]> git.proxmox.com Git - qemu.git/blob - linux-user/main.c
qemu-log: Rename the public-facing cpu_set_log function to qemu_set_log
[qemu.git] / linux-user / main.c
1 /*
2 * qemu user main
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include <stdlib.h>
20 #include <stdio.h>
21 #include <stdarg.h>
22 #include <string.h>
23 #include <errno.h>
24 #include <unistd.h>
25 #include <sys/mman.h>
26 #include <sys/syscall.h>
27 #include <sys/resource.h>
28
29 #include "qemu.h"
30 #include "qemu-common.h"
31 #include "qemu/cache-utils.h"
32 #include "cpu.h"
33 #include "tcg.h"
34 #include "qemu/timer.h"
35 #include "qemu/envlist.h"
36 #include "elf.h"
37
38 #define DEBUG_LOGFILE "/tmp/qemu.log"
39
40 char *exec_path;
41
42 int singlestep;
43 const char *filename;
44 const char *argv0;
45 int gdbstub_port;
46 envlist_t *envlist;
47 const char *cpu_model;
48 unsigned long mmap_min_addr;
49 #if defined(CONFIG_USE_GUEST_BASE)
50 unsigned long guest_base;
51 int have_guest_base;
52 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64)
53 /*
54 * When running 32-on-64 we should make sure we can fit all of the possible
55 * guest address space into a contiguous chunk of virtual host memory.
56 *
57 * This way we will never overlap with our own libraries or binaries or stack
58 * or anything else that QEMU maps.
59 */
60 # ifdef TARGET_MIPS
61 /* MIPS only supports 31 bits of virtual address space for user space */
62 unsigned long reserved_va = 0x77000000;
63 # else
64 unsigned long reserved_va = 0xf7000000;
65 # endif
66 #else
67 unsigned long reserved_va;
68 #endif
69 #endif
70
71 static void usage(void);
72
73 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX;
74 const char *qemu_uname_release = CONFIG_UNAME_RELEASE;
75
76 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
77 we allocate a bigger stack. Need a better solution, for example
78 by remapping the process stack directly at the right place */
79 unsigned long guest_stack_size = 8 * 1024 * 1024UL;
80
81 void gemu_log(const char *fmt, ...)
82 {
83 va_list ap;
84
85 va_start(ap, fmt);
86 vfprintf(stderr, fmt, ap);
87 va_end(ap);
88 }
89
90 #if defined(TARGET_I386)
91 int cpu_get_pic_interrupt(CPUX86State *env)
92 {
93 return -1;
94 }
95 #endif
96
97 #if defined(CONFIG_USE_NPTL)
98 /***********************************************************/
99 /* Helper routines for implementing atomic operations. */
100
101 /* To implement exclusive operations we force all cpus to syncronise.
102 We don't require a full sync, only that no cpus are executing guest code.
103 The alternative is to map target atomic ops onto host equivalents,
104 which requires quite a lot of per host/target work. */
105 static pthread_mutex_t cpu_list_mutex = PTHREAD_MUTEX_INITIALIZER;
106 static pthread_mutex_t exclusive_lock = PTHREAD_MUTEX_INITIALIZER;
107 static pthread_cond_t exclusive_cond = PTHREAD_COND_INITIALIZER;
108 static pthread_cond_t exclusive_resume = PTHREAD_COND_INITIALIZER;
109 static int pending_cpus;
110
111 /* Make sure everything is in a consistent state for calling fork(). */
112 void fork_start(void)
113 {
114 pthread_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
115 pthread_mutex_lock(&exclusive_lock);
116 mmap_fork_start();
117 }
118
119 void fork_end(int child)
120 {
121 mmap_fork_end(child);
122 if (child) {
123 /* Child processes created by fork() only have a single thread.
124 Discard information about the parent threads. */
125 first_cpu = thread_env;
126 thread_env->next_cpu = NULL;
127 pending_cpus = 0;
128 pthread_mutex_init(&exclusive_lock, NULL);
129 pthread_mutex_init(&cpu_list_mutex, NULL);
130 pthread_cond_init(&exclusive_cond, NULL);
131 pthread_cond_init(&exclusive_resume, NULL);
132 pthread_mutex_init(&tcg_ctx.tb_ctx.tb_lock, NULL);
133 gdbserver_fork(thread_env);
134 } else {
135 pthread_mutex_unlock(&exclusive_lock);
136 pthread_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
137 }
138 }
139
140 /* Wait for pending exclusive operations to complete. The exclusive lock
141 must be held. */
142 static inline void exclusive_idle(void)
143 {
144 while (pending_cpus) {
145 pthread_cond_wait(&exclusive_resume, &exclusive_lock);
146 }
147 }
148
149 /* Start an exclusive operation.
150 Must only be called from outside cpu_arm_exec. */
151 static inline void start_exclusive(void)
152 {
153 CPUArchState *other;
154 pthread_mutex_lock(&exclusive_lock);
155 exclusive_idle();
156
157 pending_cpus = 1;
158 /* Make all other cpus stop executing. */
159 for (other = first_cpu; other; other = other->next_cpu) {
160 if (other->running) {
161 pending_cpus++;
162 cpu_exit(other);
163 }
164 }
165 if (pending_cpus > 1) {
166 pthread_cond_wait(&exclusive_cond, &exclusive_lock);
167 }
168 }
169
170 /* Finish an exclusive operation. */
171 static inline void end_exclusive(void)
172 {
173 pending_cpus = 0;
174 pthread_cond_broadcast(&exclusive_resume);
175 pthread_mutex_unlock(&exclusive_lock);
176 }
177
178 /* Wait for exclusive ops to finish, and begin cpu execution. */
179 static inline void cpu_exec_start(CPUArchState *env)
180 {
181 pthread_mutex_lock(&exclusive_lock);
182 exclusive_idle();
183 env->running = 1;
184 pthread_mutex_unlock(&exclusive_lock);
185 }
186
187 /* Mark cpu as not executing, and release pending exclusive ops. */
188 static inline void cpu_exec_end(CPUArchState *env)
189 {
190 pthread_mutex_lock(&exclusive_lock);
191 env->running = 0;
192 if (pending_cpus > 1) {
193 pending_cpus--;
194 if (pending_cpus == 1) {
195 pthread_cond_signal(&exclusive_cond);
196 }
197 }
198 exclusive_idle();
199 pthread_mutex_unlock(&exclusive_lock);
200 }
201
202 void cpu_list_lock(void)
203 {
204 pthread_mutex_lock(&cpu_list_mutex);
205 }
206
207 void cpu_list_unlock(void)
208 {
209 pthread_mutex_unlock(&cpu_list_mutex);
210 }
211 #else /* if !CONFIG_USE_NPTL */
212 /* These are no-ops because we are not threadsafe. */
213 static inline void cpu_exec_start(CPUArchState *env)
214 {
215 }
216
217 static inline void cpu_exec_end(CPUArchState *env)
218 {
219 }
220
221 static inline void start_exclusive(void)
222 {
223 }
224
225 static inline void end_exclusive(void)
226 {
227 }
228
229 void fork_start(void)
230 {
231 }
232
233 void fork_end(int child)
234 {
235 if (child) {
236 gdbserver_fork(thread_env);
237 }
238 }
239
240 void cpu_list_lock(void)
241 {
242 }
243
244 void cpu_list_unlock(void)
245 {
246 }
247 #endif
248
249
250 #ifdef TARGET_I386
251 /***********************************************************/
252 /* CPUX86 core interface */
253
254 void cpu_smm_update(CPUX86State *env)
255 {
256 }
257
258 uint64_t cpu_get_tsc(CPUX86State *env)
259 {
260 return cpu_get_real_ticks();
261 }
262
263 static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
264 int flags)
265 {
266 unsigned int e1, e2;
267 uint32_t *p;
268 e1 = (addr << 16) | (limit & 0xffff);
269 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
270 e2 |= flags;
271 p = ptr;
272 p[0] = tswap32(e1);
273 p[1] = tswap32(e2);
274 }
275
276 static uint64_t *idt_table;
277 #ifdef TARGET_X86_64
278 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
279 uint64_t addr, unsigned int sel)
280 {
281 uint32_t *p, e1, e2;
282 e1 = (addr & 0xffff) | (sel << 16);
283 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
284 p = ptr;
285 p[0] = tswap32(e1);
286 p[1] = tswap32(e2);
287 p[2] = tswap32(addr >> 32);
288 p[3] = 0;
289 }
290 /* only dpl matters as we do only user space emulation */
291 static void set_idt(int n, unsigned int dpl)
292 {
293 set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
294 }
295 #else
296 static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
297 uint32_t addr, unsigned int sel)
298 {
299 uint32_t *p, e1, e2;
300 e1 = (addr & 0xffff) | (sel << 16);
301 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
302 p = ptr;
303 p[0] = tswap32(e1);
304 p[1] = tswap32(e2);
305 }
306
307 /* only dpl matters as we do only user space emulation */
308 static void set_idt(int n, unsigned int dpl)
309 {
310 set_gate(idt_table + n, 0, dpl, 0, 0);
311 }
312 #endif
313
314 void cpu_loop(CPUX86State *env)
315 {
316 int trapnr;
317 abi_ulong pc;
318 target_siginfo_t info;
319
320 for(;;) {
321 trapnr = cpu_x86_exec(env);
322 switch(trapnr) {
323 case 0x80:
324 /* linux syscall from int $0x80 */
325 env->regs[R_EAX] = do_syscall(env,
326 env->regs[R_EAX],
327 env->regs[R_EBX],
328 env->regs[R_ECX],
329 env->regs[R_EDX],
330 env->regs[R_ESI],
331 env->regs[R_EDI],
332 env->regs[R_EBP],
333 0, 0);
334 break;
335 #ifndef TARGET_ABI32
336 case EXCP_SYSCALL:
337 /* linux syscall from syscall instruction */
338 env->regs[R_EAX] = do_syscall(env,
339 env->regs[R_EAX],
340 env->regs[R_EDI],
341 env->regs[R_ESI],
342 env->regs[R_EDX],
343 env->regs[10],
344 env->regs[8],
345 env->regs[9],
346 0, 0);
347 env->eip = env->exception_next_eip;
348 break;
349 #endif
350 case EXCP0B_NOSEG:
351 case EXCP0C_STACK:
352 info.si_signo = SIGBUS;
353 info.si_errno = 0;
354 info.si_code = TARGET_SI_KERNEL;
355 info._sifields._sigfault._addr = 0;
356 queue_signal(env, info.si_signo, &info);
357 break;
358 case EXCP0D_GPF:
359 /* XXX: potential problem if ABI32 */
360 #ifndef TARGET_X86_64
361 if (env->eflags & VM_MASK) {
362 handle_vm86_fault(env);
363 } else
364 #endif
365 {
366 info.si_signo = SIGSEGV;
367 info.si_errno = 0;
368 info.si_code = TARGET_SI_KERNEL;
369 info._sifields._sigfault._addr = 0;
370 queue_signal(env, info.si_signo, &info);
371 }
372 break;
373 case EXCP0E_PAGE:
374 info.si_signo = SIGSEGV;
375 info.si_errno = 0;
376 if (!(env->error_code & 1))
377 info.si_code = TARGET_SEGV_MAPERR;
378 else
379 info.si_code = TARGET_SEGV_ACCERR;
380 info._sifields._sigfault._addr = env->cr[2];
381 queue_signal(env, info.si_signo, &info);
382 break;
383 case EXCP00_DIVZ:
384 #ifndef TARGET_X86_64
385 if (env->eflags & VM_MASK) {
386 handle_vm86_trap(env, trapnr);
387 } else
388 #endif
389 {
390 /* division by zero */
391 info.si_signo = SIGFPE;
392 info.si_errno = 0;
393 info.si_code = TARGET_FPE_INTDIV;
394 info._sifields._sigfault._addr = env->eip;
395 queue_signal(env, info.si_signo, &info);
396 }
397 break;
398 case EXCP01_DB:
399 case EXCP03_INT3:
400 #ifndef TARGET_X86_64
401 if (env->eflags & VM_MASK) {
402 handle_vm86_trap(env, trapnr);
403 } else
404 #endif
405 {
406 info.si_signo = SIGTRAP;
407 info.si_errno = 0;
408 if (trapnr == EXCP01_DB) {
409 info.si_code = TARGET_TRAP_BRKPT;
410 info._sifields._sigfault._addr = env->eip;
411 } else {
412 info.si_code = TARGET_SI_KERNEL;
413 info._sifields._sigfault._addr = 0;
414 }
415 queue_signal(env, info.si_signo, &info);
416 }
417 break;
418 case EXCP04_INTO:
419 case EXCP05_BOUND:
420 #ifndef TARGET_X86_64
421 if (env->eflags & VM_MASK) {
422 handle_vm86_trap(env, trapnr);
423 } else
424 #endif
425 {
426 info.si_signo = SIGSEGV;
427 info.si_errno = 0;
428 info.si_code = TARGET_SI_KERNEL;
429 info._sifields._sigfault._addr = 0;
430 queue_signal(env, info.si_signo, &info);
431 }
432 break;
433 case EXCP06_ILLOP:
434 info.si_signo = SIGILL;
435 info.si_errno = 0;
436 info.si_code = TARGET_ILL_ILLOPN;
437 info._sifields._sigfault._addr = env->eip;
438 queue_signal(env, info.si_signo, &info);
439 break;
440 case EXCP_INTERRUPT:
441 /* just indicate that signals should be handled asap */
442 break;
443 case EXCP_DEBUG:
444 {
445 int sig;
446
447 sig = gdb_handlesig (env, TARGET_SIGTRAP);
448 if (sig)
449 {
450 info.si_signo = sig;
451 info.si_errno = 0;
452 info.si_code = TARGET_TRAP_BRKPT;
453 queue_signal(env, info.si_signo, &info);
454 }
455 }
456 break;
457 default:
458 pc = env->segs[R_CS].base + env->eip;
459 fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
460 (long)pc, trapnr);
461 abort();
462 }
463 process_pending_signals(env);
464 }
465 }
466 #endif
467
468 #ifdef TARGET_ARM
469
470 #define get_user_code_u32(x, gaddr, doswap) \
471 ({ abi_long __r = get_user_u32((x), (gaddr)); \
472 if (!__r && (doswap)) { \
473 (x) = bswap32(x); \
474 } \
475 __r; \
476 })
477
478 #define get_user_code_u16(x, gaddr, doswap) \
479 ({ abi_long __r = get_user_u16((x), (gaddr)); \
480 if (!__r && (doswap)) { \
481 (x) = bswap16(x); \
482 } \
483 __r; \
484 })
485
486 /*
487 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt
488 * Input:
489 * r0 = pointer to oldval
490 * r1 = pointer to newval
491 * r2 = pointer to target value
492 *
493 * Output:
494 * r0 = 0 if *ptr was changed, non-0 if no exchange happened
495 * C set if *ptr was changed, clear if no exchange happened
496 *
497 * Note segv's in kernel helpers are a bit tricky, we can set the
498 * data address sensibly but the PC address is just the entry point.
499 */
500 static void arm_kernel_cmpxchg64_helper(CPUARMState *env)
501 {
502 uint64_t oldval, newval, val;
503 uint32_t addr, cpsr;
504 target_siginfo_t info;
505
506 /* Based on the 32 bit code in do_kernel_trap */
507
508 /* XXX: This only works between threads, not between processes.
509 It's probably possible to implement this with native host
510 operations. However things like ldrex/strex are much harder so
511 there's not much point trying. */
512 start_exclusive();
513 cpsr = cpsr_read(env);
514 addr = env->regs[2];
515
516 if (get_user_u64(oldval, env->regs[0])) {
517 env->cp15.c6_data = env->regs[0];
518 goto segv;
519 };
520
521 if (get_user_u64(newval, env->regs[1])) {
522 env->cp15.c6_data = env->regs[1];
523 goto segv;
524 };
525
526 if (get_user_u64(val, addr)) {
527 env->cp15.c6_data = addr;
528 goto segv;
529 }
530
531 if (val == oldval) {
532 val = newval;
533
534 if (put_user_u64(val, addr)) {
535 env->cp15.c6_data = addr;
536 goto segv;
537 };
538
539 env->regs[0] = 0;
540 cpsr |= CPSR_C;
541 } else {
542 env->regs[0] = -1;
543 cpsr &= ~CPSR_C;
544 }
545 cpsr_write(env, cpsr, CPSR_C);
546 end_exclusive();
547 return;
548
549 segv:
550 end_exclusive();
551 /* We get the PC of the entry address - which is as good as anything,
552 on a real kernel what you get depends on which mode it uses. */
553 info.si_signo = SIGSEGV;
554 info.si_errno = 0;
555 /* XXX: check env->error_code */
556 info.si_code = TARGET_SEGV_MAPERR;
557 info._sifields._sigfault._addr = env->cp15.c6_data;
558 queue_signal(env, info.si_signo, &info);
559
560 end_exclusive();
561 }
562
563 /* Handle a jump to the kernel code page. */
564 static int
565 do_kernel_trap(CPUARMState *env)
566 {
567 uint32_t addr;
568 uint32_t cpsr;
569 uint32_t val;
570
571 switch (env->regs[15]) {
572 case 0xffff0fa0: /* __kernel_memory_barrier */
573 /* ??? No-op. Will need to do better for SMP. */
574 break;
575 case 0xffff0fc0: /* __kernel_cmpxchg */
576 /* XXX: This only works between threads, not between processes.
577 It's probably possible to implement this with native host
578 operations. However things like ldrex/strex are much harder so
579 there's not much point trying. */
580 start_exclusive();
581 cpsr = cpsr_read(env);
582 addr = env->regs[2];
583 /* FIXME: This should SEGV if the access fails. */
584 if (get_user_u32(val, addr))
585 val = ~env->regs[0];
586 if (val == env->regs[0]) {
587 val = env->regs[1];
588 /* FIXME: Check for segfaults. */
589 put_user_u32(val, addr);
590 env->regs[0] = 0;
591 cpsr |= CPSR_C;
592 } else {
593 env->regs[0] = -1;
594 cpsr &= ~CPSR_C;
595 }
596 cpsr_write(env, cpsr, CPSR_C);
597 end_exclusive();
598 break;
599 case 0xffff0fe0: /* __kernel_get_tls */
600 env->regs[0] = env->cp15.c13_tls2;
601 break;
602 case 0xffff0f60: /* __kernel_cmpxchg64 */
603 arm_kernel_cmpxchg64_helper(env);
604 break;
605
606 default:
607 return 1;
608 }
609 /* Jump back to the caller. */
610 addr = env->regs[14];
611 if (addr & 1) {
612 env->thumb = 1;
613 addr &= ~1;
614 }
615 env->regs[15] = addr;
616
617 return 0;
618 }
619
620 static int do_strex(CPUARMState *env)
621 {
622 uint32_t val;
623 int size;
624 int rc = 1;
625 int segv = 0;
626 uint32_t addr;
627 start_exclusive();
628 addr = env->exclusive_addr;
629 if (addr != env->exclusive_test) {
630 goto fail;
631 }
632 size = env->exclusive_info & 0xf;
633 switch (size) {
634 case 0:
635 segv = get_user_u8(val, addr);
636 break;
637 case 1:
638 segv = get_user_u16(val, addr);
639 break;
640 case 2:
641 case 3:
642 segv = get_user_u32(val, addr);
643 break;
644 default:
645 abort();
646 }
647 if (segv) {
648 env->cp15.c6_data = addr;
649 goto done;
650 }
651 if (val != env->exclusive_val) {
652 goto fail;
653 }
654 if (size == 3) {
655 segv = get_user_u32(val, addr + 4);
656 if (segv) {
657 env->cp15.c6_data = addr + 4;
658 goto done;
659 }
660 if (val != env->exclusive_high) {
661 goto fail;
662 }
663 }
664 val = env->regs[(env->exclusive_info >> 8) & 0xf];
665 switch (size) {
666 case 0:
667 segv = put_user_u8(val, addr);
668 break;
669 case 1:
670 segv = put_user_u16(val, addr);
671 break;
672 case 2:
673 case 3:
674 segv = put_user_u32(val, addr);
675 break;
676 }
677 if (segv) {
678 env->cp15.c6_data = addr;
679 goto done;
680 }
681 if (size == 3) {
682 val = env->regs[(env->exclusive_info >> 12) & 0xf];
683 segv = put_user_u32(val, addr + 4);
684 if (segv) {
685 env->cp15.c6_data = addr + 4;
686 goto done;
687 }
688 }
689 rc = 0;
690 fail:
691 env->regs[15] += 4;
692 env->regs[(env->exclusive_info >> 4) & 0xf] = rc;
693 done:
694 end_exclusive();
695 return segv;
696 }
697
698 void cpu_loop(CPUARMState *env)
699 {
700 int trapnr;
701 unsigned int n, insn;
702 target_siginfo_t info;
703 uint32_t addr;
704
705 for(;;) {
706 cpu_exec_start(env);
707 trapnr = cpu_arm_exec(env);
708 cpu_exec_end(env);
709 switch(trapnr) {
710 case EXCP_UDEF:
711 {
712 TaskState *ts = env->opaque;
713 uint32_t opcode;
714 int rc;
715
716 /* we handle the FPU emulation here, as Linux */
717 /* we get the opcode */
718 /* FIXME - what to do if get_user() fails? */
719 get_user_code_u32(opcode, env->regs[15], env->bswap_code);
720
721 rc = EmulateAll(opcode, &ts->fpa, env);
722 if (rc == 0) { /* illegal instruction */
723 info.si_signo = SIGILL;
724 info.si_errno = 0;
725 info.si_code = TARGET_ILL_ILLOPN;
726 info._sifields._sigfault._addr = env->regs[15];
727 queue_signal(env, info.si_signo, &info);
728 } else if (rc < 0) { /* FP exception */
729 int arm_fpe=0;
730
731 /* translate softfloat flags to FPSR flags */
732 if (-rc & float_flag_invalid)
733 arm_fpe |= BIT_IOC;
734 if (-rc & float_flag_divbyzero)
735 arm_fpe |= BIT_DZC;
736 if (-rc & float_flag_overflow)
737 arm_fpe |= BIT_OFC;
738 if (-rc & float_flag_underflow)
739 arm_fpe |= BIT_UFC;
740 if (-rc & float_flag_inexact)
741 arm_fpe |= BIT_IXC;
742
743 FPSR fpsr = ts->fpa.fpsr;
744 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe);
745
746 if (fpsr & (arm_fpe << 16)) { /* exception enabled? */
747 info.si_signo = SIGFPE;
748 info.si_errno = 0;
749
750 /* ordered by priority, least first */
751 if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES;
752 if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND;
753 if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF;
754 if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV;
755 if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV;
756
757 info._sifields._sigfault._addr = env->regs[15];
758 queue_signal(env, info.si_signo, &info);
759 } else {
760 env->regs[15] += 4;
761 }
762
763 /* accumulate unenabled exceptions */
764 if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC))
765 fpsr |= BIT_IXC;
766 if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC))
767 fpsr |= BIT_UFC;
768 if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC))
769 fpsr |= BIT_OFC;
770 if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC))
771 fpsr |= BIT_DZC;
772 if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC))
773 fpsr |= BIT_IOC;
774 ts->fpa.fpsr=fpsr;
775 } else { /* everything OK */
776 /* increment PC */
777 env->regs[15] += 4;
778 }
779 }
780 break;
781 case EXCP_SWI:
782 case EXCP_BKPT:
783 {
784 env->eabi = 1;
785 /* system call */
786 if (trapnr == EXCP_BKPT) {
787 if (env->thumb) {
788 /* FIXME - what to do if get_user() fails? */
789 get_user_code_u16(insn, env->regs[15], env->bswap_code);
790 n = insn & 0xff;
791 env->regs[15] += 2;
792 } else {
793 /* FIXME - what to do if get_user() fails? */
794 get_user_code_u32(insn, env->regs[15], env->bswap_code);
795 n = (insn & 0xf) | ((insn >> 4) & 0xff0);
796 env->regs[15] += 4;
797 }
798 } else {
799 if (env->thumb) {
800 /* FIXME - what to do if get_user() fails? */
801 get_user_code_u16(insn, env->regs[15] - 2,
802 env->bswap_code);
803 n = insn & 0xff;
804 } else {
805 /* FIXME - what to do if get_user() fails? */
806 get_user_code_u32(insn, env->regs[15] - 4,
807 env->bswap_code);
808 n = insn & 0xffffff;
809 }
810 }
811
812 if (n == ARM_NR_cacheflush) {
813 /* nop */
814 } else if (n == ARM_NR_semihosting
815 || n == ARM_NR_thumb_semihosting) {
816 env->regs[0] = do_arm_semihosting (env);
817 } else if (n == 0 || n >= ARM_SYSCALL_BASE || env->thumb) {
818 /* linux syscall */
819 if (env->thumb || n == 0) {
820 n = env->regs[7];
821 } else {
822 n -= ARM_SYSCALL_BASE;
823 env->eabi = 0;
824 }
825 if ( n > ARM_NR_BASE) {
826 switch (n) {
827 case ARM_NR_cacheflush:
828 /* nop */
829 break;
830 case ARM_NR_set_tls:
831 cpu_set_tls(env, env->regs[0]);
832 env->regs[0] = 0;
833 break;
834 default:
835 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n",
836 n);
837 env->regs[0] = -TARGET_ENOSYS;
838 break;
839 }
840 } else {
841 env->regs[0] = do_syscall(env,
842 n,
843 env->regs[0],
844 env->regs[1],
845 env->regs[2],
846 env->regs[3],
847 env->regs[4],
848 env->regs[5],
849 0, 0);
850 }
851 } else {
852 goto error;
853 }
854 }
855 break;
856 case EXCP_INTERRUPT:
857 /* just indicate that signals should be handled asap */
858 break;
859 case EXCP_PREFETCH_ABORT:
860 addr = env->cp15.c6_insn;
861 goto do_segv;
862 case EXCP_DATA_ABORT:
863 addr = env->cp15.c6_data;
864 do_segv:
865 {
866 info.si_signo = SIGSEGV;
867 info.si_errno = 0;
868 /* XXX: check env->error_code */
869 info.si_code = TARGET_SEGV_MAPERR;
870 info._sifields._sigfault._addr = addr;
871 queue_signal(env, info.si_signo, &info);
872 }
873 break;
874 case EXCP_DEBUG:
875 {
876 int sig;
877
878 sig = gdb_handlesig (env, TARGET_SIGTRAP);
879 if (sig)
880 {
881 info.si_signo = sig;
882 info.si_errno = 0;
883 info.si_code = TARGET_TRAP_BRKPT;
884 queue_signal(env, info.si_signo, &info);
885 }
886 }
887 break;
888 case EXCP_KERNEL_TRAP:
889 if (do_kernel_trap(env))
890 goto error;
891 break;
892 case EXCP_STREX:
893 if (do_strex(env)) {
894 addr = env->cp15.c6_data;
895 goto do_segv;
896 }
897 break;
898 default:
899 error:
900 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
901 trapnr);
902 cpu_dump_state(env, stderr, fprintf, 0);
903 abort();
904 }
905 process_pending_signals(env);
906 }
907 }
908
909 #endif
910
911 #ifdef TARGET_UNICORE32
912
913 void cpu_loop(CPUUniCore32State *env)
914 {
915 int trapnr;
916 unsigned int n, insn;
917 target_siginfo_t info;
918
919 for (;;) {
920 cpu_exec_start(env);
921 trapnr = uc32_cpu_exec(env);
922 cpu_exec_end(env);
923 switch (trapnr) {
924 case UC32_EXCP_PRIV:
925 {
926 /* system call */
927 get_user_u32(insn, env->regs[31] - 4);
928 n = insn & 0xffffff;
929
930 if (n >= UC32_SYSCALL_BASE) {
931 /* linux syscall */
932 n -= UC32_SYSCALL_BASE;
933 if (n == UC32_SYSCALL_NR_set_tls) {
934 cpu_set_tls(env, env->regs[0]);
935 env->regs[0] = 0;
936 } else {
937 env->regs[0] = do_syscall(env,
938 n,
939 env->regs[0],
940 env->regs[1],
941 env->regs[2],
942 env->regs[3],
943 env->regs[4],
944 env->regs[5],
945 0, 0);
946 }
947 } else {
948 goto error;
949 }
950 }
951 break;
952 case UC32_EXCP_DTRAP:
953 case UC32_EXCP_ITRAP:
954 info.si_signo = SIGSEGV;
955 info.si_errno = 0;
956 /* XXX: check env->error_code */
957 info.si_code = TARGET_SEGV_MAPERR;
958 info._sifields._sigfault._addr = env->cp0.c4_faultaddr;
959 queue_signal(env, info.si_signo, &info);
960 break;
961 case EXCP_INTERRUPT:
962 /* just indicate that signals should be handled asap */
963 break;
964 case EXCP_DEBUG:
965 {
966 int sig;
967
968 sig = gdb_handlesig(env, TARGET_SIGTRAP);
969 if (sig) {
970 info.si_signo = sig;
971 info.si_errno = 0;
972 info.si_code = TARGET_TRAP_BRKPT;
973 queue_signal(env, info.si_signo, &info);
974 }
975 }
976 break;
977 default:
978 goto error;
979 }
980 process_pending_signals(env);
981 }
982
983 error:
984 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
985 cpu_dump_state(env, stderr, fprintf, 0);
986 abort();
987 }
988 #endif
989
990 #ifdef TARGET_SPARC
991 #define SPARC64_STACK_BIAS 2047
992
993 //#define DEBUG_WIN
994
995 /* WARNING: dealing with register windows _is_ complicated. More info
996 can be found at http://www.sics.se/~psm/sparcstack.html */
997 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index)
998 {
999 index = (index + cwp * 16) % (16 * env->nwindows);
1000 /* wrap handling : if cwp is on the last window, then we use the
1001 registers 'after' the end */
1002 if (index < 8 && env->cwp == env->nwindows - 1)
1003 index += 16 * env->nwindows;
1004 return index;
1005 }
1006
1007 /* save the register window 'cwp1' */
1008 static inline void save_window_offset(CPUSPARCState *env, int cwp1)
1009 {
1010 unsigned int i;
1011 abi_ulong sp_ptr;
1012
1013 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
1014 #ifdef TARGET_SPARC64
1015 if (sp_ptr & 3)
1016 sp_ptr += SPARC64_STACK_BIAS;
1017 #endif
1018 #if defined(DEBUG_WIN)
1019 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n",
1020 sp_ptr, cwp1);
1021 #endif
1022 for(i = 0; i < 16; i++) {
1023 /* FIXME - what to do if put_user() fails? */
1024 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
1025 sp_ptr += sizeof(abi_ulong);
1026 }
1027 }
1028
1029 static void save_window(CPUSPARCState *env)
1030 {
1031 #ifndef TARGET_SPARC64
1032 unsigned int new_wim;
1033 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) &
1034 ((1LL << env->nwindows) - 1);
1035 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
1036 env->wim = new_wim;
1037 #else
1038 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
1039 env->cansave++;
1040 env->canrestore--;
1041 #endif
1042 }
1043
1044 static void restore_window(CPUSPARCState *env)
1045 {
1046 #ifndef TARGET_SPARC64
1047 unsigned int new_wim;
1048 #endif
1049 unsigned int i, cwp1;
1050 abi_ulong sp_ptr;
1051
1052 #ifndef TARGET_SPARC64
1053 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) &
1054 ((1LL << env->nwindows) - 1);
1055 #endif
1056
1057 /* restore the invalid window */
1058 cwp1 = cpu_cwp_inc(env, env->cwp + 1);
1059 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
1060 #ifdef TARGET_SPARC64
1061 if (sp_ptr & 3)
1062 sp_ptr += SPARC64_STACK_BIAS;
1063 #endif
1064 #if defined(DEBUG_WIN)
1065 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n",
1066 sp_ptr, cwp1);
1067 #endif
1068 for(i = 0; i < 16; i++) {
1069 /* FIXME - what to do if get_user() fails? */
1070 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
1071 sp_ptr += sizeof(abi_ulong);
1072 }
1073 #ifdef TARGET_SPARC64
1074 env->canrestore++;
1075 if (env->cleanwin < env->nwindows - 1)
1076 env->cleanwin++;
1077 env->cansave--;
1078 #else
1079 env->wim = new_wim;
1080 #endif
1081 }
1082
1083 static void flush_windows(CPUSPARCState *env)
1084 {
1085 int offset, cwp1;
1086
1087 offset = 1;
1088 for(;;) {
1089 /* if restore would invoke restore_window(), then we can stop */
1090 cwp1 = cpu_cwp_inc(env, env->cwp + offset);
1091 #ifndef TARGET_SPARC64
1092 if (env->wim & (1 << cwp1))
1093 break;
1094 #else
1095 if (env->canrestore == 0)
1096 break;
1097 env->cansave++;
1098 env->canrestore--;
1099 #endif
1100 save_window_offset(env, cwp1);
1101 offset++;
1102 }
1103 cwp1 = cpu_cwp_inc(env, env->cwp + 1);
1104 #ifndef TARGET_SPARC64
1105 /* set wim so that restore will reload the registers */
1106 env->wim = 1 << cwp1;
1107 #endif
1108 #if defined(DEBUG_WIN)
1109 printf("flush_windows: nb=%d\n", offset - 1);
1110 #endif
1111 }
1112
1113 void cpu_loop (CPUSPARCState *env)
1114 {
1115 int trapnr;
1116 abi_long ret;
1117 target_siginfo_t info;
1118
1119 while (1) {
1120 trapnr = cpu_sparc_exec (env);
1121
1122 /* Compute PSR before exposing state. */
1123 if (env->cc_op != CC_OP_FLAGS) {
1124 cpu_get_psr(env);
1125 }
1126
1127 switch (trapnr) {
1128 #ifndef TARGET_SPARC64
1129 case 0x88:
1130 case 0x90:
1131 #else
1132 case 0x110:
1133 case 0x16d:
1134 #endif
1135 ret = do_syscall (env, env->gregs[1],
1136 env->regwptr[0], env->regwptr[1],
1137 env->regwptr[2], env->regwptr[3],
1138 env->regwptr[4], env->regwptr[5],
1139 0, 0);
1140 if ((abi_ulong)ret >= (abi_ulong)(-515)) {
1141 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1142 env->xcc |= PSR_CARRY;
1143 #else
1144 env->psr |= PSR_CARRY;
1145 #endif
1146 ret = -ret;
1147 } else {
1148 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1149 env->xcc &= ~PSR_CARRY;
1150 #else
1151 env->psr &= ~PSR_CARRY;
1152 #endif
1153 }
1154 env->regwptr[0] = ret;
1155 /* next instruction */
1156 env->pc = env->npc;
1157 env->npc = env->npc + 4;
1158 break;
1159 case 0x83: /* flush windows */
1160 #ifdef TARGET_ABI32
1161 case 0x103:
1162 #endif
1163 flush_windows(env);
1164 /* next instruction */
1165 env->pc = env->npc;
1166 env->npc = env->npc + 4;
1167 break;
1168 #ifndef TARGET_SPARC64
1169 case TT_WIN_OVF: /* window overflow */
1170 save_window(env);
1171 break;
1172 case TT_WIN_UNF: /* window underflow */
1173 restore_window(env);
1174 break;
1175 case TT_TFAULT:
1176 case TT_DFAULT:
1177 {
1178 info.si_signo = TARGET_SIGSEGV;
1179 info.si_errno = 0;
1180 /* XXX: check env->error_code */
1181 info.si_code = TARGET_SEGV_MAPERR;
1182 info._sifields._sigfault._addr = env->mmuregs[4];
1183 queue_signal(env, info.si_signo, &info);
1184 }
1185 break;
1186 #else
1187 case TT_SPILL: /* window overflow */
1188 save_window(env);
1189 break;
1190 case TT_FILL: /* window underflow */
1191 restore_window(env);
1192 break;
1193 case TT_TFAULT:
1194 case TT_DFAULT:
1195 {
1196 info.si_signo = TARGET_SIGSEGV;
1197 info.si_errno = 0;
1198 /* XXX: check env->error_code */
1199 info.si_code = TARGET_SEGV_MAPERR;
1200 if (trapnr == TT_DFAULT)
1201 info._sifields._sigfault._addr = env->dmmuregs[4];
1202 else
1203 info._sifields._sigfault._addr = cpu_tsptr(env)->tpc;
1204 queue_signal(env, info.si_signo, &info);
1205 }
1206 break;
1207 #ifndef TARGET_ABI32
1208 case 0x16e:
1209 flush_windows(env);
1210 sparc64_get_context(env);
1211 break;
1212 case 0x16f:
1213 flush_windows(env);
1214 sparc64_set_context(env);
1215 break;
1216 #endif
1217 #endif
1218 case EXCP_INTERRUPT:
1219 /* just indicate that signals should be handled asap */
1220 break;
1221 case TT_ILL_INSN:
1222 {
1223 info.si_signo = TARGET_SIGILL;
1224 info.si_errno = 0;
1225 info.si_code = TARGET_ILL_ILLOPC;
1226 info._sifields._sigfault._addr = env->pc;
1227 queue_signal(env, info.si_signo, &info);
1228 }
1229 break;
1230 case EXCP_DEBUG:
1231 {
1232 int sig;
1233
1234 sig = gdb_handlesig (env, TARGET_SIGTRAP);
1235 if (sig)
1236 {
1237 info.si_signo = sig;
1238 info.si_errno = 0;
1239 info.si_code = TARGET_TRAP_BRKPT;
1240 queue_signal(env, info.si_signo, &info);
1241 }
1242 }
1243 break;
1244 default:
1245 printf ("Unhandled trap: 0x%x\n", trapnr);
1246 cpu_dump_state(env, stderr, fprintf, 0);
1247 exit (1);
1248 }
1249 process_pending_signals (env);
1250 }
1251 }
1252
1253 #endif
1254
1255 #ifdef TARGET_PPC
1256 static inline uint64_t cpu_ppc_get_tb(CPUPPCState *env)
1257 {
1258 /* TO FIX */
1259 return 0;
1260 }
1261
1262 uint64_t cpu_ppc_load_tbl(CPUPPCState *env)
1263 {
1264 return cpu_ppc_get_tb(env);
1265 }
1266
1267 uint32_t cpu_ppc_load_tbu(CPUPPCState *env)
1268 {
1269 return cpu_ppc_get_tb(env) >> 32;
1270 }
1271
1272 uint64_t cpu_ppc_load_atbl(CPUPPCState *env)
1273 {
1274 return cpu_ppc_get_tb(env);
1275 }
1276
1277 uint32_t cpu_ppc_load_atbu(CPUPPCState *env)
1278 {
1279 return cpu_ppc_get_tb(env) >> 32;
1280 }
1281
1282 uint32_t cpu_ppc601_load_rtcu(CPUPPCState *env)
1283 __attribute__ (( alias ("cpu_ppc_load_tbu") ));
1284
1285 uint32_t cpu_ppc601_load_rtcl(CPUPPCState *env)
1286 {
1287 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1288 }
1289
1290 /* XXX: to be fixed */
1291 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1292 {
1293 return -1;
1294 }
1295
1296 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1297 {
1298 return -1;
1299 }
1300
1301 #define EXCP_DUMP(env, fmt, ...) \
1302 do { \
1303 fprintf(stderr, fmt , ## __VA_ARGS__); \
1304 cpu_dump_state(env, stderr, fprintf, 0); \
1305 qemu_log(fmt, ## __VA_ARGS__); \
1306 if (qemu_log_enabled()) { \
1307 log_cpu_state(env, 0); \
1308 } \
1309 } while (0)
1310
1311 static int do_store_exclusive(CPUPPCState *env)
1312 {
1313 target_ulong addr;
1314 target_ulong page_addr;
1315 target_ulong val;
1316 int flags;
1317 int segv = 0;
1318
1319 addr = env->reserve_ea;
1320 page_addr = addr & TARGET_PAGE_MASK;
1321 start_exclusive();
1322 mmap_lock();
1323 flags = page_get_flags(page_addr);
1324 if ((flags & PAGE_READ) == 0) {
1325 segv = 1;
1326 } else {
1327 int reg = env->reserve_info & 0x1f;
1328 int size = (env->reserve_info >> 5) & 0xf;
1329 int stored = 0;
1330
1331 if (addr == env->reserve_addr) {
1332 switch (size) {
1333 case 1: segv = get_user_u8(val, addr); break;
1334 case 2: segv = get_user_u16(val, addr); break;
1335 case 4: segv = get_user_u32(val, addr); break;
1336 #if defined(TARGET_PPC64)
1337 case 8: segv = get_user_u64(val, addr); break;
1338 #endif
1339 default: abort();
1340 }
1341 if (!segv && val == env->reserve_val) {
1342 val = env->gpr[reg];
1343 switch (size) {
1344 case 1: segv = put_user_u8(val, addr); break;
1345 case 2: segv = put_user_u16(val, addr); break;
1346 case 4: segv = put_user_u32(val, addr); break;
1347 #if defined(TARGET_PPC64)
1348 case 8: segv = put_user_u64(val, addr); break;
1349 #endif
1350 default: abort();
1351 }
1352 if (!segv) {
1353 stored = 1;
1354 }
1355 }
1356 }
1357 env->crf[0] = (stored << 1) | xer_so;
1358 env->reserve_addr = (target_ulong)-1;
1359 }
1360 if (!segv) {
1361 env->nip += 4;
1362 }
1363 mmap_unlock();
1364 end_exclusive();
1365 return segv;
1366 }
1367
1368 void cpu_loop(CPUPPCState *env)
1369 {
1370 target_siginfo_t info;
1371 int trapnr;
1372 target_ulong ret;
1373
1374 for(;;) {
1375 cpu_exec_start(env);
1376 trapnr = cpu_ppc_exec(env);
1377 cpu_exec_end(env);
1378 switch(trapnr) {
1379 case POWERPC_EXCP_NONE:
1380 /* Just go on */
1381 break;
1382 case POWERPC_EXCP_CRITICAL: /* Critical input */
1383 cpu_abort(env, "Critical interrupt while in user mode. "
1384 "Aborting\n");
1385 break;
1386 case POWERPC_EXCP_MCHECK: /* Machine check exception */
1387 cpu_abort(env, "Machine check exception while in user mode. "
1388 "Aborting\n");
1389 break;
1390 case POWERPC_EXCP_DSI: /* Data storage exception */
1391 EXCP_DUMP(env, "Invalid data memory access: 0x" TARGET_FMT_lx "\n",
1392 env->spr[SPR_DAR]);
1393 /* XXX: check this. Seems bugged */
1394 switch (env->error_code & 0xFF000000) {
1395 case 0x40000000:
1396 info.si_signo = TARGET_SIGSEGV;
1397 info.si_errno = 0;
1398 info.si_code = TARGET_SEGV_MAPERR;
1399 break;
1400 case 0x04000000:
1401 info.si_signo = TARGET_SIGILL;
1402 info.si_errno = 0;
1403 info.si_code = TARGET_ILL_ILLADR;
1404 break;
1405 case 0x08000000:
1406 info.si_signo = TARGET_SIGSEGV;
1407 info.si_errno = 0;
1408 info.si_code = TARGET_SEGV_ACCERR;
1409 break;
1410 default:
1411 /* Let's send a regular segfault... */
1412 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n",
1413 env->error_code);
1414 info.si_signo = TARGET_SIGSEGV;
1415 info.si_errno = 0;
1416 info.si_code = TARGET_SEGV_MAPERR;
1417 break;
1418 }
1419 info._sifields._sigfault._addr = env->nip;
1420 queue_signal(env, info.si_signo, &info);
1421 break;
1422 case POWERPC_EXCP_ISI: /* Instruction storage exception */
1423 EXCP_DUMP(env, "Invalid instruction fetch: 0x\n" TARGET_FMT_lx
1424 "\n", env->spr[SPR_SRR0]);
1425 /* XXX: check this */
1426 switch (env->error_code & 0xFF000000) {
1427 case 0x40000000:
1428 info.si_signo = TARGET_SIGSEGV;
1429 info.si_errno = 0;
1430 info.si_code = TARGET_SEGV_MAPERR;
1431 break;
1432 case 0x10000000:
1433 case 0x08000000:
1434 info.si_signo = TARGET_SIGSEGV;
1435 info.si_errno = 0;
1436 info.si_code = TARGET_SEGV_ACCERR;
1437 break;
1438 default:
1439 /* Let's send a regular segfault... */
1440 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n",
1441 env->error_code);
1442 info.si_signo = TARGET_SIGSEGV;
1443 info.si_errno = 0;
1444 info.si_code = TARGET_SEGV_MAPERR;
1445 break;
1446 }
1447 info._sifields._sigfault._addr = env->nip - 4;
1448 queue_signal(env, info.si_signo, &info);
1449 break;
1450 case POWERPC_EXCP_EXTERNAL: /* External input */
1451 cpu_abort(env, "External interrupt while in user mode. "
1452 "Aborting\n");
1453 break;
1454 case POWERPC_EXCP_ALIGN: /* Alignment exception */
1455 EXCP_DUMP(env, "Unaligned memory access\n");
1456 /* XXX: check this */
1457 info.si_signo = TARGET_SIGBUS;
1458 info.si_errno = 0;
1459 info.si_code = TARGET_BUS_ADRALN;
1460 info._sifields._sigfault._addr = env->nip - 4;
1461 queue_signal(env, info.si_signo, &info);
1462 break;
1463 case POWERPC_EXCP_PROGRAM: /* Program exception */
1464 /* XXX: check this */
1465 switch (env->error_code & ~0xF) {
1466 case POWERPC_EXCP_FP:
1467 EXCP_DUMP(env, "Floating point program exception\n");
1468 info.si_signo = TARGET_SIGFPE;
1469 info.si_errno = 0;
1470 switch (env->error_code & 0xF) {
1471 case POWERPC_EXCP_FP_OX:
1472 info.si_code = TARGET_FPE_FLTOVF;
1473 break;
1474 case POWERPC_EXCP_FP_UX:
1475 info.si_code = TARGET_FPE_FLTUND;
1476 break;
1477 case POWERPC_EXCP_FP_ZX:
1478 case POWERPC_EXCP_FP_VXZDZ:
1479 info.si_code = TARGET_FPE_FLTDIV;
1480 break;
1481 case POWERPC_EXCP_FP_XX:
1482 info.si_code = TARGET_FPE_FLTRES;
1483 break;
1484 case POWERPC_EXCP_FP_VXSOFT:
1485 info.si_code = TARGET_FPE_FLTINV;
1486 break;
1487 case POWERPC_EXCP_FP_VXSNAN:
1488 case POWERPC_EXCP_FP_VXISI:
1489 case POWERPC_EXCP_FP_VXIDI:
1490 case POWERPC_EXCP_FP_VXIMZ:
1491 case POWERPC_EXCP_FP_VXVC:
1492 case POWERPC_EXCP_FP_VXSQRT:
1493 case POWERPC_EXCP_FP_VXCVI:
1494 info.si_code = TARGET_FPE_FLTSUB;
1495 break;
1496 default:
1497 EXCP_DUMP(env, "Unknown floating point exception (%02x)\n",
1498 env->error_code);
1499 break;
1500 }
1501 break;
1502 case POWERPC_EXCP_INVAL:
1503 EXCP_DUMP(env, "Invalid instruction\n");
1504 info.si_signo = TARGET_SIGILL;
1505 info.si_errno = 0;
1506 switch (env->error_code & 0xF) {
1507 case POWERPC_EXCP_INVAL_INVAL:
1508 info.si_code = TARGET_ILL_ILLOPC;
1509 break;
1510 case POWERPC_EXCP_INVAL_LSWX:
1511 info.si_code = TARGET_ILL_ILLOPN;
1512 break;
1513 case POWERPC_EXCP_INVAL_SPR:
1514 info.si_code = TARGET_ILL_PRVREG;
1515 break;
1516 case POWERPC_EXCP_INVAL_FP:
1517 info.si_code = TARGET_ILL_COPROC;
1518 break;
1519 default:
1520 EXCP_DUMP(env, "Unknown invalid operation (%02x)\n",
1521 env->error_code & 0xF);
1522 info.si_code = TARGET_ILL_ILLADR;
1523 break;
1524 }
1525 break;
1526 case POWERPC_EXCP_PRIV:
1527 EXCP_DUMP(env, "Privilege violation\n");
1528 info.si_signo = TARGET_SIGILL;
1529 info.si_errno = 0;
1530 switch (env->error_code & 0xF) {
1531 case POWERPC_EXCP_PRIV_OPC:
1532 info.si_code = TARGET_ILL_PRVOPC;
1533 break;
1534 case POWERPC_EXCP_PRIV_REG:
1535 info.si_code = TARGET_ILL_PRVREG;
1536 break;
1537 default:
1538 EXCP_DUMP(env, "Unknown privilege violation (%02x)\n",
1539 env->error_code & 0xF);
1540 info.si_code = TARGET_ILL_PRVOPC;
1541 break;
1542 }
1543 break;
1544 case POWERPC_EXCP_TRAP:
1545 cpu_abort(env, "Tried to call a TRAP\n");
1546 break;
1547 default:
1548 /* Should not happen ! */
1549 cpu_abort(env, "Unknown program exception (%02x)\n",
1550 env->error_code);
1551 break;
1552 }
1553 info._sifields._sigfault._addr = env->nip - 4;
1554 queue_signal(env, info.si_signo, &info);
1555 break;
1556 case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */
1557 EXCP_DUMP(env, "No floating point allowed\n");
1558 info.si_signo = TARGET_SIGILL;
1559 info.si_errno = 0;
1560 info.si_code = TARGET_ILL_COPROC;
1561 info._sifields._sigfault._addr = env->nip - 4;
1562 queue_signal(env, info.si_signo, &info);
1563 break;
1564 case POWERPC_EXCP_SYSCALL: /* System call exception */
1565 cpu_abort(env, "Syscall exception while in user mode. "
1566 "Aborting\n");
1567 break;
1568 case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */
1569 EXCP_DUMP(env, "No APU instruction allowed\n");
1570 info.si_signo = TARGET_SIGILL;
1571 info.si_errno = 0;
1572 info.si_code = TARGET_ILL_COPROC;
1573 info._sifields._sigfault._addr = env->nip - 4;
1574 queue_signal(env, info.si_signo, &info);
1575 break;
1576 case POWERPC_EXCP_DECR: /* Decrementer exception */
1577 cpu_abort(env, "Decrementer interrupt while in user mode. "
1578 "Aborting\n");
1579 break;
1580 case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */
1581 cpu_abort(env, "Fix interval timer interrupt while in user mode. "
1582 "Aborting\n");
1583 break;
1584 case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */
1585 cpu_abort(env, "Watchdog timer interrupt while in user mode. "
1586 "Aborting\n");
1587 break;
1588 case POWERPC_EXCP_DTLB: /* Data TLB error */
1589 cpu_abort(env, "Data TLB exception while in user mode. "
1590 "Aborting\n");
1591 break;
1592 case POWERPC_EXCP_ITLB: /* Instruction TLB error */
1593 cpu_abort(env, "Instruction TLB exception while in user mode. "
1594 "Aborting\n");
1595 break;
1596 case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavail. */
1597 EXCP_DUMP(env, "No SPE/floating-point instruction allowed\n");
1598 info.si_signo = TARGET_SIGILL;
1599 info.si_errno = 0;
1600 info.si_code = TARGET_ILL_COPROC;
1601 info._sifields._sigfault._addr = env->nip - 4;
1602 queue_signal(env, info.si_signo, &info);
1603 break;
1604 case POWERPC_EXCP_EFPDI: /* Embedded floating-point data IRQ */
1605 cpu_abort(env, "Embedded floating-point data IRQ not handled\n");
1606 break;
1607 case POWERPC_EXCP_EFPRI: /* Embedded floating-point round IRQ */
1608 cpu_abort(env, "Embedded floating-point round IRQ not handled\n");
1609 break;
1610 case POWERPC_EXCP_EPERFM: /* Embedded performance monitor IRQ */
1611 cpu_abort(env, "Performance monitor exception not handled\n");
1612 break;
1613 case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */
1614 cpu_abort(env, "Doorbell interrupt while in user mode. "
1615 "Aborting\n");
1616 break;
1617 case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */
1618 cpu_abort(env, "Doorbell critical interrupt while in user mode. "
1619 "Aborting\n");
1620 break;
1621 case POWERPC_EXCP_RESET: /* System reset exception */
1622 cpu_abort(env, "Reset interrupt while in user mode. "
1623 "Aborting\n");
1624 break;
1625 case POWERPC_EXCP_DSEG: /* Data segment exception */
1626 cpu_abort(env, "Data segment exception while in user mode. "
1627 "Aborting\n");
1628 break;
1629 case POWERPC_EXCP_ISEG: /* Instruction segment exception */
1630 cpu_abort(env, "Instruction segment exception "
1631 "while in user mode. Aborting\n");
1632 break;
1633 /* PowerPC 64 with hypervisor mode support */
1634 case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */
1635 cpu_abort(env, "Hypervisor decrementer interrupt "
1636 "while in user mode. Aborting\n");
1637 break;
1638 case POWERPC_EXCP_TRACE: /* Trace exception */
1639 /* Nothing to do:
1640 * we use this exception to emulate step-by-step execution mode.
1641 */
1642 break;
1643 /* PowerPC 64 with hypervisor mode support */
1644 case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */
1645 cpu_abort(env, "Hypervisor data storage exception "
1646 "while in user mode. Aborting\n");
1647 break;
1648 case POWERPC_EXCP_HISI: /* Hypervisor instruction storage excp */
1649 cpu_abort(env, "Hypervisor instruction storage exception "
1650 "while in user mode. Aborting\n");
1651 break;
1652 case POWERPC_EXCP_HDSEG: /* Hypervisor data segment exception */
1653 cpu_abort(env, "Hypervisor data segment exception "
1654 "while in user mode. Aborting\n");
1655 break;
1656 case POWERPC_EXCP_HISEG: /* Hypervisor instruction segment excp */
1657 cpu_abort(env, "Hypervisor instruction segment exception "
1658 "while in user mode. Aborting\n");
1659 break;
1660 case POWERPC_EXCP_VPU: /* Vector unavailable exception */
1661 EXCP_DUMP(env, "No Altivec instructions allowed\n");
1662 info.si_signo = TARGET_SIGILL;
1663 info.si_errno = 0;
1664 info.si_code = TARGET_ILL_COPROC;
1665 info._sifields._sigfault._addr = env->nip - 4;
1666 queue_signal(env, info.si_signo, &info);
1667 break;
1668 case POWERPC_EXCP_PIT: /* Programmable interval timer IRQ */
1669 cpu_abort(env, "Programmable interval timer interrupt "
1670 "while in user mode. Aborting\n");
1671 break;
1672 case POWERPC_EXCP_IO: /* IO error exception */
1673 cpu_abort(env, "IO error exception while in user mode. "
1674 "Aborting\n");
1675 break;
1676 case POWERPC_EXCP_RUNM: /* Run mode exception */
1677 cpu_abort(env, "Run mode exception while in user mode. "
1678 "Aborting\n");
1679 break;
1680 case POWERPC_EXCP_EMUL: /* Emulation trap exception */
1681 cpu_abort(env, "Emulation trap exception not handled\n");
1682 break;
1683 case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */
1684 cpu_abort(env, "Instruction fetch TLB exception "
1685 "while in user-mode. Aborting");
1686 break;
1687 case POWERPC_EXCP_DLTLB: /* Data load TLB miss */
1688 cpu_abort(env, "Data load TLB exception while in user-mode. "
1689 "Aborting");
1690 break;
1691 case POWERPC_EXCP_DSTLB: /* Data store TLB miss */
1692 cpu_abort(env, "Data store TLB exception while in user-mode. "
1693 "Aborting");
1694 break;
1695 case POWERPC_EXCP_FPA: /* Floating-point assist exception */
1696 cpu_abort(env, "Floating-point assist exception not handled\n");
1697 break;
1698 case POWERPC_EXCP_IABR: /* Instruction address breakpoint */
1699 cpu_abort(env, "Instruction address breakpoint exception "
1700 "not handled\n");
1701 break;
1702 case POWERPC_EXCP_SMI: /* System management interrupt */
1703 cpu_abort(env, "System management interrupt while in user mode. "
1704 "Aborting\n");
1705 break;
1706 case POWERPC_EXCP_THERM: /* Thermal interrupt */
1707 cpu_abort(env, "Thermal interrupt interrupt while in user mode. "
1708 "Aborting\n");
1709 break;
1710 case POWERPC_EXCP_PERFM: /* Embedded performance monitor IRQ */
1711 cpu_abort(env, "Performance monitor exception not handled\n");
1712 break;
1713 case POWERPC_EXCP_VPUA: /* Vector assist exception */
1714 cpu_abort(env, "Vector assist exception not handled\n");
1715 break;
1716 case POWERPC_EXCP_SOFTP: /* Soft patch exception */
1717 cpu_abort(env, "Soft patch exception not handled\n");
1718 break;
1719 case POWERPC_EXCP_MAINT: /* Maintenance exception */
1720 cpu_abort(env, "Maintenance exception while in user mode. "
1721 "Aborting\n");
1722 break;
1723 case POWERPC_EXCP_STOP: /* stop translation */
1724 /* We did invalidate the instruction cache. Go on */
1725 break;
1726 case POWERPC_EXCP_BRANCH: /* branch instruction: */
1727 /* We just stopped because of a branch. Go on */
1728 break;
1729 case POWERPC_EXCP_SYSCALL_USER:
1730 /* system call in user-mode emulation */
1731 /* WARNING:
1732 * PPC ABI uses overflow flag in cr0 to signal an error
1733 * in syscalls.
1734 */
1735 env->crf[0] &= ~0x1;
1736 ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4],
1737 env->gpr[5], env->gpr[6], env->gpr[7],
1738 env->gpr[8], 0, 0);
1739 if (ret == (target_ulong)(-TARGET_QEMU_ESIGRETURN)) {
1740 /* Returning from a successful sigreturn syscall.
1741 Avoid corrupting register state. */
1742 break;
1743 }
1744 if (ret > (target_ulong)(-515)) {
1745 env->crf[0] |= 0x1;
1746 ret = -ret;
1747 }
1748 env->gpr[3] = ret;
1749 break;
1750 case POWERPC_EXCP_STCX:
1751 if (do_store_exclusive(env)) {
1752 info.si_signo = TARGET_SIGSEGV;
1753 info.si_errno = 0;
1754 info.si_code = TARGET_SEGV_MAPERR;
1755 info._sifields._sigfault._addr = env->nip;
1756 queue_signal(env, info.si_signo, &info);
1757 }
1758 break;
1759 case EXCP_DEBUG:
1760 {
1761 int sig;
1762
1763 sig = gdb_handlesig(env, TARGET_SIGTRAP);
1764 if (sig) {
1765 info.si_signo = sig;
1766 info.si_errno = 0;
1767 info.si_code = TARGET_TRAP_BRKPT;
1768 queue_signal(env, info.si_signo, &info);
1769 }
1770 }
1771 break;
1772 case EXCP_INTERRUPT:
1773 /* just indicate that signals should be handled asap */
1774 break;
1775 default:
1776 cpu_abort(env, "Unknown exception 0x%d. Aborting\n", trapnr);
1777 break;
1778 }
1779 process_pending_signals(env);
1780 }
1781 }
1782 #endif
1783
1784 #ifdef TARGET_MIPS
1785
1786 #define MIPS_SYS(name, args) args,
1787
1788 static const uint8_t mips_syscall_args[] = {
1789 MIPS_SYS(sys_syscall , 8) /* 4000 */
1790 MIPS_SYS(sys_exit , 1)
1791 MIPS_SYS(sys_fork , 0)
1792 MIPS_SYS(sys_read , 3)
1793 MIPS_SYS(sys_write , 3)
1794 MIPS_SYS(sys_open , 3) /* 4005 */
1795 MIPS_SYS(sys_close , 1)
1796 MIPS_SYS(sys_waitpid , 3)
1797 MIPS_SYS(sys_creat , 2)
1798 MIPS_SYS(sys_link , 2)
1799 MIPS_SYS(sys_unlink , 1) /* 4010 */
1800 MIPS_SYS(sys_execve , 0)
1801 MIPS_SYS(sys_chdir , 1)
1802 MIPS_SYS(sys_time , 1)
1803 MIPS_SYS(sys_mknod , 3)
1804 MIPS_SYS(sys_chmod , 2) /* 4015 */
1805 MIPS_SYS(sys_lchown , 3)
1806 MIPS_SYS(sys_ni_syscall , 0)
1807 MIPS_SYS(sys_ni_syscall , 0) /* was sys_stat */
1808 MIPS_SYS(sys_lseek , 3)
1809 MIPS_SYS(sys_getpid , 0) /* 4020 */
1810 MIPS_SYS(sys_mount , 5)
1811 MIPS_SYS(sys_oldumount , 1)
1812 MIPS_SYS(sys_setuid , 1)
1813 MIPS_SYS(sys_getuid , 0)
1814 MIPS_SYS(sys_stime , 1) /* 4025 */
1815 MIPS_SYS(sys_ptrace , 4)
1816 MIPS_SYS(sys_alarm , 1)
1817 MIPS_SYS(sys_ni_syscall , 0) /* was sys_fstat */
1818 MIPS_SYS(sys_pause , 0)
1819 MIPS_SYS(sys_utime , 2) /* 4030 */
1820 MIPS_SYS(sys_ni_syscall , 0)
1821 MIPS_SYS(sys_ni_syscall , 0)
1822 MIPS_SYS(sys_access , 2)
1823 MIPS_SYS(sys_nice , 1)
1824 MIPS_SYS(sys_ni_syscall , 0) /* 4035 */
1825 MIPS_SYS(sys_sync , 0)
1826 MIPS_SYS(sys_kill , 2)
1827 MIPS_SYS(sys_rename , 2)
1828 MIPS_SYS(sys_mkdir , 2)
1829 MIPS_SYS(sys_rmdir , 1) /* 4040 */
1830 MIPS_SYS(sys_dup , 1)
1831 MIPS_SYS(sys_pipe , 0)
1832 MIPS_SYS(sys_times , 1)
1833 MIPS_SYS(sys_ni_syscall , 0)
1834 MIPS_SYS(sys_brk , 1) /* 4045 */
1835 MIPS_SYS(sys_setgid , 1)
1836 MIPS_SYS(sys_getgid , 0)
1837 MIPS_SYS(sys_ni_syscall , 0) /* was signal(2) */
1838 MIPS_SYS(sys_geteuid , 0)
1839 MIPS_SYS(sys_getegid , 0) /* 4050 */
1840 MIPS_SYS(sys_acct , 0)
1841 MIPS_SYS(sys_umount , 2)
1842 MIPS_SYS(sys_ni_syscall , 0)
1843 MIPS_SYS(sys_ioctl , 3)
1844 MIPS_SYS(sys_fcntl , 3) /* 4055 */
1845 MIPS_SYS(sys_ni_syscall , 2)
1846 MIPS_SYS(sys_setpgid , 2)
1847 MIPS_SYS(sys_ni_syscall , 0)
1848 MIPS_SYS(sys_olduname , 1)
1849 MIPS_SYS(sys_umask , 1) /* 4060 */
1850 MIPS_SYS(sys_chroot , 1)
1851 MIPS_SYS(sys_ustat , 2)
1852 MIPS_SYS(sys_dup2 , 2)
1853 MIPS_SYS(sys_getppid , 0)
1854 MIPS_SYS(sys_getpgrp , 0) /* 4065 */
1855 MIPS_SYS(sys_setsid , 0)
1856 MIPS_SYS(sys_sigaction , 3)
1857 MIPS_SYS(sys_sgetmask , 0)
1858 MIPS_SYS(sys_ssetmask , 1)
1859 MIPS_SYS(sys_setreuid , 2) /* 4070 */
1860 MIPS_SYS(sys_setregid , 2)
1861 MIPS_SYS(sys_sigsuspend , 0)
1862 MIPS_SYS(sys_sigpending , 1)
1863 MIPS_SYS(sys_sethostname , 2)
1864 MIPS_SYS(sys_setrlimit , 2) /* 4075 */
1865 MIPS_SYS(sys_getrlimit , 2)
1866 MIPS_SYS(sys_getrusage , 2)
1867 MIPS_SYS(sys_gettimeofday, 2)
1868 MIPS_SYS(sys_settimeofday, 2)
1869 MIPS_SYS(sys_getgroups , 2) /* 4080 */
1870 MIPS_SYS(sys_setgroups , 2)
1871 MIPS_SYS(sys_ni_syscall , 0) /* old_select */
1872 MIPS_SYS(sys_symlink , 2)
1873 MIPS_SYS(sys_ni_syscall , 0) /* was sys_lstat */
1874 MIPS_SYS(sys_readlink , 3) /* 4085 */
1875 MIPS_SYS(sys_uselib , 1)
1876 MIPS_SYS(sys_swapon , 2)
1877 MIPS_SYS(sys_reboot , 3)
1878 MIPS_SYS(old_readdir , 3)
1879 MIPS_SYS(old_mmap , 6) /* 4090 */
1880 MIPS_SYS(sys_munmap , 2)
1881 MIPS_SYS(sys_truncate , 2)
1882 MIPS_SYS(sys_ftruncate , 2)
1883 MIPS_SYS(sys_fchmod , 2)
1884 MIPS_SYS(sys_fchown , 3) /* 4095 */
1885 MIPS_SYS(sys_getpriority , 2)
1886 MIPS_SYS(sys_setpriority , 3)
1887 MIPS_SYS(sys_ni_syscall , 0)
1888 MIPS_SYS(sys_statfs , 2)
1889 MIPS_SYS(sys_fstatfs , 2) /* 4100 */
1890 MIPS_SYS(sys_ni_syscall , 0) /* was ioperm(2) */
1891 MIPS_SYS(sys_socketcall , 2)
1892 MIPS_SYS(sys_syslog , 3)
1893 MIPS_SYS(sys_setitimer , 3)
1894 MIPS_SYS(sys_getitimer , 2) /* 4105 */
1895 MIPS_SYS(sys_newstat , 2)
1896 MIPS_SYS(sys_newlstat , 2)
1897 MIPS_SYS(sys_newfstat , 2)
1898 MIPS_SYS(sys_uname , 1)
1899 MIPS_SYS(sys_ni_syscall , 0) /* 4110 was iopl(2) */
1900 MIPS_SYS(sys_vhangup , 0)
1901 MIPS_SYS(sys_ni_syscall , 0) /* was sys_idle() */
1902 MIPS_SYS(sys_ni_syscall , 0) /* was sys_vm86 */
1903 MIPS_SYS(sys_wait4 , 4)
1904 MIPS_SYS(sys_swapoff , 1) /* 4115 */
1905 MIPS_SYS(sys_sysinfo , 1)
1906 MIPS_SYS(sys_ipc , 6)
1907 MIPS_SYS(sys_fsync , 1)
1908 MIPS_SYS(sys_sigreturn , 0)
1909 MIPS_SYS(sys_clone , 6) /* 4120 */
1910 MIPS_SYS(sys_setdomainname, 2)
1911 MIPS_SYS(sys_newuname , 1)
1912 MIPS_SYS(sys_ni_syscall , 0) /* sys_modify_ldt */
1913 MIPS_SYS(sys_adjtimex , 1)
1914 MIPS_SYS(sys_mprotect , 3) /* 4125 */
1915 MIPS_SYS(sys_sigprocmask , 3)
1916 MIPS_SYS(sys_ni_syscall , 0) /* was create_module */
1917 MIPS_SYS(sys_init_module , 5)
1918 MIPS_SYS(sys_delete_module, 1)
1919 MIPS_SYS(sys_ni_syscall , 0) /* 4130 was get_kernel_syms */
1920 MIPS_SYS(sys_quotactl , 0)
1921 MIPS_SYS(sys_getpgid , 1)
1922 MIPS_SYS(sys_fchdir , 1)
1923 MIPS_SYS(sys_bdflush , 2)
1924 MIPS_SYS(sys_sysfs , 3) /* 4135 */
1925 MIPS_SYS(sys_personality , 1)
1926 MIPS_SYS(sys_ni_syscall , 0) /* for afs_syscall */
1927 MIPS_SYS(sys_setfsuid , 1)
1928 MIPS_SYS(sys_setfsgid , 1)
1929 MIPS_SYS(sys_llseek , 5) /* 4140 */
1930 MIPS_SYS(sys_getdents , 3)
1931 MIPS_SYS(sys_select , 5)
1932 MIPS_SYS(sys_flock , 2)
1933 MIPS_SYS(sys_msync , 3)
1934 MIPS_SYS(sys_readv , 3) /* 4145 */
1935 MIPS_SYS(sys_writev , 3)
1936 MIPS_SYS(sys_cacheflush , 3)
1937 MIPS_SYS(sys_cachectl , 3)
1938 MIPS_SYS(sys_sysmips , 4)
1939 MIPS_SYS(sys_ni_syscall , 0) /* 4150 */
1940 MIPS_SYS(sys_getsid , 1)
1941 MIPS_SYS(sys_fdatasync , 0)
1942 MIPS_SYS(sys_sysctl , 1)
1943 MIPS_SYS(sys_mlock , 2)
1944 MIPS_SYS(sys_munlock , 2) /* 4155 */
1945 MIPS_SYS(sys_mlockall , 1)
1946 MIPS_SYS(sys_munlockall , 0)
1947 MIPS_SYS(sys_sched_setparam, 2)
1948 MIPS_SYS(sys_sched_getparam, 2)
1949 MIPS_SYS(sys_sched_setscheduler, 3) /* 4160 */
1950 MIPS_SYS(sys_sched_getscheduler, 1)
1951 MIPS_SYS(sys_sched_yield , 0)
1952 MIPS_SYS(sys_sched_get_priority_max, 1)
1953 MIPS_SYS(sys_sched_get_priority_min, 1)
1954 MIPS_SYS(sys_sched_rr_get_interval, 2) /* 4165 */
1955 MIPS_SYS(sys_nanosleep, 2)
1956 MIPS_SYS(sys_mremap , 4)
1957 MIPS_SYS(sys_accept , 3)
1958 MIPS_SYS(sys_bind , 3)
1959 MIPS_SYS(sys_connect , 3) /* 4170 */
1960 MIPS_SYS(sys_getpeername , 3)
1961 MIPS_SYS(sys_getsockname , 3)
1962 MIPS_SYS(sys_getsockopt , 5)
1963 MIPS_SYS(sys_listen , 2)
1964 MIPS_SYS(sys_recv , 4) /* 4175 */
1965 MIPS_SYS(sys_recvfrom , 6)
1966 MIPS_SYS(sys_recvmsg , 3)
1967 MIPS_SYS(sys_send , 4)
1968 MIPS_SYS(sys_sendmsg , 3)
1969 MIPS_SYS(sys_sendto , 6) /* 4180 */
1970 MIPS_SYS(sys_setsockopt , 5)
1971 MIPS_SYS(sys_shutdown , 2)
1972 MIPS_SYS(sys_socket , 3)
1973 MIPS_SYS(sys_socketpair , 4)
1974 MIPS_SYS(sys_setresuid , 3) /* 4185 */
1975 MIPS_SYS(sys_getresuid , 3)
1976 MIPS_SYS(sys_ni_syscall , 0) /* was sys_query_module */
1977 MIPS_SYS(sys_poll , 3)
1978 MIPS_SYS(sys_nfsservctl , 3)
1979 MIPS_SYS(sys_setresgid , 3) /* 4190 */
1980 MIPS_SYS(sys_getresgid , 3)
1981 MIPS_SYS(sys_prctl , 5)
1982 MIPS_SYS(sys_rt_sigreturn, 0)
1983 MIPS_SYS(sys_rt_sigaction, 4)
1984 MIPS_SYS(sys_rt_sigprocmask, 4) /* 4195 */
1985 MIPS_SYS(sys_rt_sigpending, 2)
1986 MIPS_SYS(sys_rt_sigtimedwait, 4)
1987 MIPS_SYS(sys_rt_sigqueueinfo, 3)
1988 MIPS_SYS(sys_rt_sigsuspend, 0)
1989 MIPS_SYS(sys_pread64 , 6) /* 4200 */
1990 MIPS_SYS(sys_pwrite64 , 6)
1991 MIPS_SYS(sys_chown , 3)
1992 MIPS_SYS(sys_getcwd , 2)
1993 MIPS_SYS(sys_capget , 2)
1994 MIPS_SYS(sys_capset , 2) /* 4205 */
1995 MIPS_SYS(sys_sigaltstack , 2)
1996 MIPS_SYS(sys_sendfile , 4)
1997 MIPS_SYS(sys_ni_syscall , 0)
1998 MIPS_SYS(sys_ni_syscall , 0)
1999 MIPS_SYS(sys_mmap2 , 6) /* 4210 */
2000 MIPS_SYS(sys_truncate64 , 4)
2001 MIPS_SYS(sys_ftruncate64 , 4)
2002 MIPS_SYS(sys_stat64 , 2)
2003 MIPS_SYS(sys_lstat64 , 2)
2004 MIPS_SYS(sys_fstat64 , 2) /* 4215 */
2005 MIPS_SYS(sys_pivot_root , 2)
2006 MIPS_SYS(sys_mincore , 3)
2007 MIPS_SYS(sys_madvise , 3)
2008 MIPS_SYS(sys_getdents64 , 3)
2009 MIPS_SYS(sys_fcntl64 , 3) /* 4220 */
2010 MIPS_SYS(sys_ni_syscall , 0)
2011 MIPS_SYS(sys_gettid , 0)
2012 MIPS_SYS(sys_readahead , 5)
2013 MIPS_SYS(sys_setxattr , 5)
2014 MIPS_SYS(sys_lsetxattr , 5) /* 4225 */
2015 MIPS_SYS(sys_fsetxattr , 5)
2016 MIPS_SYS(sys_getxattr , 4)
2017 MIPS_SYS(sys_lgetxattr , 4)
2018 MIPS_SYS(sys_fgetxattr , 4)
2019 MIPS_SYS(sys_listxattr , 3) /* 4230 */
2020 MIPS_SYS(sys_llistxattr , 3)
2021 MIPS_SYS(sys_flistxattr , 3)
2022 MIPS_SYS(sys_removexattr , 2)
2023 MIPS_SYS(sys_lremovexattr, 2)
2024 MIPS_SYS(sys_fremovexattr, 2) /* 4235 */
2025 MIPS_SYS(sys_tkill , 2)
2026 MIPS_SYS(sys_sendfile64 , 5)
2027 MIPS_SYS(sys_futex , 2)
2028 MIPS_SYS(sys_sched_setaffinity, 3)
2029 MIPS_SYS(sys_sched_getaffinity, 3) /* 4240 */
2030 MIPS_SYS(sys_io_setup , 2)
2031 MIPS_SYS(sys_io_destroy , 1)
2032 MIPS_SYS(sys_io_getevents, 5)
2033 MIPS_SYS(sys_io_submit , 3)
2034 MIPS_SYS(sys_io_cancel , 3) /* 4245 */
2035 MIPS_SYS(sys_exit_group , 1)
2036 MIPS_SYS(sys_lookup_dcookie, 3)
2037 MIPS_SYS(sys_epoll_create, 1)
2038 MIPS_SYS(sys_epoll_ctl , 4)
2039 MIPS_SYS(sys_epoll_wait , 3) /* 4250 */
2040 MIPS_SYS(sys_remap_file_pages, 5)
2041 MIPS_SYS(sys_set_tid_address, 1)
2042 MIPS_SYS(sys_restart_syscall, 0)
2043 MIPS_SYS(sys_fadvise64_64, 7)
2044 MIPS_SYS(sys_statfs64 , 3) /* 4255 */
2045 MIPS_SYS(sys_fstatfs64 , 2)
2046 MIPS_SYS(sys_timer_create, 3)
2047 MIPS_SYS(sys_timer_settime, 4)
2048 MIPS_SYS(sys_timer_gettime, 2)
2049 MIPS_SYS(sys_timer_getoverrun, 1) /* 4260 */
2050 MIPS_SYS(sys_timer_delete, 1)
2051 MIPS_SYS(sys_clock_settime, 2)
2052 MIPS_SYS(sys_clock_gettime, 2)
2053 MIPS_SYS(sys_clock_getres, 2)
2054 MIPS_SYS(sys_clock_nanosleep, 4) /* 4265 */
2055 MIPS_SYS(sys_tgkill , 3)
2056 MIPS_SYS(sys_utimes , 2)
2057 MIPS_SYS(sys_mbind , 4)
2058 MIPS_SYS(sys_ni_syscall , 0) /* sys_get_mempolicy */
2059 MIPS_SYS(sys_ni_syscall , 0) /* 4270 sys_set_mempolicy */
2060 MIPS_SYS(sys_mq_open , 4)
2061 MIPS_SYS(sys_mq_unlink , 1)
2062 MIPS_SYS(sys_mq_timedsend, 5)
2063 MIPS_SYS(sys_mq_timedreceive, 5)
2064 MIPS_SYS(sys_mq_notify , 2) /* 4275 */
2065 MIPS_SYS(sys_mq_getsetattr, 3)
2066 MIPS_SYS(sys_ni_syscall , 0) /* sys_vserver */
2067 MIPS_SYS(sys_waitid , 4)
2068 MIPS_SYS(sys_ni_syscall , 0) /* available, was setaltroot */
2069 MIPS_SYS(sys_add_key , 5)
2070 MIPS_SYS(sys_request_key, 4)
2071 MIPS_SYS(sys_keyctl , 5)
2072 MIPS_SYS(sys_set_thread_area, 1)
2073 MIPS_SYS(sys_inotify_init, 0)
2074 MIPS_SYS(sys_inotify_add_watch, 3) /* 4285 */
2075 MIPS_SYS(sys_inotify_rm_watch, 2)
2076 MIPS_SYS(sys_migrate_pages, 4)
2077 MIPS_SYS(sys_openat, 4)
2078 MIPS_SYS(sys_mkdirat, 3)
2079 MIPS_SYS(sys_mknodat, 4) /* 4290 */
2080 MIPS_SYS(sys_fchownat, 5)
2081 MIPS_SYS(sys_futimesat, 3)
2082 MIPS_SYS(sys_fstatat64, 4)
2083 MIPS_SYS(sys_unlinkat, 3)
2084 MIPS_SYS(sys_renameat, 4) /* 4295 */
2085 MIPS_SYS(sys_linkat, 5)
2086 MIPS_SYS(sys_symlinkat, 3)
2087 MIPS_SYS(sys_readlinkat, 4)
2088 MIPS_SYS(sys_fchmodat, 3)
2089 MIPS_SYS(sys_faccessat, 3) /* 4300 */
2090 MIPS_SYS(sys_pselect6, 6)
2091 MIPS_SYS(sys_ppoll, 5)
2092 MIPS_SYS(sys_unshare, 1)
2093 MIPS_SYS(sys_splice, 4)
2094 MIPS_SYS(sys_sync_file_range, 7) /* 4305 */
2095 MIPS_SYS(sys_tee, 4)
2096 MIPS_SYS(sys_vmsplice, 4)
2097 MIPS_SYS(sys_move_pages, 6)
2098 MIPS_SYS(sys_set_robust_list, 2)
2099 MIPS_SYS(sys_get_robust_list, 3) /* 4310 */
2100 MIPS_SYS(sys_kexec_load, 4)
2101 MIPS_SYS(sys_getcpu, 3)
2102 MIPS_SYS(sys_epoll_pwait, 6)
2103 MIPS_SYS(sys_ioprio_set, 3)
2104 MIPS_SYS(sys_ioprio_get, 2)
2105 MIPS_SYS(sys_utimensat, 4)
2106 MIPS_SYS(sys_signalfd, 3)
2107 MIPS_SYS(sys_ni_syscall, 0) /* was timerfd */
2108 MIPS_SYS(sys_eventfd, 1)
2109 MIPS_SYS(sys_fallocate, 6) /* 4320 */
2110 MIPS_SYS(sys_timerfd_create, 2)
2111 MIPS_SYS(sys_timerfd_gettime, 2)
2112 MIPS_SYS(sys_timerfd_settime, 4)
2113 MIPS_SYS(sys_signalfd4, 4)
2114 MIPS_SYS(sys_eventfd2, 2) /* 4325 */
2115 MIPS_SYS(sys_epoll_create1, 1)
2116 MIPS_SYS(sys_dup3, 3)
2117 MIPS_SYS(sys_pipe2, 2)
2118 MIPS_SYS(sys_inotify_init1, 1)
2119 MIPS_SYS(sys_preadv, 6) /* 4330 */
2120 MIPS_SYS(sys_pwritev, 6)
2121 MIPS_SYS(sys_rt_tgsigqueueinfo, 4)
2122 MIPS_SYS(sys_perf_event_open, 5)
2123 MIPS_SYS(sys_accept4, 4)
2124 MIPS_SYS(sys_recvmmsg, 5) /* 4335 */
2125 MIPS_SYS(sys_fanotify_init, 2)
2126 MIPS_SYS(sys_fanotify_mark, 6)
2127 MIPS_SYS(sys_prlimit64, 4)
2128 MIPS_SYS(sys_name_to_handle_at, 5)
2129 MIPS_SYS(sys_open_by_handle_at, 3) /* 4340 */
2130 MIPS_SYS(sys_clock_adjtime, 2)
2131 MIPS_SYS(sys_syncfs, 1)
2132 };
2133
2134 #undef MIPS_SYS
2135
2136 static int do_store_exclusive(CPUMIPSState *env)
2137 {
2138 target_ulong addr;
2139 target_ulong page_addr;
2140 target_ulong val;
2141 int flags;
2142 int segv = 0;
2143 int reg;
2144 int d;
2145
2146 addr = env->lladdr;
2147 page_addr = addr & TARGET_PAGE_MASK;
2148 start_exclusive();
2149 mmap_lock();
2150 flags = page_get_flags(page_addr);
2151 if ((flags & PAGE_READ) == 0) {
2152 segv = 1;
2153 } else {
2154 reg = env->llreg & 0x1f;
2155 d = (env->llreg & 0x20) != 0;
2156 if (d) {
2157 segv = get_user_s64(val, addr);
2158 } else {
2159 segv = get_user_s32(val, addr);
2160 }
2161 if (!segv) {
2162 if (val != env->llval) {
2163 env->active_tc.gpr[reg] = 0;
2164 } else {
2165 if (d) {
2166 segv = put_user_u64(env->llnewval, addr);
2167 } else {
2168 segv = put_user_u32(env->llnewval, addr);
2169 }
2170 if (!segv) {
2171 env->active_tc.gpr[reg] = 1;
2172 }
2173 }
2174 }
2175 }
2176 env->lladdr = -1;
2177 if (!segv) {
2178 env->active_tc.PC += 4;
2179 }
2180 mmap_unlock();
2181 end_exclusive();
2182 return segv;
2183 }
2184
2185 void cpu_loop(CPUMIPSState *env)
2186 {
2187 target_siginfo_t info;
2188 int trapnr, ret;
2189 unsigned int syscall_num;
2190
2191 for(;;) {
2192 cpu_exec_start(env);
2193 trapnr = cpu_mips_exec(env);
2194 cpu_exec_end(env);
2195 switch(trapnr) {
2196 case EXCP_SYSCALL:
2197 syscall_num = env->active_tc.gpr[2] - 4000;
2198 env->active_tc.PC += 4;
2199 if (syscall_num >= sizeof(mips_syscall_args)) {
2200 ret = -TARGET_ENOSYS;
2201 } else {
2202 int nb_args;
2203 abi_ulong sp_reg;
2204 abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0;
2205
2206 nb_args = mips_syscall_args[syscall_num];
2207 sp_reg = env->active_tc.gpr[29];
2208 switch (nb_args) {
2209 /* these arguments are taken from the stack */
2210 case 8:
2211 if ((ret = get_user_ual(arg8, sp_reg + 28)) != 0) {
2212 goto done_syscall;
2213 }
2214 case 7:
2215 if ((ret = get_user_ual(arg7, sp_reg + 24)) != 0) {
2216 goto done_syscall;
2217 }
2218 case 6:
2219 if ((ret = get_user_ual(arg6, sp_reg + 20)) != 0) {
2220 goto done_syscall;
2221 }
2222 case 5:
2223 if ((ret = get_user_ual(arg5, sp_reg + 16)) != 0) {
2224 goto done_syscall;
2225 }
2226 default:
2227 break;
2228 }
2229 ret = do_syscall(env, env->active_tc.gpr[2],
2230 env->active_tc.gpr[4],
2231 env->active_tc.gpr[5],
2232 env->active_tc.gpr[6],
2233 env->active_tc.gpr[7],
2234 arg5, arg6, arg7, arg8);
2235 }
2236 done_syscall:
2237 if (ret == -TARGET_QEMU_ESIGRETURN) {
2238 /* Returning from a successful sigreturn syscall.
2239 Avoid clobbering register state. */
2240 break;
2241 }
2242 if ((unsigned int)ret >= (unsigned int)(-1133)) {
2243 env->active_tc.gpr[7] = 1; /* error flag */
2244 ret = -ret;
2245 } else {
2246 env->active_tc.gpr[7] = 0; /* error flag */
2247 }
2248 env->active_tc.gpr[2] = ret;
2249 break;
2250 case EXCP_TLBL:
2251 case EXCP_TLBS:
2252 case EXCP_AdEL:
2253 case EXCP_AdES:
2254 info.si_signo = TARGET_SIGSEGV;
2255 info.si_errno = 0;
2256 /* XXX: check env->error_code */
2257 info.si_code = TARGET_SEGV_MAPERR;
2258 info._sifields._sigfault._addr = env->CP0_BadVAddr;
2259 queue_signal(env, info.si_signo, &info);
2260 break;
2261 case EXCP_CpU:
2262 case EXCP_RI:
2263 info.si_signo = TARGET_SIGILL;
2264 info.si_errno = 0;
2265 info.si_code = 0;
2266 queue_signal(env, info.si_signo, &info);
2267 break;
2268 case EXCP_INTERRUPT:
2269 /* just indicate that signals should be handled asap */
2270 break;
2271 case EXCP_DEBUG:
2272 {
2273 int sig;
2274
2275 sig = gdb_handlesig (env, TARGET_SIGTRAP);
2276 if (sig)
2277 {
2278 info.si_signo = sig;
2279 info.si_errno = 0;
2280 info.si_code = TARGET_TRAP_BRKPT;
2281 queue_signal(env, info.si_signo, &info);
2282 }
2283 }
2284 break;
2285 case EXCP_SC:
2286 if (do_store_exclusive(env)) {
2287 info.si_signo = TARGET_SIGSEGV;
2288 info.si_errno = 0;
2289 info.si_code = TARGET_SEGV_MAPERR;
2290 info._sifields._sigfault._addr = env->active_tc.PC;
2291 queue_signal(env, info.si_signo, &info);
2292 }
2293 break;
2294 case EXCP_DSPDIS:
2295 info.si_signo = TARGET_SIGILL;
2296 info.si_errno = 0;
2297 info.si_code = TARGET_ILL_ILLOPC;
2298 queue_signal(env, info.si_signo, &info);
2299 break;
2300 default:
2301 // error:
2302 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
2303 trapnr);
2304 cpu_dump_state(env, stderr, fprintf, 0);
2305 abort();
2306 }
2307 process_pending_signals(env);
2308 }
2309 }
2310 #endif
2311
2312 #ifdef TARGET_OPENRISC
2313
2314 void cpu_loop(CPUOpenRISCState *env)
2315 {
2316 int trapnr, gdbsig;
2317
2318 for (;;) {
2319 trapnr = cpu_exec(env);
2320 gdbsig = 0;
2321
2322 switch (trapnr) {
2323 case EXCP_RESET:
2324 qemu_log("\nReset request, exit, pc is %#x\n", env->pc);
2325 exit(1);
2326 break;
2327 case EXCP_BUSERR:
2328 qemu_log("\nBus error, exit, pc is %#x\n", env->pc);
2329 gdbsig = SIGBUS;
2330 break;
2331 case EXCP_DPF:
2332 case EXCP_IPF:
2333 cpu_dump_state(env, stderr, fprintf, 0);
2334 gdbsig = TARGET_SIGSEGV;
2335 break;
2336 case EXCP_TICK:
2337 qemu_log("\nTick time interrupt pc is %#x\n", env->pc);
2338 break;
2339 case EXCP_ALIGN:
2340 qemu_log("\nAlignment pc is %#x\n", env->pc);
2341 gdbsig = SIGBUS;
2342 break;
2343 case EXCP_ILLEGAL:
2344 qemu_log("\nIllegal instructionpc is %#x\n", env->pc);
2345 gdbsig = SIGILL;
2346 break;
2347 case EXCP_INT:
2348 qemu_log("\nExternal interruptpc is %#x\n", env->pc);
2349 break;
2350 case EXCP_DTLBMISS:
2351 case EXCP_ITLBMISS:
2352 qemu_log("\nTLB miss\n");
2353 break;
2354 case EXCP_RANGE:
2355 qemu_log("\nRange\n");
2356 gdbsig = SIGSEGV;
2357 break;
2358 case EXCP_SYSCALL:
2359 env->pc += 4; /* 0xc00; */
2360 env->gpr[11] = do_syscall(env,
2361 env->gpr[11], /* return value */
2362 env->gpr[3], /* r3 - r7 are params */
2363 env->gpr[4],
2364 env->gpr[5],
2365 env->gpr[6],
2366 env->gpr[7],
2367 env->gpr[8], 0, 0);
2368 break;
2369 case EXCP_FPE:
2370 qemu_log("\nFloating point error\n");
2371 break;
2372 case EXCP_TRAP:
2373 qemu_log("\nTrap\n");
2374 gdbsig = SIGTRAP;
2375 break;
2376 case EXCP_NR:
2377 qemu_log("\nNR\n");
2378 break;
2379 default:
2380 qemu_log("\nqemu: unhandled CPU exception %#x - aborting\n",
2381 trapnr);
2382 cpu_dump_state(env, stderr, fprintf, 0);
2383 gdbsig = TARGET_SIGILL;
2384 break;
2385 }
2386 if (gdbsig) {
2387 gdb_handlesig(env, gdbsig);
2388 if (gdbsig != TARGET_SIGTRAP) {
2389 exit(1);
2390 }
2391 }
2392
2393 process_pending_signals(env);
2394 }
2395 }
2396
2397 #endif /* TARGET_OPENRISC */
2398
2399 #ifdef TARGET_SH4
2400 void cpu_loop(CPUSH4State *env)
2401 {
2402 int trapnr, ret;
2403 target_siginfo_t info;
2404
2405 while (1) {
2406 trapnr = cpu_sh4_exec (env);
2407
2408 switch (trapnr) {
2409 case 0x160:
2410 env->pc += 2;
2411 ret = do_syscall(env,
2412 env->gregs[3],
2413 env->gregs[4],
2414 env->gregs[5],
2415 env->gregs[6],
2416 env->gregs[7],
2417 env->gregs[0],
2418 env->gregs[1],
2419 0, 0);
2420 env->gregs[0] = ret;
2421 break;
2422 case EXCP_INTERRUPT:
2423 /* just indicate that signals should be handled asap */
2424 break;
2425 case EXCP_DEBUG:
2426 {
2427 int sig;
2428
2429 sig = gdb_handlesig (env, TARGET_SIGTRAP);
2430 if (sig)
2431 {
2432 info.si_signo = sig;
2433 info.si_errno = 0;
2434 info.si_code = TARGET_TRAP_BRKPT;
2435 queue_signal(env, info.si_signo, &info);
2436 }
2437 }
2438 break;
2439 case 0xa0:
2440 case 0xc0:
2441 info.si_signo = SIGSEGV;
2442 info.si_errno = 0;
2443 info.si_code = TARGET_SEGV_MAPERR;
2444 info._sifields._sigfault._addr = env->tea;
2445 queue_signal(env, info.si_signo, &info);
2446 break;
2447
2448 default:
2449 printf ("Unhandled trap: 0x%x\n", trapnr);
2450 cpu_dump_state(env, stderr, fprintf, 0);
2451 exit (1);
2452 }
2453 process_pending_signals (env);
2454 }
2455 }
2456 #endif
2457
2458 #ifdef TARGET_CRIS
2459 void cpu_loop(CPUCRISState *env)
2460 {
2461 int trapnr, ret;
2462 target_siginfo_t info;
2463
2464 while (1) {
2465 trapnr = cpu_cris_exec (env);
2466 switch (trapnr) {
2467 case 0xaa:
2468 {
2469 info.si_signo = SIGSEGV;
2470 info.si_errno = 0;
2471 /* XXX: check env->error_code */
2472 info.si_code = TARGET_SEGV_MAPERR;
2473 info._sifields._sigfault._addr = env->pregs[PR_EDA];
2474 queue_signal(env, info.si_signo, &info);
2475 }
2476 break;
2477 case EXCP_INTERRUPT:
2478 /* just indicate that signals should be handled asap */
2479 break;
2480 case EXCP_BREAK:
2481 ret = do_syscall(env,
2482 env->regs[9],
2483 env->regs[10],
2484 env->regs[11],
2485 env->regs[12],
2486 env->regs[13],
2487 env->pregs[7],
2488 env->pregs[11],
2489 0, 0);
2490 env->regs[10] = ret;
2491 break;
2492 case EXCP_DEBUG:
2493 {
2494 int sig;
2495
2496 sig = gdb_handlesig (env, TARGET_SIGTRAP);
2497 if (sig)
2498 {
2499 info.si_signo = sig;
2500 info.si_errno = 0;
2501 info.si_code = TARGET_TRAP_BRKPT;
2502 queue_signal(env, info.si_signo, &info);
2503 }
2504 }
2505 break;
2506 default:
2507 printf ("Unhandled trap: 0x%x\n", trapnr);
2508 cpu_dump_state(env, stderr, fprintf, 0);
2509 exit (1);
2510 }
2511 process_pending_signals (env);
2512 }
2513 }
2514 #endif
2515
2516 #ifdef TARGET_MICROBLAZE
2517 void cpu_loop(CPUMBState *env)
2518 {
2519 int trapnr, ret;
2520 target_siginfo_t info;
2521
2522 while (1) {
2523 trapnr = cpu_mb_exec (env);
2524 switch (trapnr) {
2525 case 0xaa:
2526 {
2527 info.si_signo = SIGSEGV;
2528 info.si_errno = 0;
2529 /* XXX: check env->error_code */
2530 info.si_code = TARGET_SEGV_MAPERR;
2531 info._sifields._sigfault._addr = 0;
2532 queue_signal(env, info.si_signo, &info);
2533 }
2534 break;
2535 case EXCP_INTERRUPT:
2536 /* just indicate that signals should be handled asap */
2537 break;
2538 case EXCP_BREAK:
2539 /* Return address is 4 bytes after the call. */
2540 env->regs[14] += 4;
2541 env->sregs[SR_PC] = env->regs[14];
2542 ret = do_syscall(env,
2543 env->regs[12],
2544 env->regs[5],
2545 env->regs[6],
2546 env->regs[7],
2547 env->regs[8],
2548 env->regs[9],
2549 env->regs[10],
2550 0, 0);
2551 env->regs[3] = ret;
2552 break;
2553 case EXCP_HW_EXCP:
2554 env->regs[17] = env->sregs[SR_PC] + 4;
2555 if (env->iflags & D_FLAG) {
2556 env->sregs[SR_ESR] |= 1 << 12;
2557 env->sregs[SR_PC] -= 4;
2558 /* FIXME: if branch was immed, replay the imm as well. */
2559 }
2560
2561 env->iflags &= ~(IMM_FLAG | D_FLAG);
2562
2563 switch (env->sregs[SR_ESR] & 31) {
2564 case ESR_EC_DIVZERO:
2565 info.si_signo = SIGFPE;
2566 info.si_errno = 0;
2567 info.si_code = TARGET_FPE_FLTDIV;
2568 info._sifields._sigfault._addr = 0;
2569 queue_signal(env, info.si_signo, &info);
2570 break;
2571 case ESR_EC_FPU:
2572 info.si_signo = SIGFPE;
2573 info.si_errno = 0;
2574 if (env->sregs[SR_FSR] & FSR_IO) {
2575 info.si_code = TARGET_FPE_FLTINV;
2576 }
2577 if (env->sregs[SR_FSR] & FSR_DZ) {
2578 info.si_code = TARGET_FPE_FLTDIV;
2579 }
2580 info._sifields._sigfault._addr = 0;
2581 queue_signal(env, info.si_signo, &info);
2582 break;
2583 default:
2584 printf ("Unhandled hw-exception: 0x%x\n",
2585 env->sregs[SR_ESR] & ESR_EC_MASK);
2586 cpu_dump_state(env, stderr, fprintf, 0);
2587 exit (1);
2588 break;
2589 }
2590 break;
2591 case EXCP_DEBUG:
2592 {
2593 int sig;
2594
2595 sig = gdb_handlesig (env, TARGET_SIGTRAP);
2596 if (sig)
2597 {
2598 info.si_signo = sig;
2599 info.si_errno = 0;
2600 info.si_code = TARGET_TRAP_BRKPT;
2601 queue_signal(env, info.si_signo, &info);
2602 }
2603 }
2604 break;
2605 default:
2606 printf ("Unhandled trap: 0x%x\n", trapnr);
2607 cpu_dump_state(env, stderr, fprintf, 0);
2608 exit (1);
2609 }
2610 process_pending_signals (env);
2611 }
2612 }
2613 #endif
2614
2615 #ifdef TARGET_M68K
2616
2617 void cpu_loop(CPUM68KState *env)
2618 {
2619 int trapnr;
2620 unsigned int n;
2621 target_siginfo_t info;
2622 TaskState *ts = env->opaque;
2623
2624 for(;;) {
2625 trapnr = cpu_m68k_exec(env);
2626 switch(trapnr) {
2627 case EXCP_ILLEGAL:
2628 {
2629 if (ts->sim_syscalls) {
2630 uint16_t nr;
2631 nr = lduw(env->pc + 2);
2632 env->pc += 4;
2633 do_m68k_simcall(env, nr);
2634 } else {
2635 goto do_sigill;
2636 }
2637 }
2638 break;
2639 case EXCP_HALT_INSN:
2640 /* Semihosing syscall. */
2641 env->pc += 4;
2642 do_m68k_semihosting(env, env->dregs[0]);
2643 break;
2644 case EXCP_LINEA:
2645 case EXCP_LINEF:
2646 case EXCP_UNSUPPORTED:
2647 do_sigill:
2648 info.si_signo = SIGILL;
2649 info.si_errno = 0;
2650 info.si_code = TARGET_ILL_ILLOPN;
2651 info._sifields._sigfault._addr = env->pc;
2652 queue_signal(env, info.si_signo, &info);
2653 break;
2654 case EXCP_TRAP0:
2655 {
2656 ts->sim_syscalls = 0;
2657 n = env->dregs[0];
2658 env->pc += 2;
2659 env->dregs[0] = do_syscall(env,
2660 n,
2661 env->dregs[1],
2662 env->dregs[2],
2663 env->dregs[3],
2664 env->dregs[4],
2665 env->dregs[5],
2666 env->aregs[0],
2667 0, 0);
2668 }
2669 break;
2670 case EXCP_INTERRUPT:
2671 /* just indicate that signals should be handled asap */
2672 break;
2673 case EXCP_ACCESS:
2674 {
2675 info.si_signo = SIGSEGV;
2676 info.si_errno = 0;
2677 /* XXX: check env->error_code */
2678 info.si_code = TARGET_SEGV_MAPERR;
2679 info._sifields._sigfault._addr = env->mmu.ar;
2680 queue_signal(env, info.si_signo, &info);
2681 }
2682 break;
2683 case EXCP_DEBUG:
2684 {
2685 int sig;
2686
2687 sig = gdb_handlesig (env, TARGET_SIGTRAP);
2688 if (sig)
2689 {
2690 info.si_signo = sig;
2691 info.si_errno = 0;
2692 info.si_code = TARGET_TRAP_BRKPT;
2693 queue_signal(env, info.si_signo, &info);
2694 }
2695 }
2696 break;
2697 default:
2698 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
2699 trapnr);
2700 cpu_dump_state(env, stderr, fprintf, 0);
2701 abort();
2702 }
2703 process_pending_signals(env);
2704 }
2705 }
2706 #endif /* TARGET_M68K */
2707
2708 #ifdef TARGET_ALPHA
2709 static void do_store_exclusive(CPUAlphaState *env, int reg, int quad)
2710 {
2711 target_ulong addr, val, tmp;
2712 target_siginfo_t info;
2713 int ret = 0;
2714
2715 addr = env->lock_addr;
2716 tmp = env->lock_st_addr;
2717 env->lock_addr = -1;
2718 env->lock_st_addr = 0;
2719
2720 start_exclusive();
2721 mmap_lock();
2722
2723 if (addr == tmp) {
2724 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) {
2725 goto do_sigsegv;
2726 }
2727
2728 if (val == env->lock_value) {
2729 tmp = env->ir[reg];
2730 if (quad ? put_user_u64(tmp, addr) : put_user_u32(tmp, addr)) {
2731 goto do_sigsegv;
2732 }
2733 ret = 1;
2734 }
2735 }
2736 env->ir[reg] = ret;
2737 env->pc += 4;
2738
2739 mmap_unlock();
2740 end_exclusive();
2741 return;
2742
2743 do_sigsegv:
2744 mmap_unlock();
2745 end_exclusive();
2746
2747 info.si_signo = TARGET_SIGSEGV;
2748 info.si_errno = 0;
2749 info.si_code = TARGET_SEGV_MAPERR;
2750 info._sifields._sigfault._addr = addr;
2751 queue_signal(env, TARGET_SIGSEGV, &info);
2752 }
2753
2754 void cpu_loop(CPUAlphaState *env)
2755 {
2756 int trapnr;
2757 target_siginfo_t info;
2758 abi_long sysret;
2759
2760 while (1) {
2761 trapnr = cpu_alpha_exec (env);
2762
2763 /* All of the traps imply a transition through PALcode, which
2764 implies an REI instruction has been executed. Which means
2765 that the intr_flag should be cleared. */
2766 env->intr_flag = 0;
2767
2768 switch (trapnr) {
2769 case EXCP_RESET:
2770 fprintf(stderr, "Reset requested. Exit\n");
2771 exit(1);
2772 break;
2773 case EXCP_MCHK:
2774 fprintf(stderr, "Machine check exception. Exit\n");
2775 exit(1);
2776 break;
2777 case EXCP_SMP_INTERRUPT:
2778 case EXCP_CLK_INTERRUPT:
2779 case EXCP_DEV_INTERRUPT:
2780 fprintf(stderr, "External interrupt. Exit\n");
2781 exit(1);
2782 break;
2783 case EXCP_MMFAULT:
2784 env->lock_addr = -1;
2785 info.si_signo = TARGET_SIGSEGV;
2786 info.si_errno = 0;
2787 info.si_code = (page_get_flags(env->trap_arg0) & PAGE_VALID
2788 ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR);
2789 info._sifields._sigfault._addr = env->trap_arg0;
2790 queue_signal(env, info.si_signo, &info);
2791 break;
2792 case EXCP_UNALIGN:
2793 env->lock_addr = -1;
2794 info.si_signo = TARGET_SIGBUS;
2795 info.si_errno = 0;
2796 info.si_code = TARGET_BUS_ADRALN;
2797 info._sifields._sigfault._addr = env->trap_arg0;
2798 queue_signal(env, info.si_signo, &info);
2799 break;
2800 case EXCP_OPCDEC:
2801 do_sigill:
2802 env->lock_addr = -1;
2803 info.si_signo = TARGET_SIGILL;
2804 info.si_errno = 0;
2805 info.si_code = TARGET_ILL_ILLOPC;
2806 info._sifields._sigfault._addr = env->pc;
2807 queue_signal(env, info.si_signo, &info);
2808 break;
2809 case EXCP_ARITH:
2810 env->lock_addr = -1;
2811 info.si_signo = TARGET_SIGFPE;
2812 info.si_errno = 0;
2813 info.si_code = TARGET_FPE_FLTINV;
2814 info._sifields._sigfault._addr = env->pc;
2815 queue_signal(env, info.si_signo, &info);
2816 break;
2817 case EXCP_FEN:
2818 /* No-op. Linux simply re-enables the FPU. */
2819 break;
2820 case EXCP_CALL_PAL:
2821 env->lock_addr = -1;
2822 switch (env->error_code) {
2823 case 0x80:
2824 /* BPT */
2825 info.si_signo = TARGET_SIGTRAP;
2826 info.si_errno = 0;
2827 info.si_code = TARGET_TRAP_BRKPT;
2828 info._sifields._sigfault._addr = env->pc;
2829 queue_signal(env, info.si_signo, &info);
2830 break;
2831 case 0x81:
2832 /* BUGCHK */
2833 info.si_signo = TARGET_SIGTRAP;
2834 info.si_errno = 0;
2835 info.si_code = 0;
2836 info._sifields._sigfault._addr = env->pc;
2837 queue_signal(env, info.si_signo, &info);
2838 break;
2839 case 0x83:
2840 /* CALLSYS */
2841 trapnr = env->ir[IR_V0];
2842 sysret = do_syscall(env, trapnr,
2843 env->ir[IR_A0], env->ir[IR_A1],
2844 env->ir[IR_A2], env->ir[IR_A3],
2845 env->ir[IR_A4], env->ir[IR_A5],
2846 0, 0);
2847 if (trapnr == TARGET_NR_sigreturn
2848 || trapnr == TARGET_NR_rt_sigreturn) {
2849 break;
2850 }
2851 /* Syscall writes 0 to V0 to bypass error check, similar
2852 to how this is handled internal to Linux kernel.
2853 (Ab)use trapnr temporarily as boolean indicating error. */
2854 trapnr = (env->ir[IR_V0] != 0 && sysret < 0);
2855 env->ir[IR_V0] = (trapnr ? -sysret : sysret);
2856 env->ir[IR_A3] = trapnr;
2857 break;
2858 case 0x86:
2859 /* IMB */
2860 /* ??? We can probably elide the code using page_unprotect
2861 that is checking for self-modifying code. Instead we
2862 could simply call tb_flush here. Until we work out the
2863 changes required to turn off the extra write protection,
2864 this can be a no-op. */
2865 break;
2866 case 0x9E:
2867 /* RDUNIQUE */
2868 /* Handled in the translator for usermode. */
2869 abort();
2870 case 0x9F:
2871 /* WRUNIQUE */
2872 /* Handled in the translator for usermode. */
2873 abort();
2874 case 0xAA:
2875 /* GENTRAP */
2876 info.si_signo = TARGET_SIGFPE;
2877 switch (env->ir[IR_A0]) {
2878 case TARGET_GEN_INTOVF:
2879 info.si_code = TARGET_FPE_INTOVF;
2880 break;
2881 case TARGET_GEN_INTDIV:
2882 info.si_code = TARGET_FPE_INTDIV;
2883 break;
2884 case TARGET_GEN_FLTOVF:
2885 info.si_code = TARGET_FPE_FLTOVF;
2886 break;
2887 case TARGET_GEN_FLTUND:
2888 info.si_code = TARGET_FPE_FLTUND;
2889 break;
2890 case TARGET_GEN_FLTINV:
2891 info.si_code = TARGET_FPE_FLTINV;
2892 break;
2893 case TARGET_GEN_FLTINE:
2894 info.si_code = TARGET_FPE_FLTRES;
2895 break;
2896 case TARGET_GEN_ROPRAND:
2897 info.si_code = 0;
2898 break;
2899 default:
2900 info.si_signo = TARGET_SIGTRAP;
2901 info.si_code = 0;
2902 break;
2903 }
2904 info.si_errno = 0;
2905 info._sifields._sigfault._addr = env->pc;
2906 queue_signal(env, info.si_signo, &info);
2907 break;
2908 default:
2909 goto do_sigill;
2910 }
2911 break;
2912 case EXCP_DEBUG:
2913 info.si_signo = gdb_handlesig (env, TARGET_SIGTRAP);
2914 if (info.si_signo) {
2915 env->lock_addr = -1;
2916 info.si_errno = 0;
2917 info.si_code = TARGET_TRAP_BRKPT;
2918 queue_signal(env, info.si_signo, &info);
2919 }
2920 break;
2921 case EXCP_STL_C:
2922 case EXCP_STQ_C:
2923 do_store_exclusive(env, env->error_code, trapnr - EXCP_STL_C);
2924 break;
2925 case EXCP_INTERRUPT:
2926 /* Just indicate that signals should be handled asap. */
2927 break;
2928 default:
2929 printf ("Unhandled trap: 0x%x\n", trapnr);
2930 cpu_dump_state(env, stderr, fprintf, 0);
2931 exit (1);
2932 }
2933 process_pending_signals (env);
2934 }
2935 }
2936 #endif /* TARGET_ALPHA */
2937
2938 #ifdef TARGET_S390X
2939 void cpu_loop(CPUS390XState *env)
2940 {
2941 int trapnr, n, sig;
2942 target_siginfo_t info;
2943 target_ulong addr;
2944
2945 while (1) {
2946 trapnr = cpu_s390x_exec(env);
2947 switch (trapnr) {
2948 case EXCP_INTERRUPT:
2949 /* Just indicate that signals should be handled asap. */
2950 break;
2951
2952 case EXCP_SVC:
2953 n = env->int_svc_code;
2954 if (!n) {
2955 /* syscalls > 255 */
2956 n = env->regs[1];
2957 }
2958 env->psw.addr += env->int_svc_ilen;
2959 env->regs[2] = do_syscall(env, n, env->regs[2], env->regs[3],
2960 env->regs[4], env->regs[5],
2961 env->regs[6], env->regs[7], 0, 0);
2962 break;
2963
2964 case EXCP_DEBUG:
2965 sig = gdb_handlesig(env, TARGET_SIGTRAP);
2966 if (sig) {
2967 n = TARGET_TRAP_BRKPT;
2968 goto do_signal_pc;
2969 }
2970 break;
2971 case EXCP_PGM:
2972 n = env->int_pgm_code;
2973 switch (n) {
2974 case PGM_OPERATION:
2975 case PGM_PRIVILEGED:
2976 sig = SIGILL;
2977 n = TARGET_ILL_ILLOPC;
2978 goto do_signal_pc;
2979 case PGM_PROTECTION:
2980 case PGM_ADDRESSING:
2981 sig = SIGSEGV;
2982 /* XXX: check env->error_code */
2983 n = TARGET_SEGV_MAPERR;
2984 addr = env->__excp_addr;
2985 goto do_signal;
2986 case PGM_EXECUTE:
2987 case PGM_SPECIFICATION:
2988 case PGM_SPECIAL_OP:
2989 case PGM_OPERAND:
2990 do_sigill_opn:
2991 sig = SIGILL;
2992 n = TARGET_ILL_ILLOPN;
2993 goto do_signal_pc;
2994
2995 case PGM_FIXPT_OVERFLOW:
2996 sig = SIGFPE;
2997 n = TARGET_FPE_INTOVF;
2998 goto do_signal_pc;
2999 case PGM_FIXPT_DIVIDE:
3000 sig = SIGFPE;
3001 n = TARGET_FPE_INTDIV;
3002 goto do_signal_pc;
3003
3004 case PGM_DATA:
3005 n = (env->fpc >> 8) & 0xff;
3006 if (n == 0xff) {
3007 /* compare-and-trap */
3008 goto do_sigill_opn;
3009 } else {
3010 /* An IEEE exception, simulated or otherwise. */
3011 if (n & 0x80) {
3012 n = TARGET_FPE_FLTINV;
3013 } else if (n & 0x40) {
3014 n = TARGET_FPE_FLTDIV;
3015 } else if (n & 0x20) {
3016 n = TARGET_FPE_FLTOVF;
3017 } else if (n & 0x10) {
3018 n = TARGET_FPE_FLTUND;
3019 } else if (n & 0x08) {
3020 n = TARGET_FPE_FLTRES;
3021 } else {
3022 /* ??? Quantum exception; BFP, DFP error. */
3023 goto do_sigill_opn;
3024 }
3025 sig = SIGFPE;
3026 goto do_signal_pc;
3027 }
3028
3029 default:
3030 fprintf(stderr, "Unhandled program exception: %#x\n", n);
3031 cpu_dump_state(env, stderr, fprintf, 0);
3032 exit(1);
3033 }
3034 break;
3035
3036 do_signal_pc:
3037 addr = env->psw.addr;
3038 do_signal:
3039 info.si_signo = sig;
3040 info.si_errno = 0;
3041 info.si_code = n;
3042 info._sifields._sigfault._addr = addr;
3043 queue_signal(env, info.si_signo, &info);
3044 break;
3045
3046 default:
3047 fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr);
3048 cpu_dump_state(env, stderr, fprintf, 0);
3049 exit(1);
3050 }
3051 process_pending_signals (env);
3052 }
3053 }
3054
3055 #endif /* TARGET_S390X */
3056
3057 THREAD CPUArchState *thread_env;
3058
3059 void task_settid(TaskState *ts)
3060 {
3061 if (ts->ts_tid == 0) {
3062 #ifdef CONFIG_USE_NPTL
3063 ts->ts_tid = (pid_t)syscall(SYS_gettid);
3064 #else
3065 /* when no threads are used, tid becomes pid */
3066 ts->ts_tid = getpid();
3067 #endif
3068 }
3069 }
3070
3071 void stop_all_tasks(void)
3072 {
3073 /*
3074 * We trust that when using NPTL, start_exclusive()
3075 * handles thread stopping correctly.
3076 */
3077 start_exclusive();
3078 }
3079
3080 /* Assumes contents are already zeroed. */
3081 void init_task_state(TaskState *ts)
3082 {
3083 int i;
3084
3085 ts->used = 1;
3086 ts->first_free = ts->sigqueue_table;
3087 for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) {
3088 ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1];
3089 }
3090 ts->sigqueue_table[i].next = NULL;
3091 }
3092
3093 static void handle_arg_help(const char *arg)
3094 {
3095 usage();
3096 }
3097
3098 static void handle_arg_log(const char *arg)
3099 {
3100 int mask;
3101
3102 mask = qemu_str_to_log_mask(arg);
3103 if (!mask) {
3104 qemu_print_log_usage(stdout);
3105 exit(1);
3106 }
3107 qemu_set_log(mask);
3108 }
3109
3110 static void handle_arg_log_filename(const char *arg)
3111 {
3112 qemu_set_log_filename(arg);
3113 }
3114
3115 static void handle_arg_set_env(const char *arg)
3116 {
3117 char *r, *p, *token;
3118 r = p = strdup(arg);
3119 while ((token = strsep(&p, ",")) != NULL) {
3120 if (envlist_setenv(envlist, token) != 0) {
3121 usage();
3122 }
3123 }
3124 free(r);
3125 }
3126
3127 static void handle_arg_unset_env(const char *arg)
3128 {
3129 char *r, *p, *token;
3130 r = p = strdup(arg);
3131 while ((token = strsep(&p, ",")) != NULL) {
3132 if (envlist_unsetenv(envlist, token) != 0) {
3133 usage();
3134 }
3135 }
3136 free(r);
3137 }
3138
3139 static void handle_arg_argv0(const char *arg)
3140 {
3141 argv0 = strdup(arg);
3142 }
3143
3144 static void handle_arg_stack_size(const char *arg)
3145 {
3146 char *p;
3147 guest_stack_size = strtoul(arg, &p, 0);
3148 if (guest_stack_size == 0) {
3149 usage();
3150 }
3151
3152 if (*p == 'M') {
3153 guest_stack_size *= 1024 * 1024;
3154 } else if (*p == 'k' || *p == 'K') {
3155 guest_stack_size *= 1024;
3156 }
3157 }
3158
3159 static void handle_arg_ld_prefix(const char *arg)
3160 {
3161 interp_prefix = strdup(arg);
3162 }
3163
3164 static void handle_arg_pagesize(const char *arg)
3165 {
3166 qemu_host_page_size = atoi(arg);
3167 if (qemu_host_page_size == 0 ||
3168 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) {
3169 fprintf(stderr, "page size must be a power of two\n");
3170 exit(1);
3171 }
3172 }
3173
3174 static void handle_arg_gdb(const char *arg)
3175 {
3176 gdbstub_port = atoi(arg);
3177 }
3178
3179 static void handle_arg_uname(const char *arg)
3180 {
3181 qemu_uname_release = strdup(arg);
3182 }
3183
3184 static void handle_arg_cpu(const char *arg)
3185 {
3186 cpu_model = strdup(arg);
3187 if (cpu_model == NULL || is_help_option(cpu_model)) {
3188 /* XXX: implement xxx_cpu_list for targets that still miss it */
3189 #if defined(cpu_list)
3190 cpu_list(stdout, &fprintf);
3191 #endif
3192 exit(1);
3193 }
3194 }
3195
3196 #if defined(CONFIG_USE_GUEST_BASE)
3197 static void handle_arg_guest_base(const char *arg)
3198 {
3199 guest_base = strtol(arg, NULL, 0);
3200 have_guest_base = 1;
3201 }
3202
3203 static void handle_arg_reserved_va(const char *arg)
3204 {
3205 char *p;
3206 int shift = 0;
3207 reserved_va = strtoul(arg, &p, 0);
3208 switch (*p) {
3209 case 'k':
3210 case 'K':
3211 shift = 10;
3212 break;
3213 case 'M':
3214 shift = 20;
3215 break;
3216 case 'G':
3217 shift = 30;
3218 break;
3219 }
3220 if (shift) {
3221 unsigned long unshifted = reserved_va;
3222 p++;
3223 reserved_va <<= shift;
3224 if (((reserved_va >> shift) != unshifted)
3225 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS
3226 || (reserved_va > (1ul << TARGET_VIRT_ADDR_SPACE_BITS))
3227 #endif
3228 ) {
3229 fprintf(stderr, "Reserved virtual address too big\n");
3230 exit(1);
3231 }
3232 }
3233 if (*p) {
3234 fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p);
3235 exit(1);
3236 }
3237 }
3238 #endif
3239
3240 static void handle_arg_singlestep(const char *arg)
3241 {
3242 singlestep = 1;
3243 }
3244
3245 static void handle_arg_strace(const char *arg)
3246 {
3247 do_strace = 1;
3248 }
3249
3250 static void handle_arg_version(const char *arg)
3251 {
3252 printf("qemu-" TARGET_ARCH " version " QEMU_VERSION QEMU_PKGVERSION
3253 ", Copyright (c) 2003-2008 Fabrice Bellard\n");
3254 exit(0);
3255 }
3256
3257 struct qemu_argument {
3258 const char *argv;
3259 const char *env;
3260 bool has_arg;
3261 void (*handle_opt)(const char *arg);
3262 const char *example;
3263 const char *help;
3264 };
3265
3266 static const struct qemu_argument arg_table[] = {
3267 {"h", "", false, handle_arg_help,
3268 "", "print this help"},
3269 {"g", "QEMU_GDB", true, handle_arg_gdb,
3270 "port", "wait gdb connection to 'port'"},
3271 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix,
3272 "path", "set the elf interpreter prefix to 'path'"},
3273 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size,
3274 "size", "set the stack size to 'size' bytes"},
3275 {"cpu", "QEMU_CPU", true, handle_arg_cpu,
3276 "model", "select CPU (-cpu help for list)"},
3277 {"E", "QEMU_SET_ENV", true, handle_arg_set_env,
3278 "var=value", "sets targets environment variable (see below)"},
3279 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env,
3280 "var", "unsets targets environment variable (see below)"},
3281 {"0", "QEMU_ARGV0", true, handle_arg_argv0,
3282 "argv0", "forces target process argv[0] to be 'argv0'"},
3283 {"r", "QEMU_UNAME", true, handle_arg_uname,
3284 "uname", "set qemu uname release string to 'uname'"},
3285 #if defined(CONFIG_USE_GUEST_BASE)
3286 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base,
3287 "address", "set guest_base address to 'address'"},
3288 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va,
3289 "size", "reserve 'size' bytes for guest virtual address space"},
3290 #endif
3291 {"d", "QEMU_LOG", true, handle_arg_log,
3292 "options", "activate log"},
3293 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename,
3294 "logfile", "override default logfile location"},
3295 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize,
3296 "pagesize", "set the host page size to 'pagesize'"},
3297 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep,
3298 "", "run in singlestep mode"},
3299 {"strace", "QEMU_STRACE", false, handle_arg_strace,
3300 "", "log system calls"},
3301 {"version", "QEMU_VERSION", false, handle_arg_version,
3302 "", "display version information and exit"},
3303 {NULL, NULL, false, NULL, NULL, NULL}
3304 };
3305
3306 static void usage(void)
3307 {
3308 const struct qemu_argument *arginfo;
3309 int maxarglen;
3310 int maxenvlen;
3311
3312 printf("usage: qemu-" TARGET_ARCH " [options] program [arguments...]\n"
3313 "Linux CPU emulator (compiled for " TARGET_ARCH " emulation)\n"
3314 "\n"
3315 "Options and associated environment variables:\n"
3316 "\n");
3317
3318 maxarglen = maxenvlen = 0;
3319
3320 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3321 if (strlen(arginfo->env) > maxenvlen) {
3322 maxenvlen = strlen(arginfo->env);
3323 }
3324 if (strlen(arginfo->argv) > maxarglen) {
3325 maxarglen = strlen(arginfo->argv);
3326 }
3327 }
3328
3329 printf("%-*s%-*sDescription\n", maxarglen+3, "Argument",
3330 maxenvlen+1, "Env-variable");
3331
3332 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3333 if (arginfo->has_arg) {
3334 printf("-%s %-*s %-*s %s\n", arginfo->argv,
3335 (int)(maxarglen-strlen(arginfo->argv)), arginfo->example,
3336 maxenvlen, arginfo->env, arginfo->help);
3337 } else {
3338 printf("-%-*s %-*s %s\n", maxarglen+1, arginfo->argv,
3339 maxenvlen, arginfo->env,
3340 arginfo->help);
3341 }
3342 }
3343
3344 printf("\n"
3345 "Defaults:\n"
3346 "QEMU_LD_PREFIX = %s\n"
3347 "QEMU_STACK_SIZE = %ld byte\n"
3348 "QEMU_LOG = %s\n",
3349 interp_prefix,
3350 guest_stack_size,
3351 DEBUG_LOGFILE);
3352
3353 printf("\n"
3354 "You can use -E and -U options or the QEMU_SET_ENV and\n"
3355 "QEMU_UNSET_ENV environment variables to set and unset\n"
3356 "environment variables for the target process.\n"
3357 "It is possible to provide several variables by separating them\n"
3358 "by commas in getsubopt(3) style. Additionally it is possible to\n"
3359 "provide the -E and -U options multiple times.\n"
3360 "The following lines are equivalent:\n"
3361 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
3362 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n"
3363 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n"
3364 "Note that if you provide several changes to a single variable\n"
3365 "the last change will stay in effect.\n");
3366
3367 exit(1);
3368 }
3369
3370 static int parse_args(int argc, char **argv)
3371 {
3372 const char *r;
3373 int optind;
3374 const struct qemu_argument *arginfo;
3375
3376 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3377 if (arginfo->env == NULL) {
3378 continue;
3379 }
3380
3381 r = getenv(arginfo->env);
3382 if (r != NULL) {
3383 arginfo->handle_opt(r);
3384 }
3385 }
3386
3387 optind = 1;
3388 for (;;) {
3389 if (optind >= argc) {
3390 break;
3391 }
3392 r = argv[optind];
3393 if (r[0] != '-') {
3394 break;
3395 }
3396 optind++;
3397 r++;
3398 if (!strcmp(r, "-")) {
3399 break;
3400 }
3401
3402 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3403 if (!strcmp(r, arginfo->argv)) {
3404 if (arginfo->has_arg) {
3405 if (optind >= argc) {
3406 usage();
3407 }
3408 arginfo->handle_opt(argv[optind]);
3409 optind++;
3410 } else {
3411 arginfo->handle_opt(NULL);
3412 }
3413 break;
3414 }
3415 }
3416
3417 /* no option matched the current argv */
3418 if (arginfo->handle_opt == NULL) {
3419 usage();
3420 }
3421 }
3422
3423 if (optind >= argc) {
3424 usage();
3425 }
3426
3427 filename = argv[optind];
3428 exec_path = argv[optind];
3429
3430 return optind;
3431 }
3432
3433 int main(int argc, char **argv, char **envp)
3434 {
3435 const char *log_file = DEBUG_LOGFILE;
3436 struct target_pt_regs regs1, *regs = &regs1;
3437 struct image_info info1, *info = &info1;
3438 struct linux_binprm bprm;
3439 TaskState *ts;
3440 CPUArchState *env;
3441 int optind;
3442 char **target_environ, **wrk;
3443 char **target_argv;
3444 int target_argc;
3445 int i;
3446 int ret;
3447
3448 module_call_init(MODULE_INIT_QOM);
3449
3450 qemu_cache_utils_init(envp);
3451
3452 if ((envlist = envlist_create()) == NULL) {
3453 (void) fprintf(stderr, "Unable to allocate envlist\n");
3454 exit(1);
3455 }
3456
3457 /* add current environment into the list */
3458 for (wrk = environ; *wrk != NULL; wrk++) {
3459 (void) envlist_setenv(envlist, *wrk);
3460 }
3461
3462 /* Read the stack limit from the kernel. If it's "unlimited",
3463 then we can do little else besides use the default. */
3464 {
3465 struct rlimit lim;
3466 if (getrlimit(RLIMIT_STACK, &lim) == 0
3467 && lim.rlim_cur != RLIM_INFINITY
3468 && lim.rlim_cur == (target_long)lim.rlim_cur) {
3469 guest_stack_size = lim.rlim_cur;
3470 }
3471 }
3472
3473 cpu_model = NULL;
3474 #if defined(cpudef_setup)
3475 cpudef_setup(); /* parse cpu definitions in target config file (TBD) */
3476 #endif
3477
3478 /* init debug */
3479 qemu_set_log_filename(log_file);
3480 optind = parse_args(argc, argv);
3481
3482 /* Zero out regs */
3483 memset(regs, 0, sizeof(struct target_pt_regs));
3484
3485 /* Zero out image_info */
3486 memset(info, 0, sizeof(struct image_info));
3487
3488 memset(&bprm, 0, sizeof (bprm));
3489
3490 /* Scan interp_prefix dir for replacement files. */
3491 init_paths(interp_prefix);
3492
3493 if (cpu_model == NULL) {
3494 #if defined(TARGET_I386)
3495 #ifdef TARGET_X86_64
3496 cpu_model = "qemu64";
3497 #else
3498 cpu_model = "qemu32";
3499 #endif
3500 #elif defined(TARGET_ARM)
3501 cpu_model = "any";
3502 #elif defined(TARGET_UNICORE32)
3503 cpu_model = "any";
3504 #elif defined(TARGET_M68K)
3505 cpu_model = "any";
3506 #elif defined(TARGET_SPARC)
3507 #ifdef TARGET_SPARC64
3508 cpu_model = "TI UltraSparc II";
3509 #else
3510 cpu_model = "Fujitsu MB86904";
3511 #endif
3512 #elif defined(TARGET_MIPS)
3513 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64)
3514 cpu_model = "20Kc";
3515 #else
3516 cpu_model = "24Kf";
3517 #endif
3518 #elif defined TARGET_OPENRISC
3519 cpu_model = "or1200";
3520 #elif defined(TARGET_PPC)
3521 #ifdef TARGET_PPC64
3522 cpu_model = "970fx";
3523 #else
3524 cpu_model = "750";
3525 #endif
3526 #else
3527 cpu_model = "any";
3528 #endif
3529 }
3530 tcg_exec_init(0);
3531 cpu_exec_init_all();
3532 /* NOTE: we need to init the CPU at this stage to get
3533 qemu_host_page_size */
3534 env = cpu_init(cpu_model);
3535 if (!env) {
3536 fprintf(stderr, "Unable to find CPU definition\n");
3537 exit(1);
3538 }
3539 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
3540 cpu_reset(ENV_GET_CPU(env));
3541 #endif
3542
3543 thread_env = env;
3544
3545 if (getenv("QEMU_STRACE")) {
3546 do_strace = 1;
3547 }
3548
3549 target_environ = envlist_to_environ(envlist, NULL);
3550 envlist_free(envlist);
3551
3552 #if defined(CONFIG_USE_GUEST_BASE)
3553 /*
3554 * Now that page sizes are configured in cpu_init() we can do
3555 * proper page alignment for guest_base.
3556 */
3557 guest_base = HOST_PAGE_ALIGN(guest_base);
3558
3559 if (reserved_va || have_guest_base) {
3560 guest_base = init_guest_space(guest_base, reserved_va, 0,
3561 have_guest_base);
3562 if (guest_base == (unsigned long)-1) {
3563 fprintf(stderr, "Unable to reserve 0x%lx bytes of virtual address "
3564 "space for use as guest address space (check your virtual "
3565 "memory ulimit setting or reserve less using -R option)\n",
3566 reserved_va);
3567 exit(1);
3568 }
3569
3570 if (reserved_va) {
3571 mmap_next_start = reserved_va;
3572 }
3573 }
3574 #endif /* CONFIG_USE_GUEST_BASE */
3575
3576 /*
3577 * Read in mmap_min_addr kernel parameter. This value is used
3578 * When loading the ELF image to determine whether guest_base
3579 * is needed. It is also used in mmap_find_vma.
3580 */
3581 {
3582 FILE *fp;
3583
3584 if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) {
3585 unsigned long tmp;
3586 if (fscanf(fp, "%lu", &tmp) == 1) {
3587 mmap_min_addr = tmp;
3588 qemu_log("host mmap_min_addr=0x%lx\n", mmap_min_addr);
3589 }
3590 fclose(fp);
3591 }
3592 }
3593
3594 /*
3595 * Prepare copy of argv vector for target.
3596 */
3597 target_argc = argc - optind;
3598 target_argv = calloc(target_argc + 1, sizeof (char *));
3599 if (target_argv == NULL) {
3600 (void) fprintf(stderr, "Unable to allocate memory for target_argv\n");
3601 exit(1);
3602 }
3603
3604 /*
3605 * If argv0 is specified (using '-0' switch) we replace
3606 * argv[0] pointer with the given one.
3607 */
3608 i = 0;
3609 if (argv0 != NULL) {
3610 target_argv[i++] = strdup(argv0);
3611 }
3612 for (; i < target_argc; i++) {
3613 target_argv[i] = strdup(argv[optind + i]);
3614 }
3615 target_argv[target_argc] = NULL;
3616
3617 ts = g_malloc0 (sizeof(TaskState));
3618 init_task_state(ts);
3619 /* build Task State */
3620 ts->info = info;
3621 ts->bprm = &bprm;
3622 env->opaque = ts;
3623 task_settid(ts);
3624
3625 ret = loader_exec(filename, target_argv, target_environ, regs,
3626 info, &bprm);
3627 if (ret != 0) {
3628 printf("Error while loading %s: %s\n", filename, strerror(-ret));
3629 _exit(1);
3630 }
3631
3632 for (wrk = target_environ; *wrk; wrk++) {
3633 free(*wrk);
3634 }
3635
3636 free(target_environ);
3637
3638 if (qemu_log_enabled()) {
3639 #if defined(CONFIG_USE_GUEST_BASE)
3640 qemu_log("guest_base 0x%lx\n", guest_base);
3641 #endif
3642 log_page_dump();
3643
3644 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk);
3645 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code);
3646 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n",
3647 info->start_code);
3648 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n",
3649 info->start_data);
3650 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data);
3651 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n",
3652 info->start_stack);
3653 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk);
3654 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry);
3655 }
3656
3657 target_set_brk(info->brk);
3658 syscall_init();
3659 signal_init();
3660
3661 #if defined(CONFIG_USE_GUEST_BASE)
3662 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay
3663 generating the prologue until now so that the prologue can take
3664 the real value of GUEST_BASE into account. */
3665 tcg_prologue_init(&tcg_ctx);
3666 #endif
3667
3668 #if defined(TARGET_I386)
3669 cpu_x86_set_cpl(env, 3);
3670
3671 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
3672 env->hflags |= HF_PE_MASK;
3673 if (env->cpuid_features & CPUID_SSE) {
3674 env->cr[4] |= CR4_OSFXSR_MASK;
3675 env->hflags |= HF_OSFXSR_MASK;
3676 }
3677 #ifndef TARGET_ABI32
3678 /* enable 64 bit mode if possible */
3679 if (!(env->cpuid_ext2_features & CPUID_EXT2_LM)) {
3680 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
3681 exit(1);
3682 }
3683 env->cr[4] |= CR4_PAE_MASK;
3684 env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
3685 env->hflags |= HF_LMA_MASK;
3686 #endif
3687
3688 /* flags setup : we activate the IRQs by default as in user mode */
3689 env->eflags |= IF_MASK;
3690
3691 /* linux register setup */
3692 #ifndef TARGET_ABI32
3693 env->regs[R_EAX] = regs->rax;
3694 env->regs[R_EBX] = regs->rbx;
3695 env->regs[R_ECX] = regs->rcx;
3696 env->regs[R_EDX] = regs->rdx;
3697 env->regs[R_ESI] = regs->rsi;
3698 env->regs[R_EDI] = regs->rdi;
3699 env->regs[R_EBP] = regs->rbp;
3700 env->regs[R_ESP] = regs->rsp;
3701 env->eip = regs->rip;
3702 #else
3703 env->regs[R_EAX] = regs->eax;
3704 env->regs[R_EBX] = regs->ebx;
3705 env->regs[R_ECX] = regs->ecx;
3706 env->regs[R_EDX] = regs->edx;
3707 env->regs[R_ESI] = regs->esi;
3708 env->regs[R_EDI] = regs->edi;
3709 env->regs[R_EBP] = regs->ebp;
3710 env->regs[R_ESP] = regs->esp;
3711 env->eip = regs->eip;
3712 #endif
3713
3714 /* linux interrupt setup */
3715 #ifndef TARGET_ABI32
3716 env->idt.limit = 511;
3717 #else
3718 env->idt.limit = 255;
3719 #endif
3720 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
3721 PROT_READ|PROT_WRITE,
3722 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
3723 idt_table = g2h(env->idt.base);
3724 set_idt(0, 0);
3725 set_idt(1, 0);
3726 set_idt(2, 0);
3727 set_idt(3, 3);
3728 set_idt(4, 3);
3729 set_idt(5, 0);
3730 set_idt(6, 0);
3731 set_idt(7, 0);
3732 set_idt(8, 0);
3733 set_idt(9, 0);
3734 set_idt(10, 0);
3735 set_idt(11, 0);
3736 set_idt(12, 0);
3737 set_idt(13, 0);
3738 set_idt(14, 0);
3739 set_idt(15, 0);
3740 set_idt(16, 0);
3741 set_idt(17, 0);
3742 set_idt(18, 0);
3743 set_idt(19, 0);
3744 set_idt(0x80, 3);
3745
3746 /* linux segment setup */
3747 {
3748 uint64_t *gdt_table;
3749 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
3750 PROT_READ|PROT_WRITE,
3751 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
3752 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
3753 gdt_table = g2h(env->gdt.base);
3754 #ifdef TARGET_ABI32
3755 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
3756 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
3757 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
3758 #else
3759 /* 64 bit code segment */
3760 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
3761 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
3762 DESC_L_MASK |
3763 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
3764 #endif
3765 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
3766 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
3767 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
3768 }
3769 cpu_x86_load_seg(env, R_CS, __USER_CS);
3770 cpu_x86_load_seg(env, R_SS, __USER_DS);
3771 #ifdef TARGET_ABI32
3772 cpu_x86_load_seg(env, R_DS, __USER_DS);
3773 cpu_x86_load_seg(env, R_ES, __USER_DS);
3774 cpu_x86_load_seg(env, R_FS, __USER_DS);
3775 cpu_x86_load_seg(env, R_GS, __USER_DS);
3776 /* This hack makes Wine work... */
3777 env->segs[R_FS].selector = 0;
3778 #else
3779 cpu_x86_load_seg(env, R_DS, 0);
3780 cpu_x86_load_seg(env, R_ES, 0);
3781 cpu_x86_load_seg(env, R_FS, 0);
3782 cpu_x86_load_seg(env, R_GS, 0);
3783 #endif
3784 #elif defined(TARGET_ARM)
3785 {
3786 int i;
3787 cpsr_write(env, regs->uregs[16], 0xffffffff);
3788 for(i = 0; i < 16; i++) {
3789 env->regs[i] = regs->uregs[i];
3790 }
3791 /* Enable BE8. */
3792 if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4
3793 && (info->elf_flags & EF_ARM_BE8)) {
3794 env->bswap_code = 1;
3795 }
3796 }
3797 #elif defined(TARGET_UNICORE32)
3798 {
3799 int i;
3800 cpu_asr_write(env, regs->uregs[32], 0xffffffff);
3801 for (i = 0; i < 32; i++) {
3802 env->regs[i] = regs->uregs[i];
3803 }
3804 }
3805 #elif defined(TARGET_SPARC)
3806 {
3807 int i;
3808 env->pc = regs->pc;
3809 env->npc = regs->npc;
3810 env->y = regs->y;
3811 for(i = 0; i < 8; i++)
3812 env->gregs[i] = regs->u_regs[i];
3813 for(i = 0; i < 8; i++)
3814 env->regwptr[i] = regs->u_regs[i + 8];
3815 }
3816 #elif defined(TARGET_PPC)
3817 {
3818 int i;
3819
3820 #if defined(TARGET_PPC64)
3821 #if defined(TARGET_ABI32)
3822 env->msr &= ~((target_ulong)1 << MSR_SF);
3823 #else
3824 env->msr |= (target_ulong)1 << MSR_SF;
3825 #endif
3826 #endif
3827 env->nip = regs->nip;
3828 for(i = 0; i < 32; i++) {
3829 env->gpr[i] = regs->gpr[i];
3830 }
3831 }
3832 #elif defined(TARGET_M68K)
3833 {
3834 env->pc = regs->pc;
3835 env->dregs[0] = regs->d0;
3836 env->dregs[1] = regs->d1;
3837 env->dregs[2] = regs->d2;
3838 env->dregs[3] = regs->d3;
3839 env->dregs[4] = regs->d4;
3840 env->dregs[5] = regs->d5;
3841 env->dregs[6] = regs->d6;
3842 env->dregs[7] = regs->d7;
3843 env->aregs[0] = regs->a0;
3844 env->aregs[1] = regs->a1;
3845 env->aregs[2] = regs->a2;
3846 env->aregs[3] = regs->a3;
3847 env->aregs[4] = regs->a4;
3848 env->aregs[5] = regs->a5;
3849 env->aregs[6] = regs->a6;
3850 env->aregs[7] = regs->usp;
3851 env->sr = regs->sr;
3852 ts->sim_syscalls = 1;
3853 }
3854 #elif defined(TARGET_MICROBLAZE)
3855 {
3856 env->regs[0] = regs->r0;
3857 env->regs[1] = regs->r1;
3858 env->regs[2] = regs->r2;
3859 env->regs[3] = regs->r3;
3860 env->regs[4] = regs->r4;
3861 env->regs[5] = regs->r5;
3862 env->regs[6] = regs->r6;
3863 env->regs[7] = regs->r7;
3864 env->regs[8] = regs->r8;
3865 env->regs[9] = regs->r9;
3866 env->regs[10] = regs->r10;
3867 env->regs[11] = regs->r11;
3868 env->regs[12] = regs->r12;
3869 env->regs[13] = regs->r13;
3870 env->regs[14] = regs->r14;
3871 env->regs[15] = regs->r15;
3872 env->regs[16] = regs->r16;
3873 env->regs[17] = regs->r17;
3874 env->regs[18] = regs->r18;
3875 env->regs[19] = regs->r19;
3876 env->regs[20] = regs->r20;
3877 env->regs[21] = regs->r21;
3878 env->regs[22] = regs->r22;
3879 env->regs[23] = regs->r23;
3880 env->regs[24] = regs->r24;
3881 env->regs[25] = regs->r25;
3882 env->regs[26] = regs->r26;
3883 env->regs[27] = regs->r27;
3884 env->regs[28] = regs->r28;
3885 env->regs[29] = regs->r29;
3886 env->regs[30] = regs->r30;
3887 env->regs[31] = regs->r31;
3888 env->sregs[SR_PC] = regs->pc;
3889 }
3890 #elif defined(TARGET_MIPS)
3891 {
3892 int i;
3893
3894 for(i = 0; i < 32; i++) {
3895 env->active_tc.gpr[i] = regs->regs[i];
3896 }
3897 env->active_tc.PC = regs->cp0_epc & ~(target_ulong)1;
3898 if (regs->cp0_epc & 1) {
3899 env->hflags |= MIPS_HFLAG_M16;
3900 }
3901 }
3902 #elif defined(TARGET_OPENRISC)
3903 {
3904 int i;
3905
3906 for (i = 0; i < 32; i++) {
3907 env->gpr[i] = regs->gpr[i];
3908 }
3909
3910 env->sr = regs->sr;
3911 env->pc = regs->pc;
3912 }
3913 #elif defined(TARGET_SH4)
3914 {
3915 int i;
3916
3917 for(i = 0; i < 16; i++) {
3918 env->gregs[i] = regs->regs[i];
3919 }
3920 env->pc = regs->pc;
3921 }
3922 #elif defined(TARGET_ALPHA)
3923 {
3924 int i;
3925
3926 for(i = 0; i < 28; i++) {
3927 env->ir[i] = ((abi_ulong *)regs)[i];
3928 }
3929 env->ir[IR_SP] = regs->usp;
3930 env->pc = regs->pc;
3931 }
3932 #elif defined(TARGET_CRIS)
3933 {
3934 env->regs[0] = regs->r0;
3935 env->regs[1] = regs->r1;
3936 env->regs[2] = regs->r2;
3937 env->regs[3] = regs->r3;
3938 env->regs[4] = regs->r4;
3939 env->regs[5] = regs->r5;
3940 env->regs[6] = regs->r6;
3941 env->regs[7] = regs->r7;
3942 env->regs[8] = regs->r8;
3943 env->regs[9] = regs->r9;
3944 env->regs[10] = regs->r10;
3945 env->regs[11] = regs->r11;
3946 env->regs[12] = regs->r12;
3947 env->regs[13] = regs->r13;
3948 env->regs[14] = info->start_stack;
3949 env->regs[15] = regs->acr;
3950 env->pc = regs->erp;
3951 }
3952 #elif defined(TARGET_S390X)
3953 {
3954 int i;
3955 for (i = 0; i < 16; i++) {
3956 env->regs[i] = regs->gprs[i];
3957 }
3958 env->psw.mask = regs->psw.mask;
3959 env->psw.addr = regs->psw.addr;
3960 }
3961 #else
3962 #error unsupported target CPU
3963 #endif
3964
3965 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
3966 ts->stack_base = info->start_stack;
3967 ts->heap_base = info->brk;
3968 /* This will be filled in on the first SYS_HEAPINFO call. */
3969 ts->heap_limit = 0;
3970 #endif
3971
3972 if (gdbstub_port) {
3973 if (gdbserver_start(gdbstub_port) < 0) {
3974 fprintf(stderr, "qemu: could not open gdbserver on port %d\n",
3975 gdbstub_port);
3976 exit(1);
3977 }
3978 gdb_handlesig(env, 0);
3979 }
3980 cpu_loop(env);
3981 /* never exits */
3982 return 0;
3983 }