;
574 }
575 return 0;
576 }
577
578
579 static int kvm_check_many_ioeventfds(void)
580 {
581 /* Userspace can use ioeventfd for io notification. This requires a host
582 * that supports eventfd(2) and an I/O thread; since eventfd does not
583 * support SIGIO it cannot interrupt the vcpu.
584 *
585 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
586 * can avoid creating too many ioeventfds.
587 */
588 #if defined(CONFIG_EVENTFD)
589 int ioeventfds[7];
590 int i, ret = 0;
591 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
592 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
593 if (ioeventfds[i] < 0) {
594 break;
595 }
596 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
597 if (ret < 0) {
598 close(ioeventfds[i]);
599 break;
600 }
601 }
602
603 /* Decide whether many devices are supported or not */
604 ret = i == ARRAY_SIZE(ioeventfds);
605
606 while (i-- > 0) {
607 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
608 close(ioeventfds[i]);
609 }
610 return ret;
611 #else
612 return 0;
613 #endif
614 }
615
616 static const KVMCapabilityInfo *
617 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
618 {
619 while (list->name) {
620 if (!kvm_check_extension(s, list->value)) {
621 return list;
622 }
623 list++;
624 }
625 return NULL;
626 }
627
628 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
629 {
630 KVMState *s = kvm_state;
631 KVMSlot *mem, old;
632 int err;
633 MemoryRegion *mr = section->mr;
634 bool log_dirty = memory_region_is_logging(mr);
635 bool writeable = !mr->readonly && !mr->rom_device;
636 bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
637 hwaddr start_addr = section->offset_within_address_space;
638 ram_addr_t size = int128_get64(section->size);
639 void *ram = NULL;
640 unsigned delta;
641
642 /* kvm works in page size chunks, but the function may be called
643 with sub-page size and unaligned start address. */
644 delta = TARGET_PAGE_ALIGN(size) - size;
645 if (delta > size) {
646 return;
647 }
648 start_addr += delta;
649 size -= delta;
650 size &= TARGET_PAGE_MASK;
651 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
652 return;
653 }
654
655 if (!memory_region_is_ram(mr)) {
656 if (writeable || !kvm_readonly_mem_allowed) {
657 return;
658 } else if (!mr->romd_mode) {
659 /* If the memory device is not in romd_mode, then we actually want
660 * to remove the kvm memory slot so all accesses will trap. */
661 add = false;
662 }
663 }
664
665 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
666
667 while (1) {
668 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
669 if (!mem) {
670 break;
671 }
672
673 if (add && start_addr >= mem->start_addr &&
674 (start_addr + size <= mem->start_addr + mem->memory_size) &&
675 (ram - start_addr == mem->ram - mem->start_addr)) {
676 /* The new slot fits into the existing one and comes with
677 * identical parameters - update flags and done. */
678 kvm_slot_dirty_pages_log_change(mem, log_dirty);
679 return;
680 }
681
682 old = *mem;
683
684 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
685 kvm_physical_sync_dirty_bitmap(section);
686 }
687
688 /* unregister the overlapping slot */
689 mem->memory_size = 0;
690 err = kvm_set_user_memory_region(s, mem);
691 if (err) {
692 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
693 __func__, strerror(-err));
694 abort();
695 }
696
697 /* Workaround for older KVM versions: we can't join slots, even not by
698 * unregistering the previous ones and then registering the larger
699 * slot. We have to maintain the existing fragmentation. Sigh.
700 *
701 * This workaround assumes that the new slot starts at the same
702 * address as the first existing one. If not or if some overlapping
703 * slot comes around later, we will fail (not seen in practice so far)
704 * - and actually require a recent KVM version. */
705 if (s->broken_set_mem_region &&
706 old.start_addr == start_addr && old.memory_size < size && add) {
707 mem = kvm_alloc_slot(s);
708 mem->memory_size = old.memory_size;
709 mem->start_addr = old.start_addr;
710 mem->ram = old.ram;
711 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
712
713 err = kvm_set_user_memory_region(s, mem);
714 if (err) {
715 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
716 strerror(-err));
717 abort();
718 }
719
720 start_addr += old.memory_size;
721 ram += old.memory_size;
722 size -= old.memory_size;
723 continue;
724 }
725
726 /* register prefix slot */
727 if (old.start_addr < start_addr) {
728 mem = kvm_alloc_slot(s);
729 mem->memory_size = start_addr - old.start_addr;
730 mem->start_addr = old.start_addr;
731 mem->ram = old.ram;
732 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
733
734 err = kvm_set_user_memory_region(s, mem);
735 if (err) {
736 fprintf(stderr, "%s: error registering prefix slot: %s\n",
737 __func__, strerror(-err));
738 #ifdef TARGET_PPC
739 fprintf(stderr, "%s: This is probably because your kernel's " \
740 "PAGE_SIZE is too big. Please try to use 4k " \
741 "PAGE_SIZE!\n", __func__);
742 #endif
743 abort();
744 }
745 }
746
747 /* register suffix slot */
748 if (old.start_addr + old.memory_size > start_addr + size) {
749 ram_addr_t size_delta;
750
751 mem = kvm_alloc_slot(s);
752 mem->start_addr = start_addr + size;
753 size_delta = mem->start_addr - old.start_addr;
754 mem->memory_size = old.memory_size - size_delta;
755 mem->ram = old.ram + size_delta;
756 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
757
758 err = kvm_set_user_memory_region(s, mem);
759 if (err) {
760 fprintf(stderr, "%s: error registering suffix slot: %s\n",
761 __func__, strerror(-err));
762 abort();
763 }
764 }
765 }
766
767 /* in case the KVM bug workaround already "consumed" the new slot */
768 if (!size) {
769 return;
770 }
771 if (!add) {
772 return;
773 }
774 mem = kvm_alloc_slot(s);
775 mem->memory_size = size;
776 mem->start_addr = start_addr;
777 mem->ram = ram;
778 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
779
780 err = kvm_set_user_memory_region(s, mem);
781 if (err) {
782 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
783 strerror(-err));
784 abort();
785 }
786 }
787
788 static void kvm_region_add(MemoryListener *listener,
789 MemoryRegionSection *section)
790 {
791 kvm_set_phys_mem(section, true);
792 }
793
794 static void kvm_region_del(MemoryListener *listener,
795 MemoryRegionSection *section)
796 {
797 kvm_set_phys_mem(section, false);
798 }
799
800 static void kvm_log_sync(MemoryListener *listener,
801 MemoryRegionSection *section)
802 {
803 int r;
804
805 r = kvm_physical_sync_dirty_bitmap(section);
806 if (r < 0) {
807 abort();
808 }
809 }
810
811 static void kvm_log_global_start(struct MemoryListener *listener)
812 {
813 int r;
814
815 r = kvm_set_migration_log(1);
816 assert(r >= 0);
817 }
818
819 static void kvm_log_global_stop(struct MemoryListener *listener)
820 {
821 int r;
822
823 r = kvm_set_migration_log(0);
824 assert(r >= 0);
825 }
826
827 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
828 MemoryRegionSection *section,
829 bool match_data, uint64_t data,
830 EventNotifier *e)
831 {
832 int fd = event_notifier_get_fd(e);
833 int r;
834
835 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
836 data, true, int128_get64(section->size),
837 match_data);
838 if (r < 0) {
839 abort();
840 }
841 }
842
843 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
844 MemoryRegionSection *section,
845 bool match_data, uint64_t data,
846 EventNotifier *e)
847 {
848 int fd = event_notifier_get_fd(e);
849 int r;
850
851 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
852 data, false, int128_get64(section->size),
853 match_data);
854 if (r < 0) {
855 abort();
856 }
857 }
858
859 static void kvm_io_ioeventfd_add(MemoryListener *listener,
860 MemoryRegionSection *section,
861 bool match_data, uint64_t data,
862 EventNotifier *e)
863 {
864 int fd = event_notifier_get_fd(e);
865 int r;
866
867 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
868 data, true, int128_get64(section->size),
869 match_data);
870 if (r < 0) {
871 abort();
872 }
873 }
874
875 static void kvm_io_ioeventfd_del(MemoryListener *listener,
876 MemoryRegionSection *section,
877 bool match_data, uint64_t data,
878 EventNotifier *e)
879
880 {
881 int fd = event_notifier_get_fd(e);
882 int r;
883
884 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
885 data, false, int128_get64(section->size),
886 match_data);
887 if (r < 0) {
888 abort();
889 }
890 }
891
892 static MemoryListener kvm_memory_listener = {
893 .region_add = kvm_region_add,
894 .region_del = kvm_region_del,
895 .log_start = kvm_log_start,
896 .log_stop = kvm_log_stop,
897 .log_sync = kvm_log_sync,
898 .log_global_start = kvm_log_global_start,
899 .log_global_stop = kvm_log_global_stop,
900 .eventfd_add = kvm_mem_ioeventfd_add,
901 .eventfd_del = kvm_mem_ioeventfd_del,
902 .coalesced_mmio_add = kvm_coalesce_mmio_region,
903 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
904 .priority = 10,
905 };
906
907 static MemoryListener kvm_io_listener = {
908 .eventfd_add = kvm_io_ioeventfd_add,
909 .eventfd_del = kvm_io_ioeventfd_del,
910 .priority = 10,
911 };
912
913 static void kvm_handle_interrupt(CPUState *cpu, int mask)
914 {
915 cpu->interrupt_request |= mask;
916
917 if (!qemu_cpu_is_self(cpu)) {
918 qemu_cpu_kick(cpu);
919 }
920 }
921
922 int kvm_set_irq(KVMState *s, int irq, int level)
923 {
924 struct kvm_irq_level event;
925 int ret;
926
927 assert(kvm_async_interrupts_enabled());
928
929 event.level = level;
930 event.irq = irq;
931 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
932 if (ret < 0) {
933 perror("kvm_set_irq");
934 abort();
935 }
936
937 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
938 }
939
940 #ifdef KVM_CAP_IRQ_ROUTING
941 typedef struct KVMMSIRoute {
942 struct kvm_irq_routing_entry kroute;
943 QTAILQ_ENTRY(KVMMSIRoute) entry;
944 } KVMMSIRoute;
945
946 static void set_gsi(KVMState *s, unsigned int gsi)
947 {
948 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
949 }
950
951 static void clear_gsi(KVMState *s, unsigned int gsi)
952 {
953 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
954 }
955
956 static void kvm_init_irq_routing(KVMState *s)
957 {
958 int gsi_count, i;
959
960 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
961 if (gsi_count > 0) {
962 unsigned int gsi_bits, i;
963
964 /* Round up so we can search ints using ffs */
965 gsi_bits = ALIGN(gsi_count, 32);
966 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
967 s->gsi_count = gsi_count;
968
969 /* Mark any over-allocated bits as already in use */
970 for (i = gsi_count; i < gsi_bits; i++) {
971 set_gsi(s, i);
972 }
973 }
974
975 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
976 s->nr_allocated_irq_routes = 0;
977
978 if (!s->direct_msi) {
979 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
980 QTAILQ_INIT(&s->msi_hashtab[i]);
981 }
982 }
983
984 kvm_arch_init_irq_routing(s);
985 }
986
987 static void kvm_irqchip_commit_routes(KVMState *s)
988 {
989 int ret;
990
991 s->irq_routes->flags = 0;
992 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
993 assert(ret == 0);
994 }
995
996 static void kvm_add_routing_entry(KVMState *s,
997 struct kvm_irq_routing_entry *entry)
998 {
999 struct kvm_irq_routing_entry *new;
1000 int n, size;
1001
1002 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1003 n = s->nr_allocated_irq_routes * 2;
1004 if (n < 64) {
1005 n = 64;
1006 }
1007 size = sizeof(struct kvm_irq_routing);
1008 size += n * sizeof(*new);
1009 s->irq_routes = g_realloc(s->irq_routes, size);
1010 s->nr_allocated_irq_routes = n;
1011 }
1012 n = s->irq_routes->nr++;
1013 new = &s->irq_routes->entries[n];
1014 memset(new, 0, sizeof(*new));
1015 new->gsi = entry->gsi;
1016 new->type = entry->type;
1017 new->flags = entry->flags;
1018 new->u = entry->u;
1019
1020 set_gsi(s, entry->gsi);
1021
1022 kvm_irqchip_commit_routes(s);
1023 }
1024
1025 static int kvm_update_routing_entry(KVMState *s,
1026 struct kvm_irq_routing_entry *new_entry)
1027 {
1028 struct kvm_irq_routing_entry *entry;
1029 int n;
1030
1031 for (n = 0; n < s->irq_routes->nr; n++) {
1032 entry = &s->irq_routes->entries[n];
1033 if (entry->gsi != new_entry->gsi) {
1034 continue;
1035 }
1036
1037 entry->type = new_entry->type;
1038 entry->flags = new_entry->flags;
1039 entry->u = new_entry->u;
1040
1041 kvm_irqchip_commit_routes(s);
1042
1043 return 0;
1044 }
1045
1046 return -ESRCH;
1047 }
1048
1049 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1050 {
1051 struct kvm_irq_routing_entry e;
1052
1053 assert(pin < s->gsi_count);
1054
1055 e.gsi = irq;
1056 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1057 e.flags = 0;
1058 e.u.irqchip.irqchip = irqchip;
1059 e.u.irqchip.pin = pin;
1060 kvm_add_routing_entry(s, &e);
1061 }
1062
1063 void kvm_irqchip_release_virq(KVMState *s, int virq)
1064 {
1065 struct kvm_irq_routing_entry *e;
1066 int i;
1067
1068 for (i = 0; i < s->irq_routes->nr; i++) {
1069 e = &s->irq_routes->entries[i];
1070 if (e->gsi == virq) {
1071 s->irq_routes->nr--;
1072 *e = s->irq_routes->entries[s->irq_routes->nr];
1073 }
1074 }
1075 clear_gsi(s, virq);
1076 }
1077
1078 static unsigned int kvm_hash_msi(uint32_t data)
1079 {
1080 /* This is optimized for IA32 MSI layout. However, no other arch shall
1081 * repeat the mistake of not providing a direct MSI injection API. */
1082 return data & 0xff;
1083 }
1084
1085 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1086 {
1087 KVMMSIRoute *route, *next;
1088 unsigned int hash;
1089
1090 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1091 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1092 kvm_irqchip_release_virq(s, route->kroute.gsi);
1093 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1094 g_free(route);
1095 }
1096 }
1097 }
1098
1099 static int kvm_irqchip_get_virq(KVMState *s)
1100 {
1101 uint32_t *word = s->used_gsi_bitmap;
1102 int max_words = ALIGN(s->gsi_count, 32) / 32;
1103 int i, bit;
1104 bool retry = true;
1105
1106 again:
1107 /* Return the lowest unused GSI in the bitmap */
1108 for (i = 0; i < max_words; i++) {
1109 bit = ffs(~word[i]);
1110 if (!bit) {
1111 continue;
1112 }
1113
1114 return bit - 1 + i * 32;
1115 }
1116 if (!s->direct_msi && retry) {
1117 retry = false;
1118 kvm_flush_dynamic_msi_routes(s);
1119 goto again;
1120 }
1121 return -ENOSPC;
1122
1123 }
1124
1125 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1126 {
1127 unsigned int hash = kvm_hash_msi(msg.data);
1128 KVMMSIRoute *route;
1129
1130 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1131 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1132 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1133 route->kroute.u.msi.data == msg.data) {
1134 return route;
1135 }
1136 }
1137 return NULL;
1138 }
1139
1140 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1141 {
1142 struct kvm_msi msi;
1143 KVMMSIRoute *route;
1144
1145 if (s->direct_msi) {
1146 msi.address_lo = (uint32_t)msg.address;
1147 msi.address_hi = msg.address >> 32;
1148 msi.data = msg.data;
1149 msi.flags = 0;
1150 memset(msi.pad, 0, sizeof(msi.pad));
1151
1152 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1153 }
1154
1155 route = kvm_lookup_msi_route(s, msg);
1156 if (!route) {
1157 int virq;
1158
1159 virq = kvm_irqchip_get_virq(s);
1160 if (virq < 0) {
1161 return virq;
1162 }
1163
1164 route = g_malloc(sizeof(KVMMSIRoute));
1165 route->kroute.gsi = virq;
1166 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1167 route->kroute.flags = 0;
1168 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1169 route->kroute.u.msi.address_hi = msg.address >> 32;
1170 route->kroute.u.msi.data = msg.data;
1171
1172 kvm_add_routing_entry(s, &route->kroute);
1173
1174 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1175 entry);
1176 }
1177
1178 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1179
1180 return kvm_set_irq(s, route->kroute.gsi, 1);
1181 }
1182
1183 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1184 {
1185 struct kvm_irq_routing_entry kroute;
1186 int virq;
1187
1188 if (!kvm_gsi_routing_enabled()) {
1189 return -ENOSYS;
1190 }
1191
1192 virq = kvm_irqchip_get_virq(s);
1193 if (virq < 0) {
1194 return virq;
1195 }
1196
1197 kroute.gsi = virq;
1198 kroute.type = KVM_IRQ_ROUTING_MSI;
1199 kroute.flags = 0;
1200 kroute.u.msi.address_lo = (uint32_t)msg.address;
1201 kroute.u.msi.address_hi = msg.address >> 32;
1202 kroute.u.msi.data = msg.data;
1203
1204 kvm_add_routing_entry(s, &kroute);
1205
1206 return virq;
1207 }
1208
1209 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1210 {
1211 struct kvm_irq_routing_entry kroute;
1212
1213 if (!kvm_irqchip_in_kernel()) {
1214 return -ENOSYS;
1215 }
1216
1217 kroute.gsi = virq;
1218 kroute.type = KVM_IRQ_ROUTING_MSI;
1219 kroute.flags = 0;
1220 kroute.u.msi.address_lo = (uint32_t)msg.address;
1221 kroute.u.msi.address_hi = msg.address >> 32;
1222 kroute.u.msi.data = msg.data;
1223
1224 return kvm_update_routing_entry(s, &kroute);
1225 }
1226
1227 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1228 {
1229 struct kvm_irqfd irqfd = {
1230 .fd = fd,
1231 .gsi = virq,
1232 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1233 };
1234
1235 if (!kvm_irqfds_enabled()) {
1236 return -ENOSYS;
1237 }
1238
1239 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1240 }
1241
1242 #else /* !KVM_CAP_IRQ_ROUTING */
1243
1244 static void kvm_init_irq_routing(KVMState *s)
1245 {
1246 }
1247
1248 void kvm_irqchip_release_virq(KVMState *s, int virq)
1249 {
1250 }
1251
1252 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1253 {
1254 abort();
1255 }
1256
1257 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1258 {
1259 return -ENOSYS;
1260 }
1261
1262 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1263 {
1264 abort();
1265 }
1266
1267 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1268 {
1269 return -ENOSYS;
1270 }
1271 #endif /* !KVM_CAP_IRQ_ROUTING */
1272
1273 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1274 {
1275 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true);
1276 }
1277
1278 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1279 {
1280 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false);
1281 }
1282
1283 static int kvm_irqchip_create(KVMState *s)
1284 {
1285 QemuOptsList *list = qemu_find_opts("machine");
1286 int ret;
1287
1288 if (QTAILQ_EMPTY(&list->head) ||
1289 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1290 "kernel_irqchip", true) ||
1291 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1292 return 0;
1293 }
1294
1295 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1296 if (ret < 0) {
1297 fprintf(stderr, "Create kernel irqchip failed\n");
1298 return ret;
1299 }
1300
1301 kvm_kernel_irqchip = true;
1302 /* If we have an in-kernel IRQ chip then we must have asynchronous
1303 * interrupt delivery (though the reverse is not necessarily true)
1304 */
1305 kvm_async_interrupts_allowed = true;
1306
1307 kvm_init_irq_routing(s);
1308
1309 return 0;
1310 }
1311
1312 static int kvm_max_vcpus(KVMState *s)
1313 {
1314 int ret;
1315
1316 /* Find number of supported CPUs using the recommended
1317 * procedure from the kernel API documentation to cope with
1318 * older kernels that may be missing capabilities.
1319 */
1320 ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1321 if (ret) {
1322 return ret;
1323 }
1324 ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1325 if (ret) {
1326 return ret;
1327 }
1328
1329 return 4;
1330 }
1331
1332 int kvm_init(void)
1333 {
1334 static const char upgrade_note[] =
1335 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1336 "(see http://sourceforge.net/projects/kvm).\n";
1337 KVMState *s;
1338 const KVMCapabilityInfo *missing_cap;
1339 int ret;
1340 int i;
1341 int max_vcpus;
1342
1343 s = g_malloc0(sizeof(KVMState));
1344
1345 /*
1346 * On systems where the kernel can support different base page
1347 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1348 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1349 * page size for the system though.
1350 */
1351 assert(TARGET_PAGE_SIZE <= getpagesize());
1352
1353 #ifdef KVM_CAP_SET_GUEST_DEBUG
1354 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1355 #endif
1356 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1357 s->slots[i].slot = i;
1358 }
1359 s->vmfd = -1;
1360 s->fd = qemu_open("/dev/kvm", O_RDWR);
1361 if (s->fd == -1) {
1362 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1363 ret = -errno;
1364 goto err;
1365 }
1366
1367 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1368 if (ret < KVM_API_VERSION) {
1369 if (ret > 0) {
1370 ret = -EINVAL;
1371 }
1372 fprintf(stderr, "kvm version too old\n");
1373 goto err;
1374 }
1375
1376 if (ret > KVM_API_VERSION) {
1377 ret = -EINVAL;
1378 fprintf(stderr, "kvm version not supported\n");
1379 goto err;
1380 }
1381
1382 max_vcpus = kvm_max_vcpus(s);
1383 if (smp_cpus > max_vcpus) {
1384 ret = -EINVAL;
1385 fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
1386 "supported by KVM (%d)\n", smp_cpus, max_vcpus);
1387 goto err;
1388 }
1389
1390 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1391 if (s->vmfd < 0) {
1392 #ifdef TARGET_S390X
1393 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1394 "your host kernel command line\n");
1395 #endif
1396 ret = s->vmfd;
1397 goto err;
1398 }
1399
1400 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1401 if (!missing_cap) {
1402 missing_cap =
1403 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1404 }
1405 if (missing_cap) {
1406 ret = -EINVAL;
1407 fprintf(stderr, "kvm does not support %s\n%s",
1408 missing_cap->name, upgrade_note);
1409 goto err;
1410 }
1411
1412 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1413
1414 s->broken_set_mem_region = 1;
1415 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1416 if (ret > 0) {
1417 s->broken_set_mem_region = 0;
1418 }
1419
1420 #ifdef KVM_CAP_VCPU_EVENTS
1421 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1422 #endif
1423
1424 s->robust_singlestep =
1425 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1426
1427 #ifdef KVM_CAP_DEBUGREGS
1428 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1429 #endif
1430
1431 #ifdef KVM_CAP_XSAVE
1432 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1433 #endif
1434
1435 #ifdef KVM_CAP_XCRS
1436 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1437 #endif
1438
1439 #ifdef KVM_CAP_PIT_STATE2
1440 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1441 #endif
1442
1443 #ifdef KVM_CAP_IRQ_ROUTING
1444 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1445 #endif
1446
1447 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1448
1449 s->irq_set_ioctl = KVM_IRQ_LINE;
1450 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1451 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1452 }
1453
1454 #ifdef KVM_CAP_READONLY_MEM
1455 kvm_readonly_mem_allowed =
1456 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1457 #endif
1458
1459 ret = kvm_arch_init(s);
1460 if (ret < 0) {
1461 goto err;
1462 }
1463
1464 ret = kvm_irqchip_create(s);
1465 if (ret < 0) {
1466 goto err;
1467 }
1468
1469 kvm_state = s;
1470 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1471 memory_listener_register(&kvm_io_listener, &address_space_io);
1472
1473 s->many_ioeventfds = kvm_check_many_ioeventfds();
1474
1475 cpu_interrupt_handler = kvm_handle_interrupt;
1476
1477 return 0;
1478
1479 err:
1480 if (s->vmfd >= 0) {
1481 close(s->vmfd);
1482 }
1483 if (s->fd != -1) {
1484 close(s->fd);
1485 }
1486 g_free(s);
1487
1488 return ret;
1489 }
1490
1491 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1492 uint32_t count)
1493 {
1494 int i;
1495 uint8_t *ptr = data;
1496
1497 for (i = 0; i < count; i++) {
1498 if (direction == KVM_EXIT_IO_IN) {
1499 switch (size) {
1500 case 1:
1501 stb_p(ptr, cpu_inb(port));
1502 break;
1503 case 2:
1504 stw_p(ptr, cpu_inw(port));
1505 break;
1506 case 4:
1507 stl_p(ptr, cpu_inl(port));
1508 break;
1509 }
1510 } else {
1511 switch (size) {
1512 case 1:
1513 cpu_outb(port, ldub_p(ptr));
1514 break;
1515 case 2:
1516 cpu_outw(port, lduw_p(ptr));
1517 break;
1518 case 4:
1519 cpu_outl(port, ldl_p(ptr));
1520 break;
1521 }
1522 }
1523
1524 ptr += size;
1525 }
1526 }
1527
1528 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1529 {
1530 fprintf(stderr, "KVM internal error.");
1531 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1532 int i;
1533
1534 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1535 for (i = 0; i < run->internal.ndata; ++i) {
1536 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1537 i, (uint64_t)run->internal.data[i]);
1538 }
1539 } else {
1540 fprintf(stderr, "\n");
1541 }
1542 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1543 fprintf(stderr, "emulation failure\n");
1544 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1545 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1546 return EXCP_INTERRUPT;
1547 }
1548 }
1549 /* FIXME: Should trigger a qmp message to let management know
1550 * something went wrong.
1551 */
1552 return -1;
1553 }
1554
1555 void kvm_flush_coalesced_mmio_buffer(void)
1556 {
1557 KVMState *s = kvm_state;
1558
1559 if (s->coalesced_flush_in_progress) {
1560 return;
1561 }
1562
1563 s->coalesced_flush_in_progress = true;
1564
1565 if (s->coalesced_mmio_ring) {
1566 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1567 while (ring->first != ring->last) {
1568 struct kvm_coalesced_mmio *ent;
1569
1570 ent = &ring->coalesced_mmio[ring->first];
1571
1572 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1573 smp_wmb();
1574 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1575 }
1576 }
1577
1578 s->coalesced_flush_in_progress = false;
1579 }
1580
1581 static void do_kvm_cpu_synchronize_state(void *arg)
1582 {
1583 CPUState *cpu = arg;
1584
1585 if (!cpu->kvm_vcpu_dirty) {
1586 kvm_arch_get_registers(cpu);
1587 cpu->kvm_vcpu_dirty = true;
1588 }
1589 }
1590
1591 void kvm_cpu_synchronize_state(CPUState *cpu)
1592 {
1593 if (!cpu->kvm_vcpu_dirty) {
1594 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1595 }
1596 }
1597
1598 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1599 {
1600 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1601 cpu->kvm_vcpu_dirty = false;
1602 }
1603
1604 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1605 {
1606 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1607 cpu->kvm_vcpu_dirty = false;
1608 }
1609
1610 int kvm_cpu_exec(CPUState *cpu)
1611 {
1612 struct kvm_run *run = cpu->kvm_run;
1613 int ret, run_ret;
1614
1615 DPRINTF("kvm_cpu_exec()\n");
1616
1617 if (kvm_arch_process_async_events(cpu)) {
1618 cpu->exit_request = 0;
1619 return EXCP_HLT;
1620 }
1621
1622 do {
1623 if (cpu->kvm_vcpu_dirty) {
1624 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1625 cpu->kvm_vcpu_dirty = false;
1626 }
1627
1628 kvm_arch_pre_run(cpu, run);
1629 if (cpu->exit_request) {
1630 DPRINTF("interrupt exit requested\n");
1631 /*
1632 * KVM requires us to reenter the kernel after IO exits to complete
1633 * instruction emulation. This self-signal will ensure that we
1634 * leave ASAP again.
1635 */
1636 qemu_cpu_kick_self();
1637 }
1638 qemu_mutex_unlock_iothread();
1639
1640 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1641
1642 qemu_mutex_lock_iothread();
1643 kvm_arch_post_run(cpu, run);
1644
1645 if (run_ret < 0) {
1646 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1647 DPRINTF("io window exit\n");
1648 ret = EXCP_INTERRUPT;
1649 break;
1650 }
1651 fprintf(stderr, "error: kvm run failed %s\n",
1652 strerror(-run_ret));
1653 abort();
1654 }
1655
1656 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1657 switch (run->exit_reason) {
1658 case KVM_EXIT_IO:
1659 DPRINTF("handle_io\n");
1660 kvm_handle_io(run->io.port,
1661 (uint8_t *)run + run->io.data_offset,
1662 run->io.direction,
1663 run->io.size,
1664 run->io.count);
1665 ret = 0;
1666 break;
1667 case KVM_EXIT_MMIO:
1668 DPRINTF("handle_mmio\n");
1669 cpu_physical_memory_rw(run->mmio.phys_addr,
1670 run->mmio.data,
1671 run->mmio.len,
1672 run->mmio.is_write);
1673 ret = 0;
1674 break;
1675 case KVM_EXIT_IRQ_WINDOW_OPEN:
1676 DPRINTF("irq_window_open\n");
1677 ret = EXCP_INTERRUPT;
1678 break;
1679 case KVM_EXIT_SHUTDOWN:
1680 DPRINTF("shutdown\n");
1681 qemu_system_reset_request();
1682 ret = EXCP_INTERRUPT;
1683 break;
1684 case KVM_EXIT_UNKNOWN:
1685 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1686 (uint64_t)run->hw.hardware_exit_reason);
1687 ret = -1;
1688 break;
1689 case KVM_EXIT_INTERNAL_ERROR:
1690 ret = kvm_handle_internal_error(cpu, run);
1691 break;
1692 default:
1693 DPRINTF("kvm_arch_handle_exit\n");
1694 ret = kvm_arch_handle_exit(cpu, run);
1695 break;
1696 }
1697 } while (ret == 0);
1698
1699 if (ret < 0) {
1700 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1701 vm_stop(RUN_STATE_INTERNAL_ERROR);
1702 }
1703
1704 cpu->exit_request = 0;
1705 return ret;
1706 }
1707
1708 int kvm_ioctl(KVMState *s, int type, ...)
1709 {
1710 int ret;
1711 void *arg;
1712 va_list ap;
1713
1714 va_start(ap, type);
1715 arg = va_arg(ap, void *);
1716 va_end(ap);
1717
1718 trace_kvm_ioctl(type, arg);
1719 ret = ioctl(s->fd, type, arg);
1720 if (ret == -1) {
1721 ret = -errno;
1722 }
1723 return ret;
1724 }
1725
1726 int kvm_vm_ioctl(KVMState *s, int type, ...)
1727 {
1728 int ret;
1729 void *arg;
1730 va_list ap;
1731
1732 va_start(ap, type);
1733 arg = va_arg(ap, void *);
1734 va_end(ap);
1735
1736 trace_kvm_vm_ioctl(type, arg);
1737 ret = ioctl(s->vmfd, type, arg);
1738 if (ret == -1) {
1739 ret = -errno;
1740 }
1741 return ret;
1742 }
1743
1744 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1745 {
1746 int ret;
1747 void *arg;
1748 va_list ap;
1749
1750 va_start(ap, type);
1751 arg = va_arg(ap, void *);
1752 va_end(ap);
1753
1754 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1755 ret = ioctl(cpu->kvm_fd, type, arg);
1756 if (ret == -1) {
1757 ret = -errno;
1758 }
1759 return ret;
1760 }
1761
1762 int kvm_has_sync_mmu(void)
1763 {
1764 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1765 }
1766
1767 int kvm_has_vcpu_events(void)
1768 {
1769 return kvm_state->vcpu_events;
1770 }
1771
1772 int kvm_has_robust_singlestep(void)
1773 {
1774 return kvm_state->robust_singlestep;
1775 }
1776
1777 int kvm_has_debugregs(void)
1778 {
1779 return kvm_state->debugregs;
1780 }
1781
1782 int kvm_has_xsave(void)
1783 {
1784 return kvm_state->xsave;
1785 }
1786
1787 int kvm_has_xcrs(void)
1788 {
1789 return kvm_state->xcrs;
1790 }
1791
1792 int kvm_has_pit_state2(void)
1793 {
1794 return kvm_state->pit_state2;
1795 }
1796
1797 int kvm_has_many_ioeventfds(void)
1798 {
1799 if (!kvm_enabled()) {
1800 return 0;
1801 }
1802 return kvm_state->many_ioeventfds;
1803 }
1804
1805 int kvm_has_gsi_routing(void)
1806 {
1807 #ifdef KVM_CAP_IRQ_ROUTING
1808 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1809 #else
1810 return false;
1811 #endif
1812 }
1813
1814 int kvm_has_intx_set_mask(void)
1815 {
1816 return kvm_state->intx_set_mask;
1817 }
1818
1819 void *kvm_ram_alloc(ram_addr_t size)
1820 {
1821 #ifdef TARGET_S390X
1822 void *mem;
1823
1824 mem = kvm_arch_ram_alloc(size);
1825 if (mem) {
1826 return mem;
1827 }
1828 #endif
1829 return qemu_anon_ram_alloc(size);
1830 }
1831
1832 void kvm_setup_guest_memory(void *start, size_t size)
1833 {
1834 #ifdef CONFIG_VALGRIND_H
1835 VALGRIND_MAKE_MEM_DEFINED(start, size);
1836 #endif
1837 if (!kvm_has_sync_mmu()) {
1838 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1839
1840 if (ret) {
1841 perror("qemu_madvise");
1842 fprintf(stderr,
1843 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1844 exit(1);
1845 }
1846 }
1847 }
1848
1849 #ifdef KVM_CAP_SET_GUEST_DEBUG
1850 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1851 target_ulong pc)
1852 {
1853 struct kvm_sw_breakpoint *bp;
1854
1855 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1856 if (bp->pc == pc) {
1857 return bp;
1858 }
1859 }
1860 return NULL;
1861 }
1862
1863 int kvm_sw_breakpoints_active(CPUState *cpu)
1864 {
1865 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1866 }
1867
1868 struct kvm_set_guest_debug_data {
1869 struct kvm_guest_debug dbg;
1870 CPUState *cpu;
1871 int err;
1872 };
1873
1874 static void kvm_invoke_set_guest_debug(void *data)
1875 {
1876 struct kvm_set_guest_debug_data *dbg_data = data;
1877
1878 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
1879 &dbg_data->dbg);
1880 }
1881
1882 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1883 {
1884 CPUState *cpu = ENV_GET_CPU(env);
1885 struct kvm_set_guest_debug_data data;
1886
1887 data.dbg.control = reinject_trap;
1888
1889 if (env->singlestep_enabled) {
1890 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1891 }
1892 kvm_arch_update_guest_debug(cpu, &data.dbg);
1893 data.cpu = cpu;
1894
1895 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
1896 return data.err;
1897 }
1898
1899 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1900 target_ulong len, int type)
1901 {
1902 CPUState *current_cpu = ENV_GET_CPU(current_env);
1903 struct kvm_sw_breakpoint *bp;
1904 CPUArchState *env;
1905 int err;
1906
1907 if (type == GDB_BREAKPOINT_SW) {
1908 bp = kvm_find_sw_breakpoint(current_cpu, addr);
1909 if (bp) {
1910 bp->use_count++;
1911 return 0;
1912 }
1913
1914 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1915 if (!bp) {
1916 return -ENOMEM;
1917 }
1918
1919 bp->pc = addr;
1920 bp->use_count = 1;
1921 err = kvm_arch_insert_sw_breakpoint(current_cpu, bp);
1922 if (err) {
1923 g_free(bp);
1924 return err;
1925 }
1926
1927 QTAILQ_INSERT_HEAD(&current_cpu->kvm_state->kvm_sw_breakpoints,
1928 bp, entry);
1929 } else {
1930 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1931 if (err) {
1932 return err;
1933 }
1934 }
1935
1936 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1937 err = kvm_update_guest_debug(env, 0);
1938 if (err) {
1939 return err;
1940 }
1941 }
1942 return 0;
1943 }
1944
1945 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1946 target_ulong len, int type)
1947 {
1948 CPUState *current_cpu = ENV_GET_CPU(current_env);
1949 struct kvm_sw_breakpoint *bp;
1950 CPUArchState *env;
1951 int err;
1952
1953 if (type == GDB_BREAKPOINT_SW) {
1954 bp = kvm_find_sw_breakpoint(current_cpu, addr);
1955 if (!bp) {
1956 return -ENOENT;
1957 }
1958
1959 if (bp->use_count > 1) {
1960 bp->use_count--;
1961 return 0;
1962 }
1963
1964 err = kvm_arch_remove_sw_breakpoint(current_cpu, bp);
1965 if (err) {
1966 return err;
1967 }
1968
1969 QTAILQ_REMOVE(&current_cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1970 g_free(bp);
1971 } else {
1972 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1973 if (err) {
1974 return err;
1975 }
1976 }
1977
1978 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1979 err = kvm_update_guest_debug(env, 0);
1980 if (err) {
1981 return err;
1982 }
1983 }
1984 return 0;
1985 }
1986
1987 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1988 {
1989 CPUState *current_cpu = ENV_GET_CPU(current_env);
1990 struct kvm_sw_breakpoint *bp, *next;
1991 KVMState *s = current_cpu->kvm_state;
1992 CPUArchState *env;
1993 CPUState *cpu;
1994
1995 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1996 if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) {
1997 /* Try harder to find a CPU that currently sees the breakpoint. */
1998 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1999 cpu = ENV_GET_CPU(env);
2000 if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
2001 break;
2002 }
2003 }
2004 }
2005 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2006 g_free(bp);
2007 }
2008 kvm_arch_remove_all_hw_breakpoints();
2009
2010 for (env = first_cpu; env != NULL; env = env->next_cpu) {
2011 kvm_update_guest_debug(env, 0);
2012 }
2013 }
2014
2015 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2016
2017 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
2018 {
2019 return -EINVAL;
2020 }
2021
2022 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
2023 target_ulong len, int type)
2024 {
2025 return -EINVAL;
2026 }
2027
2028 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
2029 target_ulong len, int type)
2030 {
2031 return -EINVAL;
2032 }
2033
2034 void kvm_remove_all_breakpoints(CPUArchState *current_env)
2035 {
2036 }
2037 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2038
2039 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2040 {
2041 struct kvm_signal_mask *sigmask;
2042 int r;
2043
2044 if (!sigset) {
2045 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2046 }
2047
2048 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2049
2050 sigmask->len = 8;
2051 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2052 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2053 g_free(sigmask);
2054
2055 return r;
2056 }
2057 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2058 {
2059 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2060 }
2061
2062 int kvm_on_sigbus(int code, void *addr)
2063 {
2064 return kvm_arch_on_sigbus(code, addr);
2065 }