]> git.proxmox.com Git - qemu.git/blob - memory.c
smc91c111: Fix receive starvation
[qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "exec/memory.h"
17 #include "exec/address-spaces.h"
18 #include "exec/ioport.h"
19 #include "qemu/bitops.h"
20 #include "qom/object.h"
21 #include "trace.h"
22 #include <assert.h>
23
24 #include "exec/memory-internal.h"
25
26 //#define DEBUG_UNASSIGNED
27
28 static unsigned memory_region_transaction_depth;
29 static bool memory_region_update_pending;
30 static bool global_dirty_log = false;
31
32 /* flat_view_mutex is taken around reading as->current_map; the critical
33 * section is extremely short, so I'm using a single mutex for every AS.
34 * We could also RCU for the read-side.
35 *
36 * The BQL is taken around transaction commits, hence both locks are taken
37 * while writing to as->current_map (with the BQL taken outside).
38 */
39 static QemuMutex flat_view_mutex;
40
41 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
42 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
43
44 static QTAILQ_HEAD(, AddressSpace) address_spaces
45 = QTAILQ_HEAD_INITIALIZER(address_spaces);
46
47 static void memory_init(void)
48 {
49 qemu_mutex_init(&flat_view_mutex);
50 }
51
52 typedef struct AddrRange AddrRange;
53
54 /*
55 * Note using signed integers limits us to physical addresses at most
56 * 63 bits wide. They are needed for negative offsetting in aliases
57 * (large MemoryRegion::alias_offset).
58 */
59 struct AddrRange {
60 Int128 start;
61 Int128 size;
62 };
63
64 static AddrRange addrrange_make(Int128 start, Int128 size)
65 {
66 return (AddrRange) { start, size };
67 }
68
69 static bool addrrange_equal(AddrRange r1, AddrRange r2)
70 {
71 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
72 }
73
74 static Int128 addrrange_end(AddrRange r)
75 {
76 return int128_add(r.start, r.size);
77 }
78
79 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
80 {
81 int128_addto(&range.start, delta);
82 return range;
83 }
84
85 static bool addrrange_contains(AddrRange range, Int128 addr)
86 {
87 return int128_ge(addr, range.start)
88 && int128_lt(addr, addrrange_end(range));
89 }
90
91 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
92 {
93 return addrrange_contains(r1, r2.start)
94 || addrrange_contains(r2, r1.start);
95 }
96
97 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
98 {
99 Int128 start = int128_max(r1.start, r2.start);
100 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
101 return addrrange_make(start, int128_sub(end, start));
102 }
103
104 enum ListenerDirection { Forward, Reverse };
105
106 static bool memory_listener_match(MemoryListener *listener,
107 MemoryRegionSection *section)
108 {
109 return !listener->address_space_filter
110 || listener->address_space_filter == section->address_space;
111 }
112
113 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
114 do { \
115 MemoryListener *_listener; \
116 \
117 switch (_direction) { \
118 case Forward: \
119 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
120 if (_listener->_callback) { \
121 _listener->_callback(_listener, ##_args); \
122 } \
123 } \
124 break; \
125 case Reverse: \
126 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
127 memory_listeners, link) { \
128 if (_listener->_callback) { \
129 _listener->_callback(_listener, ##_args); \
130 } \
131 } \
132 break; \
133 default: \
134 abort(); \
135 } \
136 } while (0)
137
138 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
139 do { \
140 MemoryListener *_listener; \
141 \
142 switch (_direction) { \
143 case Forward: \
144 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
145 if (_listener->_callback \
146 && memory_listener_match(_listener, _section)) { \
147 _listener->_callback(_listener, _section, ##_args); \
148 } \
149 } \
150 break; \
151 case Reverse: \
152 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
153 memory_listeners, link) { \
154 if (_listener->_callback \
155 && memory_listener_match(_listener, _section)) { \
156 _listener->_callback(_listener, _section, ##_args); \
157 } \
158 } \
159 break; \
160 default: \
161 abort(); \
162 } \
163 } while (0)
164
165 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
166 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback) \
167 MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) { \
168 .mr = (fr)->mr, \
169 .address_space = (as), \
170 .offset_within_region = (fr)->offset_in_region, \
171 .size = (fr)->addr.size, \
172 .offset_within_address_space = int128_get64((fr)->addr.start), \
173 .readonly = (fr)->readonly, \
174 }))
175
176 struct CoalescedMemoryRange {
177 AddrRange addr;
178 QTAILQ_ENTRY(CoalescedMemoryRange) link;
179 };
180
181 struct MemoryRegionIoeventfd {
182 AddrRange addr;
183 bool match_data;
184 uint64_t data;
185 EventNotifier *e;
186 };
187
188 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
189 MemoryRegionIoeventfd b)
190 {
191 if (int128_lt(a.addr.start, b.addr.start)) {
192 return true;
193 } else if (int128_gt(a.addr.start, b.addr.start)) {
194 return false;
195 } else if (int128_lt(a.addr.size, b.addr.size)) {
196 return true;
197 } else if (int128_gt(a.addr.size, b.addr.size)) {
198 return false;
199 } else if (a.match_data < b.match_data) {
200 return true;
201 } else if (a.match_data > b.match_data) {
202 return false;
203 } else if (a.match_data) {
204 if (a.data < b.data) {
205 return true;
206 } else if (a.data > b.data) {
207 return false;
208 }
209 }
210 if (a.e < b.e) {
211 return true;
212 } else if (a.e > b.e) {
213 return false;
214 }
215 return false;
216 }
217
218 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
219 MemoryRegionIoeventfd b)
220 {
221 return !memory_region_ioeventfd_before(a, b)
222 && !memory_region_ioeventfd_before(b, a);
223 }
224
225 typedef struct FlatRange FlatRange;
226 typedef struct FlatView FlatView;
227
228 /* Range of memory in the global map. Addresses are absolute. */
229 struct FlatRange {
230 MemoryRegion *mr;
231 hwaddr offset_in_region;
232 AddrRange addr;
233 uint8_t dirty_log_mask;
234 bool romd_mode;
235 bool readonly;
236 };
237
238 /* Flattened global view of current active memory hierarchy. Kept in sorted
239 * order.
240 */
241 struct FlatView {
242 unsigned ref;
243 FlatRange *ranges;
244 unsigned nr;
245 unsigned nr_allocated;
246 };
247
248 typedef struct AddressSpaceOps AddressSpaceOps;
249
250 #define FOR_EACH_FLAT_RANGE(var, view) \
251 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
252
253 static bool flatrange_equal(FlatRange *a, FlatRange *b)
254 {
255 return a->mr == b->mr
256 && addrrange_equal(a->addr, b->addr)
257 && a->offset_in_region == b->offset_in_region
258 && a->romd_mode == b->romd_mode
259 && a->readonly == b->readonly;
260 }
261
262 static void flatview_init(FlatView *view)
263 {
264 view->ref = 1;
265 view->ranges = NULL;
266 view->nr = 0;
267 view->nr_allocated = 0;
268 }
269
270 /* Insert a range into a given position. Caller is responsible for maintaining
271 * sorting order.
272 */
273 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
274 {
275 if (view->nr == view->nr_allocated) {
276 view->nr_allocated = MAX(2 * view->nr, 10);
277 view->ranges = g_realloc(view->ranges,
278 view->nr_allocated * sizeof(*view->ranges));
279 }
280 memmove(view->ranges + pos + 1, view->ranges + pos,
281 (view->nr - pos) * sizeof(FlatRange));
282 view->ranges[pos] = *range;
283 memory_region_ref(range->mr);
284 ++view->nr;
285 }
286
287 static void flatview_destroy(FlatView *view)
288 {
289 int i;
290
291 for (i = 0; i < view->nr; i++) {
292 memory_region_unref(view->ranges[i].mr);
293 }
294 g_free(view->ranges);
295 g_free(view);
296 }
297
298 static void flatview_ref(FlatView *view)
299 {
300 atomic_inc(&view->ref);
301 }
302
303 static void flatview_unref(FlatView *view)
304 {
305 if (atomic_fetch_dec(&view->ref) == 1) {
306 flatview_destroy(view);
307 }
308 }
309
310 static bool can_merge(FlatRange *r1, FlatRange *r2)
311 {
312 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
313 && r1->mr == r2->mr
314 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
315 r1->addr.size),
316 int128_make64(r2->offset_in_region))
317 && r1->dirty_log_mask == r2->dirty_log_mask
318 && r1->romd_mode == r2->romd_mode
319 && r1->readonly == r2->readonly;
320 }
321
322 /* Attempt to simplify a view by merging adjacent ranges */
323 static void flatview_simplify(FlatView *view)
324 {
325 unsigned i, j;
326
327 i = 0;
328 while (i < view->nr) {
329 j = i + 1;
330 while (j < view->nr
331 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
332 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
333 ++j;
334 }
335 ++i;
336 memmove(&view->ranges[i], &view->ranges[j],
337 (view->nr - j) * sizeof(view->ranges[j]));
338 view->nr -= j - i;
339 }
340 }
341
342 static bool memory_region_big_endian(MemoryRegion *mr)
343 {
344 #ifdef TARGET_WORDS_BIGENDIAN
345 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
346 #else
347 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
348 #endif
349 }
350
351 static bool memory_region_wrong_endianness(MemoryRegion *mr)
352 {
353 #ifdef TARGET_WORDS_BIGENDIAN
354 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
355 #else
356 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
357 #endif
358 }
359
360 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
361 {
362 if (memory_region_wrong_endianness(mr)) {
363 switch (size) {
364 case 1:
365 break;
366 case 2:
367 *data = bswap16(*data);
368 break;
369 case 4:
370 *data = bswap32(*data);
371 break;
372 case 8:
373 *data = bswap64(*data);
374 break;
375 default:
376 abort();
377 }
378 }
379 }
380
381 static void memory_region_oldmmio_read_accessor(MemoryRegion *mr,
382 hwaddr addr,
383 uint64_t *value,
384 unsigned size,
385 unsigned shift,
386 uint64_t mask)
387 {
388 uint64_t tmp;
389
390 tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
391 trace_memory_region_ops_read(mr, addr, tmp, size);
392 *value |= (tmp & mask) << shift;
393 }
394
395 static void memory_region_read_accessor(MemoryRegion *mr,
396 hwaddr addr,
397 uint64_t *value,
398 unsigned size,
399 unsigned shift,
400 uint64_t mask)
401 {
402 uint64_t tmp;
403
404 if (mr->flush_coalesced_mmio) {
405 qemu_flush_coalesced_mmio_buffer();
406 }
407 tmp = mr->ops->read(mr->opaque, addr, size);
408 trace_memory_region_ops_read(mr, addr, tmp, size);
409 *value |= (tmp & mask) << shift;
410 }
411
412 static void memory_region_oldmmio_write_accessor(MemoryRegion *mr,
413 hwaddr addr,
414 uint64_t *value,
415 unsigned size,
416 unsigned shift,
417 uint64_t mask)
418 {
419 uint64_t tmp;
420
421 tmp = (*value >> shift) & mask;
422 trace_memory_region_ops_write(mr, addr, tmp, size);
423 mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
424 }
425
426 static void memory_region_write_accessor(MemoryRegion *mr,
427 hwaddr addr,
428 uint64_t *value,
429 unsigned size,
430 unsigned shift,
431 uint64_t mask)
432 {
433 uint64_t tmp;
434
435 if (mr->flush_coalesced_mmio) {
436 qemu_flush_coalesced_mmio_buffer();
437 }
438 tmp = (*value >> shift) & mask;
439 trace_memory_region_ops_write(mr, addr, tmp, size);
440 mr->ops->write(mr->opaque, addr, tmp, size);
441 }
442
443 static void access_with_adjusted_size(hwaddr addr,
444 uint64_t *value,
445 unsigned size,
446 unsigned access_size_min,
447 unsigned access_size_max,
448 void (*access)(MemoryRegion *mr,
449 hwaddr addr,
450 uint64_t *value,
451 unsigned size,
452 unsigned shift,
453 uint64_t mask),
454 MemoryRegion *mr)
455 {
456 uint64_t access_mask;
457 unsigned access_size;
458 unsigned i;
459
460 if (!access_size_min) {
461 access_size_min = 1;
462 }
463 if (!access_size_max) {
464 access_size_max = 4;
465 }
466
467 /* FIXME: support unaligned access? */
468 access_size = MAX(MIN(size, access_size_max), access_size_min);
469 access_mask = -1ULL >> (64 - access_size * 8);
470 if (memory_region_big_endian(mr)) {
471 for (i = 0; i < size; i += access_size) {
472 access(mr, addr + i, value, access_size,
473 (size - access_size - i) * 8, access_mask);
474 }
475 } else {
476 for (i = 0; i < size; i += access_size) {
477 access(mr, addr + i, value, access_size, i * 8, access_mask);
478 }
479 }
480 }
481
482 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
483 {
484 AddressSpace *as;
485
486 while (mr->parent) {
487 mr = mr->parent;
488 }
489 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
490 if (mr == as->root) {
491 return as;
492 }
493 }
494 abort();
495 }
496
497 /* Render a memory region into the global view. Ranges in @view obscure
498 * ranges in @mr.
499 */
500 static void render_memory_region(FlatView *view,
501 MemoryRegion *mr,
502 Int128 base,
503 AddrRange clip,
504 bool readonly)
505 {
506 MemoryRegion *subregion;
507 unsigned i;
508 hwaddr offset_in_region;
509 Int128 remain;
510 Int128 now;
511 FlatRange fr;
512 AddrRange tmp;
513
514 if (!mr->enabled) {
515 return;
516 }
517
518 int128_addto(&base, int128_make64(mr->addr));
519 readonly |= mr->readonly;
520
521 tmp = addrrange_make(base, mr->size);
522
523 if (!addrrange_intersects(tmp, clip)) {
524 return;
525 }
526
527 clip = addrrange_intersection(tmp, clip);
528
529 if (mr->alias) {
530 int128_subfrom(&base, int128_make64(mr->alias->addr));
531 int128_subfrom(&base, int128_make64(mr->alias_offset));
532 render_memory_region(view, mr->alias, base, clip, readonly);
533 return;
534 }
535
536 /* Render subregions in priority order. */
537 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
538 render_memory_region(view, subregion, base, clip, readonly);
539 }
540
541 if (!mr->terminates) {
542 return;
543 }
544
545 offset_in_region = int128_get64(int128_sub(clip.start, base));
546 base = clip.start;
547 remain = clip.size;
548
549 fr.mr = mr;
550 fr.dirty_log_mask = mr->dirty_log_mask;
551 fr.romd_mode = mr->romd_mode;
552 fr.readonly = readonly;
553
554 /* Render the region itself into any gaps left by the current view. */
555 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
556 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
557 continue;
558 }
559 if (int128_lt(base, view->ranges[i].addr.start)) {
560 now = int128_min(remain,
561 int128_sub(view->ranges[i].addr.start, base));
562 fr.offset_in_region = offset_in_region;
563 fr.addr = addrrange_make(base, now);
564 flatview_insert(view, i, &fr);
565 ++i;
566 int128_addto(&base, now);
567 offset_in_region += int128_get64(now);
568 int128_subfrom(&remain, now);
569 }
570 now = int128_sub(int128_min(int128_add(base, remain),
571 addrrange_end(view->ranges[i].addr)),
572 base);
573 int128_addto(&base, now);
574 offset_in_region += int128_get64(now);
575 int128_subfrom(&remain, now);
576 }
577 if (int128_nz(remain)) {
578 fr.offset_in_region = offset_in_region;
579 fr.addr = addrrange_make(base, remain);
580 flatview_insert(view, i, &fr);
581 }
582 }
583
584 /* Render a memory topology into a list of disjoint absolute ranges. */
585 static FlatView *generate_memory_topology(MemoryRegion *mr)
586 {
587 FlatView *view;
588
589 view = g_new(FlatView, 1);
590 flatview_init(view);
591
592 if (mr) {
593 render_memory_region(view, mr, int128_zero(),
594 addrrange_make(int128_zero(), int128_2_64()), false);
595 }
596 flatview_simplify(view);
597
598 return view;
599 }
600
601 static void address_space_add_del_ioeventfds(AddressSpace *as,
602 MemoryRegionIoeventfd *fds_new,
603 unsigned fds_new_nb,
604 MemoryRegionIoeventfd *fds_old,
605 unsigned fds_old_nb)
606 {
607 unsigned iold, inew;
608 MemoryRegionIoeventfd *fd;
609 MemoryRegionSection section;
610
611 /* Generate a symmetric difference of the old and new fd sets, adding
612 * and deleting as necessary.
613 */
614
615 iold = inew = 0;
616 while (iold < fds_old_nb || inew < fds_new_nb) {
617 if (iold < fds_old_nb
618 && (inew == fds_new_nb
619 || memory_region_ioeventfd_before(fds_old[iold],
620 fds_new[inew]))) {
621 fd = &fds_old[iold];
622 section = (MemoryRegionSection) {
623 .address_space = as,
624 .offset_within_address_space = int128_get64(fd->addr.start),
625 .size = fd->addr.size,
626 };
627 MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
628 fd->match_data, fd->data, fd->e);
629 ++iold;
630 } else if (inew < fds_new_nb
631 && (iold == fds_old_nb
632 || memory_region_ioeventfd_before(fds_new[inew],
633 fds_old[iold]))) {
634 fd = &fds_new[inew];
635 section = (MemoryRegionSection) {
636 .address_space = as,
637 .offset_within_address_space = int128_get64(fd->addr.start),
638 .size = fd->addr.size,
639 };
640 MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
641 fd->match_data, fd->data, fd->e);
642 ++inew;
643 } else {
644 ++iold;
645 ++inew;
646 }
647 }
648 }
649
650 static FlatView *address_space_get_flatview(AddressSpace *as)
651 {
652 FlatView *view;
653
654 qemu_mutex_lock(&flat_view_mutex);
655 view = as->current_map;
656 flatview_ref(view);
657 qemu_mutex_unlock(&flat_view_mutex);
658 return view;
659 }
660
661 static void address_space_update_ioeventfds(AddressSpace *as)
662 {
663 FlatView *view;
664 FlatRange *fr;
665 unsigned ioeventfd_nb = 0;
666 MemoryRegionIoeventfd *ioeventfds = NULL;
667 AddrRange tmp;
668 unsigned i;
669
670 view = address_space_get_flatview(as);
671 FOR_EACH_FLAT_RANGE(fr, view) {
672 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
673 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
674 int128_sub(fr->addr.start,
675 int128_make64(fr->offset_in_region)));
676 if (addrrange_intersects(fr->addr, tmp)) {
677 ++ioeventfd_nb;
678 ioeventfds = g_realloc(ioeventfds,
679 ioeventfd_nb * sizeof(*ioeventfds));
680 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
681 ioeventfds[ioeventfd_nb-1].addr = tmp;
682 }
683 }
684 }
685
686 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
687 as->ioeventfds, as->ioeventfd_nb);
688
689 g_free(as->ioeventfds);
690 as->ioeventfds = ioeventfds;
691 as->ioeventfd_nb = ioeventfd_nb;
692 flatview_unref(view);
693 }
694
695 static void address_space_update_topology_pass(AddressSpace *as,
696 const FlatView *old_view,
697 const FlatView *new_view,
698 bool adding)
699 {
700 unsigned iold, inew;
701 FlatRange *frold, *frnew;
702
703 /* Generate a symmetric difference of the old and new memory maps.
704 * Kill ranges in the old map, and instantiate ranges in the new map.
705 */
706 iold = inew = 0;
707 while (iold < old_view->nr || inew < new_view->nr) {
708 if (iold < old_view->nr) {
709 frold = &old_view->ranges[iold];
710 } else {
711 frold = NULL;
712 }
713 if (inew < new_view->nr) {
714 frnew = &new_view->ranges[inew];
715 } else {
716 frnew = NULL;
717 }
718
719 if (frold
720 && (!frnew
721 || int128_lt(frold->addr.start, frnew->addr.start)
722 || (int128_eq(frold->addr.start, frnew->addr.start)
723 && !flatrange_equal(frold, frnew)))) {
724 /* In old but not in new, or in both but attributes changed. */
725
726 if (!adding) {
727 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
728 }
729
730 ++iold;
731 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
732 /* In both and unchanged (except logging may have changed) */
733
734 if (adding) {
735 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
736 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
737 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
738 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
739 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
740 }
741 }
742
743 ++iold;
744 ++inew;
745 } else {
746 /* In new */
747
748 if (adding) {
749 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
750 }
751
752 ++inew;
753 }
754 }
755 }
756
757
758 static void address_space_update_topology(AddressSpace *as)
759 {
760 FlatView *old_view = address_space_get_flatview(as);
761 FlatView *new_view = generate_memory_topology(as->root);
762
763 address_space_update_topology_pass(as, old_view, new_view, false);
764 address_space_update_topology_pass(as, old_view, new_view, true);
765
766 qemu_mutex_lock(&flat_view_mutex);
767 flatview_unref(as->current_map);
768 as->current_map = new_view;
769 qemu_mutex_unlock(&flat_view_mutex);
770
771 /* Note that all the old MemoryRegions are still alive up to this
772 * point. This relieves most MemoryListeners from the need to
773 * ref/unref the MemoryRegions they get---unless they use them
774 * outside the iothread mutex, in which case precise reference
775 * counting is necessary.
776 */
777 flatview_unref(old_view);
778
779 address_space_update_ioeventfds(as);
780 }
781
782 void memory_region_transaction_begin(void)
783 {
784 qemu_flush_coalesced_mmio_buffer();
785 ++memory_region_transaction_depth;
786 }
787
788 void memory_region_transaction_commit(void)
789 {
790 AddressSpace *as;
791
792 assert(memory_region_transaction_depth);
793 --memory_region_transaction_depth;
794 if (!memory_region_transaction_depth && memory_region_update_pending) {
795 memory_region_update_pending = false;
796 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
797
798 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
799 address_space_update_topology(as);
800 }
801
802 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
803 }
804 }
805
806 static void memory_region_destructor_none(MemoryRegion *mr)
807 {
808 }
809
810 static void memory_region_destructor_ram(MemoryRegion *mr)
811 {
812 qemu_ram_free(mr->ram_addr);
813 }
814
815 static void memory_region_destructor_alias(MemoryRegion *mr)
816 {
817 memory_region_unref(mr->alias);
818 }
819
820 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
821 {
822 qemu_ram_free_from_ptr(mr->ram_addr);
823 }
824
825 static void memory_region_destructor_rom_device(MemoryRegion *mr)
826 {
827 qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
828 }
829
830 void memory_region_init(MemoryRegion *mr,
831 Object *owner,
832 const char *name,
833 uint64_t size)
834 {
835 mr->ops = &unassigned_mem_ops;
836 mr->opaque = NULL;
837 mr->owner = owner;
838 mr->iommu_ops = NULL;
839 mr->parent = NULL;
840 mr->size = int128_make64(size);
841 if (size == UINT64_MAX) {
842 mr->size = int128_2_64();
843 }
844 mr->addr = 0;
845 mr->subpage = false;
846 mr->enabled = true;
847 mr->terminates = false;
848 mr->ram = false;
849 mr->romd_mode = true;
850 mr->readonly = false;
851 mr->rom_device = false;
852 mr->destructor = memory_region_destructor_none;
853 mr->priority = 0;
854 mr->may_overlap = false;
855 mr->alias = NULL;
856 QTAILQ_INIT(&mr->subregions);
857 memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
858 QTAILQ_INIT(&mr->coalesced);
859 mr->name = g_strdup(name);
860 mr->dirty_log_mask = 0;
861 mr->ioeventfd_nb = 0;
862 mr->ioeventfds = NULL;
863 mr->flush_coalesced_mmio = false;
864 }
865
866 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
867 unsigned size)
868 {
869 #ifdef DEBUG_UNASSIGNED
870 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
871 #endif
872 if (current_cpu != NULL) {
873 cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
874 }
875 return 0;
876 }
877
878 static void unassigned_mem_write(void *opaque, hwaddr addr,
879 uint64_t val, unsigned size)
880 {
881 #ifdef DEBUG_UNASSIGNED
882 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
883 #endif
884 if (current_cpu != NULL) {
885 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
886 }
887 }
888
889 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
890 unsigned size, bool is_write)
891 {
892 return false;
893 }
894
895 const MemoryRegionOps unassigned_mem_ops = {
896 .valid.accepts = unassigned_mem_accepts,
897 .endianness = DEVICE_NATIVE_ENDIAN,
898 };
899
900 bool memory_region_access_valid(MemoryRegion *mr,
901 hwaddr addr,
902 unsigned size,
903 bool is_write)
904 {
905 int access_size_min, access_size_max;
906 int access_size, i;
907
908 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
909 return false;
910 }
911
912 if (!mr->ops->valid.accepts) {
913 return true;
914 }
915
916 access_size_min = mr->ops->valid.min_access_size;
917 if (!mr->ops->valid.min_access_size) {
918 access_size_min = 1;
919 }
920
921 access_size_max = mr->ops->valid.max_access_size;
922 if (!mr->ops->valid.max_access_size) {
923 access_size_max = 4;
924 }
925
926 access_size = MAX(MIN(size, access_size_max), access_size_min);
927 for (i = 0; i < size; i += access_size) {
928 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
929 is_write)) {
930 return false;
931 }
932 }
933
934 return true;
935 }
936
937 static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
938 hwaddr addr,
939 unsigned size)
940 {
941 uint64_t data = 0;
942
943 if (mr->ops->read) {
944 access_with_adjusted_size(addr, &data, size,
945 mr->ops->impl.min_access_size,
946 mr->ops->impl.max_access_size,
947 memory_region_read_accessor, mr);
948 } else {
949 access_with_adjusted_size(addr, &data, size, 1, 4,
950 memory_region_oldmmio_read_accessor, mr);
951 }
952
953 return data;
954 }
955
956 static bool memory_region_dispatch_read(MemoryRegion *mr,
957 hwaddr addr,
958 uint64_t *pval,
959 unsigned size)
960 {
961 if (!memory_region_access_valid(mr, addr, size, false)) {
962 *pval = unassigned_mem_read(mr, addr, size);
963 return true;
964 }
965
966 *pval = memory_region_dispatch_read1(mr, addr, size);
967 adjust_endianness(mr, pval, size);
968 return false;
969 }
970
971 static bool memory_region_dispatch_write(MemoryRegion *mr,
972 hwaddr addr,
973 uint64_t data,
974 unsigned size)
975 {
976 if (!memory_region_access_valid(mr, addr, size, true)) {
977 unassigned_mem_write(mr, addr, data, size);
978 return true;
979 }
980
981 adjust_endianness(mr, &data, size);
982
983 if (mr->ops->write) {
984 access_with_adjusted_size(addr, &data, size,
985 mr->ops->impl.min_access_size,
986 mr->ops->impl.max_access_size,
987 memory_region_write_accessor, mr);
988 } else {
989 access_with_adjusted_size(addr, &data, size, 1, 4,
990 memory_region_oldmmio_write_accessor, mr);
991 }
992 return false;
993 }
994
995 void memory_region_init_io(MemoryRegion *mr,
996 Object *owner,
997 const MemoryRegionOps *ops,
998 void *opaque,
999 const char *name,
1000 uint64_t size)
1001 {
1002 memory_region_init(mr, owner, name, size);
1003 mr->ops = ops;
1004 mr->opaque = opaque;
1005 mr->terminates = true;
1006 mr->ram_addr = ~(ram_addr_t)0;
1007 }
1008
1009 void memory_region_init_ram(MemoryRegion *mr,
1010 Object *owner,
1011 const char *name,
1012 uint64_t size)
1013 {
1014 memory_region_init(mr, owner, name, size);
1015 mr->ram = true;
1016 mr->terminates = true;
1017 mr->destructor = memory_region_destructor_ram;
1018 mr->ram_addr = qemu_ram_alloc(size, mr);
1019 }
1020
1021 void memory_region_init_ram_ptr(MemoryRegion *mr,
1022 Object *owner,
1023 const char *name,
1024 uint64_t size,
1025 void *ptr)
1026 {
1027 memory_region_init(mr, owner, name, size);
1028 mr->ram = true;
1029 mr->terminates = true;
1030 mr->destructor = memory_region_destructor_ram_from_ptr;
1031 mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
1032 }
1033
1034 void memory_region_init_alias(MemoryRegion *mr,
1035 Object *owner,
1036 const char *name,
1037 MemoryRegion *orig,
1038 hwaddr offset,
1039 uint64_t size)
1040 {
1041 memory_region_init(mr, owner, name, size);
1042 memory_region_ref(orig);
1043 mr->destructor = memory_region_destructor_alias;
1044 mr->alias = orig;
1045 mr->alias_offset = offset;
1046 }
1047
1048 void memory_region_init_rom_device(MemoryRegion *mr,
1049 Object *owner,
1050 const MemoryRegionOps *ops,
1051 void *opaque,
1052 const char *name,
1053 uint64_t size)
1054 {
1055 memory_region_init(mr, owner, name, size);
1056 mr->ops = ops;
1057 mr->opaque = opaque;
1058 mr->terminates = true;
1059 mr->rom_device = true;
1060 mr->destructor = memory_region_destructor_rom_device;
1061 mr->ram_addr = qemu_ram_alloc(size, mr);
1062 }
1063
1064 void memory_region_init_iommu(MemoryRegion *mr,
1065 Object *owner,
1066 const MemoryRegionIOMMUOps *ops,
1067 const char *name,
1068 uint64_t size)
1069 {
1070 memory_region_init(mr, owner, name, size);
1071 mr->iommu_ops = ops,
1072 mr->terminates = true; /* then re-forwards */
1073 notifier_list_init(&mr->iommu_notify);
1074 }
1075
1076 void memory_region_init_reservation(MemoryRegion *mr,
1077 Object *owner,
1078 const char *name,
1079 uint64_t size)
1080 {
1081 memory_region_init_io(mr, owner, &unassigned_mem_ops, mr, name, size);
1082 }
1083
1084 void memory_region_destroy(MemoryRegion *mr)
1085 {
1086 assert(QTAILQ_EMPTY(&mr->subregions));
1087 assert(memory_region_transaction_depth == 0);
1088 mr->destructor(mr);
1089 memory_region_clear_coalescing(mr);
1090 g_free((char *)mr->name);
1091 g_free(mr->ioeventfds);
1092 }
1093
1094 Object *memory_region_owner(MemoryRegion *mr)
1095 {
1096 return mr->owner;
1097 }
1098
1099 void memory_region_ref(MemoryRegion *mr)
1100 {
1101 if (mr && mr->owner) {
1102 object_ref(mr->owner);
1103 }
1104 }
1105
1106 void memory_region_unref(MemoryRegion *mr)
1107 {
1108 if (mr && mr->owner) {
1109 object_unref(mr->owner);
1110 }
1111 }
1112
1113 uint64_t memory_region_size(MemoryRegion *mr)
1114 {
1115 if (int128_eq(mr->size, int128_2_64())) {
1116 return UINT64_MAX;
1117 }
1118 return int128_get64(mr->size);
1119 }
1120
1121 const char *memory_region_name(MemoryRegion *mr)
1122 {
1123 return mr->name;
1124 }
1125
1126 bool memory_region_is_ram(MemoryRegion *mr)
1127 {
1128 return mr->ram;
1129 }
1130
1131 bool memory_region_is_logging(MemoryRegion *mr)
1132 {
1133 return mr->dirty_log_mask;
1134 }
1135
1136 bool memory_region_is_rom(MemoryRegion *mr)
1137 {
1138 return mr->ram && mr->readonly;
1139 }
1140
1141 bool memory_region_is_iommu(MemoryRegion *mr)
1142 {
1143 return mr->iommu_ops;
1144 }
1145
1146 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1147 {
1148 notifier_list_add(&mr->iommu_notify, n);
1149 }
1150
1151 void memory_region_unregister_iommu_notifier(Notifier *n)
1152 {
1153 notifier_remove(n);
1154 }
1155
1156 void memory_region_notify_iommu(MemoryRegion *mr,
1157 IOMMUTLBEntry entry)
1158 {
1159 assert(memory_region_is_iommu(mr));
1160 notifier_list_notify(&mr->iommu_notify, &entry);
1161 }
1162
1163 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1164 {
1165 uint8_t mask = 1 << client;
1166
1167 memory_region_transaction_begin();
1168 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1169 memory_region_update_pending |= mr->enabled;
1170 memory_region_transaction_commit();
1171 }
1172
1173 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1174 hwaddr size, unsigned client)
1175 {
1176 assert(mr->terminates);
1177 return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size,
1178 1 << client);
1179 }
1180
1181 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1182 hwaddr size)
1183 {
1184 assert(mr->terminates);
1185 return cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size, -1);
1186 }
1187
1188 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1189 hwaddr size, unsigned client)
1190 {
1191 bool ret;
1192 assert(mr->terminates);
1193 ret = cpu_physical_memory_get_dirty(mr->ram_addr + addr, size,
1194 1 << client);
1195 if (ret) {
1196 cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1197 mr->ram_addr + addr + size,
1198 1 << client);
1199 }
1200 return ret;
1201 }
1202
1203
1204 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1205 {
1206 AddressSpace *as;
1207 FlatRange *fr;
1208
1209 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1210 FlatView *view = address_space_get_flatview(as);
1211 FOR_EACH_FLAT_RANGE(fr, view) {
1212 if (fr->mr == mr) {
1213 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1214 }
1215 }
1216 flatview_unref(view);
1217 }
1218 }
1219
1220 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1221 {
1222 if (mr->readonly != readonly) {
1223 memory_region_transaction_begin();
1224 mr->readonly = readonly;
1225 memory_region_update_pending |= mr->enabled;
1226 memory_region_transaction_commit();
1227 }
1228 }
1229
1230 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1231 {
1232 if (mr->romd_mode != romd_mode) {
1233 memory_region_transaction_begin();
1234 mr->romd_mode = romd_mode;
1235 memory_region_update_pending |= mr->enabled;
1236 memory_region_transaction_commit();
1237 }
1238 }
1239
1240 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1241 hwaddr size, unsigned client)
1242 {
1243 assert(mr->terminates);
1244 cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1245 mr->ram_addr + addr + size,
1246 1 << client);
1247 }
1248
1249 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1250 {
1251 if (mr->alias) {
1252 return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1253 }
1254
1255 assert(mr->terminates);
1256
1257 return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1258 }
1259
1260 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1261 {
1262 FlatView *view;
1263 FlatRange *fr;
1264 CoalescedMemoryRange *cmr;
1265 AddrRange tmp;
1266 MemoryRegionSection section;
1267
1268 view = address_space_get_flatview(as);
1269 FOR_EACH_FLAT_RANGE(fr, view) {
1270 if (fr->mr == mr) {
1271 section = (MemoryRegionSection) {
1272 .address_space = as,
1273 .offset_within_address_space = int128_get64(fr->addr.start),
1274 .size = fr->addr.size,
1275 };
1276
1277 MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1278 int128_get64(fr->addr.start),
1279 int128_get64(fr->addr.size));
1280 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1281 tmp = addrrange_shift(cmr->addr,
1282 int128_sub(fr->addr.start,
1283 int128_make64(fr->offset_in_region)));
1284 if (!addrrange_intersects(tmp, fr->addr)) {
1285 continue;
1286 }
1287 tmp = addrrange_intersection(tmp, fr->addr);
1288 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1289 int128_get64(tmp.start),
1290 int128_get64(tmp.size));
1291 }
1292 }
1293 }
1294 flatview_unref(view);
1295 }
1296
1297 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1298 {
1299 AddressSpace *as;
1300
1301 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1302 memory_region_update_coalesced_range_as(mr, as);
1303 }
1304 }
1305
1306 void memory_region_set_coalescing(MemoryRegion *mr)
1307 {
1308 memory_region_clear_coalescing(mr);
1309 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1310 }
1311
1312 void memory_region_add_coalescing(MemoryRegion *mr,
1313 hwaddr offset,
1314 uint64_t size)
1315 {
1316 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1317
1318 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1319 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1320 memory_region_update_coalesced_range(mr);
1321 memory_region_set_flush_coalesced(mr);
1322 }
1323
1324 void memory_region_clear_coalescing(MemoryRegion *mr)
1325 {
1326 CoalescedMemoryRange *cmr;
1327
1328 qemu_flush_coalesced_mmio_buffer();
1329 mr->flush_coalesced_mmio = false;
1330
1331 while (!QTAILQ_EMPTY(&mr->coalesced)) {
1332 cmr = QTAILQ_FIRST(&mr->coalesced);
1333 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1334 g_free(cmr);
1335 }
1336 memory_region_update_coalesced_range(mr);
1337 }
1338
1339 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1340 {
1341 mr->flush_coalesced_mmio = true;
1342 }
1343
1344 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1345 {
1346 qemu_flush_coalesced_mmio_buffer();
1347 if (QTAILQ_EMPTY(&mr->coalesced)) {
1348 mr->flush_coalesced_mmio = false;
1349 }
1350 }
1351
1352 void memory_region_add_eventfd(MemoryRegion *mr,
1353 hwaddr addr,
1354 unsigned size,
1355 bool match_data,
1356 uint64_t data,
1357 EventNotifier *e)
1358 {
1359 MemoryRegionIoeventfd mrfd = {
1360 .addr.start = int128_make64(addr),
1361 .addr.size = int128_make64(size),
1362 .match_data = match_data,
1363 .data = data,
1364 .e = e,
1365 };
1366 unsigned i;
1367
1368 adjust_endianness(mr, &mrfd.data, size);
1369 memory_region_transaction_begin();
1370 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1371 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1372 break;
1373 }
1374 }
1375 ++mr->ioeventfd_nb;
1376 mr->ioeventfds = g_realloc(mr->ioeventfds,
1377 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1378 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1379 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1380 mr->ioeventfds[i] = mrfd;
1381 memory_region_update_pending |= mr->enabled;
1382 memory_region_transaction_commit();
1383 }
1384
1385 void memory_region_del_eventfd(MemoryRegion *mr,
1386 hwaddr addr,
1387 unsigned size,
1388 bool match_data,
1389 uint64_t data,
1390 EventNotifier *e)
1391 {
1392 MemoryRegionIoeventfd mrfd = {
1393 .addr.start = int128_make64(addr),
1394 .addr.size = int128_make64(size),
1395 .match_data = match_data,
1396 .data = data,
1397 .e = e,
1398 };
1399 unsigned i;
1400
1401 adjust_endianness(mr, &mrfd.data, size);
1402 memory_region_transaction_begin();
1403 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1404 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1405 break;
1406 }
1407 }
1408 assert(i != mr->ioeventfd_nb);
1409 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1410 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1411 --mr->ioeventfd_nb;
1412 mr->ioeventfds = g_realloc(mr->ioeventfds,
1413 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1414 memory_region_update_pending |= mr->enabled;
1415 memory_region_transaction_commit();
1416 }
1417
1418 static void memory_region_add_subregion_common(MemoryRegion *mr,
1419 hwaddr offset,
1420 MemoryRegion *subregion)
1421 {
1422 MemoryRegion *other;
1423
1424 memory_region_transaction_begin();
1425
1426 assert(!subregion->parent);
1427 memory_region_ref(subregion);
1428 subregion->parent = mr;
1429 subregion->addr = offset;
1430 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1431 if (subregion->may_overlap || other->may_overlap) {
1432 continue;
1433 }
1434 if (int128_ge(int128_make64(offset),
1435 int128_add(int128_make64(other->addr), other->size))
1436 || int128_le(int128_add(int128_make64(offset), subregion->size),
1437 int128_make64(other->addr))) {
1438 continue;
1439 }
1440 #if 0
1441 printf("warning: subregion collision %llx/%llx (%s) "
1442 "vs %llx/%llx (%s)\n",
1443 (unsigned long long)offset,
1444 (unsigned long long)int128_get64(subregion->size),
1445 subregion->name,
1446 (unsigned long long)other->addr,
1447 (unsigned long long)int128_get64(other->size),
1448 other->name);
1449 #endif
1450 }
1451 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1452 if (subregion->priority >= other->priority) {
1453 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1454 goto done;
1455 }
1456 }
1457 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1458 done:
1459 memory_region_update_pending |= mr->enabled && subregion->enabled;
1460 memory_region_transaction_commit();
1461 }
1462
1463
1464 void memory_region_add_subregion(MemoryRegion *mr,
1465 hwaddr offset,
1466 MemoryRegion *subregion)
1467 {
1468 subregion->may_overlap = false;
1469 subregion->priority = 0;
1470 memory_region_add_subregion_common(mr, offset, subregion);
1471 }
1472
1473 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1474 hwaddr offset,
1475 MemoryRegion *subregion,
1476 int priority)
1477 {
1478 subregion->may_overlap = true;
1479 subregion->priority = priority;
1480 memory_region_add_subregion_common(mr, offset, subregion);
1481 }
1482
1483 void memory_region_del_subregion(MemoryRegion *mr,
1484 MemoryRegion *subregion)
1485 {
1486 memory_region_transaction_begin();
1487 assert(subregion->parent == mr);
1488 subregion->parent = NULL;
1489 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1490 memory_region_unref(subregion);
1491 memory_region_update_pending |= mr->enabled && subregion->enabled;
1492 memory_region_transaction_commit();
1493 }
1494
1495 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1496 {
1497 if (enabled == mr->enabled) {
1498 return;
1499 }
1500 memory_region_transaction_begin();
1501 mr->enabled = enabled;
1502 memory_region_update_pending = true;
1503 memory_region_transaction_commit();
1504 }
1505
1506 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1507 {
1508 MemoryRegion *parent = mr->parent;
1509 int priority = mr->priority;
1510 bool may_overlap = mr->may_overlap;
1511
1512 if (addr == mr->addr || !parent) {
1513 mr->addr = addr;
1514 return;
1515 }
1516
1517 memory_region_transaction_begin();
1518 memory_region_ref(mr);
1519 memory_region_del_subregion(parent, mr);
1520 if (may_overlap) {
1521 memory_region_add_subregion_overlap(parent, addr, mr, priority);
1522 } else {
1523 memory_region_add_subregion(parent, addr, mr);
1524 }
1525 memory_region_unref(mr);
1526 memory_region_transaction_commit();
1527 }
1528
1529 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1530 {
1531 assert(mr->alias);
1532
1533 if (offset == mr->alias_offset) {
1534 return;
1535 }
1536
1537 memory_region_transaction_begin();
1538 mr->alias_offset = offset;
1539 memory_region_update_pending |= mr->enabled;
1540 memory_region_transaction_commit();
1541 }
1542
1543 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1544 {
1545 return mr->ram_addr;
1546 }
1547
1548 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1549 {
1550 const AddrRange *addr = addr_;
1551 const FlatRange *fr = fr_;
1552
1553 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1554 return -1;
1555 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1556 return 1;
1557 }
1558 return 0;
1559 }
1560
1561 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
1562 {
1563 return bsearch(&addr, view->ranges, view->nr,
1564 sizeof(FlatRange), cmp_flatrange_addr);
1565 }
1566
1567 bool memory_region_present(MemoryRegion *parent, hwaddr addr)
1568 {
1569 MemoryRegion *mr = memory_region_find(parent, addr, 1).mr;
1570 if (!mr) {
1571 return false;
1572 }
1573 memory_region_unref(mr);
1574 return true;
1575 }
1576
1577 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1578 hwaddr addr, uint64_t size)
1579 {
1580 MemoryRegionSection ret = { .mr = NULL };
1581 MemoryRegion *root;
1582 AddressSpace *as;
1583 AddrRange range;
1584 FlatView *view;
1585 FlatRange *fr;
1586
1587 addr += mr->addr;
1588 for (root = mr; root->parent; ) {
1589 root = root->parent;
1590 addr += root->addr;
1591 }
1592
1593 as = memory_region_to_address_space(root);
1594 range = addrrange_make(int128_make64(addr), int128_make64(size));
1595
1596 view = address_space_get_flatview(as);
1597 fr = flatview_lookup(view, range);
1598 if (!fr) {
1599 return ret;
1600 }
1601
1602 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
1603 --fr;
1604 }
1605
1606 ret.mr = fr->mr;
1607 ret.address_space = as;
1608 range = addrrange_intersection(range, fr->addr);
1609 ret.offset_within_region = fr->offset_in_region;
1610 ret.offset_within_region += int128_get64(int128_sub(range.start,
1611 fr->addr.start));
1612 ret.size = range.size;
1613 ret.offset_within_address_space = int128_get64(range.start);
1614 ret.readonly = fr->readonly;
1615 memory_region_ref(ret.mr);
1616
1617 flatview_unref(view);
1618 return ret;
1619 }
1620
1621 void address_space_sync_dirty_bitmap(AddressSpace *as)
1622 {
1623 FlatView *view;
1624 FlatRange *fr;
1625
1626 view = address_space_get_flatview(as);
1627 FOR_EACH_FLAT_RANGE(fr, view) {
1628 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1629 }
1630 flatview_unref(view);
1631 }
1632
1633 void memory_global_dirty_log_start(void)
1634 {
1635 global_dirty_log = true;
1636 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1637 }
1638
1639 void memory_global_dirty_log_stop(void)
1640 {
1641 global_dirty_log = false;
1642 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1643 }
1644
1645 static void listener_add_address_space(MemoryListener *listener,
1646 AddressSpace *as)
1647 {
1648 FlatView *view;
1649 FlatRange *fr;
1650
1651 if (listener->address_space_filter
1652 && listener->address_space_filter != as) {
1653 return;
1654 }
1655
1656 if (global_dirty_log) {
1657 if (listener->log_global_start) {
1658 listener->log_global_start(listener);
1659 }
1660 }
1661
1662 view = address_space_get_flatview(as);
1663 FOR_EACH_FLAT_RANGE(fr, view) {
1664 MemoryRegionSection section = {
1665 .mr = fr->mr,
1666 .address_space = as,
1667 .offset_within_region = fr->offset_in_region,
1668 .size = fr->addr.size,
1669 .offset_within_address_space = int128_get64(fr->addr.start),
1670 .readonly = fr->readonly,
1671 };
1672 if (listener->region_add) {
1673 listener->region_add(listener, &section);
1674 }
1675 }
1676 flatview_unref(view);
1677 }
1678
1679 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
1680 {
1681 MemoryListener *other = NULL;
1682 AddressSpace *as;
1683
1684 listener->address_space_filter = filter;
1685 if (QTAILQ_EMPTY(&memory_listeners)
1686 || listener->priority >= QTAILQ_LAST(&memory_listeners,
1687 memory_listeners)->priority) {
1688 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1689 } else {
1690 QTAILQ_FOREACH(other, &memory_listeners, link) {
1691 if (listener->priority < other->priority) {
1692 break;
1693 }
1694 }
1695 QTAILQ_INSERT_BEFORE(other, listener, link);
1696 }
1697
1698 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1699 listener_add_address_space(listener, as);
1700 }
1701 }
1702
1703 void memory_listener_unregister(MemoryListener *listener)
1704 {
1705 QTAILQ_REMOVE(&memory_listeners, listener, link);
1706 }
1707
1708 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
1709 {
1710 if (QTAILQ_EMPTY(&address_spaces)) {
1711 memory_init();
1712 }
1713
1714 memory_region_transaction_begin();
1715 as->root = root;
1716 as->current_map = g_new(FlatView, 1);
1717 flatview_init(as->current_map);
1718 as->ioeventfd_nb = 0;
1719 as->ioeventfds = NULL;
1720 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
1721 as->name = g_strdup(name ? name : "anonymous");
1722 address_space_init_dispatch(as);
1723 memory_region_update_pending |= root->enabled;
1724 memory_region_transaction_commit();
1725 }
1726
1727 void address_space_destroy(AddressSpace *as)
1728 {
1729 /* Flush out anything from MemoryListeners listening in on this */
1730 memory_region_transaction_begin();
1731 as->root = NULL;
1732 memory_region_transaction_commit();
1733 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
1734 address_space_destroy_dispatch(as);
1735 flatview_unref(as->current_map);
1736 g_free(as->name);
1737 g_free(as->ioeventfds);
1738 }
1739
1740 bool io_mem_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size)
1741 {
1742 return memory_region_dispatch_read(mr, addr, pval, size);
1743 }
1744
1745 bool io_mem_write(MemoryRegion *mr, hwaddr addr,
1746 uint64_t val, unsigned size)
1747 {
1748 return memory_region_dispatch_write(mr, addr, val, size);
1749 }
1750
1751 typedef struct MemoryRegionList MemoryRegionList;
1752
1753 struct MemoryRegionList {
1754 const MemoryRegion *mr;
1755 bool printed;
1756 QTAILQ_ENTRY(MemoryRegionList) queue;
1757 };
1758
1759 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1760
1761 static void mtree_print_mr(fprintf_function mon_printf, void *f,
1762 const MemoryRegion *mr, unsigned int level,
1763 hwaddr base,
1764 MemoryRegionListHead *alias_print_queue)
1765 {
1766 MemoryRegionList *new_ml, *ml, *next_ml;
1767 MemoryRegionListHead submr_print_queue;
1768 const MemoryRegion *submr;
1769 unsigned int i;
1770
1771 if (!mr || !mr->enabled) {
1772 return;
1773 }
1774
1775 for (i = 0; i < level; i++) {
1776 mon_printf(f, " ");
1777 }
1778
1779 if (mr->alias) {
1780 MemoryRegionList *ml;
1781 bool found = false;
1782
1783 /* check if the alias is already in the queue */
1784 QTAILQ_FOREACH(ml, alias_print_queue, queue) {
1785 if (ml->mr == mr->alias && !ml->printed) {
1786 found = true;
1787 }
1788 }
1789
1790 if (!found) {
1791 ml = g_new(MemoryRegionList, 1);
1792 ml->mr = mr->alias;
1793 ml->printed = false;
1794 QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
1795 }
1796 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
1797 " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
1798 "-" TARGET_FMT_plx "\n",
1799 base + mr->addr,
1800 base + mr->addr
1801 + (int128_nz(mr->size) ?
1802 (hwaddr)int128_get64(int128_sub(mr->size,
1803 int128_one())) : 0),
1804 mr->priority,
1805 mr->romd_mode ? 'R' : '-',
1806 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
1807 : '-',
1808 mr->name,
1809 mr->alias->name,
1810 mr->alias_offset,
1811 mr->alias_offset
1812 + (int128_nz(mr->size) ?
1813 (hwaddr)int128_get64(int128_sub(mr->size,
1814 int128_one())) : 0));
1815 } else {
1816 mon_printf(f,
1817 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
1818 base + mr->addr,
1819 base + mr->addr
1820 + (int128_nz(mr->size) ?
1821 (hwaddr)int128_get64(int128_sub(mr->size,
1822 int128_one())) : 0),
1823 mr->priority,
1824 mr->romd_mode ? 'R' : '-',
1825 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
1826 : '-',
1827 mr->name);
1828 }
1829
1830 QTAILQ_INIT(&submr_print_queue);
1831
1832 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
1833 new_ml = g_new(MemoryRegionList, 1);
1834 new_ml->mr = submr;
1835 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1836 if (new_ml->mr->addr < ml->mr->addr ||
1837 (new_ml->mr->addr == ml->mr->addr &&
1838 new_ml->mr->priority > ml->mr->priority)) {
1839 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
1840 new_ml = NULL;
1841 break;
1842 }
1843 }
1844 if (new_ml) {
1845 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
1846 }
1847 }
1848
1849 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1850 mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
1851 alias_print_queue);
1852 }
1853
1854 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
1855 g_free(ml);
1856 }
1857 }
1858
1859 void mtree_info(fprintf_function mon_printf, void *f)
1860 {
1861 MemoryRegionListHead ml_head;
1862 MemoryRegionList *ml, *ml2;
1863 AddressSpace *as;
1864
1865 QTAILQ_INIT(&ml_head);
1866
1867 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1868 mon_printf(f, "%s\n", as->name);
1869 mtree_print_mr(mon_printf, f, as->root, 0, 0, &ml_head);
1870 }
1871
1872 mon_printf(f, "aliases\n");
1873 /* print aliased regions */
1874 QTAILQ_FOREACH(ml, &ml_head, queue) {
1875 if (!ml->printed) {
1876 mon_printf(f, "%s\n", ml->mr->name);
1877 mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
1878 }
1879 }
1880
1881 QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
1882 g_free(ml);
1883 }
1884 }