]> git.proxmox.com Git - qemu.git/blob - main-loop.c
Merge remote-tracking branch 'kraxel/pixman.v3' into staging
[qemu.git] / main-loop.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu-common.h"
26 #include "qemu-timer.h"
27 #include "slirp/slirp.h"
28 #include "main-loop.h"
29 #include "qemu-aio.h"
30
31 #ifndef _WIN32
32
33 #include "compatfd.h"
34
35 /* If we have signalfd, we mask out the signals we want to handle and then
36 * use signalfd to listen for them. We rely on whatever the current signal
37 * handler is to dispatch the signals when we receive them.
38 */
39 static void sigfd_handler(void *opaque)
40 {
41 int fd = (intptr_t)opaque;
42 struct qemu_signalfd_siginfo info;
43 struct sigaction action;
44 ssize_t len;
45
46 while (1) {
47 do {
48 len = read(fd, &info, sizeof(info));
49 } while (len == -1 && errno == EINTR);
50
51 if (len == -1 && errno == EAGAIN) {
52 break;
53 }
54
55 if (len != sizeof(info)) {
56 printf("read from sigfd returned %zd: %m\n", len);
57 return;
58 }
59
60 sigaction(info.ssi_signo, NULL, &action);
61 if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) {
62 action.sa_sigaction(info.ssi_signo,
63 (siginfo_t *)&info, NULL);
64 } else if (action.sa_handler) {
65 action.sa_handler(info.ssi_signo);
66 }
67 }
68 }
69
70 static int qemu_signal_init(void)
71 {
72 int sigfd;
73 sigset_t set;
74
75 /*
76 * SIG_IPI must be blocked in the main thread and must not be caught
77 * by sigwait() in the signal thread. Otherwise, the cpu thread will
78 * not catch it reliably.
79 */
80 sigemptyset(&set);
81 sigaddset(&set, SIG_IPI);
82 sigaddset(&set, SIGIO);
83 sigaddset(&set, SIGALRM);
84 sigaddset(&set, SIGBUS);
85 pthread_sigmask(SIG_BLOCK, &set, NULL);
86
87 sigdelset(&set, SIG_IPI);
88 sigfd = qemu_signalfd(&set);
89 if (sigfd == -1) {
90 fprintf(stderr, "failed to create signalfd\n");
91 return -errno;
92 }
93
94 fcntl_setfl(sigfd, O_NONBLOCK);
95
96 qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
97 (void *)(intptr_t)sigfd);
98
99 return 0;
100 }
101
102 #else /* _WIN32 */
103
104 static int qemu_signal_init(void)
105 {
106 return 0;
107 }
108 #endif
109
110 static AioContext *qemu_aio_context;
111
112 void qemu_notify_event(void)
113 {
114 if (!qemu_aio_context) {
115 return;
116 }
117 aio_notify(qemu_aio_context);
118 }
119
120 int qemu_init_main_loop(void)
121 {
122 int ret;
123 GSource *src;
124
125 init_clocks();
126 init_timer_alarm();
127
128 qemu_mutex_lock_iothread();
129 ret = qemu_signal_init();
130 if (ret) {
131 return ret;
132 }
133
134 qemu_aio_context = aio_context_new();
135 src = aio_get_g_source(qemu_aio_context);
136 g_source_attach(src, NULL);
137 g_source_unref(src);
138 return 0;
139 }
140
141 static fd_set rfds, wfds, xfds;
142 static int nfds;
143 static GPollFD poll_fds[1024 * 2]; /* this is probably overkill */
144 static int n_poll_fds;
145 static int max_priority;
146
147 #ifndef _WIN32
148 static void glib_select_fill(int *max_fd, fd_set *rfds, fd_set *wfds,
149 fd_set *xfds, uint32_t *cur_timeout)
150 {
151 GMainContext *context = g_main_context_default();
152 int i;
153 int timeout = 0;
154
155 g_main_context_prepare(context, &max_priority);
156
157 n_poll_fds = g_main_context_query(context, max_priority, &timeout,
158 poll_fds, ARRAY_SIZE(poll_fds));
159 g_assert(n_poll_fds <= ARRAY_SIZE(poll_fds));
160
161 for (i = 0; i < n_poll_fds; i++) {
162 GPollFD *p = &poll_fds[i];
163
164 if ((p->events & G_IO_IN)) {
165 FD_SET(p->fd, rfds);
166 *max_fd = MAX(*max_fd, p->fd);
167 }
168 if ((p->events & G_IO_OUT)) {
169 FD_SET(p->fd, wfds);
170 *max_fd = MAX(*max_fd, p->fd);
171 }
172 if ((p->events & G_IO_ERR)) {
173 FD_SET(p->fd, xfds);
174 *max_fd = MAX(*max_fd, p->fd);
175 }
176 }
177
178 if (timeout >= 0 && timeout < *cur_timeout) {
179 *cur_timeout = timeout;
180 }
181 }
182
183 static void glib_select_poll(fd_set *rfds, fd_set *wfds, fd_set *xfds,
184 bool err)
185 {
186 GMainContext *context = g_main_context_default();
187
188 if (!err) {
189 int i;
190
191 for (i = 0; i < n_poll_fds; i++) {
192 GPollFD *p = &poll_fds[i];
193
194 if ((p->events & G_IO_IN) && FD_ISSET(p->fd, rfds)) {
195 p->revents |= G_IO_IN;
196 }
197 if ((p->events & G_IO_OUT) && FD_ISSET(p->fd, wfds)) {
198 p->revents |= G_IO_OUT;
199 }
200 if ((p->events & G_IO_ERR) && FD_ISSET(p->fd, xfds)) {
201 p->revents |= G_IO_ERR;
202 }
203 }
204 }
205
206 if (g_main_context_check(context, max_priority, poll_fds, n_poll_fds)) {
207 g_main_context_dispatch(context);
208 }
209 }
210
211 static int os_host_main_loop_wait(uint32_t timeout)
212 {
213 struct timeval tv, *tvarg = NULL;
214 int ret;
215
216 glib_select_fill(&nfds, &rfds, &wfds, &xfds, &timeout);
217
218 if (timeout < UINT32_MAX) {
219 tvarg = &tv;
220 tv.tv_sec = timeout / 1000;
221 tv.tv_usec = (timeout % 1000) * 1000;
222 }
223
224 if (timeout > 0) {
225 qemu_mutex_unlock_iothread();
226 }
227
228 ret = select(nfds + 1, &rfds, &wfds, &xfds, tvarg);
229
230 if (timeout > 0) {
231 qemu_mutex_lock_iothread();
232 }
233
234 glib_select_poll(&rfds, &wfds, &xfds, (ret < 0));
235 return ret;
236 }
237 #else
238 /***********************************************************/
239 /* Polling handling */
240
241 typedef struct PollingEntry {
242 PollingFunc *func;
243 void *opaque;
244 struct PollingEntry *next;
245 } PollingEntry;
246
247 static PollingEntry *first_polling_entry;
248
249 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
250 {
251 PollingEntry **ppe, *pe;
252 pe = g_malloc0(sizeof(PollingEntry));
253 pe->func = func;
254 pe->opaque = opaque;
255 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
256 *ppe = pe;
257 return 0;
258 }
259
260 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
261 {
262 PollingEntry **ppe, *pe;
263 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
264 pe = *ppe;
265 if (pe->func == func && pe->opaque == opaque) {
266 *ppe = pe->next;
267 g_free(pe);
268 break;
269 }
270 }
271 }
272
273 /***********************************************************/
274 /* Wait objects support */
275 typedef struct WaitObjects {
276 int num;
277 int revents[MAXIMUM_WAIT_OBJECTS + 1];
278 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
279 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
280 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
281 } WaitObjects;
282
283 static WaitObjects wait_objects = {0};
284
285 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
286 {
287 WaitObjects *w = &wait_objects;
288 if (w->num >= MAXIMUM_WAIT_OBJECTS) {
289 return -1;
290 }
291 w->events[w->num] = handle;
292 w->func[w->num] = func;
293 w->opaque[w->num] = opaque;
294 w->revents[w->num] = 0;
295 w->num++;
296 return 0;
297 }
298
299 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
300 {
301 int i, found;
302 WaitObjects *w = &wait_objects;
303
304 found = 0;
305 for (i = 0; i < w->num; i++) {
306 if (w->events[i] == handle) {
307 found = 1;
308 }
309 if (found) {
310 w->events[i] = w->events[i + 1];
311 w->func[i] = w->func[i + 1];
312 w->opaque[i] = w->opaque[i + 1];
313 w->revents[i] = w->revents[i + 1];
314 }
315 }
316 if (found) {
317 w->num--;
318 }
319 }
320
321 void qemu_fd_register(int fd)
322 {
323 WSAEventSelect(fd, event_notifier_get_handle(&qemu_aio_context->notifier),
324 FD_READ | FD_ACCEPT | FD_CLOSE |
325 FD_CONNECT | FD_WRITE | FD_OOB);
326 }
327
328 static int os_host_main_loop_wait(uint32_t timeout)
329 {
330 GMainContext *context = g_main_context_default();
331 int ret, i;
332 PollingEntry *pe;
333 WaitObjects *w = &wait_objects;
334 gint poll_timeout;
335 static struct timeval tv0;
336
337 /* XXX: need to suppress polling by better using win32 events */
338 ret = 0;
339 for (pe = first_polling_entry; pe != NULL; pe = pe->next) {
340 ret |= pe->func(pe->opaque);
341 }
342 if (ret != 0) {
343 return ret;
344 }
345
346 if (nfds >= 0) {
347 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv0);
348 if (ret != 0) {
349 timeout = 0;
350 }
351 }
352
353 g_main_context_prepare(context, &max_priority);
354 n_poll_fds = g_main_context_query(context, max_priority, &poll_timeout,
355 poll_fds, ARRAY_SIZE(poll_fds));
356 g_assert(n_poll_fds <= ARRAY_SIZE(poll_fds));
357
358 for (i = 0; i < w->num; i++) {
359 poll_fds[n_poll_fds + i].fd = (DWORD_PTR)w->events[i];
360 poll_fds[n_poll_fds + i].events = G_IO_IN;
361 }
362
363 if (poll_timeout < 0 || timeout < poll_timeout) {
364 poll_timeout = timeout;
365 }
366
367 qemu_mutex_unlock_iothread();
368 ret = g_poll(poll_fds, n_poll_fds + w->num, poll_timeout);
369 qemu_mutex_lock_iothread();
370 if (ret > 0) {
371 for (i = 0; i < w->num; i++) {
372 w->revents[i] = poll_fds[n_poll_fds + i].revents;
373 }
374 for (i = 0; i < w->num; i++) {
375 if (w->revents[i] && w->func[i]) {
376 w->func[i](w->opaque[i]);
377 }
378 }
379 }
380
381 if (g_main_context_check(context, max_priority, poll_fds, n_poll_fds)) {
382 g_main_context_dispatch(context);
383 }
384
385 /* If an edge-triggered socket event occurred, select will return a
386 * positive result on the next iteration. We do not need to do anything
387 * here.
388 */
389
390 return ret;
391 }
392 #endif
393
394 int main_loop_wait(int nonblocking)
395 {
396 int ret;
397 uint32_t timeout = UINT32_MAX;
398
399 if (nonblocking) {
400 timeout = 0;
401 }
402
403 /* poll any events */
404 /* XXX: separate device handlers from system ones */
405 nfds = -1;
406 FD_ZERO(&rfds);
407 FD_ZERO(&wfds);
408 FD_ZERO(&xfds);
409
410 #ifdef CONFIG_SLIRP
411 slirp_update_timeout(&timeout);
412 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
413 #endif
414 qemu_iohandler_fill(&nfds, &rfds, &wfds, &xfds);
415 ret = os_host_main_loop_wait(timeout);
416 qemu_iohandler_poll(&rfds, &wfds, &xfds, ret);
417 #ifdef CONFIG_SLIRP
418 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
419 #endif
420
421 qemu_run_all_timers();
422
423 return ret;
424 }
425
426 /* Functions to operate on the main QEMU AioContext. */
427
428 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
429 {
430 return aio_bh_new(qemu_aio_context, cb, opaque);
431 }
432
433 void qemu_aio_flush(void)
434 {
435 aio_flush(qemu_aio_context);
436 }
437
438 bool qemu_aio_wait(void)
439 {
440 return aio_poll(qemu_aio_context, true);
441 }
442
443 #ifdef CONFIG_POSIX
444 void qemu_aio_set_fd_handler(int fd,
445 IOHandler *io_read,
446 IOHandler *io_write,
447 AioFlushHandler *io_flush,
448 void *opaque)
449 {
450 aio_set_fd_handler(qemu_aio_context, fd, io_read, io_write, io_flush,
451 opaque);
452 }
453 #endif
454
455 void qemu_aio_set_event_notifier(EventNotifier *notifier,
456 EventNotifierHandler *io_read,
457 AioFlushEventNotifierHandler *io_flush)
458 {
459 aio_set_event_notifier(qemu_aio_context, notifier, io_read, io_flush);
460 }