]> git.proxmox.com Git - qemu.git/blob - migration-rdma.c
rdma: qemu_rdma_post_send_control uses wrongly RDMA_WRID_MAX
[qemu.git] / migration-rdma.c
1 /*
2 * RDMA protocol and interfaces
3 *
4 * Copyright IBM, Corp. 2010-2013
5 *
6 * Authors:
7 * Michael R. Hines <mrhines@us.ibm.com>
8 * Jiuxing Liu <jl@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or
11 * later. See the COPYING file in the top-level directory.
12 *
13 */
14 #include "qemu-common.h"
15 #include "migration/migration.h"
16 #include "migration/qemu-file.h"
17 #include "exec/cpu-common.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/sockets.h"
20 #include "qemu/bitmap.h"
21 #include "block/coroutine.h"
22 #include <stdio.h>
23 #include <sys/types.h>
24 #include <sys/socket.h>
25 #include <netdb.h>
26 #include <arpa/inet.h>
27 #include <string.h>
28 #include <rdma/rdma_cma.h>
29
30 //#define DEBUG_RDMA
31 //#define DEBUG_RDMA_VERBOSE
32 //#define DEBUG_RDMA_REALLY_VERBOSE
33
34 #ifdef DEBUG_RDMA
35 #define DPRINTF(fmt, ...) \
36 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF(fmt, ...) \
39 do { } while (0)
40 #endif
41
42 #ifdef DEBUG_RDMA_VERBOSE
43 #define DDPRINTF(fmt, ...) \
44 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
45 #else
46 #define DDPRINTF(fmt, ...) \
47 do { } while (0)
48 #endif
49
50 #ifdef DEBUG_RDMA_REALLY_VERBOSE
51 #define DDDPRINTF(fmt, ...) \
52 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
53 #else
54 #define DDDPRINTF(fmt, ...) \
55 do { } while (0)
56 #endif
57
58 /*
59 * Print and error on both the Monitor and the Log file.
60 */
61 #define ERROR(errp, fmt, ...) \
62 do { \
63 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
64 if (errp && (*(errp) == NULL)) { \
65 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
66 } \
67 } while (0)
68
69 #define RDMA_RESOLVE_TIMEOUT_MS 10000
70
71 /* Do not merge data if larger than this. */
72 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
73 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
74
75 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
76
77 /*
78 * This is only for non-live state being migrated.
79 * Instead of RDMA_WRITE messages, we use RDMA_SEND
80 * messages for that state, which requires a different
81 * delivery design than main memory.
82 */
83 #define RDMA_SEND_INCREMENT 32768
84
85 /*
86 * Maximum size infiniband SEND message
87 */
88 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
89 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
90
91 #define RDMA_CONTROL_VERSION_CURRENT 1
92 /*
93 * Capabilities for negotiation.
94 */
95 #define RDMA_CAPABILITY_PIN_ALL 0x01
96
97 /*
98 * Add the other flags above to this list of known capabilities
99 * as they are introduced.
100 */
101 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
102
103 #define CHECK_ERROR_STATE() \
104 do { \
105 if (rdma->error_state) { \
106 if (!rdma->error_reported) { \
107 fprintf(stderr, "RDMA is in an error state waiting migration" \
108 " to abort!\n"); \
109 rdma->error_reported = 1; \
110 } \
111 return rdma->error_state; \
112 } \
113 } while (0);
114
115 /*
116 * A work request ID is 64-bits and we split up these bits
117 * into 3 parts:
118 *
119 * bits 0-15 : type of control message, 2^16
120 * bits 16-29: ram block index, 2^14
121 * bits 30-63: ram block chunk number, 2^34
122 *
123 * The last two bit ranges are only used for RDMA writes,
124 * in order to track their completion and potentially
125 * also track unregistration status of the message.
126 */
127 #define RDMA_WRID_TYPE_SHIFT 0UL
128 #define RDMA_WRID_BLOCK_SHIFT 16UL
129 #define RDMA_WRID_CHUNK_SHIFT 30UL
130
131 #define RDMA_WRID_TYPE_MASK \
132 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
133
134 #define RDMA_WRID_BLOCK_MASK \
135 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
136
137 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
138
139 /*
140 * RDMA migration protocol:
141 * 1. RDMA Writes (data messages, i.e. RAM)
142 * 2. IB Send/Recv (control channel messages)
143 */
144 enum {
145 RDMA_WRID_NONE = 0,
146 RDMA_WRID_RDMA_WRITE = 1,
147 RDMA_WRID_SEND_CONTROL = 2000,
148 RDMA_WRID_RECV_CONTROL = 4000,
149 };
150
151 const char *wrid_desc[] = {
152 [RDMA_WRID_NONE] = "NONE",
153 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
154 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
155 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
156 };
157
158 /*
159 * Work request IDs for IB SEND messages only (not RDMA writes).
160 * This is used by the migration protocol to transmit
161 * control messages (such as device state and registration commands)
162 *
163 * We could use more WRs, but we have enough for now.
164 */
165 enum {
166 RDMA_WRID_READY = 0,
167 RDMA_WRID_DATA,
168 RDMA_WRID_CONTROL,
169 RDMA_WRID_MAX,
170 };
171
172 /*
173 * SEND/RECV IB Control Messages.
174 */
175 enum {
176 RDMA_CONTROL_NONE = 0,
177 RDMA_CONTROL_ERROR,
178 RDMA_CONTROL_READY, /* ready to receive */
179 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
180 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
181 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
182 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
183 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
184 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
185 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
186 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
187 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
188 };
189
190 const char *control_desc[] = {
191 [RDMA_CONTROL_NONE] = "NONE",
192 [RDMA_CONTROL_ERROR] = "ERROR",
193 [RDMA_CONTROL_READY] = "READY",
194 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
195 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
196 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
197 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
198 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
199 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
200 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
201 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
202 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
203 };
204
205 /*
206 * Memory and MR structures used to represent an IB Send/Recv work request.
207 * This is *not* used for RDMA writes, only IB Send/Recv.
208 */
209 typedef struct {
210 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
211 struct ibv_mr *control_mr; /* registration metadata */
212 size_t control_len; /* length of the message */
213 uint8_t *control_curr; /* start of unconsumed bytes */
214 } RDMAWorkRequestData;
215
216 /*
217 * Negotiate RDMA capabilities during connection-setup time.
218 */
219 typedef struct {
220 uint32_t version;
221 uint32_t flags;
222 } RDMACapabilities;
223
224 static void caps_to_network(RDMACapabilities *cap)
225 {
226 cap->version = htonl(cap->version);
227 cap->flags = htonl(cap->flags);
228 }
229
230 static void network_to_caps(RDMACapabilities *cap)
231 {
232 cap->version = ntohl(cap->version);
233 cap->flags = ntohl(cap->flags);
234 }
235
236 /*
237 * Representation of a RAMBlock from an RDMA perspective.
238 * This is not transmitted, only local.
239 * This and subsequent structures cannot be linked lists
240 * because we're using a single IB message to transmit
241 * the information. It's small anyway, so a list is overkill.
242 */
243 typedef struct RDMALocalBlock {
244 uint8_t *local_host_addr; /* local virtual address */
245 uint64_t remote_host_addr; /* remote virtual address */
246 uint64_t offset;
247 uint64_t length;
248 struct ibv_mr **pmr; /* MRs for chunk-level registration */
249 struct ibv_mr *mr; /* MR for non-chunk-level registration */
250 uint32_t *remote_keys; /* rkeys for chunk-level registration */
251 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
252 int index; /* which block are we */
253 bool is_ram_block;
254 int nb_chunks;
255 unsigned long *transit_bitmap;
256 unsigned long *unregister_bitmap;
257 } RDMALocalBlock;
258
259 /*
260 * Also represents a RAMblock, but only on the dest.
261 * This gets transmitted by the dest during connection-time
262 * to the source VM and then is used to populate the
263 * corresponding RDMALocalBlock with
264 * the information needed to perform the actual RDMA.
265 */
266 typedef struct QEMU_PACKED RDMARemoteBlock {
267 uint64_t remote_host_addr;
268 uint64_t offset;
269 uint64_t length;
270 uint32_t remote_rkey;
271 uint32_t padding;
272 } RDMARemoteBlock;
273
274 static uint64_t htonll(uint64_t v)
275 {
276 union { uint32_t lv[2]; uint64_t llv; } u;
277 u.lv[0] = htonl(v >> 32);
278 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
279 return u.llv;
280 }
281
282 static uint64_t ntohll(uint64_t v) {
283 union { uint32_t lv[2]; uint64_t llv; } u;
284 u.llv = v;
285 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
286 }
287
288 static void remote_block_to_network(RDMARemoteBlock *rb)
289 {
290 rb->remote_host_addr = htonll(rb->remote_host_addr);
291 rb->offset = htonll(rb->offset);
292 rb->length = htonll(rb->length);
293 rb->remote_rkey = htonl(rb->remote_rkey);
294 }
295
296 static void network_to_remote_block(RDMARemoteBlock *rb)
297 {
298 rb->remote_host_addr = ntohll(rb->remote_host_addr);
299 rb->offset = ntohll(rb->offset);
300 rb->length = ntohll(rb->length);
301 rb->remote_rkey = ntohl(rb->remote_rkey);
302 }
303
304 /*
305 * Virtual address of the above structures used for transmitting
306 * the RAMBlock descriptions at connection-time.
307 * This structure is *not* transmitted.
308 */
309 typedef struct RDMALocalBlocks {
310 int nb_blocks;
311 bool init; /* main memory init complete */
312 RDMALocalBlock *block;
313 } RDMALocalBlocks;
314
315 /*
316 * Main data structure for RDMA state.
317 * While there is only one copy of this structure being allocated right now,
318 * this is the place where one would start if you wanted to consider
319 * having more than one RDMA connection open at the same time.
320 */
321 typedef struct RDMAContext {
322 char *host;
323 int port;
324
325 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
326
327 /*
328 * This is used by *_exchange_send() to figure out whether or not
329 * the initial "READY" message has already been received or not.
330 * This is because other functions may potentially poll() and detect
331 * the READY message before send() does, in which case we need to
332 * know if it completed.
333 */
334 int control_ready_expected;
335
336 /* number of outstanding writes */
337 int nb_sent;
338
339 /* store info about current buffer so that we can
340 merge it with future sends */
341 uint64_t current_addr;
342 uint64_t current_length;
343 /* index of ram block the current buffer belongs to */
344 int current_index;
345 /* index of the chunk in the current ram block */
346 int current_chunk;
347
348 bool pin_all;
349
350 /*
351 * infiniband-specific variables for opening the device
352 * and maintaining connection state and so forth.
353 *
354 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
355 * cm_id->verbs, cm_id->channel, and cm_id->qp.
356 */
357 struct rdma_cm_id *cm_id; /* connection manager ID */
358 struct rdma_cm_id *listen_id;
359
360 struct ibv_context *verbs;
361 struct rdma_event_channel *channel;
362 struct ibv_qp *qp; /* queue pair */
363 struct ibv_comp_channel *comp_channel; /* completion channel */
364 struct ibv_pd *pd; /* protection domain */
365 struct ibv_cq *cq; /* completion queue */
366
367 /*
368 * If a previous write failed (perhaps because of a failed
369 * memory registration, then do not attempt any future work
370 * and remember the error state.
371 */
372 int error_state;
373 int error_reported;
374
375 /*
376 * Description of ram blocks used throughout the code.
377 */
378 RDMALocalBlocks local_ram_blocks;
379 RDMARemoteBlock *block;
380
381 /*
382 * Migration on *destination* started.
383 * Then use coroutine yield function.
384 * Source runs in a thread, so we don't care.
385 */
386 int migration_started_on_destination;
387
388 int total_registrations;
389 int total_writes;
390
391 int unregister_current, unregister_next;
392 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
393
394 GHashTable *blockmap;
395 bool ipv6;
396 } RDMAContext;
397
398 /*
399 * Interface to the rest of the migration call stack.
400 */
401 typedef struct QEMUFileRDMA {
402 RDMAContext *rdma;
403 size_t len;
404 void *file;
405 } QEMUFileRDMA;
406
407 /*
408 * Main structure for IB Send/Recv control messages.
409 * This gets prepended at the beginning of every Send/Recv.
410 */
411 typedef struct QEMU_PACKED {
412 uint32_t len; /* Total length of data portion */
413 uint32_t type; /* which control command to perform */
414 uint32_t repeat; /* number of commands in data portion of same type */
415 uint32_t padding;
416 } RDMAControlHeader;
417
418 static void control_to_network(RDMAControlHeader *control)
419 {
420 control->type = htonl(control->type);
421 control->len = htonl(control->len);
422 control->repeat = htonl(control->repeat);
423 }
424
425 static void network_to_control(RDMAControlHeader *control)
426 {
427 control->type = ntohl(control->type);
428 control->len = ntohl(control->len);
429 control->repeat = ntohl(control->repeat);
430 }
431
432 /*
433 * Register a single Chunk.
434 * Information sent by the source VM to inform the dest
435 * to register an single chunk of memory before we can perform
436 * the actual RDMA operation.
437 */
438 typedef struct QEMU_PACKED {
439 union QEMU_PACKED {
440 uint64_t current_addr; /* offset into the ramblock of the chunk */
441 uint64_t chunk; /* chunk to lookup if unregistering */
442 } key;
443 uint32_t current_index; /* which ramblock the chunk belongs to */
444 uint32_t padding;
445 uint64_t chunks; /* how many sequential chunks to register */
446 } RDMARegister;
447
448 static void register_to_network(RDMARegister *reg)
449 {
450 reg->key.current_addr = htonll(reg->key.current_addr);
451 reg->current_index = htonl(reg->current_index);
452 reg->chunks = htonll(reg->chunks);
453 }
454
455 static void network_to_register(RDMARegister *reg)
456 {
457 reg->key.current_addr = ntohll(reg->key.current_addr);
458 reg->current_index = ntohl(reg->current_index);
459 reg->chunks = ntohll(reg->chunks);
460 }
461
462 typedef struct QEMU_PACKED {
463 uint32_t value; /* if zero, we will madvise() */
464 uint32_t block_idx; /* which ram block index */
465 uint64_t offset; /* where in the remote ramblock this chunk */
466 uint64_t length; /* length of the chunk */
467 } RDMACompress;
468
469 static void compress_to_network(RDMACompress *comp)
470 {
471 comp->value = htonl(comp->value);
472 comp->block_idx = htonl(comp->block_idx);
473 comp->offset = htonll(comp->offset);
474 comp->length = htonll(comp->length);
475 }
476
477 static void network_to_compress(RDMACompress *comp)
478 {
479 comp->value = ntohl(comp->value);
480 comp->block_idx = ntohl(comp->block_idx);
481 comp->offset = ntohll(comp->offset);
482 comp->length = ntohll(comp->length);
483 }
484
485 /*
486 * The result of the dest's memory registration produces an "rkey"
487 * which the source VM must reference in order to perform
488 * the RDMA operation.
489 */
490 typedef struct QEMU_PACKED {
491 uint32_t rkey;
492 uint32_t padding;
493 uint64_t host_addr;
494 } RDMARegisterResult;
495
496 static void result_to_network(RDMARegisterResult *result)
497 {
498 result->rkey = htonl(result->rkey);
499 result->host_addr = htonll(result->host_addr);
500 };
501
502 static void network_to_result(RDMARegisterResult *result)
503 {
504 result->rkey = ntohl(result->rkey);
505 result->host_addr = ntohll(result->host_addr);
506 };
507
508 const char *print_wrid(int wrid);
509 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
510 uint8_t *data, RDMAControlHeader *resp,
511 int *resp_idx,
512 int (*callback)(RDMAContext *rdma));
513
514 static inline uint64_t ram_chunk_index(uint8_t *start, uint8_t *host)
515 {
516 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
517 }
518
519 static inline uint8_t *ram_chunk_start(RDMALocalBlock *rdma_ram_block,
520 uint64_t i)
521 {
522 return (uint8_t *) (((uintptr_t) rdma_ram_block->local_host_addr)
523 + (i << RDMA_REG_CHUNK_SHIFT));
524 }
525
526 static inline uint8_t *ram_chunk_end(RDMALocalBlock *rdma_ram_block, uint64_t i)
527 {
528 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
529 (1UL << RDMA_REG_CHUNK_SHIFT);
530
531 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
532 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
533 }
534
535 return result;
536 }
537
538 static int __qemu_rdma_add_block(RDMAContext *rdma, void *host_addr,
539 ram_addr_t block_offset, uint64_t length)
540 {
541 RDMALocalBlocks *local = &rdma->local_ram_blocks;
542 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
543 (void *) block_offset);
544 RDMALocalBlock *old = local->block;
545
546 assert(block == NULL);
547
548 local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1));
549
550 if (local->nb_blocks) {
551 int x;
552
553 for (x = 0; x < local->nb_blocks; x++) {
554 g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
555 g_hash_table_insert(rdma->blockmap, (void *)old[x].offset,
556 &local->block[x]);
557 }
558 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
559 g_free(old);
560 }
561
562 block = &local->block[local->nb_blocks];
563
564 block->local_host_addr = host_addr;
565 block->offset = block_offset;
566 block->length = length;
567 block->index = local->nb_blocks;
568 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
569 block->transit_bitmap = bitmap_new(block->nb_chunks);
570 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
571 block->unregister_bitmap = bitmap_new(block->nb_chunks);
572 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
573 block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t));
574
575 block->is_ram_block = local->init ? false : true;
576
577 g_hash_table_insert(rdma->blockmap, (void *) block_offset, block);
578
579 DDPRINTF("Added Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
580 " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
581 local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
582 block->length, (uint64_t) (block->local_host_addr + block->length),
583 BITS_TO_LONGS(block->nb_chunks) *
584 sizeof(unsigned long) * 8, block->nb_chunks);
585
586 local->nb_blocks++;
587
588 return 0;
589 }
590
591 /*
592 * Memory regions need to be registered with the device and queue pairs setup
593 * in advanced before the migration starts. This tells us where the RAM blocks
594 * are so that we can register them individually.
595 */
596 static void qemu_rdma_init_one_block(void *host_addr,
597 ram_addr_t block_offset, ram_addr_t length, void *opaque)
598 {
599 __qemu_rdma_add_block(opaque, host_addr, block_offset, length);
600 }
601
602 /*
603 * Identify the RAMBlocks and their quantity. They will be references to
604 * identify chunk boundaries inside each RAMBlock and also be referenced
605 * during dynamic page registration.
606 */
607 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
608 {
609 RDMALocalBlocks *local = &rdma->local_ram_blocks;
610
611 assert(rdma->blockmap == NULL);
612 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
613 memset(local, 0, sizeof *local);
614 qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
615 DPRINTF("Allocated %d local ram block structures\n", local->nb_blocks);
616 rdma->block = (RDMARemoteBlock *) g_malloc0(sizeof(RDMARemoteBlock) *
617 rdma->local_ram_blocks.nb_blocks);
618 local->init = true;
619 return 0;
620 }
621
622 static int __qemu_rdma_delete_block(RDMAContext *rdma, ram_addr_t block_offset)
623 {
624 RDMALocalBlocks *local = &rdma->local_ram_blocks;
625 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
626 (void *) block_offset);
627 RDMALocalBlock *old = local->block;
628 int x;
629
630 assert(block);
631
632 if (block->pmr) {
633 int j;
634
635 for (j = 0; j < block->nb_chunks; j++) {
636 if (!block->pmr[j]) {
637 continue;
638 }
639 ibv_dereg_mr(block->pmr[j]);
640 rdma->total_registrations--;
641 }
642 g_free(block->pmr);
643 block->pmr = NULL;
644 }
645
646 if (block->mr) {
647 ibv_dereg_mr(block->mr);
648 rdma->total_registrations--;
649 block->mr = NULL;
650 }
651
652 g_free(block->transit_bitmap);
653 block->transit_bitmap = NULL;
654
655 g_free(block->unregister_bitmap);
656 block->unregister_bitmap = NULL;
657
658 g_free(block->remote_keys);
659 block->remote_keys = NULL;
660
661 for (x = 0; x < local->nb_blocks; x++) {
662 g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
663 }
664
665 if (local->nb_blocks > 1) {
666
667 local->block = g_malloc0(sizeof(RDMALocalBlock) *
668 (local->nb_blocks - 1));
669
670 if (block->index) {
671 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
672 }
673
674 if (block->index < (local->nb_blocks - 1)) {
675 memcpy(local->block + block->index, old + (block->index + 1),
676 sizeof(RDMALocalBlock) *
677 (local->nb_blocks - (block->index + 1)));
678 }
679 } else {
680 assert(block == local->block);
681 local->block = NULL;
682 }
683
684 DDPRINTF("Deleted Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
685 " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
686 local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
687 block->length, (uint64_t) (block->local_host_addr + block->length),
688 BITS_TO_LONGS(block->nb_chunks) *
689 sizeof(unsigned long) * 8, block->nb_chunks);
690
691 g_free(old);
692
693 local->nb_blocks--;
694
695 if (local->nb_blocks) {
696 for (x = 0; x < local->nb_blocks; x++) {
697 g_hash_table_insert(rdma->blockmap, (void *)local->block[x].offset,
698 &local->block[x]);
699 }
700 }
701
702 return 0;
703 }
704
705 /*
706 * Put in the log file which RDMA device was opened and the details
707 * associated with that device.
708 */
709 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
710 {
711 printf("%s RDMA Device opened: kernel name %s "
712 "uverbs device name %s, "
713 "infiniband_verbs class device path %s,"
714 " infiniband class device path %s\n",
715 who,
716 verbs->device->name,
717 verbs->device->dev_name,
718 verbs->device->dev_path,
719 verbs->device->ibdev_path);
720 }
721
722 /*
723 * Put in the log file the RDMA gid addressing information,
724 * useful for folks who have trouble understanding the
725 * RDMA device hierarchy in the kernel.
726 */
727 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
728 {
729 char sgid[33];
730 char dgid[33];
731 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
732 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
733 DPRINTF("%s Source GID: %s, Dest GID: %s\n", who, sgid, dgid);
734 }
735
736 /*
737 * Figure out which RDMA device corresponds to the requested IP hostname
738 * Also create the initial connection manager identifiers for opening
739 * the connection.
740 */
741 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
742 {
743 int ret;
744 struct addrinfo *res;
745 char port_str[16];
746 struct rdma_cm_event *cm_event;
747 char ip[40] = "unknown";
748 int af = rdma->ipv6 ? PF_INET6 : PF_INET;
749
750 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
751 ERROR(errp, "RDMA hostname has not been set");
752 return -1;
753 }
754
755 /* create CM channel */
756 rdma->channel = rdma_create_event_channel();
757 if (!rdma->channel) {
758 ERROR(errp, "could not create CM channel");
759 return -1;
760 }
761
762 /* create CM id */
763 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
764 if (ret) {
765 ERROR(errp, "could not create channel id");
766 goto err_resolve_create_id;
767 }
768
769 snprintf(port_str, 16, "%d", rdma->port);
770 port_str[15] = '\0';
771
772 ret = getaddrinfo(rdma->host, port_str, NULL, &res);
773 if (ret < 0) {
774 ERROR(errp, "could not getaddrinfo address %s", rdma->host);
775 goto err_resolve_get_addr;
776 }
777
778 inet_ntop(af, &((struct sockaddr_in *) res->ai_addr)->sin_addr,
779 ip, sizeof ip);
780 DPRINTF("%s => %s\n", rdma->host, ip);
781
782 /* resolve the first address */
783 ret = rdma_resolve_addr(rdma->cm_id, NULL, res->ai_addr,
784 RDMA_RESOLVE_TIMEOUT_MS);
785 if (ret) {
786 ERROR(errp, "could not resolve address %s", rdma->host);
787 goto err_resolve_get_addr;
788 }
789
790 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
791
792 ret = rdma_get_cm_event(rdma->channel, &cm_event);
793 if (ret) {
794 ERROR(errp, "could not perform event_addr_resolved");
795 goto err_resolve_get_addr;
796 }
797
798 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
799 ERROR(errp, "result not equal to event_addr_resolved %s",
800 rdma_event_str(cm_event->event));
801 perror("rdma_resolve_addr");
802 goto err_resolve_get_addr;
803 }
804 rdma_ack_cm_event(cm_event);
805
806 /* resolve route */
807 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
808 if (ret) {
809 ERROR(errp, "could not resolve rdma route");
810 goto err_resolve_get_addr;
811 }
812
813 ret = rdma_get_cm_event(rdma->channel, &cm_event);
814 if (ret) {
815 ERROR(errp, "could not perform event_route_resolved");
816 goto err_resolve_get_addr;
817 }
818 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
819 ERROR(errp, "result not equal to event_route_resolved: %s",
820 rdma_event_str(cm_event->event));
821 rdma_ack_cm_event(cm_event);
822 goto err_resolve_get_addr;
823 }
824 rdma_ack_cm_event(cm_event);
825 rdma->verbs = rdma->cm_id->verbs;
826 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
827 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
828 return 0;
829
830 err_resolve_get_addr:
831 rdma_destroy_id(rdma->cm_id);
832 rdma->cm_id = NULL;
833 err_resolve_create_id:
834 rdma_destroy_event_channel(rdma->channel);
835 rdma->channel = NULL;
836
837 return -1;
838 }
839
840 /*
841 * Create protection domain and completion queues
842 */
843 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
844 {
845 /* allocate pd */
846 rdma->pd = ibv_alloc_pd(rdma->verbs);
847 if (!rdma->pd) {
848 fprintf(stderr, "failed to allocate protection domain\n");
849 return -1;
850 }
851
852 /* create completion channel */
853 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
854 if (!rdma->comp_channel) {
855 fprintf(stderr, "failed to allocate completion channel\n");
856 goto err_alloc_pd_cq;
857 }
858
859 /*
860 * Completion queue can be filled by both read and write work requests,
861 * so must reflect the sum of both possible queue sizes.
862 */
863 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
864 NULL, rdma->comp_channel, 0);
865 if (!rdma->cq) {
866 fprintf(stderr, "failed to allocate completion queue\n");
867 goto err_alloc_pd_cq;
868 }
869
870 return 0;
871
872 err_alloc_pd_cq:
873 if (rdma->pd) {
874 ibv_dealloc_pd(rdma->pd);
875 }
876 if (rdma->comp_channel) {
877 ibv_destroy_comp_channel(rdma->comp_channel);
878 }
879 rdma->pd = NULL;
880 rdma->comp_channel = NULL;
881 return -1;
882
883 }
884
885 /*
886 * Create queue pairs.
887 */
888 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
889 {
890 struct ibv_qp_init_attr attr = { 0 };
891 int ret;
892
893 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
894 attr.cap.max_recv_wr = 3;
895 attr.cap.max_send_sge = 1;
896 attr.cap.max_recv_sge = 1;
897 attr.send_cq = rdma->cq;
898 attr.recv_cq = rdma->cq;
899 attr.qp_type = IBV_QPT_RC;
900
901 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
902 if (ret) {
903 return -1;
904 }
905
906 rdma->qp = rdma->cm_id->qp;
907 return 0;
908 }
909
910 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
911 {
912 int i;
913 RDMALocalBlocks *local = &rdma->local_ram_blocks;
914
915 for (i = 0; i < local->nb_blocks; i++) {
916 local->block[i].mr =
917 ibv_reg_mr(rdma->pd,
918 local->block[i].local_host_addr,
919 local->block[i].length,
920 IBV_ACCESS_LOCAL_WRITE |
921 IBV_ACCESS_REMOTE_WRITE
922 );
923 if (!local->block[i].mr) {
924 perror("Failed to register local dest ram block!\n");
925 break;
926 }
927 rdma->total_registrations++;
928 }
929
930 if (i >= local->nb_blocks) {
931 return 0;
932 }
933
934 for (i--; i >= 0; i--) {
935 ibv_dereg_mr(local->block[i].mr);
936 rdma->total_registrations--;
937 }
938
939 return -1;
940
941 }
942
943 /*
944 * Find the ram block that corresponds to the page requested to be
945 * transmitted by QEMU.
946 *
947 * Once the block is found, also identify which 'chunk' within that
948 * block that the page belongs to.
949 *
950 * This search cannot fail or the migration will fail.
951 */
952 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
953 uint64_t block_offset,
954 uint64_t offset,
955 uint64_t length,
956 uint64_t *block_index,
957 uint64_t *chunk_index)
958 {
959 uint64_t current_addr = block_offset + offset;
960 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
961 (void *) block_offset);
962 assert(block);
963 assert(current_addr >= block->offset);
964 assert((current_addr + length) <= (block->offset + block->length));
965
966 *block_index = block->index;
967 *chunk_index = ram_chunk_index(block->local_host_addr,
968 block->local_host_addr + (current_addr - block->offset));
969
970 return 0;
971 }
972
973 /*
974 * Register a chunk with IB. If the chunk was already registered
975 * previously, then skip.
976 *
977 * Also return the keys associated with the registration needed
978 * to perform the actual RDMA operation.
979 */
980 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
981 RDMALocalBlock *block, uint8_t *host_addr,
982 uint32_t *lkey, uint32_t *rkey, int chunk,
983 uint8_t *chunk_start, uint8_t *chunk_end)
984 {
985 if (block->mr) {
986 if (lkey) {
987 *lkey = block->mr->lkey;
988 }
989 if (rkey) {
990 *rkey = block->mr->rkey;
991 }
992 return 0;
993 }
994
995 /* allocate memory to store chunk MRs */
996 if (!block->pmr) {
997 block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *));
998 if (!block->pmr) {
999 return -1;
1000 }
1001 }
1002
1003 /*
1004 * If 'rkey', then we're the destination, so grant access to the source.
1005 *
1006 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1007 */
1008 if (!block->pmr[chunk]) {
1009 uint64_t len = chunk_end - chunk_start;
1010
1011 DDPRINTF("Registering %" PRIu64 " bytes @ %p\n",
1012 len, chunk_start);
1013
1014 block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1015 chunk_start, len,
1016 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1017 IBV_ACCESS_REMOTE_WRITE) : 0));
1018
1019 if (!block->pmr[chunk]) {
1020 perror("Failed to register chunk!");
1021 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1022 " start %" PRIu64 " end %" PRIu64 " host %" PRIu64
1023 " local %" PRIu64 " registrations: %d\n",
1024 block->index, chunk, (uint64_t) chunk_start,
1025 (uint64_t) chunk_end, (uint64_t) host_addr,
1026 (uint64_t) block->local_host_addr,
1027 rdma->total_registrations);
1028 return -1;
1029 }
1030 rdma->total_registrations++;
1031 }
1032
1033 if (lkey) {
1034 *lkey = block->pmr[chunk]->lkey;
1035 }
1036 if (rkey) {
1037 *rkey = block->pmr[chunk]->rkey;
1038 }
1039 return 0;
1040 }
1041
1042 /*
1043 * Register (at connection time) the memory used for control
1044 * channel messages.
1045 */
1046 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1047 {
1048 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1049 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1050 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1051 if (rdma->wr_data[idx].control_mr) {
1052 rdma->total_registrations++;
1053 return 0;
1054 }
1055 fprintf(stderr, "qemu_rdma_reg_control failed!\n");
1056 return -1;
1057 }
1058
1059 const char *print_wrid(int wrid)
1060 {
1061 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1062 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1063 }
1064 return wrid_desc[wrid];
1065 }
1066
1067 /*
1068 * RDMA requires memory registration (mlock/pinning), but this is not good for
1069 * overcommitment.
1070 *
1071 * In preparation for the future where LRU information or workload-specific
1072 * writable writable working set memory access behavior is available to QEMU
1073 * it would be nice to have in place the ability to UN-register/UN-pin
1074 * particular memory regions from the RDMA hardware when it is determine that
1075 * those regions of memory will likely not be accessed again in the near future.
1076 *
1077 * While we do not yet have such information right now, the following
1078 * compile-time option allows us to perform a non-optimized version of this
1079 * behavior.
1080 *
1081 * By uncommenting this option, you will cause *all* RDMA transfers to be
1082 * unregistered immediately after the transfer completes on both sides of the
1083 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1084 *
1085 * This will have a terrible impact on migration performance, so until future
1086 * workload information or LRU information is available, do not attempt to use
1087 * this feature except for basic testing.
1088 */
1089 //#define RDMA_UNREGISTRATION_EXAMPLE
1090
1091 /*
1092 * Perform a non-optimized memory unregistration after every transfer
1093 * for demonsration purposes, only if pin-all is not requested.
1094 *
1095 * Potential optimizations:
1096 * 1. Start a new thread to run this function continuously
1097 - for bit clearing
1098 - and for receipt of unregister messages
1099 * 2. Use an LRU.
1100 * 3. Use workload hints.
1101 */
1102 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1103 {
1104 while (rdma->unregistrations[rdma->unregister_current]) {
1105 int ret;
1106 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1107 uint64_t chunk =
1108 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1109 uint64_t index =
1110 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1111 RDMALocalBlock *block =
1112 &(rdma->local_ram_blocks.block[index]);
1113 RDMARegister reg = { .current_index = index };
1114 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1115 };
1116 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1117 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1118 .repeat = 1,
1119 };
1120
1121 DDPRINTF("Processing unregister for chunk: %" PRIu64
1122 " at position %d\n", chunk, rdma->unregister_current);
1123
1124 rdma->unregistrations[rdma->unregister_current] = 0;
1125 rdma->unregister_current++;
1126
1127 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1128 rdma->unregister_current = 0;
1129 }
1130
1131
1132 /*
1133 * Unregistration is speculative (because migration is single-threaded
1134 * and we cannot break the protocol's inifinband message ordering).
1135 * Thus, if the memory is currently being used for transmission,
1136 * then abort the attempt to unregister and try again
1137 * later the next time a completion is received for this memory.
1138 */
1139 clear_bit(chunk, block->unregister_bitmap);
1140
1141 if (test_bit(chunk, block->transit_bitmap)) {
1142 DDPRINTF("Cannot unregister inflight chunk: %" PRIu64 "\n", chunk);
1143 continue;
1144 }
1145
1146 DDPRINTF("Sending unregister for chunk: %" PRIu64 "\n", chunk);
1147
1148 ret = ibv_dereg_mr(block->pmr[chunk]);
1149 block->pmr[chunk] = NULL;
1150 block->remote_keys[chunk] = 0;
1151
1152 if (ret != 0) {
1153 perror("unregistration chunk failed");
1154 return -ret;
1155 }
1156 rdma->total_registrations--;
1157
1158 reg.key.chunk = chunk;
1159 register_to_network(&reg);
1160 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1161 &resp, NULL, NULL);
1162 if (ret < 0) {
1163 return ret;
1164 }
1165
1166 DDPRINTF("Unregister for chunk: %" PRIu64 " complete.\n", chunk);
1167 }
1168
1169 return 0;
1170 }
1171
1172 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1173 uint64_t chunk)
1174 {
1175 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1176
1177 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1178 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1179
1180 return result;
1181 }
1182
1183 /*
1184 * Set bit for unregistration in the next iteration.
1185 * We cannot transmit right here, but will unpin later.
1186 */
1187 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1188 uint64_t chunk, uint64_t wr_id)
1189 {
1190 if (rdma->unregistrations[rdma->unregister_next] != 0) {
1191 fprintf(stderr, "rdma migration: queue is full!\n");
1192 } else {
1193 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1194
1195 if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1196 DDPRINTF("Appending unregister chunk %" PRIu64
1197 " at position %d\n", chunk, rdma->unregister_next);
1198
1199 rdma->unregistrations[rdma->unregister_next++] =
1200 qemu_rdma_make_wrid(wr_id, index, chunk);
1201
1202 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1203 rdma->unregister_next = 0;
1204 }
1205 } else {
1206 DDPRINTF("Unregister chunk %" PRIu64 " already in queue.\n",
1207 chunk);
1208 }
1209 }
1210 }
1211
1212 /*
1213 * Consult the connection manager to see a work request
1214 * (of any kind) has completed.
1215 * Return the work request ID that completed.
1216 */
1217 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out)
1218 {
1219 int ret;
1220 struct ibv_wc wc;
1221 uint64_t wr_id;
1222
1223 ret = ibv_poll_cq(rdma->cq, 1, &wc);
1224
1225 if (!ret) {
1226 *wr_id_out = RDMA_WRID_NONE;
1227 return 0;
1228 }
1229
1230 if (ret < 0) {
1231 fprintf(stderr, "ibv_poll_cq return %d!\n", ret);
1232 return ret;
1233 }
1234
1235 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1236
1237 if (wc.status != IBV_WC_SUCCESS) {
1238 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1239 wc.status, ibv_wc_status_str(wc.status));
1240 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1241
1242 return -1;
1243 }
1244
1245 if (rdma->control_ready_expected &&
1246 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1247 DDDPRINTF("completion %s #%" PRId64 " received (%" PRId64 ")"
1248 " left %d\n", wrid_desc[RDMA_WRID_RECV_CONTROL],
1249 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1250 rdma->control_ready_expected = 0;
1251 }
1252
1253 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1254 uint64_t chunk =
1255 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1256 uint64_t index =
1257 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1258 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1259
1260 DDDPRINTF("completions %s (%" PRId64 ") left %d, "
1261 "block %" PRIu64 ", chunk: %" PRIu64 " %p %p\n",
1262 print_wrid(wr_id), wr_id, rdma->nb_sent, index, chunk,
1263 block->local_host_addr, (void *)block->remote_host_addr);
1264
1265 clear_bit(chunk, block->transit_bitmap);
1266
1267 if (rdma->nb_sent > 0) {
1268 rdma->nb_sent--;
1269 }
1270
1271 if (!rdma->pin_all) {
1272 /*
1273 * FYI: If one wanted to signal a specific chunk to be unregistered
1274 * using LRU or workload-specific information, this is the function
1275 * you would call to do so. That chunk would then get asynchronously
1276 * unregistered later.
1277 */
1278 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1279 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1280 #endif
1281 }
1282 } else {
1283 DDDPRINTF("other completion %s (%" PRId64 ") received left %d\n",
1284 print_wrid(wr_id), wr_id, rdma->nb_sent);
1285 }
1286
1287 *wr_id_out = wc.wr_id;
1288
1289 return 0;
1290 }
1291
1292 /*
1293 * Block until the next work request has completed.
1294 *
1295 * First poll to see if a work request has already completed,
1296 * otherwise block.
1297 *
1298 * If we encounter completed work requests for IDs other than
1299 * the one we're interested in, then that's generally an error.
1300 *
1301 * The only exception is actual RDMA Write completions. These
1302 * completions only need to be recorded, but do not actually
1303 * need further processing.
1304 */
1305 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested)
1306 {
1307 int num_cq_events = 0, ret = 0;
1308 struct ibv_cq *cq;
1309 void *cq_ctx;
1310 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1311
1312 if (ibv_req_notify_cq(rdma->cq, 0)) {
1313 return -1;
1314 }
1315 /* poll cq first */
1316 while (wr_id != wrid_requested) {
1317 ret = qemu_rdma_poll(rdma, &wr_id_in);
1318 if (ret < 0) {
1319 return ret;
1320 }
1321
1322 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1323
1324 if (wr_id == RDMA_WRID_NONE) {
1325 break;
1326 }
1327 if (wr_id != wrid_requested) {
1328 DDDPRINTF("A Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1329 print_wrid(wrid_requested),
1330 wrid_requested, print_wrid(wr_id), wr_id);
1331 }
1332 }
1333
1334 if (wr_id == wrid_requested) {
1335 return 0;
1336 }
1337
1338 while (1) {
1339 /*
1340 * Coroutine doesn't start until process_incoming_migration()
1341 * so don't yield unless we know we're running inside of a coroutine.
1342 */
1343 if (rdma->migration_started_on_destination) {
1344 yield_until_fd_readable(rdma->comp_channel->fd);
1345 }
1346
1347 if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
1348 perror("ibv_get_cq_event");
1349 goto err_block_for_wrid;
1350 }
1351
1352 num_cq_events++;
1353
1354 if (ibv_req_notify_cq(cq, 0)) {
1355 goto err_block_for_wrid;
1356 }
1357
1358 while (wr_id != wrid_requested) {
1359 ret = qemu_rdma_poll(rdma, &wr_id_in);
1360 if (ret < 0) {
1361 goto err_block_for_wrid;
1362 }
1363
1364 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1365
1366 if (wr_id == RDMA_WRID_NONE) {
1367 break;
1368 }
1369 if (wr_id != wrid_requested) {
1370 DDDPRINTF("B Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1371 print_wrid(wrid_requested), wrid_requested,
1372 print_wrid(wr_id), wr_id);
1373 }
1374 }
1375
1376 if (wr_id == wrid_requested) {
1377 goto success_block_for_wrid;
1378 }
1379 }
1380
1381 success_block_for_wrid:
1382 if (num_cq_events) {
1383 ibv_ack_cq_events(cq, num_cq_events);
1384 }
1385 return 0;
1386
1387 err_block_for_wrid:
1388 if (num_cq_events) {
1389 ibv_ack_cq_events(cq, num_cq_events);
1390 }
1391 return ret;
1392 }
1393
1394 /*
1395 * Post a SEND message work request for the control channel
1396 * containing some data and block until the post completes.
1397 */
1398 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1399 RDMAControlHeader *head)
1400 {
1401 int ret = 0;
1402 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1403 struct ibv_send_wr *bad_wr;
1404 struct ibv_sge sge = {
1405 .addr = (uint64_t)(wr->control),
1406 .length = head->len + sizeof(RDMAControlHeader),
1407 .lkey = wr->control_mr->lkey,
1408 };
1409 struct ibv_send_wr send_wr = {
1410 .wr_id = RDMA_WRID_SEND_CONTROL,
1411 .opcode = IBV_WR_SEND,
1412 .send_flags = IBV_SEND_SIGNALED,
1413 .sg_list = &sge,
1414 .num_sge = 1,
1415 };
1416
1417 DDDPRINTF("CONTROL: sending %s..\n", control_desc[head->type]);
1418
1419 /*
1420 * We don't actually need to do a memcpy() in here if we used
1421 * the "sge" properly, but since we're only sending control messages
1422 * (not RAM in a performance-critical path), then its OK for now.
1423 *
1424 * The copy makes the RDMAControlHeader simpler to manipulate
1425 * for the time being.
1426 */
1427 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1428 control_to_network((void *) wr->control);
1429
1430 if (buf) {
1431 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1432 }
1433
1434
1435 if (ibv_post_send(rdma->qp, &send_wr, &bad_wr)) {
1436 return -1;
1437 }
1438
1439 if (ret < 0) {
1440 fprintf(stderr, "Failed to use post IB SEND for control!\n");
1441 return ret;
1442 }
1443
1444 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL);
1445 if (ret < 0) {
1446 fprintf(stderr, "rdma migration: send polling control error!\n");
1447 }
1448
1449 return ret;
1450 }
1451
1452 /*
1453 * Post a RECV work request in anticipation of some future receipt
1454 * of data on the control channel.
1455 */
1456 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1457 {
1458 struct ibv_recv_wr *bad_wr;
1459 struct ibv_sge sge = {
1460 .addr = (uint64_t)(rdma->wr_data[idx].control),
1461 .length = RDMA_CONTROL_MAX_BUFFER,
1462 .lkey = rdma->wr_data[idx].control_mr->lkey,
1463 };
1464
1465 struct ibv_recv_wr recv_wr = {
1466 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1467 .sg_list = &sge,
1468 .num_sge = 1,
1469 };
1470
1471
1472 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1473 return -1;
1474 }
1475
1476 return 0;
1477 }
1478
1479 /*
1480 * Block and wait for a RECV control channel message to arrive.
1481 */
1482 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1483 RDMAControlHeader *head, int expecting, int idx)
1484 {
1485 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx);
1486
1487 if (ret < 0) {
1488 fprintf(stderr, "rdma migration: recv polling control error!\n");
1489 return ret;
1490 }
1491
1492 network_to_control((void *) rdma->wr_data[idx].control);
1493 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1494
1495 DDDPRINTF("CONTROL: %s receiving...\n", control_desc[expecting]);
1496
1497 if (expecting == RDMA_CONTROL_NONE) {
1498 DDDPRINTF("Surprise: got %s (%d)\n",
1499 control_desc[head->type], head->type);
1500 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1501 fprintf(stderr, "Was expecting a %s (%d) control message"
1502 ", but got: %s (%d), length: %d\n",
1503 control_desc[expecting], expecting,
1504 control_desc[head->type], head->type, head->len);
1505 return -EIO;
1506 }
1507
1508 return 0;
1509 }
1510
1511 /*
1512 * When a RECV work request has completed, the work request's
1513 * buffer is pointed at the header.
1514 *
1515 * This will advance the pointer to the data portion
1516 * of the control message of the work request's buffer that
1517 * was populated after the work request finished.
1518 */
1519 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1520 RDMAControlHeader *head)
1521 {
1522 rdma->wr_data[idx].control_len = head->len;
1523 rdma->wr_data[idx].control_curr =
1524 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1525 }
1526
1527 /*
1528 * This is an 'atomic' high-level operation to deliver a single, unified
1529 * control-channel message.
1530 *
1531 * Additionally, if the user is expecting some kind of reply to this message,
1532 * they can request a 'resp' response message be filled in by posting an
1533 * additional work request on behalf of the user and waiting for an additional
1534 * completion.
1535 *
1536 * The extra (optional) response is used during registration to us from having
1537 * to perform an *additional* exchange of message just to provide a response by
1538 * instead piggy-backing on the acknowledgement.
1539 */
1540 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1541 uint8_t *data, RDMAControlHeader *resp,
1542 int *resp_idx,
1543 int (*callback)(RDMAContext *rdma))
1544 {
1545 int ret = 0;
1546
1547 /*
1548 * Wait until the dest is ready before attempting to deliver the message
1549 * by waiting for a READY message.
1550 */
1551 if (rdma->control_ready_expected) {
1552 RDMAControlHeader resp;
1553 ret = qemu_rdma_exchange_get_response(rdma,
1554 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1555 if (ret < 0) {
1556 return ret;
1557 }
1558 }
1559
1560 /*
1561 * If the user is expecting a response, post a WR in anticipation of it.
1562 */
1563 if (resp) {
1564 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1565 if (ret) {
1566 fprintf(stderr, "rdma migration: error posting"
1567 " extra control recv for anticipated result!");
1568 return ret;
1569 }
1570 }
1571
1572 /*
1573 * Post a WR to replace the one we just consumed for the READY message.
1574 */
1575 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1576 if (ret) {
1577 fprintf(stderr, "rdma migration: error posting first control recv!");
1578 return ret;
1579 }
1580
1581 /*
1582 * Deliver the control message that was requested.
1583 */
1584 ret = qemu_rdma_post_send_control(rdma, data, head);
1585
1586 if (ret < 0) {
1587 fprintf(stderr, "Failed to send control buffer!\n");
1588 return ret;
1589 }
1590
1591 /*
1592 * If we're expecting a response, block and wait for it.
1593 */
1594 if (resp) {
1595 if (callback) {
1596 DDPRINTF("Issuing callback before receiving response...\n");
1597 ret = callback(rdma);
1598 if (ret < 0) {
1599 return ret;
1600 }
1601 }
1602
1603 DDPRINTF("Waiting for response %s\n", control_desc[resp->type]);
1604 ret = qemu_rdma_exchange_get_response(rdma, resp,
1605 resp->type, RDMA_WRID_DATA);
1606
1607 if (ret < 0) {
1608 return ret;
1609 }
1610
1611 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1612 if (resp_idx) {
1613 *resp_idx = RDMA_WRID_DATA;
1614 }
1615 DDPRINTF("Response %s received.\n", control_desc[resp->type]);
1616 }
1617
1618 rdma->control_ready_expected = 1;
1619
1620 return 0;
1621 }
1622
1623 /*
1624 * This is an 'atomic' high-level operation to receive a single, unified
1625 * control-channel message.
1626 */
1627 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1628 int expecting)
1629 {
1630 RDMAControlHeader ready = {
1631 .len = 0,
1632 .type = RDMA_CONTROL_READY,
1633 .repeat = 1,
1634 };
1635 int ret;
1636
1637 /*
1638 * Inform the source that we're ready to receive a message.
1639 */
1640 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1641
1642 if (ret < 0) {
1643 fprintf(stderr, "Failed to send control buffer!\n");
1644 return ret;
1645 }
1646
1647 /*
1648 * Block and wait for the message.
1649 */
1650 ret = qemu_rdma_exchange_get_response(rdma, head,
1651 expecting, RDMA_WRID_READY);
1652
1653 if (ret < 0) {
1654 return ret;
1655 }
1656
1657 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1658
1659 /*
1660 * Post a new RECV work request to replace the one we just consumed.
1661 */
1662 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1663 if (ret) {
1664 fprintf(stderr, "rdma migration: error posting second control recv!");
1665 return ret;
1666 }
1667
1668 return 0;
1669 }
1670
1671 /*
1672 * Write an actual chunk of memory using RDMA.
1673 *
1674 * If we're using dynamic registration on the dest-side, we have to
1675 * send a registration command first.
1676 */
1677 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1678 int current_index, uint64_t current_addr,
1679 uint64_t length)
1680 {
1681 struct ibv_sge sge;
1682 struct ibv_send_wr send_wr = { 0 };
1683 struct ibv_send_wr *bad_wr;
1684 int reg_result_idx, ret, count = 0;
1685 uint64_t chunk, chunks;
1686 uint8_t *chunk_start, *chunk_end;
1687 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1688 RDMARegister reg;
1689 RDMARegisterResult *reg_result;
1690 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1691 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1692 .type = RDMA_CONTROL_REGISTER_REQUEST,
1693 .repeat = 1,
1694 };
1695
1696 retry:
1697 sge.addr = (uint64_t)(block->local_host_addr +
1698 (current_addr - block->offset));
1699 sge.length = length;
1700
1701 chunk = ram_chunk_index(block->local_host_addr, (uint8_t *) sge.addr);
1702 chunk_start = ram_chunk_start(block, chunk);
1703
1704 if (block->is_ram_block) {
1705 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1706
1707 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1708 chunks--;
1709 }
1710 } else {
1711 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1712
1713 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1714 chunks--;
1715 }
1716 }
1717
1718 DDPRINTF("Writing %" PRIu64 " chunks, (%" PRIu64 " MB)\n",
1719 chunks + 1, (chunks + 1) * (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
1720
1721 chunk_end = ram_chunk_end(block, chunk + chunks);
1722
1723 if (!rdma->pin_all) {
1724 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1725 qemu_rdma_unregister_waiting(rdma);
1726 #endif
1727 }
1728
1729 while (test_bit(chunk, block->transit_bitmap)) {
1730 (void)count;
1731 DDPRINTF("(%d) Not clobbering: block: %d chunk %" PRIu64
1732 " current %" PRIu64 " len %" PRIu64 " %d %d\n",
1733 count++, current_index, chunk,
1734 sge.addr, length, rdma->nb_sent, block->nb_chunks);
1735
1736 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE);
1737
1738 if (ret < 0) {
1739 fprintf(stderr, "Failed to Wait for previous write to complete "
1740 "block %d chunk %" PRIu64
1741 " current %" PRIu64 " len %" PRIu64 " %d\n",
1742 current_index, chunk, sge.addr, length, rdma->nb_sent);
1743 return ret;
1744 }
1745 }
1746
1747 if (!rdma->pin_all || !block->is_ram_block) {
1748 if (!block->remote_keys[chunk]) {
1749 /*
1750 * This chunk has not yet been registered, so first check to see
1751 * if the entire chunk is zero. If so, tell the other size to
1752 * memset() + madvise() the entire chunk without RDMA.
1753 */
1754
1755 if (can_use_buffer_find_nonzero_offset((void *)sge.addr, length)
1756 && buffer_find_nonzero_offset((void *)sge.addr,
1757 length) == length) {
1758 RDMACompress comp = {
1759 .offset = current_addr,
1760 .value = 0,
1761 .block_idx = current_index,
1762 .length = length,
1763 };
1764
1765 head.len = sizeof(comp);
1766 head.type = RDMA_CONTROL_COMPRESS;
1767
1768 DDPRINTF("Entire chunk is zero, sending compress: %"
1769 PRIu64 " for %d "
1770 "bytes, index: %d, offset: %" PRId64 "...\n",
1771 chunk, sge.length, current_index, current_addr);
1772
1773 compress_to_network(&comp);
1774 ret = qemu_rdma_exchange_send(rdma, &head,
1775 (uint8_t *) &comp, NULL, NULL, NULL);
1776
1777 if (ret < 0) {
1778 return -EIO;
1779 }
1780
1781 acct_update_position(f, sge.length, true);
1782
1783 return 1;
1784 }
1785
1786 /*
1787 * Otherwise, tell other side to register.
1788 */
1789 reg.current_index = current_index;
1790 if (block->is_ram_block) {
1791 reg.key.current_addr = current_addr;
1792 } else {
1793 reg.key.chunk = chunk;
1794 }
1795 reg.chunks = chunks;
1796
1797 DDPRINTF("Sending registration request chunk %" PRIu64 " for %d "
1798 "bytes, index: %d, offset: %" PRId64 "...\n",
1799 chunk, sge.length, current_index, current_addr);
1800
1801 register_to_network(&reg);
1802 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1803 &resp, &reg_result_idx, NULL);
1804 if (ret < 0) {
1805 return ret;
1806 }
1807
1808 /* try to overlap this single registration with the one we sent. */
1809 if (qemu_rdma_register_and_get_keys(rdma, block,
1810 (uint8_t *) sge.addr,
1811 &sge.lkey, NULL, chunk,
1812 chunk_start, chunk_end)) {
1813 fprintf(stderr, "cannot get lkey!\n");
1814 return -EINVAL;
1815 }
1816
1817 reg_result = (RDMARegisterResult *)
1818 rdma->wr_data[reg_result_idx].control_curr;
1819
1820 network_to_result(reg_result);
1821
1822 DDPRINTF("Received registration result:"
1823 " my key: %x their key %x, chunk %" PRIu64 "\n",
1824 block->remote_keys[chunk], reg_result->rkey, chunk);
1825
1826 block->remote_keys[chunk] = reg_result->rkey;
1827 block->remote_host_addr = reg_result->host_addr;
1828 } else {
1829 /* already registered before */
1830 if (qemu_rdma_register_and_get_keys(rdma, block,
1831 (uint8_t *)sge.addr,
1832 &sge.lkey, NULL, chunk,
1833 chunk_start, chunk_end)) {
1834 fprintf(stderr, "cannot get lkey!\n");
1835 return -EINVAL;
1836 }
1837 }
1838
1839 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
1840 } else {
1841 send_wr.wr.rdma.rkey = block->remote_rkey;
1842
1843 if (qemu_rdma_register_and_get_keys(rdma, block, (uint8_t *)sge.addr,
1844 &sge.lkey, NULL, chunk,
1845 chunk_start, chunk_end)) {
1846 fprintf(stderr, "cannot get lkey!\n");
1847 return -EINVAL;
1848 }
1849 }
1850
1851 /*
1852 * Encode the ram block index and chunk within this wrid.
1853 * We will use this information at the time of completion
1854 * to figure out which bitmap to check against and then which
1855 * chunk in the bitmap to look for.
1856 */
1857 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
1858 current_index, chunk);
1859
1860 send_wr.opcode = IBV_WR_RDMA_WRITE;
1861 send_wr.send_flags = IBV_SEND_SIGNALED;
1862 send_wr.sg_list = &sge;
1863 send_wr.num_sge = 1;
1864 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
1865 (current_addr - block->offset);
1866
1867 DDDPRINTF("Posting chunk: %" PRIu64 ", addr: %lx"
1868 " remote: %lx, bytes %" PRIu32 "\n",
1869 chunk, sge.addr, send_wr.wr.rdma.remote_addr,
1870 sge.length);
1871
1872 /*
1873 * ibv_post_send() does not return negative error numbers,
1874 * per the specification they are positive - no idea why.
1875 */
1876 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1877
1878 if (ret == ENOMEM) {
1879 DDPRINTF("send queue is full. wait a little....\n");
1880 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE);
1881 if (ret < 0) {
1882 fprintf(stderr, "rdma migration: failed to make "
1883 "room in full send queue! %d\n", ret);
1884 return ret;
1885 }
1886
1887 goto retry;
1888
1889 } else if (ret > 0) {
1890 perror("rdma migration: post rdma write failed");
1891 return -ret;
1892 }
1893
1894 set_bit(chunk, block->transit_bitmap);
1895 acct_update_position(f, sge.length, false);
1896 rdma->total_writes++;
1897
1898 return 0;
1899 }
1900
1901 /*
1902 * Push out any unwritten RDMA operations.
1903 *
1904 * We support sending out multiple chunks at the same time.
1905 * Not all of them need to get signaled in the completion queue.
1906 */
1907 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
1908 {
1909 int ret;
1910
1911 if (!rdma->current_length) {
1912 return 0;
1913 }
1914
1915 ret = qemu_rdma_write_one(f, rdma,
1916 rdma->current_index, rdma->current_addr, rdma->current_length);
1917
1918 if (ret < 0) {
1919 return ret;
1920 }
1921
1922 if (ret == 0) {
1923 rdma->nb_sent++;
1924 DDDPRINTF("sent total: %d\n", rdma->nb_sent);
1925 }
1926
1927 rdma->current_length = 0;
1928 rdma->current_addr = 0;
1929
1930 return 0;
1931 }
1932
1933 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
1934 uint64_t offset, uint64_t len)
1935 {
1936 RDMALocalBlock *block;
1937 uint8_t *host_addr;
1938 uint8_t *chunk_end;
1939
1940 if (rdma->current_index < 0) {
1941 return 0;
1942 }
1943
1944 if (rdma->current_chunk < 0) {
1945 return 0;
1946 }
1947
1948 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
1949 host_addr = block->local_host_addr + (offset - block->offset);
1950 chunk_end = ram_chunk_end(block, rdma->current_chunk);
1951
1952 if (rdma->current_length == 0) {
1953 return 0;
1954 }
1955
1956 /*
1957 * Only merge into chunk sequentially.
1958 */
1959 if (offset != (rdma->current_addr + rdma->current_length)) {
1960 return 0;
1961 }
1962
1963 if (offset < block->offset) {
1964 return 0;
1965 }
1966
1967 if ((offset + len) > (block->offset + block->length)) {
1968 return 0;
1969 }
1970
1971 if ((host_addr + len) > chunk_end) {
1972 return 0;
1973 }
1974
1975 return 1;
1976 }
1977
1978 /*
1979 * We're not actually writing here, but doing three things:
1980 *
1981 * 1. Identify the chunk the buffer belongs to.
1982 * 2. If the chunk is full or the buffer doesn't belong to the current
1983 * chunk, then start a new chunk and flush() the old chunk.
1984 * 3. To keep the hardware busy, we also group chunks into batches
1985 * and only require that a batch gets acknowledged in the completion
1986 * qeueue instead of each individual chunk.
1987 */
1988 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
1989 uint64_t block_offset, uint64_t offset,
1990 uint64_t len)
1991 {
1992 uint64_t current_addr = block_offset + offset;
1993 uint64_t index = rdma->current_index;
1994 uint64_t chunk = rdma->current_chunk;
1995 int ret;
1996
1997 /* If we cannot merge it, we flush the current buffer first. */
1998 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
1999 ret = qemu_rdma_write_flush(f, rdma);
2000 if (ret) {
2001 return ret;
2002 }
2003 rdma->current_length = 0;
2004 rdma->current_addr = current_addr;
2005
2006 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2007 offset, len, &index, &chunk);
2008 if (ret) {
2009 fprintf(stderr, "ram block search failed\n");
2010 return ret;
2011 }
2012 rdma->current_index = index;
2013 rdma->current_chunk = chunk;
2014 }
2015
2016 /* merge it */
2017 rdma->current_length += len;
2018
2019 /* flush it if buffer is too large */
2020 if (rdma->current_length >= RDMA_MERGE_MAX) {
2021 return qemu_rdma_write_flush(f, rdma);
2022 }
2023
2024 return 0;
2025 }
2026
2027 static void qemu_rdma_cleanup(RDMAContext *rdma)
2028 {
2029 struct rdma_cm_event *cm_event;
2030 int ret, idx;
2031
2032 if (rdma->cm_id) {
2033 if (rdma->error_state) {
2034 RDMAControlHeader head = { .len = 0,
2035 .type = RDMA_CONTROL_ERROR,
2036 .repeat = 1,
2037 };
2038 fprintf(stderr, "Early error. Sending error.\n");
2039 qemu_rdma_post_send_control(rdma, NULL, &head);
2040 }
2041
2042 ret = rdma_disconnect(rdma->cm_id);
2043 if (!ret) {
2044 DDPRINTF("waiting for disconnect\n");
2045 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2046 if (!ret) {
2047 rdma_ack_cm_event(cm_event);
2048 }
2049 }
2050 DDPRINTF("Disconnected.\n");
2051 rdma->cm_id = NULL;
2052 }
2053
2054 g_free(rdma->block);
2055 rdma->block = NULL;
2056
2057 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2058 if (rdma->wr_data[idx].control_mr) {
2059 rdma->total_registrations--;
2060 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2061 }
2062 rdma->wr_data[idx].control_mr = NULL;
2063 }
2064
2065 if (rdma->local_ram_blocks.block) {
2066 while (rdma->local_ram_blocks.nb_blocks) {
2067 __qemu_rdma_delete_block(rdma,
2068 rdma->local_ram_blocks.block->offset);
2069 }
2070 }
2071
2072 if (rdma->qp) {
2073 ibv_destroy_qp(rdma->qp);
2074 rdma->qp = NULL;
2075 }
2076 if (rdma->cq) {
2077 ibv_destroy_cq(rdma->cq);
2078 rdma->cq = NULL;
2079 }
2080 if (rdma->comp_channel) {
2081 ibv_destroy_comp_channel(rdma->comp_channel);
2082 rdma->comp_channel = NULL;
2083 }
2084 if (rdma->pd) {
2085 ibv_dealloc_pd(rdma->pd);
2086 rdma->pd = NULL;
2087 }
2088 if (rdma->listen_id) {
2089 rdma_destroy_id(rdma->listen_id);
2090 rdma->listen_id = NULL;
2091 }
2092 if (rdma->cm_id) {
2093 rdma_destroy_id(rdma->cm_id);
2094 rdma->cm_id = NULL;
2095 }
2096 if (rdma->channel) {
2097 rdma_destroy_event_channel(rdma->channel);
2098 rdma->channel = NULL;
2099 }
2100 }
2101
2102
2103 static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
2104 {
2105 int ret, idx;
2106 Error *local_err = NULL, **temp = &local_err;
2107
2108 /*
2109 * Will be validated against destination's actual capabilities
2110 * after the connect() completes.
2111 */
2112 rdma->pin_all = pin_all;
2113
2114 ret = qemu_rdma_resolve_host(rdma, temp);
2115 if (ret) {
2116 goto err_rdma_source_init;
2117 }
2118
2119 ret = qemu_rdma_alloc_pd_cq(rdma);
2120 if (ret) {
2121 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2122 " limits may be too low. Please check $ ulimit -a # and "
2123 "search for 'ulimit -l' in the output");
2124 goto err_rdma_source_init;
2125 }
2126
2127 ret = qemu_rdma_alloc_qp(rdma);
2128 if (ret) {
2129 ERROR(temp, "rdma migration: error allocating qp!");
2130 goto err_rdma_source_init;
2131 }
2132
2133 ret = qemu_rdma_init_ram_blocks(rdma);
2134 if (ret) {
2135 ERROR(temp, "rdma migration: error initializing ram blocks!");
2136 goto err_rdma_source_init;
2137 }
2138
2139 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2140 ret = qemu_rdma_reg_control(rdma, idx);
2141 if (ret) {
2142 ERROR(temp, "rdma migration: error registering %d control!",
2143 idx);
2144 goto err_rdma_source_init;
2145 }
2146 }
2147
2148 return 0;
2149
2150 err_rdma_source_init:
2151 error_propagate(errp, local_err);
2152 qemu_rdma_cleanup(rdma);
2153 return -1;
2154 }
2155
2156 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2157 {
2158 RDMACapabilities cap = {
2159 .version = RDMA_CONTROL_VERSION_CURRENT,
2160 .flags = 0,
2161 };
2162 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2163 .retry_count = 5,
2164 .private_data = &cap,
2165 .private_data_len = sizeof(cap),
2166 };
2167 struct rdma_cm_event *cm_event;
2168 int ret;
2169
2170 /*
2171 * Only negotiate the capability with destination if the user
2172 * on the source first requested the capability.
2173 */
2174 if (rdma->pin_all) {
2175 DPRINTF("Server pin-all memory requested.\n");
2176 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2177 }
2178
2179 caps_to_network(&cap);
2180
2181 ret = rdma_connect(rdma->cm_id, &conn_param);
2182 if (ret) {
2183 perror("rdma_connect");
2184 ERROR(errp, "connecting to destination!");
2185 rdma_destroy_id(rdma->cm_id);
2186 rdma->cm_id = NULL;
2187 goto err_rdma_source_connect;
2188 }
2189
2190 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2191 if (ret) {
2192 perror("rdma_get_cm_event after rdma_connect");
2193 ERROR(errp, "connecting to destination!");
2194 rdma_ack_cm_event(cm_event);
2195 rdma_destroy_id(rdma->cm_id);
2196 rdma->cm_id = NULL;
2197 goto err_rdma_source_connect;
2198 }
2199
2200 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2201 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2202 ERROR(errp, "connecting to destination!");
2203 rdma_ack_cm_event(cm_event);
2204 rdma_destroy_id(rdma->cm_id);
2205 rdma->cm_id = NULL;
2206 goto err_rdma_source_connect;
2207 }
2208
2209 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2210 network_to_caps(&cap);
2211
2212 /*
2213 * Verify that the *requested* capabilities are supported by the destination
2214 * and disable them otherwise.
2215 */
2216 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2217 ERROR(errp, "Server cannot support pinning all memory. "
2218 "Will register memory dynamically.");
2219 rdma->pin_all = false;
2220 }
2221
2222 DPRINTF("Pin all memory: %s\n", rdma->pin_all ? "enabled" : "disabled");
2223
2224 rdma_ack_cm_event(cm_event);
2225
2226 ret = qemu_rdma_post_recv_control(rdma, 0);
2227 if (ret) {
2228 ERROR(errp, "posting second control recv!");
2229 goto err_rdma_source_connect;
2230 }
2231
2232 rdma->control_ready_expected = 1;
2233 rdma->nb_sent = 0;
2234 return 0;
2235
2236 err_rdma_source_connect:
2237 qemu_rdma_cleanup(rdma);
2238 return -1;
2239 }
2240
2241 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2242 {
2243 int ret = -EINVAL, idx;
2244 int af = rdma->ipv6 ? PF_INET6 : PF_INET;
2245 struct sockaddr_in sin;
2246 struct rdma_cm_id *listen_id;
2247 char ip[40] = "unknown";
2248 struct addrinfo *res;
2249 char port_str[16];
2250
2251 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2252 rdma->wr_data[idx].control_len = 0;
2253 rdma->wr_data[idx].control_curr = NULL;
2254 }
2255
2256 if (rdma->host == NULL) {
2257 ERROR(errp, "RDMA host is not set!");
2258 rdma->error_state = -EINVAL;
2259 return -1;
2260 }
2261 /* create CM channel */
2262 rdma->channel = rdma_create_event_channel();
2263 if (!rdma->channel) {
2264 ERROR(errp, "could not create rdma event channel");
2265 rdma->error_state = -EINVAL;
2266 return -1;
2267 }
2268
2269 /* create CM id */
2270 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2271 if (ret) {
2272 ERROR(errp, "could not create cm_id!");
2273 goto err_dest_init_create_listen_id;
2274 }
2275
2276 memset(&sin, 0, sizeof(sin));
2277 sin.sin_family = af;
2278 sin.sin_port = htons(rdma->port);
2279 snprintf(port_str, 16, "%d", rdma->port);
2280 port_str[15] = '\0';
2281
2282 if (rdma->host && strcmp("", rdma->host)) {
2283 ret = getaddrinfo(rdma->host, port_str, NULL, &res);
2284 if (ret < 0) {
2285 ERROR(errp, "could not getaddrinfo address %s", rdma->host);
2286 goto err_dest_init_bind_addr;
2287 }
2288
2289
2290 inet_ntop(af, &((struct sockaddr_in *) res->ai_addr)->sin_addr,
2291 ip, sizeof ip);
2292 } else {
2293 ERROR(errp, "migration host and port not specified!");
2294 ret = -EINVAL;
2295 goto err_dest_init_bind_addr;
2296 }
2297
2298 DPRINTF("%s => %s\n", rdma->host, ip);
2299
2300 ret = rdma_bind_addr(listen_id, res->ai_addr);
2301 if (ret) {
2302 ERROR(errp, "Error: could not rdma_bind_addr!");
2303 goto err_dest_init_bind_addr;
2304 }
2305
2306 rdma->listen_id = listen_id;
2307 qemu_rdma_dump_gid("dest_init", listen_id);
2308 return 0;
2309
2310 err_dest_init_bind_addr:
2311 rdma_destroy_id(listen_id);
2312 err_dest_init_create_listen_id:
2313 rdma_destroy_event_channel(rdma->channel);
2314 rdma->channel = NULL;
2315 rdma->error_state = ret;
2316 return ret;
2317
2318 }
2319
2320 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2321 {
2322 RDMAContext *rdma = NULL;
2323 InetSocketAddress *addr;
2324
2325 if (host_port) {
2326 rdma = g_malloc0(sizeof(RDMAContext));
2327 memset(rdma, 0, sizeof(RDMAContext));
2328 rdma->current_index = -1;
2329 rdma->current_chunk = -1;
2330
2331 addr = inet_parse(host_port, NULL);
2332 if (addr != NULL) {
2333 rdma->port = atoi(addr->port);
2334 rdma->host = g_strdup(addr->host);
2335 rdma->ipv6 = addr->ipv6;
2336 } else {
2337 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2338 g_free(rdma);
2339 return NULL;
2340 }
2341 }
2342
2343 return rdma;
2344 }
2345
2346 /*
2347 * QEMUFile interface to the control channel.
2348 * SEND messages for control only.
2349 * pc.ram is handled with regular RDMA messages.
2350 */
2351 static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf,
2352 int64_t pos, int size)
2353 {
2354 QEMUFileRDMA *r = opaque;
2355 QEMUFile *f = r->file;
2356 RDMAContext *rdma = r->rdma;
2357 size_t remaining = size;
2358 uint8_t * data = (void *) buf;
2359 int ret;
2360
2361 CHECK_ERROR_STATE();
2362
2363 /*
2364 * Push out any writes that
2365 * we're queued up for pc.ram.
2366 */
2367 ret = qemu_rdma_write_flush(f, rdma);
2368 if (ret < 0) {
2369 rdma->error_state = ret;
2370 return ret;
2371 }
2372
2373 while (remaining) {
2374 RDMAControlHeader head;
2375
2376 r->len = MIN(remaining, RDMA_SEND_INCREMENT);
2377 remaining -= r->len;
2378
2379 head.len = r->len;
2380 head.type = RDMA_CONTROL_QEMU_FILE;
2381
2382 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2383
2384 if (ret < 0) {
2385 rdma->error_state = ret;
2386 return ret;
2387 }
2388
2389 data += r->len;
2390 }
2391
2392 return size;
2393 }
2394
2395 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2396 int size, int idx)
2397 {
2398 size_t len = 0;
2399
2400 if (rdma->wr_data[idx].control_len) {
2401 DDDPRINTF("RDMA %" PRId64 " of %d bytes already in buffer\n",
2402 rdma->wr_data[idx].control_len, size);
2403
2404 len = MIN(size, rdma->wr_data[idx].control_len);
2405 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2406 rdma->wr_data[idx].control_curr += len;
2407 rdma->wr_data[idx].control_len -= len;
2408 }
2409
2410 return len;
2411 }
2412
2413 /*
2414 * QEMUFile interface to the control channel.
2415 * RDMA links don't use bytestreams, so we have to
2416 * return bytes to QEMUFile opportunistically.
2417 */
2418 static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf,
2419 int64_t pos, int size)
2420 {
2421 QEMUFileRDMA *r = opaque;
2422 RDMAContext *rdma = r->rdma;
2423 RDMAControlHeader head;
2424 int ret = 0;
2425
2426 CHECK_ERROR_STATE();
2427
2428 /*
2429 * First, we hold on to the last SEND message we
2430 * were given and dish out the bytes until we run
2431 * out of bytes.
2432 */
2433 r->len = qemu_rdma_fill(r->rdma, buf, size, 0);
2434 if (r->len) {
2435 return r->len;
2436 }
2437
2438 /*
2439 * Once we run out, we block and wait for another
2440 * SEND message to arrive.
2441 */
2442 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2443
2444 if (ret < 0) {
2445 rdma->error_state = ret;
2446 return ret;
2447 }
2448
2449 /*
2450 * SEND was received with new bytes, now try again.
2451 */
2452 return qemu_rdma_fill(r->rdma, buf, size, 0);
2453 }
2454
2455 /*
2456 * Block until all the outstanding chunks have been delivered by the hardware.
2457 */
2458 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2459 {
2460 int ret;
2461
2462 if (qemu_rdma_write_flush(f, rdma) < 0) {
2463 return -EIO;
2464 }
2465
2466 while (rdma->nb_sent) {
2467 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE);
2468 if (ret < 0) {
2469 fprintf(stderr, "rdma migration: complete polling error!\n");
2470 return -EIO;
2471 }
2472 }
2473
2474 qemu_rdma_unregister_waiting(rdma);
2475
2476 return 0;
2477 }
2478
2479 static int qemu_rdma_close(void *opaque)
2480 {
2481 DPRINTF("Shutting down connection.\n");
2482 QEMUFileRDMA *r = opaque;
2483 if (r->rdma) {
2484 qemu_rdma_cleanup(r->rdma);
2485 g_free(r->rdma);
2486 }
2487 g_free(r);
2488 return 0;
2489 }
2490
2491 /*
2492 * Parameters:
2493 * @offset == 0 :
2494 * This means that 'block_offset' is a full virtual address that does not
2495 * belong to a RAMBlock of the virtual machine and instead
2496 * represents a private malloc'd memory area that the caller wishes to
2497 * transfer.
2498 *
2499 * @offset != 0 :
2500 * Offset is an offset to be added to block_offset and used
2501 * to also lookup the corresponding RAMBlock.
2502 *
2503 * @size > 0 :
2504 * Initiate an transfer this size.
2505 *
2506 * @size == 0 :
2507 * A 'hint' or 'advice' that means that we wish to speculatively
2508 * and asynchronously unregister this memory. In this case, there is no
2509 * guarantee that the unregister will actually happen, for example,
2510 * if the memory is being actively transmitted. Additionally, the memory
2511 * may be re-registered at any future time if a write within the same
2512 * chunk was requested again, even if you attempted to unregister it
2513 * here.
2514 *
2515 * @size < 0 : TODO, not yet supported
2516 * Unregister the memory NOW. This means that the caller does not
2517 * expect there to be any future RDMA transfers and we just want to clean
2518 * things up. This is used in case the upper layer owns the memory and
2519 * cannot wait for qemu_fclose() to occur.
2520 *
2521 * @bytes_sent : User-specificed pointer to indicate how many bytes were
2522 * sent. Usually, this will not be more than a few bytes of
2523 * the protocol because most transfers are sent asynchronously.
2524 */
2525 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
2526 ram_addr_t block_offset, ram_addr_t offset,
2527 size_t size, int *bytes_sent)
2528 {
2529 QEMUFileRDMA *rfile = opaque;
2530 RDMAContext *rdma = rfile->rdma;
2531 int ret;
2532
2533 CHECK_ERROR_STATE();
2534
2535 qemu_fflush(f);
2536
2537 if (size > 0) {
2538 /*
2539 * Add this page to the current 'chunk'. If the chunk
2540 * is full, or the page doen't belong to the current chunk,
2541 * an actual RDMA write will occur and a new chunk will be formed.
2542 */
2543 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
2544 if (ret < 0) {
2545 fprintf(stderr, "rdma migration: write error! %d\n", ret);
2546 goto err;
2547 }
2548
2549 /*
2550 * We always return 1 bytes because the RDMA
2551 * protocol is completely asynchronous. We do not yet know
2552 * whether an identified chunk is zero or not because we're
2553 * waiting for other pages to potentially be merged with
2554 * the current chunk. So, we have to call qemu_update_position()
2555 * later on when the actual write occurs.
2556 */
2557 if (bytes_sent) {
2558 *bytes_sent = 1;
2559 }
2560 } else {
2561 uint64_t index, chunk;
2562
2563 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2564 if (size < 0) {
2565 ret = qemu_rdma_drain_cq(f, rdma);
2566 if (ret < 0) {
2567 fprintf(stderr, "rdma: failed to synchronously drain"
2568 " completion queue before unregistration.\n");
2569 goto err;
2570 }
2571 }
2572 */
2573
2574 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2575 offset, size, &index, &chunk);
2576
2577 if (ret) {
2578 fprintf(stderr, "ram block search failed\n");
2579 goto err;
2580 }
2581
2582 qemu_rdma_signal_unregister(rdma, index, chunk, 0);
2583
2584 /*
2585 * TODO: Synchronous, guaranteed unregistration (should not occur during
2586 * fast-path). Otherwise, unregisters will process on the next call to
2587 * qemu_rdma_drain_cq()
2588 if (size < 0) {
2589 qemu_rdma_unregister_waiting(rdma);
2590 }
2591 */
2592 }
2593
2594 /*
2595 * Drain the Completion Queue if possible, but do not block,
2596 * just poll.
2597 *
2598 * If nothing to poll, the end of the iteration will do this
2599 * again to make sure we don't overflow the request queue.
2600 */
2601 while (1) {
2602 uint64_t wr_id, wr_id_in;
2603 int ret = qemu_rdma_poll(rdma, &wr_id_in);
2604 if (ret < 0) {
2605 fprintf(stderr, "rdma migration: polling error! %d\n", ret);
2606 goto err;
2607 }
2608
2609 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
2610
2611 if (wr_id == RDMA_WRID_NONE) {
2612 break;
2613 }
2614 }
2615
2616 return RAM_SAVE_CONTROL_DELAYED;
2617 err:
2618 rdma->error_state = ret;
2619 return ret;
2620 }
2621
2622 static int qemu_rdma_accept(RDMAContext *rdma)
2623 {
2624 RDMACapabilities cap;
2625 struct rdma_conn_param conn_param = {
2626 .responder_resources = 2,
2627 .private_data = &cap,
2628 .private_data_len = sizeof(cap),
2629 };
2630 struct rdma_cm_event *cm_event;
2631 struct ibv_context *verbs;
2632 int ret = -EINVAL;
2633 int idx;
2634
2635 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2636 if (ret) {
2637 goto err_rdma_dest_wait;
2638 }
2639
2640 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
2641 rdma_ack_cm_event(cm_event);
2642 goto err_rdma_dest_wait;
2643 }
2644
2645 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2646
2647 network_to_caps(&cap);
2648
2649 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
2650 fprintf(stderr, "Unknown source RDMA version: %d, bailing...\n",
2651 cap.version);
2652 rdma_ack_cm_event(cm_event);
2653 goto err_rdma_dest_wait;
2654 }
2655
2656 /*
2657 * Respond with only the capabilities this version of QEMU knows about.
2658 */
2659 cap.flags &= known_capabilities;
2660
2661 /*
2662 * Enable the ones that we do know about.
2663 * Add other checks here as new ones are introduced.
2664 */
2665 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
2666 rdma->pin_all = true;
2667 }
2668
2669 rdma->cm_id = cm_event->id;
2670 verbs = cm_event->id->verbs;
2671
2672 rdma_ack_cm_event(cm_event);
2673
2674 DPRINTF("Memory pin all: %s\n", rdma->pin_all ? "enabled" : "disabled");
2675
2676 caps_to_network(&cap);
2677
2678 DPRINTF("verbs context after listen: %p\n", verbs);
2679
2680 if (!rdma->verbs) {
2681 rdma->verbs = verbs;
2682 } else if (rdma->verbs != verbs) {
2683 fprintf(stderr, "ibv context not matching %p, %p!\n",
2684 rdma->verbs, verbs);
2685 goto err_rdma_dest_wait;
2686 }
2687
2688 qemu_rdma_dump_id("dest_init", verbs);
2689
2690 ret = qemu_rdma_alloc_pd_cq(rdma);
2691 if (ret) {
2692 fprintf(stderr, "rdma migration: error allocating pd and cq!\n");
2693 goto err_rdma_dest_wait;
2694 }
2695
2696 ret = qemu_rdma_alloc_qp(rdma);
2697 if (ret) {
2698 fprintf(stderr, "rdma migration: error allocating qp!\n");
2699 goto err_rdma_dest_wait;
2700 }
2701
2702 ret = qemu_rdma_init_ram_blocks(rdma);
2703 if (ret) {
2704 fprintf(stderr, "rdma migration: error initializing ram blocks!\n");
2705 goto err_rdma_dest_wait;
2706 }
2707
2708 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2709 ret = qemu_rdma_reg_control(rdma, idx);
2710 if (ret) {
2711 fprintf(stderr, "rdma: error registering %d control!\n", idx);
2712 goto err_rdma_dest_wait;
2713 }
2714 }
2715
2716 qemu_set_fd_handler2(rdma->channel->fd, NULL, NULL, NULL, NULL);
2717
2718 ret = rdma_accept(rdma->cm_id, &conn_param);
2719 if (ret) {
2720 fprintf(stderr, "rdma_accept returns %d!\n", ret);
2721 goto err_rdma_dest_wait;
2722 }
2723
2724 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2725 if (ret) {
2726 fprintf(stderr, "rdma_accept get_cm_event failed %d!\n", ret);
2727 goto err_rdma_dest_wait;
2728 }
2729
2730 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2731 fprintf(stderr, "rdma_accept not event established!\n");
2732 rdma_ack_cm_event(cm_event);
2733 goto err_rdma_dest_wait;
2734 }
2735
2736 rdma_ack_cm_event(cm_event);
2737
2738 ret = qemu_rdma_post_recv_control(rdma, 0);
2739 if (ret) {
2740 fprintf(stderr, "rdma migration: error posting second control recv!\n");
2741 goto err_rdma_dest_wait;
2742 }
2743
2744 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
2745
2746 return 0;
2747
2748 err_rdma_dest_wait:
2749 rdma->error_state = ret;
2750 qemu_rdma_cleanup(rdma);
2751 return ret;
2752 }
2753
2754 /*
2755 * During each iteration of the migration, we listen for instructions
2756 * by the source VM to perform dynamic page registrations before they
2757 * can perform RDMA operations.
2758 *
2759 * We respond with the 'rkey'.
2760 *
2761 * Keep doing this until the source tells us to stop.
2762 */
2763 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque,
2764 uint64_t flags)
2765 {
2766 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
2767 .type = RDMA_CONTROL_REGISTER_RESULT,
2768 .repeat = 0,
2769 };
2770 RDMAControlHeader unreg_resp = { .len = 0,
2771 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
2772 .repeat = 0,
2773 };
2774 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
2775 .repeat = 1 };
2776 QEMUFileRDMA *rfile = opaque;
2777 RDMAContext *rdma = rfile->rdma;
2778 RDMALocalBlocks *local = &rdma->local_ram_blocks;
2779 RDMAControlHeader head;
2780 RDMARegister *reg, *registers;
2781 RDMACompress *comp;
2782 RDMARegisterResult *reg_result;
2783 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
2784 RDMALocalBlock *block;
2785 void *host_addr;
2786 int ret = 0;
2787 int idx = 0;
2788 int count = 0;
2789 int i = 0;
2790
2791 CHECK_ERROR_STATE();
2792
2793 do {
2794 DDDPRINTF("Waiting for next request %" PRIu64 "...\n", flags);
2795
2796 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
2797
2798 if (ret < 0) {
2799 break;
2800 }
2801
2802 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
2803 fprintf(stderr, "rdma: Too many requests in this message (%d)."
2804 "Bailing.\n", head.repeat);
2805 ret = -EIO;
2806 break;
2807 }
2808
2809 switch (head.type) {
2810 case RDMA_CONTROL_COMPRESS:
2811 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
2812 network_to_compress(comp);
2813
2814 DDPRINTF("Zapping zero chunk: %" PRId64
2815 " bytes, index %d, offset %" PRId64 "\n",
2816 comp->length, comp->block_idx, comp->offset);
2817 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
2818
2819 host_addr = block->local_host_addr +
2820 (comp->offset - block->offset);
2821
2822 ram_handle_compressed(host_addr, comp->value, comp->length);
2823 break;
2824
2825 case RDMA_CONTROL_REGISTER_FINISHED:
2826 DDDPRINTF("Current registrations complete.\n");
2827 goto out;
2828
2829 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
2830 DPRINTF("Initial setup info requested.\n");
2831
2832 if (rdma->pin_all) {
2833 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
2834 if (ret) {
2835 fprintf(stderr, "rdma migration: error dest "
2836 "registering ram blocks!\n");
2837 goto out;
2838 }
2839 }
2840
2841 /*
2842 * Dest uses this to prepare to transmit the RAMBlock descriptions
2843 * to the source VM after connection setup.
2844 * Both sides use the "remote" structure to communicate and update
2845 * their "local" descriptions with what was sent.
2846 */
2847 for (i = 0; i < local->nb_blocks; i++) {
2848 rdma->block[i].remote_host_addr =
2849 (uint64_t)(local->block[i].local_host_addr);
2850
2851 if (rdma->pin_all) {
2852 rdma->block[i].remote_rkey = local->block[i].mr->rkey;
2853 }
2854
2855 rdma->block[i].offset = local->block[i].offset;
2856 rdma->block[i].length = local->block[i].length;
2857
2858 remote_block_to_network(&rdma->block[i]);
2859 }
2860
2861 blocks.len = rdma->local_ram_blocks.nb_blocks
2862 * sizeof(RDMARemoteBlock);
2863
2864
2865 ret = qemu_rdma_post_send_control(rdma,
2866 (uint8_t *) rdma->block, &blocks);
2867
2868 if (ret < 0) {
2869 fprintf(stderr, "rdma migration: error sending remote info!\n");
2870 goto out;
2871 }
2872
2873 break;
2874 case RDMA_CONTROL_REGISTER_REQUEST:
2875 DDPRINTF("There are %d registration requests\n", head.repeat);
2876
2877 reg_resp.repeat = head.repeat;
2878 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
2879
2880 for (count = 0; count < head.repeat; count++) {
2881 uint64_t chunk;
2882 uint8_t *chunk_start, *chunk_end;
2883
2884 reg = &registers[count];
2885 network_to_register(reg);
2886
2887 reg_result = &results[count];
2888
2889 DDPRINTF("Registration request (%d): index %d, current_addr %"
2890 PRIu64 " chunks: %" PRIu64 "\n", count,
2891 reg->current_index, reg->key.current_addr, reg->chunks);
2892
2893 block = &(rdma->local_ram_blocks.block[reg->current_index]);
2894 if (block->is_ram_block) {
2895 host_addr = (block->local_host_addr +
2896 (reg->key.current_addr - block->offset));
2897 chunk = ram_chunk_index(block->local_host_addr,
2898 (uint8_t *) host_addr);
2899 } else {
2900 chunk = reg->key.chunk;
2901 host_addr = block->local_host_addr +
2902 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
2903 }
2904 chunk_start = ram_chunk_start(block, chunk);
2905 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
2906 if (qemu_rdma_register_and_get_keys(rdma, block,
2907 (uint8_t *)host_addr, NULL, &reg_result->rkey,
2908 chunk, chunk_start, chunk_end)) {
2909 fprintf(stderr, "cannot get rkey!\n");
2910 ret = -EINVAL;
2911 goto out;
2912 }
2913
2914 reg_result->host_addr = (uint64_t) block->local_host_addr;
2915
2916 DDPRINTF("Registered rkey for this request: %x\n",
2917 reg_result->rkey);
2918
2919 result_to_network(reg_result);
2920 }
2921
2922 ret = qemu_rdma_post_send_control(rdma,
2923 (uint8_t *) results, &reg_resp);
2924
2925 if (ret < 0) {
2926 fprintf(stderr, "Failed to send control buffer!\n");
2927 goto out;
2928 }
2929 break;
2930 case RDMA_CONTROL_UNREGISTER_REQUEST:
2931 DDPRINTF("There are %d unregistration requests\n", head.repeat);
2932 unreg_resp.repeat = head.repeat;
2933 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
2934
2935 for (count = 0; count < head.repeat; count++) {
2936 reg = &registers[count];
2937 network_to_register(reg);
2938
2939 DDPRINTF("Unregistration request (%d): "
2940 " index %d, chunk %" PRIu64 "\n",
2941 count, reg->current_index, reg->key.chunk);
2942
2943 block = &(rdma->local_ram_blocks.block[reg->current_index]);
2944
2945 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
2946 block->pmr[reg->key.chunk] = NULL;
2947
2948 if (ret != 0) {
2949 perror("rdma unregistration chunk failed");
2950 ret = -ret;
2951 goto out;
2952 }
2953
2954 rdma->total_registrations--;
2955
2956 DDPRINTF("Unregistered chunk %" PRIu64 " successfully.\n",
2957 reg->key.chunk);
2958 }
2959
2960 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
2961
2962 if (ret < 0) {
2963 fprintf(stderr, "Failed to send control buffer!\n");
2964 goto out;
2965 }
2966 break;
2967 case RDMA_CONTROL_REGISTER_RESULT:
2968 fprintf(stderr, "Invalid RESULT message at dest.\n");
2969 ret = -EIO;
2970 goto out;
2971 default:
2972 fprintf(stderr, "Unknown control message %s\n",
2973 control_desc[head.type]);
2974 ret = -EIO;
2975 goto out;
2976 }
2977 } while (1);
2978 out:
2979 if (ret < 0) {
2980 rdma->error_state = ret;
2981 }
2982 return ret;
2983 }
2984
2985 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
2986 uint64_t flags)
2987 {
2988 QEMUFileRDMA *rfile = opaque;
2989 RDMAContext *rdma = rfile->rdma;
2990
2991 CHECK_ERROR_STATE();
2992
2993 DDDPRINTF("start section: %" PRIu64 "\n", flags);
2994 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
2995 qemu_fflush(f);
2996
2997 return 0;
2998 }
2999
3000 /*
3001 * Inform dest that dynamic registrations are done for now.
3002 * First, flush writes, if any.
3003 */
3004 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3005 uint64_t flags)
3006 {
3007 Error *local_err = NULL, **errp = &local_err;
3008 QEMUFileRDMA *rfile = opaque;
3009 RDMAContext *rdma = rfile->rdma;
3010 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3011 int ret = 0;
3012
3013 CHECK_ERROR_STATE();
3014
3015 qemu_fflush(f);
3016 ret = qemu_rdma_drain_cq(f, rdma);
3017
3018 if (ret < 0) {
3019 goto err;
3020 }
3021
3022 if (flags == RAM_CONTROL_SETUP) {
3023 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3024 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3025 int reg_result_idx, i, j, nb_remote_blocks;
3026
3027 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3028 DPRINTF("Sending registration setup for ram blocks...\n");
3029
3030 /*
3031 * Make sure that we parallelize the pinning on both sides.
3032 * For very large guests, doing this serially takes a really
3033 * long time, so we have to 'interleave' the pinning locally
3034 * with the control messages by performing the pinning on this
3035 * side before we receive the control response from the other
3036 * side that the pinning has completed.
3037 */
3038 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3039 &reg_result_idx, rdma->pin_all ?
3040 qemu_rdma_reg_whole_ram_blocks : NULL);
3041 if (ret < 0) {
3042 ERROR(errp, "receiving remote info!");
3043 return ret;
3044 }
3045
3046 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3047 memcpy(rdma->block,
3048 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3049
3050 nb_remote_blocks = resp.len / sizeof(RDMARemoteBlock);
3051
3052 /*
3053 * The protocol uses two different sets of rkeys (mutually exclusive):
3054 * 1. One key to represent the virtual address of the entire ram block.
3055 * (dynamic chunk registration disabled - pin everything with one rkey.)
3056 * 2. One to represent individual chunks within a ram block.
3057 * (dynamic chunk registration enabled - pin individual chunks.)
3058 *
3059 * Once the capability is successfully negotiated, the destination transmits
3060 * the keys to use (or sends them later) including the virtual addresses
3061 * and then propagates the remote ram block descriptions to his local copy.
3062 */
3063
3064 if (local->nb_blocks != nb_remote_blocks) {
3065 ERROR(errp, "ram blocks mismatch #1! "
3066 "Your QEMU command line parameters are probably "
3067 "not identical on both the source and destination.");
3068 return -EINVAL;
3069 }
3070
3071 for (i = 0; i < nb_remote_blocks; i++) {
3072 network_to_remote_block(&rdma->block[i]);
3073
3074 /* search local ram blocks */
3075 for (j = 0; j < local->nb_blocks; j++) {
3076 if (rdma->block[i].offset != local->block[j].offset) {
3077 continue;
3078 }
3079
3080 if (rdma->block[i].length != local->block[j].length) {
3081 ERROR(errp, "ram blocks mismatch #2! "
3082 "Your QEMU command line parameters are probably "
3083 "not identical on both the source and destination.");
3084 return -EINVAL;
3085 }
3086 local->block[j].remote_host_addr =
3087 rdma->block[i].remote_host_addr;
3088 local->block[j].remote_rkey = rdma->block[i].remote_rkey;
3089 break;
3090 }
3091
3092 if (j >= local->nb_blocks) {
3093 ERROR(errp, "ram blocks mismatch #3! "
3094 "Your QEMU command line parameters are probably "
3095 "not identical on both the source and destination.");
3096 return -EINVAL;
3097 }
3098 }
3099 }
3100
3101 DDDPRINTF("Sending registration finish %" PRIu64 "...\n", flags);
3102
3103 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3104 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3105
3106 if (ret < 0) {
3107 goto err;
3108 }
3109
3110 return 0;
3111 err:
3112 rdma->error_state = ret;
3113 return ret;
3114 }
3115
3116 static int qemu_rdma_get_fd(void *opaque)
3117 {
3118 QEMUFileRDMA *rfile = opaque;
3119 RDMAContext *rdma = rfile->rdma;
3120
3121 return rdma->comp_channel->fd;
3122 }
3123
3124 const QEMUFileOps rdma_read_ops = {
3125 .get_buffer = qemu_rdma_get_buffer,
3126 .get_fd = qemu_rdma_get_fd,
3127 .close = qemu_rdma_close,
3128 .hook_ram_load = qemu_rdma_registration_handle,
3129 };
3130
3131 const QEMUFileOps rdma_write_ops = {
3132 .put_buffer = qemu_rdma_put_buffer,
3133 .close = qemu_rdma_close,
3134 .before_ram_iterate = qemu_rdma_registration_start,
3135 .after_ram_iterate = qemu_rdma_registration_stop,
3136 .save_page = qemu_rdma_save_page,
3137 };
3138
3139 static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3140 {
3141 QEMUFileRDMA *r = g_malloc0(sizeof(QEMUFileRDMA));
3142
3143 if (qemu_file_mode_is_not_valid(mode)) {
3144 return NULL;
3145 }
3146
3147 r->rdma = rdma;
3148
3149 if (mode[0] == 'w') {
3150 r->file = qemu_fopen_ops(r, &rdma_write_ops);
3151 } else {
3152 r->file = qemu_fopen_ops(r, &rdma_read_ops);
3153 }
3154
3155 return r->file;
3156 }
3157
3158 static void rdma_accept_incoming_migration(void *opaque)
3159 {
3160 RDMAContext *rdma = opaque;
3161 int ret;
3162 QEMUFile *f;
3163 Error *local_err = NULL, **errp = &local_err;
3164
3165 DPRINTF("Accepting rdma connection...\n");
3166 ret = qemu_rdma_accept(rdma);
3167
3168 if (ret) {
3169 ERROR(errp, "RDMA Migration initialization failed!");
3170 return;
3171 }
3172
3173 DPRINTF("Accepted migration\n");
3174
3175 f = qemu_fopen_rdma(rdma, "rb");
3176 if (f == NULL) {
3177 ERROR(errp, "could not qemu_fopen_rdma!");
3178 qemu_rdma_cleanup(rdma);
3179 return;
3180 }
3181
3182 rdma->migration_started_on_destination = 1;
3183 process_incoming_migration(f);
3184 }
3185
3186 void rdma_start_incoming_migration(const char *host_port, Error **errp)
3187 {
3188 int ret;
3189 RDMAContext *rdma;
3190 Error *local_err = NULL;
3191
3192 DPRINTF("Starting RDMA-based incoming migration\n");
3193 rdma = qemu_rdma_data_init(host_port, &local_err);
3194
3195 if (rdma == NULL) {
3196 goto err;
3197 }
3198
3199 ret = qemu_rdma_dest_init(rdma, &local_err);
3200
3201 if (ret) {
3202 goto err;
3203 }
3204
3205 DPRINTF("qemu_rdma_dest_init success\n");
3206
3207 ret = rdma_listen(rdma->listen_id, 5);
3208
3209 if (ret) {
3210 ERROR(errp, "listening on socket!");
3211 goto err;
3212 }
3213
3214 DPRINTF("rdma_listen success\n");
3215
3216 qemu_set_fd_handler2(rdma->channel->fd, NULL,
3217 rdma_accept_incoming_migration, NULL,
3218 (void *)(intptr_t) rdma);
3219 return;
3220 err:
3221 error_propagate(errp, local_err);
3222 g_free(rdma);
3223 }
3224
3225 void rdma_start_outgoing_migration(void *opaque,
3226 const char *host_port, Error **errp)
3227 {
3228 MigrationState *s = opaque;
3229 Error *local_err = NULL, **temp = &local_err;
3230 RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err);
3231 int ret = 0;
3232
3233 if (rdma == NULL) {
3234 ERROR(temp, "Failed to initialize RDMA data structures! %d", ret);
3235 goto err;
3236 }
3237
3238 ret = qemu_rdma_source_init(rdma, &local_err,
3239 s->enabled_capabilities[MIGRATION_CAPABILITY_X_RDMA_PIN_ALL]);
3240
3241 if (ret) {
3242 goto err;
3243 }
3244
3245 DPRINTF("qemu_rdma_source_init success\n");
3246 ret = qemu_rdma_connect(rdma, &local_err);
3247
3248 if (ret) {
3249 goto err;
3250 }
3251
3252 DPRINTF("qemu_rdma_source_connect success\n");
3253
3254 s->file = qemu_fopen_rdma(rdma, "wb");
3255 migrate_fd_connect(s);
3256 return;
3257 err:
3258 error_propagate(errp, local_err);
3259 g_free(rdma);
3260 migrate_fd_error(s);
3261 }