]> git.proxmox.com Git - qemu.git/blob - migration-rdma.c
rdma: check if RDMAControlHeader::len match transferred byte
[qemu.git] / migration-rdma.c
1 /*
2 * RDMA protocol and interfaces
3 *
4 * Copyright IBM, Corp. 2010-2013
5 *
6 * Authors:
7 * Michael R. Hines <mrhines@us.ibm.com>
8 * Jiuxing Liu <jl@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or
11 * later. See the COPYING file in the top-level directory.
12 *
13 */
14 #include "qemu-common.h"
15 #include "migration/migration.h"
16 #include "migration/qemu-file.h"
17 #include "exec/cpu-common.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/sockets.h"
20 #include "qemu/bitmap.h"
21 #include "block/coroutine.h"
22 #include <stdio.h>
23 #include <sys/types.h>
24 #include <sys/socket.h>
25 #include <netdb.h>
26 #include <arpa/inet.h>
27 #include <string.h>
28 #include <rdma/rdma_cma.h>
29
30 //#define DEBUG_RDMA
31 //#define DEBUG_RDMA_VERBOSE
32 //#define DEBUG_RDMA_REALLY_VERBOSE
33
34 #ifdef DEBUG_RDMA
35 #define DPRINTF(fmt, ...) \
36 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF(fmt, ...) \
39 do { } while (0)
40 #endif
41
42 #ifdef DEBUG_RDMA_VERBOSE
43 #define DDPRINTF(fmt, ...) \
44 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
45 #else
46 #define DDPRINTF(fmt, ...) \
47 do { } while (0)
48 #endif
49
50 #ifdef DEBUG_RDMA_REALLY_VERBOSE
51 #define DDDPRINTF(fmt, ...) \
52 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
53 #else
54 #define DDDPRINTF(fmt, ...) \
55 do { } while (0)
56 #endif
57
58 /*
59 * Print and error on both the Monitor and the Log file.
60 */
61 #define ERROR(errp, fmt, ...) \
62 do { \
63 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
64 if (errp && (*(errp) == NULL)) { \
65 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
66 } \
67 } while (0)
68
69 #define RDMA_RESOLVE_TIMEOUT_MS 10000
70
71 /* Do not merge data if larger than this. */
72 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
73 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
74
75 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
76
77 /*
78 * This is only for non-live state being migrated.
79 * Instead of RDMA_WRITE messages, we use RDMA_SEND
80 * messages for that state, which requires a different
81 * delivery design than main memory.
82 */
83 #define RDMA_SEND_INCREMENT 32768
84
85 /*
86 * Maximum size infiniband SEND message
87 */
88 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
89 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
90
91 #define RDMA_CONTROL_VERSION_CURRENT 1
92 /*
93 * Capabilities for negotiation.
94 */
95 #define RDMA_CAPABILITY_PIN_ALL 0x01
96
97 /*
98 * Add the other flags above to this list of known capabilities
99 * as they are introduced.
100 */
101 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
102
103 #define CHECK_ERROR_STATE() \
104 do { \
105 if (rdma->error_state) { \
106 if (!rdma->error_reported) { \
107 fprintf(stderr, "RDMA is in an error state waiting migration" \
108 " to abort!\n"); \
109 rdma->error_reported = 1; \
110 } \
111 return rdma->error_state; \
112 } \
113 } while (0);
114
115 /*
116 * A work request ID is 64-bits and we split up these bits
117 * into 3 parts:
118 *
119 * bits 0-15 : type of control message, 2^16
120 * bits 16-29: ram block index, 2^14
121 * bits 30-63: ram block chunk number, 2^34
122 *
123 * The last two bit ranges are only used for RDMA writes,
124 * in order to track their completion and potentially
125 * also track unregistration status of the message.
126 */
127 #define RDMA_WRID_TYPE_SHIFT 0UL
128 #define RDMA_WRID_BLOCK_SHIFT 16UL
129 #define RDMA_WRID_CHUNK_SHIFT 30UL
130
131 #define RDMA_WRID_TYPE_MASK \
132 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
133
134 #define RDMA_WRID_BLOCK_MASK \
135 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
136
137 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
138
139 /*
140 * RDMA migration protocol:
141 * 1. RDMA Writes (data messages, i.e. RAM)
142 * 2. IB Send/Recv (control channel messages)
143 */
144 enum {
145 RDMA_WRID_NONE = 0,
146 RDMA_WRID_RDMA_WRITE = 1,
147 RDMA_WRID_SEND_CONTROL = 2000,
148 RDMA_WRID_RECV_CONTROL = 4000,
149 };
150
151 const char *wrid_desc[] = {
152 [RDMA_WRID_NONE] = "NONE",
153 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
154 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
155 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
156 };
157
158 /*
159 * Work request IDs for IB SEND messages only (not RDMA writes).
160 * This is used by the migration protocol to transmit
161 * control messages (such as device state and registration commands)
162 *
163 * We could use more WRs, but we have enough for now.
164 */
165 enum {
166 RDMA_WRID_READY = 0,
167 RDMA_WRID_DATA,
168 RDMA_WRID_CONTROL,
169 RDMA_WRID_MAX,
170 };
171
172 /*
173 * SEND/RECV IB Control Messages.
174 */
175 enum {
176 RDMA_CONTROL_NONE = 0,
177 RDMA_CONTROL_ERROR,
178 RDMA_CONTROL_READY, /* ready to receive */
179 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
180 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
181 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
182 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
183 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
184 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
185 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
186 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
187 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
188 };
189
190 const char *control_desc[] = {
191 [RDMA_CONTROL_NONE] = "NONE",
192 [RDMA_CONTROL_ERROR] = "ERROR",
193 [RDMA_CONTROL_READY] = "READY",
194 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
195 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
196 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
197 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
198 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
199 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
200 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
201 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
202 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
203 };
204
205 /*
206 * Memory and MR structures used to represent an IB Send/Recv work request.
207 * This is *not* used for RDMA writes, only IB Send/Recv.
208 */
209 typedef struct {
210 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
211 struct ibv_mr *control_mr; /* registration metadata */
212 size_t control_len; /* length of the message */
213 uint8_t *control_curr; /* start of unconsumed bytes */
214 } RDMAWorkRequestData;
215
216 /*
217 * Negotiate RDMA capabilities during connection-setup time.
218 */
219 typedef struct {
220 uint32_t version;
221 uint32_t flags;
222 } RDMACapabilities;
223
224 static void caps_to_network(RDMACapabilities *cap)
225 {
226 cap->version = htonl(cap->version);
227 cap->flags = htonl(cap->flags);
228 }
229
230 static void network_to_caps(RDMACapabilities *cap)
231 {
232 cap->version = ntohl(cap->version);
233 cap->flags = ntohl(cap->flags);
234 }
235
236 /*
237 * Representation of a RAMBlock from an RDMA perspective.
238 * This is not transmitted, only local.
239 * This and subsequent structures cannot be linked lists
240 * because we're using a single IB message to transmit
241 * the information. It's small anyway, so a list is overkill.
242 */
243 typedef struct RDMALocalBlock {
244 uint8_t *local_host_addr; /* local virtual address */
245 uint64_t remote_host_addr; /* remote virtual address */
246 uint64_t offset;
247 uint64_t length;
248 struct ibv_mr **pmr; /* MRs for chunk-level registration */
249 struct ibv_mr *mr; /* MR for non-chunk-level registration */
250 uint32_t *remote_keys; /* rkeys for chunk-level registration */
251 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
252 int index; /* which block are we */
253 bool is_ram_block;
254 int nb_chunks;
255 unsigned long *transit_bitmap;
256 unsigned long *unregister_bitmap;
257 } RDMALocalBlock;
258
259 /*
260 * Also represents a RAMblock, but only on the dest.
261 * This gets transmitted by the dest during connection-time
262 * to the source VM and then is used to populate the
263 * corresponding RDMALocalBlock with
264 * the information needed to perform the actual RDMA.
265 */
266 typedef struct QEMU_PACKED RDMARemoteBlock {
267 uint64_t remote_host_addr;
268 uint64_t offset;
269 uint64_t length;
270 uint32_t remote_rkey;
271 uint32_t padding;
272 } RDMARemoteBlock;
273
274 static uint64_t htonll(uint64_t v)
275 {
276 union { uint32_t lv[2]; uint64_t llv; } u;
277 u.lv[0] = htonl(v >> 32);
278 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
279 return u.llv;
280 }
281
282 static uint64_t ntohll(uint64_t v) {
283 union { uint32_t lv[2]; uint64_t llv; } u;
284 u.llv = v;
285 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
286 }
287
288 static void remote_block_to_network(RDMARemoteBlock *rb)
289 {
290 rb->remote_host_addr = htonll(rb->remote_host_addr);
291 rb->offset = htonll(rb->offset);
292 rb->length = htonll(rb->length);
293 rb->remote_rkey = htonl(rb->remote_rkey);
294 }
295
296 static void network_to_remote_block(RDMARemoteBlock *rb)
297 {
298 rb->remote_host_addr = ntohll(rb->remote_host_addr);
299 rb->offset = ntohll(rb->offset);
300 rb->length = ntohll(rb->length);
301 rb->remote_rkey = ntohl(rb->remote_rkey);
302 }
303
304 /*
305 * Virtual address of the above structures used for transmitting
306 * the RAMBlock descriptions at connection-time.
307 * This structure is *not* transmitted.
308 */
309 typedef struct RDMALocalBlocks {
310 int nb_blocks;
311 bool init; /* main memory init complete */
312 RDMALocalBlock *block;
313 } RDMALocalBlocks;
314
315 /*
316 * Main data structure for RDMA state.
317 * While there is only one copy of this structure being allocated right now,
318 * this is the place where one would start if you wanted to consider
319 * having more than one RDMA connection open at the same time.
320 */
321 typedef struct RDMAContext {
322 char *host;
323 int port;
324
325 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
326
327 /*
328 * This is used by *_exchange_send() to figure out whether or not
329 * the initial "READY" message has already been received or not.
330 * This is because other functions may potentially poll() and detect
331 * the READY message before send() does, in which case we need to
332 * know if it completed.
333 */
334 int control_ready_expected;
335
336 /* number of outstanding writes */
337 int nb_sent;
338
339 /* store info about current buffer so that we can
340 merge it with future sends */
341 uint64_t current_addr;
342 uint64_t current_length;
343 /* index of ram block the current buffer belongs to */
344 int current_index;
345 /* index of the chunk in the current ram block */
346 int current_chunk;
347
348 bool pin_all;
349
350 /*
351 * infiniband-specific variables for opening the device
352 * and maintaining connection state and so forth.
353 *
354 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
355 * cm_id->verbs, cm_id->channel, and cm_id->qp.
356 */
357 struct rdma_cm_id *cm_id; /* connection manager ID */
358 struct rdma_cm_id *listen_id;
359
360 struct ibv_context *verbs;
361 struct rdma_event_channel *channel;
362 struct ibv_qp *qp; /* queue pair */
363 struct ibv_comp_channel *comp_channel; /* completion channel */
364 struct ibv_pd *pd; /* protection domain */
365 struct ibv_cq *cq; /* completion queue */
366
367 /*
368 * If a previous write failed (perhaps because of a failed
369 * memory registration, then do not attempt any future work
370 * and remember the error state.
371 */
372 int error_state;
373 int error_reported;
374
375 /*
376 * Description of ram blocks used throughout the code.
377 */
378 RDMALocalBlocks local_ram_blocks;
379 RDMARemoteBlock *block;
380
381 /*
382 * Migration on *destination* started.
383 * Then use coroutine yield function.
384 * Source runs in a thread, so we don't care.
385 */
386 int migration_started_on_destination;
387
388 int total_registrations;
389 int total_writes;
390
391 int unregister_current, unregister_next;
392 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
393
394 GHashTable *blockmap;
395 bool ipv6;
396 } RDMAContext;
397
398 /*
399 * Interface to the rest of the migration call stack.
400 */
401 typedef struct QEMUFileRDMA {
402 RDMAContext *rdma;
403 size_t len;
404 void *file;
405 } QEMUFileRDMA;
406
407 /*
408 * Main structure for IB Send/Recv control messages.
409 * This gets prepended at the beginning of every Send/Recv.
410 */
411 typedef struct QEMU_PACKED {
412 uint32_t len; /* Total length of data portion */
413 uint32_t type; /* which control command to perform */
414 uint32_t repeat; /* number of commands in data portion of same type */
415 uint32_t padding;
416 } RDMAControlHeader;
417
418 static void control_to_network(RDMAControlHeader *control)
419 {
420 control->type = htonl(control->type);
421 control->len = htonl(control->len);
422 control->repeat = htonl(control->repeat);
423 }
424
425 static void network_to_control(RDMAControlHeader *control)
426 {
427 control->type = ntohl(control->type);
428 control->len = ntohl(control->len);
429 control->repeat = ntohl(control->repeat);
430 }
431
432 /*
433 * Register a single Chunk.
434 * Information sent by the source VM to inform the dest
435 * to register an single chunk of memory before we can perform
436 * the actual RDMA operation.
437 */
438 typedef struct QEMU_PACKED {
439 union QEMU_PACKED {
440 uint64_t current_addr; /* offset into the ramblock of the chunk */
441 uint64_t chunk; /* chunk to lookup if unregistering */
442 } key;
443 uint32_t current_index; /* which ramblock the chunk belongs to */
444 uint32_t padding;
445 uint64_t chunks; /* how many sequential chunks to register */
446 } RDMARegister;
447
448 static void register_to_network(RDMARegister *reg)
449 {
450 reg->key.current_addr = htonll(reg->key.current_addr);
451 reg->current_index = htonl(reg->current_index);
452 reg->chunks = htonll(reg->chunks);
453 }
454
455 static void network_to_register(RDMARegister *reg)
456 {
457 reg->key.current_addr = ntohll(reg->key.current_addr);
458 reg->current_index = ntohl(reg->current_index);
459 reg->chunks = ntohll(reg->chunks);
460 }
461
462 typedef struct QEMU_PACKED {
463 uint32_t value; /* if zero, we will madvise() */
464 uint32_t block_idx; /* which ram block index */
465 uint64_t offset; /* where in the remote ramblock this chunk */
466 uint64_t length; /* length of the chunk */
467 } RDMACompress;
468
469 static void compress_to_network(RDMACompress *comp)
470 {
471 comp->value = htonl(comp->value);
472 comp->block_idx = htonl(comp->block_idx);
473 comp->offset = htonll(comp->offset);
474 comp->length = htonll(comp->length);
475 }
476
477 static void network_to_compress(RDMACompress *comp)
478 {
479 comp->value = ntohl(comp->value);
480 comp->block_idx = ntohl(comp->block_idx);
481 comp->offset = ntohll(comp->offset);
482 comp->length = ntohll(comp->length);
483 }
484
485 /*
486 * The result of the dest's memory registration produces an "rkey"
487 * which the source VM must reference in order to perform
488 * the RDMA operation.
489 */
490 typedef struct QEMU_PACKED {
491 uint32_t rkey;
492 uint32_t padding;
493 uint64_t host_addr;
494 } RDMARegisterResult;
495
496 static void result_to_network(RDMARegisterResult *result)
497 {
498 result->rkey = htonl(result->rkey);
499 result->host_addr = htonll(result->host_addr);
500 };
501
502 static void network_to_result(RDMARegisterResult *result)
503 {
504 result->rkey = ntohl(result->rkey);
505 result->host_addr = ntohll(result->host_addr);
506 };
507
508 const char *print_wrid(int wrid);
509 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
510 uint8_t *data, RDMAControlHeader *resp,
511 int *resp_idx,
512 int (*callback)(RDMAContext *rdma));
513
514 static inline uint64_t ram_chunk_index(uint8_t *start, uint8_t *host)
515 {
516 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
517 }
518
519 static inline uint8_t *ram_chunk_start(RDMALocalBlock *rdma_ram_block,
520 uint64_t i)
521 {
522 return (uint8_t *) (((uintptr_t) rdma_ram_block->local_host_addr)
523 + (i << RDMA_REG_CHUNK_SHIFT));
524 }
525
526 static inline uint8_t *ram_chunk_end(RDMALocalBlock *rdma_ram_block, uint64_t i)
527 {
528 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
529 (1UL << RDMA_REG_CHUNK_SHIFT);
530
531 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
532 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
533 }
534
535 return result;
536 }
537
538 static int __qemu_rdma_add_block(RDMAContext *rdma, void *host_addr,
539 ram_addr_t block_offset, uint64_t length)
540 {
541 RDMALocalBlocks *local = &rdma->local_ram_blocks;
542 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
543 (void *) block_offset);
544 RDMALocalBlock *old = local->block;
545
546 assert(block == NULL);
547
548 local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1));
549
550 if (local->nb_blocks) {
551 int x;
552
553 for (x = 0; x < local->nb_blocks; x++) {
554 g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
555 g_hash_table_insert(rdma->blockmap, (void *)old[x].offset,
556 &local->block[x]);
557 }
558 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
559 g_free(old);
560 }
561
562 block = &local->block[local->nb_blocks];
563
564 block->local_host_addr = host_addr;
565 block->offset = block_offset;
566 block->length = length;
567 block->index = local->nb_blocks;
568 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
569 block->transit_bitmap = bitmap_new(block->nb_chunks);
570 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
571 block->unregister_bitmap = bitmap_new(block->nb_chunks);
572 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
573 block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t));
574
575 block->is_ram_block = local->init ? false : true;
576
577 g_hash_table_insert(rdma->blockmap, (void *) block_offset, block);
578
579 DDPRINTF("Added Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
580 " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
581 local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
582 block->length, (uint64_t) (block->local_host_addr + block->length),
583 BITS_TO_LONGS(block->nb_chunks) *
584 sizeof(unsigned long) * 8, block->nb_chunks);
585
586 local->nb_blocks++;
587
588 return 0;
589 }
590
591 /*
592 * Memory regions need to be registered with the device and queue pairs setup
593 * in advanced before the migration starts. This tells us where the RAM blocks
594 * are so that we can register them individually.
595 */
596 static void qemu_rdma_init_one_block(void *host_addr,
597 ram_addr_t block_offset, ram_addr_t length, void *opaque)
598 {
599 __qemu_rdma_add_block(opaque, host_addr, block_offset, length);
600 }
601
602 /*
603 * Identify the RAMBlocks and their quantity. They will be references to
604 * identify chunk boundaries inside each RAMBlock and also be referenced
605 * during dynamic page registration.
606 */
607 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
608 {
609 RDMALocalBlocks *local = &rdma->local_ram_blocks;
610
611 assert(rdma->blockmap == NULL);
612 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
613 memset(local, 0, sizeof *local);
614 qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
615 DPRINTF("Allocated %d local ram block structures\n", local->nb_blocks);
616 rdma->block = (RDMARemoteBlock *) g_malloc0(sizeof(RDMARemoteBlock) *
617 rdma->local_ram_blocks.nb_blocks);
618 local->init = true;
619 return 0;
620 }
621
622 static int __qemu_rdma_delete_block(RDMAContext *rdma, ram_addr_t block_offset)
623 {
624 RDMALocalBlocks *local = &rdma->local_ram_blocks;
625 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
626 (void *) block_offset);
627 RDMALocalBlock *old = local->block;
628 int x;
629
630 assert(block);
631
632 if (block->pmr) {
633 int j;
634
635 for (j = 0; j < block->nb_chunks; j++) {
636 if (!block->pmr[j]) {
637 continue;
638 }
639 ibv_dereg_mr(block->pmr[j]);
640 rdma->total_registrations--;
641 }
642 g_free(block->pmr);
643 block->pmr = NULL;
644 }
645
646 if (block->mr) {
647 ibv_dereg_mr(block->mr);
648 rdma->total_registrations--;
649 block->mr = NULL;
650 }
651
652 g_free(block->transit_bitmap);
653 block->transit_bitmap = NULL;
654
655 g_free(block->unregister_bitmap);
656 block->unregister_bitmap = NULL;
657
658 g_free(block->remote_keys);
659 block->remote_keys = NULL;
660
661 for (x = 0; x < local->nb_blocks; x++) {
662 g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
663 }
664
665 if (local->nb_blocks > 1) {
666
667 local->block = g_malloc0(sizeof(RDMALocalBlock) *
668 (local->nb_blocks - 1));
669
670 if (block->index) {
671 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
672 }
673
674 if (block->index < (local->nb_blocks - 1)) {
675 memcpy(local->block + block->index, old + (block->index + 1),
676 sizeof(RDMALocalBlock) *
677 (local->nb_blocks - (block->index + 1)));
678 }
679 } else {
680 assert(block == local->block);
681 local->block = NULL;
682 }
683
684 DDPRINTF("Deleted Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
685 " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
686 local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
687 block->length, (uint64_t) (block->local_host_addr + block->length),
688 BITS_TO_LONGS(block->nb_chunks) *
689 sizeof(unsigned long) * 8, block->nb_chunks);
690
691 g_free(old);
692
693 local->nb_blocks--;
694
695 if (local->nb_blocks) {
696 for (x = 0; x < local->nb_blocks; x++) {
697 g_hash_table_insert(rdma->blockmap, (void *)local->block[x].offset,
698 &local->block[x]);
699 }
700 }
701
702 return 0;
703 }
704
705 /*
706 * Put in the log file which RDMA device was opened and the details
707 * associated with that device.
708 */
709 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
710 {
711 printf("%s RDMA Device opened: kernel name %s "
712 "uverbs device name %s, "
713 "infiniband_verbs class device path %s,"
714 " infiniband class device path %s\n",
715 who,
716 verbs->device->name,
717 verbs->device->dev_name,
718 verbs->device->dev_path,
719 verbs->device->ibdev_path);
720 }
721
722 /*
723 * Put in the log file the RDMA gid addressing information,
724 * useful for folks who have trouble understanding the
725 * RDMA device hierarchy in the kernel.
726 */
727 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
728 {
729 char sgid[33];
730 char dgid[33];
731 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
732 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
733 DPRINTF("%s Source GID: %s, Dest GID: %s\n", who, sgid, dgid);
734 }
735
736 /*
737 * Figure out which RDMA device corresponds to the requested IP hostname
738 * Also create the initial connection manager identifiers for opening
739 * the connection.
740 */
741 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
742 {
743 int ret;
744 struct addrinfo *res;
745 char port_str[16];
746 struct rdma_cm_event *cm_event;
747 char ip[40] = "unknown";
748 int af = rdma->ipv6 ? PF_INET6 : PF_INET;
749
750 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
751 ERROR(errp, "RDMA hostname has not been set");
752 return -1;
753 }
754
755 /* create CM channel */
756 rdma->channel = rdma_create_event_channel();
757 if (!rdma->channel) {
758 ERROR(errp, "could not create CM channel");
759 return -1;
760 }
761
762 /* create CM id */
763 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
764 if (ret) {
765 ERROR(errp, "could not create channel id");
766 goto err_resolve_create_id;
767 }
768
769 snprintf(port_str, 16, "%d", rdma->port);
770 port_str[15] = '\0';
771
772 ret = getaddrinfo(rdma->host, port_str, NULL, &res);
773 if (ret < 0) {
774 ERROR(errp, "could not getaddrinfo address %s", rdma->host);
775 goto err_resolve_get_addr;
776 }
777
778 inet_ntop(af, &((struct sockaddr_in *) res->ai_addr)->sin_addr,
779 ip, sizeof ip);
780 DPRINTF("%s => %s\n", rdma->host, ip);
781
782 /* resolve the first address */
783 ret = rdma_resolve_addr(rdma->cm_id, NULL, res->ai_addr,
784 RDMA_RESOLVE_TIMEOUT_MS);
785 if (ret) {
786 ERROR(errp, "could not resolve address %s", rdma->host);
787 goto err_resolve_get_addr;
788 }
789
790 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
791
792 ret = rdma_get_cm_event(rdma->channel, &cm_event);
793 if (ret) {
794 ERROR(errp, "could not perform event_addr_resolved");
795 goto err_resolve_get_addr;
796 }
797
798 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
799 ERROR(errp, "result not equal to event_addr_resolved %s",
800 rdma_event_str(cm_event->event));
801 perror("rdma_resolve_addr");
802 goto err_resolve_get_addr;
803 }
804 rdma_ack_cm_event(cm_event);
805
806 /* resolve route */
807 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
808 if (ret) {
809 ERROR(errp, "could not resolve rdma route");
810 goto err_resolve_get_addr;
811 }
812
813 ret = rdma_get_cm_event(rdma->channel, &cm_event);
814 if (ret) {
815 ERROR(errp, "could not perform event_route_resolved");
816 goto err_resolve_get_addr;
817 }
818 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
819 ERROR(errp, "result not equal to event_route_resolved: %s",
820 rdma_event_str(cm_event->event));
821 rdma_ack_cm_event(cm_event);
822 goto err_resolve_get_addr;
823 }
824 rdma_ack_cm_event(cm_event);
825 rdma->verbs = rdma->cm_id->verbs;
826 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
827 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
828 return 0;
829
830 err_resolve_get_addr:
831 rdma_destroy_id(rdma->cm_id);
832 rdma->cm_id = NULL;
833 err_resolve_create_id:
834 rdma_destroy_event_channel(rdma->channel);
835 rdma->channel = NULL;
836
837 return -1;
838 }
839
840 /*
841 * Create protection domain and completion queues
842 */
843 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
844 {
845 /* allocate pd */
846 rdma->pd = ibv_alloc_pd(rdma->verbs);
847 if (!rdma->pd) {
848 fprintf(stderr, "failed to allocate protection domain\n");
849 return -1;
850 }
851
852 /* create completion channel */
853 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
854 if (!rdma->comp_channel) {
855 fprintf(stderr, "failed to allocate completion channel\n");
856 goto err_alloc_pd_cq;
857 }
858
859 /*
860 * Completion queue can be filled by both read and write work requests,
861 * so must reflect the sum of both possible queue sizes.
862 */
863 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
864 NULL, rdma->comp_channel, 0);
865 if (!rdma->cq) {
866 fprintf(stderr, "failed to allocate completion queue\n");
867 goto err_alloc_pd_cq;
868 }
869
870 return 0;
871
872 err_alloc_pd_cq:
873 if (rdma->pd) {
874 ibv_dealloc_pd(rdma->pd);
875 }
876 if (rdma->comp_channel) {
877 ibv_destroy_comp_channel(rdma->comp_channel);
878 }
879 rdma->pd = NULL;
880 rdma->comp_channel = NULL;
881 return -1;
882
883 }
884
885 /*
886 * Create queue pairs.
887 */
888 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
889 {
890 struct ibv_qp_init_attr attr = { 0 };
891 int ret;
892
893 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
894 attr.cap.max_recv_wr = 3;
895 attr.cap.max_send_sge = 1;
896 attr.cap.max_recv_sge = 1;
897 attr.send_cq = rdma->cq;
898 attr.recv_cq = rdma->cq;
899 attr.qp_type = IBV_QPT_RC;
900
901 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
902 if (ret) {
903 return -1;
904 }
905
906 rdma->qp = rdma->cm_id->qp;
907 return 0;
908 }
909
910 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
911 {
912 int i;
913 RDMALocalBlocks *local = &rdma->local_ram_blocks;
914
915 for (i = 0; i < local->nb_blocks; i++) {
916 local->block[i].mr =
917 ibv_reg_mr(rdma->pd,
918 local->block[i].local_host_addr,
919 local->block[i].length,
920 IBV_ACCESS_LOCAL_WRITE |
921 IBV_ACCESS_REMOTE_WRITE
922 );
923 if (!local->block[i].mr) {
924 perror("Failed to register local dest ram block!\n");
925 break;
926 }
927 rdma->total_registrations++;
928 }
929
930 if (i >= local->nb_blocks) {
931 return 0;
932 }
933
934 for (i--; i >= 0; i--) {
935 ibv_dereg_mr(local->block[i].mr);
936 rdma->total_registrations--;
937 }
938
939 return -1;
940
941 }
942
943 /*
944 * Find the ram block that corresponds to the page requested to be
945 * transmitted by QEMU.
946 *
947 * Once the block is found, also identify which 'chunk' within that
948 * block that the page belongs to.
949 *
950 * This search cannot fail or the migration will fail.
951 */
952 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
953 uint64_t block_offset,
954 uint64_t offset,
955 uint64_t length,
956 uint64_t *block_index,
957 uint64_t *chunk_index)
958 {
959 uint64_t current_addr = block_offset + offset;
960 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
961 (void *) block_offset);
962 assert(block);
963 assert(current_addr >= block->offset);
964 assert((current_addr + length) <= (block->offset + block->length));
965
966 *block_index = block->index;
967 *chunk_index = ram_chunk_index(block->local_host_addr,
968 block->local_host_addr + (current_addr - block->offset));
969
970 return 0;
971 }
972
973 /*
974 * Register a chunk with IB. If the chunk was already registered
975 * previously, then skip.
976 *
977 * Also return the keys associated with the registration needed
978 * to perform the actual RDMA operation.
979 */
980 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
981 RDMALocalBlock *block, uint8_t *host_addr,
982 uint32_t *lkey, uint32_t *rkey, int chunk,
983 uint8_t *chunk_start, uint8_t *chunk_end)
984 {
985 if (block->mr) {
986 if (lkey) {
987 *lkey = block->mr->lkey;
988 }
989 if (rkey) {
990 *rkey = block->mr->rkey;
991 }
992 return 0;
993 }
994
995 /* allocate memory to store chunk MRs */
996 if (!block->pmr) {
997 block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *));
998 if (!block->pmr) {
999 return -1;
1000 }
1001 }
1002
1003 /*
1004 * If 'rkey', then we're the destination, so grant access to the source.
1005 *
1006 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1007 */
1008 if (!block->pmr[chunk]) {
1009 uint64_t len = chunk_end - chunk_start;
1010
1011 DDPRINTF("Registering %" PRIu64 " bytes @ %p\n",
1012 len, chunk_start);
1013
1014 block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1015 chunk_start, len,
1016 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1017 IBV_ACCESS_REMOTE_WRITE) : 0));
1018
1019 if (!block->pmr[chunk]) {
1020 perror("Failed to register chunk!");
1021 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1022 " start %" PRIu64 " end %" PRIu64 " host %" PRIu64
1023 " local %" PRIu64 " registrations: %d\n",
1024 block->index, chunk, (uint64_t) chunk_start,
1025 (uint64_t) chunk_end, (uint64_t) host_addr,
1026 (uint64_t) block->local_host_addr,
1027 rdma->total_registrations);
1028 return -1;
1029 }
1030 rdma->total_registrations++;
1031 }
1032
1033 if (lkey) {
1034 *lkey = block->pmr[chunk]->lkey;
1035 }
1036 if (rkey) {
1037 *rkey = block->pmr[chunk]->rkey;
1038 }
1039 return 0;
1040 }
1041
1042 /*
1043 * Register (at connection time) the memory used for control
1044 * channel messages.
1045 */
1046 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1047 {
1048 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1049 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1050 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1051 if (rdma->wr_data[idx].control_mr) {
1052 rdma->total_registrations++;
1053 return 0;
1054 }
1055 fprintf(stderr, "qemu_rdma_reg_control failed!\n");
1056 return -1;
1057 }
1058
1059 const char *print_wrid(int wrid)
1060 {
1061 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1062 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1063 }
1064 return wrid_desc[wrid];
1065 }
1066
1067 /*
1068 * RDMA requires memory registration (mlock/pinning), but this is not good for
1069 * overcommitment.
1070 *
1071 * In preparation for the future where LRU information or workload-specific
1072 * writable writable working set memory access behavior is available to QEMU
1073 * it would be nice to have in place the ability to UN-register/UN-pin
1074 * particular memory regions from the RDMA hardware when it is determine that
1075 * those regions of memory will likely not be accessed again in the near future.
1076 *
1077 * While we do not yet have such information right now, the following
1078 * compile-time option allows us to perform a non-optimized version of this
1079 * behavior.
1080 *
1081 * By uncommenting this option, you will cause *all* RDMA transfers to be
1082 * unregistered immediately after the transfer completes on both sides of the
1083 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1084 *
1085 * This will have a terrible impact on migration performance, so until future
1086 * workload information or LRU information is available, do not attempt to use
1087 * this feature except for basic testing.
1088 */
1089 //#define RDMA_UNREGISTRATION_EXAMPLE
1090
1091 /*
1092 * Perform a non-optimized memory unregistration after every transfer
1093 * for demonsration purposes, only if pin-all is not requested.
1094 *
1095 * Potential optimizations:
1096 * 1. Start a new thread to run this function continuously
1097 - for bit clearing
1098 - and for receipt of unregister messages
1099 * 2. Use an LRU.
1100 * 3. Use workload hints.
1101 */
1102 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1103 {
1104 while (rdma->unregistrations[rdma->unregister_current]) {
1105 int ret;
1106 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1107 uint64_t chunk =
1108 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1109 uint64_t index =
1110 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1111 RDMALocalBlock *block =
1112 &(rdma->local_ram_blocks.block[index]);
1113 RDMARegister reg = { .current_index = index };
1114 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1115 };
1116 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1117 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1118 .repeat = 1,
1119 };
1120
1121 DDPRINTF("Processing unregister for chunk: %" PRIu64
1122 " at position %d\n", chunk, rdma->unregister_current);
1123
1124 rdma->unregistrations[rdma->unregister_current] = 0;
1125 rdma->unregister_current++;
1126
1127 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1128 rdma->unregister_current = 0;
1129 }
1130
1131
1132 /*
1133 * Unregistration is speculative (because migration is single-threaded
1134 * and we cannot break the protocol's inifinband message ordering).
1135 * Thus, if the memory is currently being used for transmission,
1136 * then abort the attempt to unregister and try again
1137 * later the next time a completion is received for this memory.
1138 */
1139 clear_bit(chunk, block->unregister_bitmap);
1140
1141 if (test_bit(chunk, block->transit_bitmap)) {
1142 DDPRINTF("Cannot unregister inflight chunk: %" PRIu64 "\n", chunk);
1143 continue;
1144 }
1145
1146 DDPRINTF("Sending unregister for chunk: %" PRIu64 "\n", chunk);
1147
1148 ret = ibv_dereg_mr(block->pmr[chunk]);
1149 block->pmr[chunk] = NULL;
1150 block->remote_keys[chunk] = 0;
1151
1152 if (ret != 0) {
1153 perror("unregistration chunk failed");
1154 return -ret;
1155 }
1156 rdma->total_registrations--;
1157
1158 reg.key.chunk = chunk;
1159 register_to_network(&reg);
1160 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1161 &resp, NULL, NULL);
1162 if (ret < 0) {
1163 return ret;
1164 }
1165
1166 DDPRINTF("Unregister for chunk: %" PRIu64 " complete.\n", chunk);
1167 }
1168
1169 return 0;
1170 }
1171
1172 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1173 uint64_t chunk)
1174 {
1175 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1176
1177 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1178 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1179
1180 return result;
1181 }
1182
1183 /*
1184 * Set bit for unregistration in the next iteration.
1185 * We cannot transmit right here, but will unpin later.
1186 */
1187 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1188 uint64_t chunk, uint64_t wr_id)
1189 {
1190 if (rdma->unregistrations[rdma->unregister_next] != 0) {
1191 fprintf(stderr, "rdma migration: queue is full!\n");
1192 } else {
1193 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1194
1195 if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1196 DDPRINTF("Appending unregister chunk %" PRIu64
1197 " at position %d\n", chunk, rdma->unregister_next);
1198
1199 rdma->unregistrations[rdma->unregister_next++] =
1200 qemu_rdma_make_wrid(wr_id, index, chunk);
1201
1202 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1203 rdma->unregister_next = 0;
1204 }
1205 } else {
1206 DDPRINTF("Unregister chunk %" PRIu64 " already in queue.\n",
1207 chunk);
1208 }
1209 }
1210 }
1211
1212 /*
1213 * Consult the connection manager to see a work request
1214 * (of any kind) has completed.
1215 * Return the work request ID that completed.
1216 */
1217 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1218 uint32_t *byte_len)
1219 {
1220 int ret;
1221 struct ibv_wc wc;
1222 uint64_t wr_id;
1223
1224 ret = ibv_poll_cq(rdma->cq, 1, &wc);
1225
1226 if (!ret) {
1227 *wr_id_out = RDMA_WRID_NONE;
1228 return 0;
1229 }
1230
1231 if (ret < 0) {
1232 fprintf(stderr, "ibv_poll_cq return %d!\n", ret);
1233 return ret;
1234 }
1235
1236 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1237
1238 if (wc.status != IBV_WC_SUCCESS) {
1239 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1240 wc.status, ibv_wc_status_str(wc.status));
1241 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1242
1243 return -1;
1244 }
1245
1246 if (rdma->control_ready_expected &&
1247 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1248 DDDPRINTF("completion %s #%" PRId64 " received (%" PRId64 ")"
1249 " left %d\n", wrid_desc[RDMA_WRID_RECV_CONTROL],
1250 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1251 rdma->control_ready_expected = 0;
1252 }
1253
1254 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1255 uint64_t chunk =
1256 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1257 uint64_t index =
1258 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1259 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1260
1261 DDDPRINTF("completions %s (%" PRId64 ") left %d, "
1262 "block %" PRIu64 ", chunk: %" PRIu64 " %p %p\n",
1263 print_wrid(wr_id), wr_id, rdma->nb_sent, index, chunk,
1264 block->local_host_addr, (void *)block->remote_host_addr);
1265
1266 clear_bit(chunk, block->transit_bitmap);
1267
1268 if (rdma->nb_sent > 0) {
1269 rdma->nb_sent--;
1270 }
1271
1272 if (!rdma->pin_all) {
1273 /*
1274 * FYI: If one wanted to signal a specific chunk to be unregistered
1275 * using LRU or workload-specific information, this is the function
1276 * you would call to do so. That chunk would then get asynchronously
1277 * unregistered later.
1278 */
1279 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1280 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1281 #endif
1282 }
1283 } else {
1284 DDDPRINTF("other completion %s (%" PRId64 ") received left %d\n",
1285 print_wrid(wr_id), wr_id, rdma->nb_sent);
1286 }
1287
1288 *wr_id_out = wc.wr_id;
1289 if (byte_len) {
1290 *byte_len = wc.byte_len;
1291 }
1292
1293 return 0;
1294 }
1295
1296 /*
1297 * Block until the next work request has completed.
1298 *
1299 * First poll to see if a work request has already completed,
1300 * otherwise block.
1301 *
1302 * If we encounter completed work requests for IDs other than
1303 * the one we're interested in, then that's generally an error.
1304 *
1305 * The only exception is actual RDMA Write completions. These
1306 * completions only need to be recorded, but do not actually
1307 * need further processing.
1308 */
1309 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1310 uint32_t *byte_len)
1311 {
1312 int num_cq_events = 0, ret = 0;
1313 struct ibv_cq *cq;
1314 void *cq_ctx;
1315 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1316
1317 if (ibv_req_notify_cq(rdma->cq, 0)) {
1318 return -1;
1319 }
1320 /* poll cq first */
1321 while (wr_id != wrid_requested) {
1322 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1323 if (ret < 0) {
1324 return ret;
1325 }
1326
1327 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1328
1329 if (wr_id == RDMA_WRID_NONE) {
1330 break;
1331 }
1332 if (wr_id != wrid_requested) {
1333 DDDPRINTF("A Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1334 print_wrid(wrid_requested),
1335 wrid_requested, print_wrid(wr_id), wr_id);
1336 }
1337 }
1338
1339 if (wr_id == wrid_requested) {
1340 return 0;
1341 }
1342
1343 while (1) {
1344 /*
1345 * Coroutine doesn't start until process_incoming_migration()
1346 * so don't yield unless we know we're running inside of a coroutine.
1347 */
1348 if (rdma->migration_started_on_destination) {
1349 yield_until_fd_readable(rdma->comp_channel->fd);
1350 }
1351
1352 if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
1353 perror("ibv_get_cq_event");
1354 goto err_block_for_wrid;
1355 }
1356
1357 num_cq_events++;
1358
1359 if (ibv_req_notify_cq(cq, 0)) {
1360 goto err_block_for_wrid;
1361 }
1362
1363 while (wr_id != wrid_requested) {
1364 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1365 if (ret < 0) {
1366 goto err_block_for_wrid;
1367 }
1368
1369 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1370
1371 if (wr_id == RDMA_WRID_NONE) {
1372 break;
1373 }
1374 if (wr_id != wrid_requested) {
1375 DDDPRINTF("B Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1376 print_wrid(wrid_requested), wrid_requested,
1377 print_wrid(wr_id), wr_id);
1378 }
1379 }
1380
1381 if (wr_id == wrid_requested) {
1382 goto success_block_for_wrid;
1383 }
1384 }
1385
1386 success_block_for_wrid:
1387 if (num_cq_events) {
1388 ibv_ack_cq_events(cq, num_cq_events);
1389 }
1390 return 0;
1391
1392 err_block_for_wrid:
1393 if (num_cq_events) {
1394 ibv_ack_cq_events(cq, num_cq_events);
1395 }
1396 return ret;
1397 }
1398
1399 /*
1400 * Post a SEND message work request for the control channel
1401 * containing some data and block until the post completes.
1402 */
1403 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1404 RDMAControlHeader *head)
1405 {
1406 int ret = 0;
1407 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1408 struct ibv_send_wr *bad_wr;
1409 struct ibv_sge sge = {
1410 .addr = (uint64_t)(wr->control),
1411 .length = head->len + sizeof(RDMAControlHeader),
1412 .lkey = wr->control_mr->lkey,
1413 };
1414 struct ibv_send_wr send_wr = {
1415 .wr_id = RDMA_WRID_SEND_CONTROL,
1416 .opcode = IBV_WR_SEND,
1417 .send_flags = IBV_SEND_SIGNALED,
1418 .sg_list = &sge,
1419 .num_sge = 1,
1420 };
1421
1422 DDDPRINTF("CONTROL: sending %s..\n", control_desc[head->type]);
1423
1424 /*
1425 * We don't actually need to do a memcpy() in here if we used
1426 * the "sge" properly, but since we're only sending control messages
1427 * (not RAM in a performance-critical path), then its OK for now.
1428 *
1429 * The copy makes the RDMAControlHeader simpler to manipulate
1430 * for the time being.
1431 */
1432 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1433 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1434 control_to_network((void *) wr->control);
1435
1436 if (buf) {
1437 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1438 }
1439
1440
1441 if (ibv_post_send(rdma->qp, &send_wr, &bad_wr)) {
1442 return -1;
1443 }
1444
1445 if (ret < 0) {
1446 fprintf(stderr, "Failed to use post IB SEND for control!\n");
1447 return ret;
1448 }
1449
1450 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1451 if (ret < 0) {
1452 fprintf(stderr, "rdma migration: send polling control error!\n");
1453 }
1454
1455 return ret;
1456 }
1457
1458 /*
1459 * Post a RECV work request in anticipation of some future receipt
1460 * of data on the control channel.
1461 */
1462 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1463 {
1464 struct ibv_recv_wr *bad_wr;
1465 struct ibv_sge sge = {
1466 .addr = (uint64_t)(rdma->wr_data[idx].control),
1467 .length = RDMA_CONTROL_MAX_BUFFER,
1468 .lkey = rdma->wr_data[idx].control_mr->lkey,
1469 };
1470
1471 struct ibv_recv_wr recv_wr = {
1472 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1473 .sg_list = &sge,
1474 .num_sge = 1,
1475 };
1476
1477
1478 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1479 return -1;
1480 }
1481
1482 return 0;
1483 }
1484
1485 /*
1486 * Block and wait for a RECV control channel message to arrive.
1487 */
1488 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1489 RDMAControlHeader *head, int expecting, int idx)
1490 {
1491 uint32_t byte_len;
1492 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1493 &byte_len);
1494
1495 if (ret < 0) {
1496 fprintf(stderr, "rdma migration: recv polling control error!\n");
1497 return ret;
1498 }
1499
1500 network_to_control((void *) rdma->wr_data[idx].control);
1501 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1502
1503 DDDPRINTF("CONTROL: %s receiving...\n", control_desc[expecting]);
1504
1505 if (expecting == RDMA_CONTROL_NONE) {
1506 DDDPRINTF("Surprise: got %s (%d)\n",
1507 control_desc[head->type], head->type);
1508 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1509 fprintf(stderr, "Was expecting a %s (%d) control message"
1510 ", but got: %s (%d), length: %d\n",
1511 control_desc[expecting], expecting,
1512 control_desc[head->type], head->type, head->len);
1513 return -EIO;
1514 }
1515 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1516 fprintf(stderr, "too long length: %d\n", head->len);
1517 return -EINVAL;
1518 }
1519 if (sizeof(*head) + head->len != byte_len) {
1520 fprintf(stderr, "Malformed length: %d byte_len %d\n",
1521 head->len, byte_len);
1522 return -EINVAL;
1523 }
1524
1525 return 0;
1526 }
1527
1528 /*
1529 * When a RECV work request has completed, the work request's
1530 * buffer is pointed at the header.
1531 *
1532 * This will advance the pointer to the data portion
1533 * of the control message of the work request's buffer that
1534 * was populated after the work request finished.
1535 */
1536 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1537 RDMAControlHeader *head)
1538 {
1539 rdma->wr_data[idx].control_len = head->len;
1540 rdma->wr_data[idx].control_curr =
1541 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1542 }
1543
1544 /*
1545 * This is an 'atomic' high-level operation to deliver a single, unified
1546 * control-channel message.
1547 *
1548 * Additionally, if the user is expecting some kind of reply to this message,
1549 * they can request a 'resp' response message be filled in by posting an
1550 * additional work request on behalf of the user and waiting for an additional
1551 * completion.
1552 *
1553 * The extra (optional) response is used during registration to us from having
1554 * to perform an *additional* exchange of message just to provide a response by
1555 * instead piggy-backing on the acknowledgement.
1556 */
1557 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1558 uint8_t *data, RDMAControlHeader *resp,
1559 int *resp_idx,
1560 int (*callback)(RDMAContext *rdma))
1561 {
1562 int ret = 0;
1563
1564 /*
1565 * Wait until the dest is ready before attempting to deliver the message
1566 * by waiting for a READY message.
1567 */
1568 if (rdma->control_ready_expected) {
1569 RDMAControlHeader resp;
1570 ret = qemu_rdma_exchange_get_response(rdma,
1571 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1572 if (ret < 0) {
1573 return ret;
1574 }
1575 }
1576
1577 /*
1578 * If the user is expecting a response, post a WR in anticipation of it.
1579 */
1580 if (resp) {
1581 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1582 if (ret) {
1583 fprintf(stderr, "rdma migration: error posting"
1584 " extra control recv for anticipated result!");
1585 return ret;
1586 }
1587 }
1588
1589 /*
1590 * Post a WR to replace the one we just consumed for the READY message.
1591 */
1592 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1593 if (ret) {
1594 fprintf(stderr, "rdma migration: error posting first control recv!");
1595 return ret;
1596 }
1597
1598 /*
1599 * Deliver the control message that was requested.
1600 */
1601 ret = qemu_rdma_post_send_control(rdma, data, head);
1602
1603 if (ret < 0) {
1604 fprintf(stderr, "Failed to send control buffer!\n");
1605 return ret;
1606 }
1607
1608 /*
1609 * If we're expecting a response, block and wait for it.
1610 */
1611 if (resp) {
1612 if (callback) {
1613 DDPRINTF("Issuing callback before receiving response...\n");
1614 ret = callback(rdma);
1615 if (ret < 0) {
1616 return ret;
1617 }
1618 }
1619
1620 DDPRINTF("Waiting for response %s\n", control_desc[resp->type]);
1621 ret = qemu_rdma_exchange_get_response(rdma, resp,
1622 resp->type, RDMA_WRID_DATA);
1623
1624 if (ret < 0) {
1625 return ret;
1626 }
1627
1628 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1629 if (resp_idx) {
1630 *resp_idx = RDMA_WRID_DATA;
1631 }
1632 DDPRINTF("Response %s received.\n", control_desc[resp->type]);
1633 }
1634
1635 rdma->control_ready_expected = 1;
1636
1637 return 0;
1638 }
1639
1640 /*
1641 * This is an 'atomic' high-level operation to receive a single, unified
1642 * control-channel message.
1643 */
1644 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1645 int expecting)
1646 {
1647 RDMAControlHeader ready = {
1648 .len = 0,
1649 .type = RDMA_CONTROL_READY,
1650 .repeat = 1,
1651 };
1652 int ret;
1653
1654 /*
1655 * Inform the source that we're ready to receive a message.
1656 */
1657 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1658
1659 if (ret < 0) {
1660 fprintf(stderr, "Failed to send control buffer!\n");
1661 return ret;
1662 }
1663
1664 /*
1665 * Block and wait for the message.
1666 */
1667 ret = qemu_rdma_exchange_get_response(rdma, head,
1668 expecting, RDMA_WRID_READY);
1669
1670 if (ret < 0) {
1671 return ret;
1672 }
1673
1674 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1675
1676 /*
1677 * Post a new RECV work request to replace the one we just consumed.
1678 */
1679 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1680 if (ret) {
1681 fprintf(stderr, "rdma migration: error posting second control recv!");
1682 return ret;
1683 }
1684
1685 return 0;
1686 }
1687
1688 /*
1689 * Write an actual chunk of memory using RDMA.
1690 *
1691 * If we're using dynamic registration on the dest-side, we have to
1692 * send a registration command first.
1693 */
1694 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1695 int current_index, uint64_t current_addr,
1696 uint64_t length)
1697 {
1698 struct ibv_sge sge;
1699 struct ibv_send_wr send_wr = { 0 };
1700 struct ibv_send_wr *bad_wr;
1701 int reg_result_idx, ret, count = 0;
1702 uint64_t chunk, chunks;
1703 uint8_t *chunk_start, *chunk_end;
1704 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1705 RDMARegister reg;
1706 RDMARegisterResult *reg_result;
1707 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1708 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1709 .type = RDMA_CONTROL_REGISTER_REQUEST,
1710 .repeat = 1,
1711 };
1712
1713 retry:
1714 sge.addr = (uint64_t)(block->local_host_addr +
1715 (current_addr - block->offset));
1716 sge.length = length;
1717
1718 chunk = ram_chunk_index(block->local_host_addr, (uint8_t *) sge.addr);
1719 chunk_start = ram_chunk_start(block, chunk);
1720
1721 if (block->is_ram_block) {
1722 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1723
1724 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1725 chunks--;
1726 }
1727 } else {
1728 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1729
1730 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1731 chunks--;
1732 }
1733 }
1734
1735 DDPRINTF("Writing %" PRIu64 " chunks, (%" PRIu64 " MB)\n",
1736 chunks + 1, (chunks + 1) * (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
1737
1738 chunk_end = ram_chunk_end(block, chunk + chunks);
1739
1740 if (!rdma->pin_all) {
1741 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1742 qemu_rdma_unregister_waiting(rdma);
1743 #endif
1744 }
1745
1746 while (test_bit(chunk, block->transit_bitmap)) {
1747 (void)count;
1748 DDPRINTF("(%d) Not clobbering: block: %d chunk %" PRIu64
1749 " current %" PRIu64 " len %" PRIu64 " %d %d\n",
1750 count++, current_index, chunk,
1751 sge.addr, length, rdma->nb_sent, block->nb_chunks);
1752
1753 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
1754
1755 if (ret < 0) {
1756 fprintf(stderr, "Failed to Wait for previous write to complete "
1757 "block %d chunk %" PRIu64
1758 " current %" PRIu64 " len %" PRIu64 " %d\n",
1759 current_index, chunk, sge.addr, length, rdma->nb_sent);
1760 return ret;
1761 }
1762 }
1763
1764 if (!rdma->pin_all || !block->is_ram_block) {
1765 if (!block->remote_keys[chunk]) {
1766 /*
1767 * This chunk has not yet been registered, so first check to see
1768 * if the entire chunk is zero. If so, tell the other size to
1769 * memset() + madvise() the entire chunk without RDMA.
1770 */
1771
1772 if (can_use_buffer_find_nonzero_offset((void *)sge.addr, length)
1773 && buffer_find_nonzero_offset((void *)sge.addr,
1774 length) == length) {
1775 RDMACompress comp = {
1776 .offset = current_addr,
1777 .value = 0,
1778 .block_idx = current_index,
1779 .length = length,
1780 };
1781
1782 head.len = sizeof(comp);
1783 head.type = RDMA_CONTROL_COMPRESS;
1784
1785 DDPRINTF("Entire chunk is zero, sending compress: %"
1786 PRIu64 " for %d "
1787 "bytes, index: %d, offset: %" PRId64 "...\n",
1788 chunk, sge.length, current_index, current_addr);
1789
1790 compress_to_network(&comp);
1791 ret = qemu_rdma_exchange_send(rdma, &head,
1792 (uint8_t *) &comp, NULL, NULL, NULL);
1793
1794 if (ret < 0) {
1795 return -EIO;
1796 }
1797
1798 acct_update_position(f, sge.length, true);
1799
1800 return 1;
1801 }
1802
1803 /*
1804 * Otherwise, tell other side to register.
1805 */
1806 reg.current_index = current_index;
1807 if (block->is_ram_block) {
1808 reg.key.current_addr = current_addr;
1809 } else {
1810 reg.key.chunk = chunk;
1811 }
1812 reg.chunks = chunks;
1813
1814 DDPRINTF("Sending registration request chunk %" PRIu64 " for %d "
1815 "bytes, index: %d, offset: %" PRId64 "...\n",
1816 chunk, sge.length, current_index, current_addr);
1817
1818 register_to_network(&reg);
1819 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1820 &resp, &reg_result_idx, NULL);
1821 if (ret < 0) {
1822 return ret;
1823 }
1824
1825 /* try to overlap this single registration with the one we sent. */
1826 if (qemu_rdma_register_and_get_keys(rdma, block,
1827 (uint8_t *) sge.addr,
1828 &sge.lkey, NULL, chunk,
1829 chunk_start, chunk_end)) {
1830 fprintf(stderr, "cannot get lkey!\n");
1831 return -EINVAL;
1832 }
1833
1834 reg_result = (RDMARegisterResult *)
1835 rdma->wr_data[reg_result_idx].control_curr;
1836
1837 network_to_result(reg_result);
1838
1839 DDPRINTF("Received registration result:"
1840 " my key: %x their key %x, chunk %" PRIu64 "\n",
1841 block->remote_keys[chunk], reg_result->rkey, chunk);
1842
1843 block->remote_keys[chunk] = reg_result->rkey;
1844 block->remote_host_addr = reg_result->host_addr;
1845 } else {
1846 /* already registered before */
1847 if (qemu_rdma_register_and_get_keys(rdma, block,
1848 (uint8_t *)sge.addr,
1849 &sge.lkey, NULL, chunk,
1850 chunk_start, chunk_end)) {
1851 fprintf(stderr, "cannot get lkey!\n");
1852 return -EINVAL;
1853 }
1854 }
1855
1856 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
1857 } else {
1858 send_wr.wr.rdma.rkey = block->remote_rkey;
1859
1860 if (qemu_rdma_register_and_get_keys(rdma, block, (uint8_t *)sge.addr,
1861 &sge.lkey, NULL, chunk,
1862 chunk_start, chunk_end)) {
1863 fprintf(stderr, "cannot get lkey!\n");
1864 return -EINVAL;
1865 }
1866 }
1867
1868 /*
1869 * Encode the ram block index and chunk within this wrid.
1870 * We will use this information at the time of completion
1871 * to figure out which bitmap to check against and then which
1872 * chunk in the bitmap to look for.
1873 */
1874 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
1875 current_index, chunk);
1876
1877 send_wr.opcode = IBV_WR_RDMA_WRITE;
1878 send_wr.send_flags = IBV_SEND_SIGNALED;
1879 send_wr.sg_list = &sge;
1880 send_wr.num_sge = 1;
1881 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
1882 (current_addr - block->offset);
1883
1884 DDDPRINTF("Posting chunk: %" PRIu64 ", addr: %lx"
1885 " remote: %lx, bytes %" PRIu32 "\n",
1886 chunk, sge.addr, send_wr.wr.rdma.remote_addr,
1887 sge.length);
1888
1889 /*
1890 * ibv_post_send() does not return negative error numbers,
1891 * per the specification they are positive - no idea why.
1892 */
1893 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1894
1895 if (ret == ENOMEM) {
1896 DDPRINTF("send queue is full. wait a little....\n");
1897 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
1898 if (ret < 0) {
1899 fprintf(stderr, "rdma migration: failed to make "
1900 "room in full send queue! %d\n", ret);
1901 return ret;
1902 }
1903
1904 goto retry;
1905
1906 } else if (ret > 0) {
1907 perror("rdma migration: post rdma write failed");
1908 return -ret;
1909 }
1910
1911 set_bit(chunk, block->transit_bitmap);
1912 acct_update_position(f, sge.length, false);
1913 rdma->total_writes++;
1914
1915 return 0;
1916 }
1917
1918 /*
1919 * Push out any unwritten RDMA operations.
1920 *
1921 * We support sending out multiple chunks at the same time.
1922 * Not all of them need to get signaled in the completion queue.
1923 */
1924 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
1925 {
1926 int ret;
1927
1928 if (!rdma->current_length) {
1929 return 0;
1930 }
1931
1932 ret = qemu_rdma_write_one(f, rdma,
1933 rdma->current_index, rdma->current_addr, rdma->current_length);
1934
1935 if (ret < 0) {
1936 return ret;
1937 }
1938
1939 if (ret == 0) {
1940 rdma->nb_sent++;
1941 DDDPRINTF("sent total: %d\n", rdma->nb_sent);
1942 }
1943
1944 rdma->current_length = 0;
1945 rdma->current_addr = 0;
1946
1947 return 0;
1948 }
1949
1950 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
1951 uint64_t offset, uint64_t len)
1952 {
1953 RDMALocalBlock *block;
1954 uint8_t *host_addr;
1955 uint8_t *chunk_end;
1956
1957 if (rdma->current_index < 0) {
1958 return 0;
1959 }
1960
1961 if (rdma->current_chunk < 0) {
1962 return 0;
1963 }
1964
1965 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
1966 host_addr = block->local_host_addr + (offset - block->offset);
1967 chunk_end = ram_chunk_end(block, rdma->current_chunk);
1968
1969 if (rdma->current_length == 0) {
1970 return 0;
1971 }
1972
1973 /*
1974 * Only merge into chunk sequentially.
1975 */
1976 if (offset != (rdma->current_addr + rdma->current_length)) {
1977 return 0;
1978 }
1979
1980 if (offset < block->offset) {
1981 return 0;
1982 }
1983
1984 if ((offset + len) > (block->offset + block->length)) {
1985 return 0;
1986 }
1987
1988 if ((host_addr + len) > chunk_end) {
1989 return 0;
1990 }
1991
1992 return 1;
1993 }
1994
1995 /*
1996 * We're not actually writing here, but doing three things:
1997 *
1998 * 1. Identify the chunk the buffer belongs to.
1999 * 2. If the chunk is full or the buffer doesn't belong to the current
2000 * chunk, then start a new chunk and flush() the old chunk.
2001 * 3. To keep the hardware busy, we also group chunks into batches
2002 * and only require that a batch gets acknowledged in the completion
2003 * qeueue instead of each individual chunk.
2004 */
2005 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2006 uint64_t block_offset, uint64_t offset,
2007 uint64_t len)
2008 {
2009 uint64_t current_addr = block_offset + offset;
2010 uint64_t index = rdma->current_index;
2011 uint64_t chunk = rdma->current_chunk;
2012 int ret;
2013
2014 /* If we cannot merge it, we flush the current buffer first. */
2015 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2016 ret = qemu_rdma_write_flush(f, rdma);
2017 if (ret) {
2018 return ret;
2019 }
2020 rdma->current_length = 0;
2021 rdma->current_addr = current_addr;
2022
2023 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2024 offset, len, &index, &chunk);
2025 if (ret) {
2026 fprintf(stderr, "ram block search failed\n");
2027 return ret;
2028 }
2029 rdma->current_index = index;
2030 rdma->current_chunk = chunk;
2031 }
2032
2033 /* merge it */
2034 rdma->current_length += len;
2035
2036 /* flush it if buffer is too large */
2037 if (rdma->current_length >= RDMA_MERGE_MAX) {
2038 return qemu_rdma_write_flush(f, rdma);
2039 }
2040
2041 return 0;
2042 }
2043
2044 static void qemu_rdma_cleanup(RDMAContext *rdma)
2045 {
2046 struct rdma_cm_event *cm_event;
2047 int ret, idx;
2048
2049 if (rdma->cm_id) {
2050 if (rdma->error_state) {
2051 RDMAControlHeader head = { .len = 0,
2052 .type = RDMA_CONTROL_ERROR,
2053 .repeat = 1,
2054 };
2055 fprintf(stderr, "Early error. Sending error.\n");
2056 qemu_rdma_post_send_control(rdma, NULL, &head);
2057 }
2058
2059 ret = rdma_disconnect(rdma->cm_id);
2060 if (!ret) {
2061 DDPRINTF("waiting for disconnect\n");
2062 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2063 if (!ret) {
2064 rdma_ack_cm_event(cm_event);
2065 }
2066 }
2067 DDPRINTF("Disconnected.\n");
2068 rdma->cm_id = NULL;
2069 }
2070
2071 g_free(rdma->block);
2072 rdma->block = NULL;
2073
2074 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2075 if (rdma->wr_data[idx].control_mr) {
2076 rdma->total_registrations--;
2077 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2078 }
2079 rdma->wr_data[idx].control_mr = NULL;
2080 }
2081
2082 if (rdma->local_ram_blocks.block) {
2083 while (rdma->local_ram_blocks.nb_blocks) {
2084 __qemu_rdma_delete_block(rdma,
2085 rdma->local_ram_blocks.block->offset);
2086 }
2087 }
2088
2089 if (rdma->qp) {
2090 ibv_destroy_qp(rdma->qp);
2091 rdma->qp = NULL;
2092 }
2093 if (rdma->cq) {
2094 ibv_destroy_cq(rdma->cq);
2095 rdma->cq = NULL;
2096 }
2097 if (rdma->comp_channel) {
2098 ibv_destroy_comp_channel(rdma->comp_channel);
2099 rdma->comp_channel = NULL;
2100 }
2101 if (rdma->pd) {
2102 ibv_dealloc_pd(rdma->pd);
2103 rdma->pd = NULL;
2104 }
2105 if (rdma->listen_id) {
2106 rdma_destroy_id(rdma->listen_id);
2107 rdma->listen_id = NULL;
2108 }
2109 if (rdma->cm_id) {
2110 rdma_destroy_id(rdma->cm_id);
2111 rdma->cm_id = NULL;
2112 }
2113 if (rdma->channel) {
2114 rdma_destroy_event_channel(rdma->channel);
2115 rdma->channel = NULL;
2116 }
2117 g_free(rdma->host);
2118 rdma->host = NULL;
2119 }
2120
2121
2122 static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
2123 {
2124 int ret, idx;
2125 Error *local_err = NULL, **temp = &local_err;
2126
2127 /*
2128 * Will be validated against destination's actual capabilities
2129 * after the connect() completes.
2130 */
2131 rdma->pin_all = pin_all;
2132
2133 ret = qemu_rdma_resolve_host(rdma, temp);
2134 if (ret) {
2135 goto err_rdma_source_init;
2136 }
2137
2138 ret = qemu_rdma_alloc_pd_cq(rdma);
2139 if (ret) {
2140 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2141 " limits may be too low. Please check $ ulimit -a # and "
2142 "search for 'ulimit -l' in the output");
2143 goto err_rdma_source_init;
2144 }
2145
2146 ret = qemu_rdma_alloc_qp(rdma);
2147 if (ret) {
2148 ERROR(temp, "rdma migration: error allocating qp!");
2149 goto err_rdma_source_init;
2150 }
2151
2152 ret = qemu_rdma_init_ram_blocks(rdma);
2153 if (ret) {
2154 ERROR(temp, "rdma migration: error initializing ram blocks!");
2155 goto err_rdma_source_init;
2156 }
2157
2158 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2159 ret = qemu_rdma_reg_control(rdma, idx);
2160 if (ret) {
2161 ERROR(temp, "rdma migration: error registering %d control!",
2162 idx);
2163 goto err_rdma_source_init;
2164 }
2165 }
2166
2167 return 0;
2168
2169 err_rdma_source_init:
2170 error_propagate(errp, local_err);
2171 qemu_rdma_cleanup(rdma);
2172 return -1;
2173 }
2174
2175 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2176 {
2177 RDMACapabilities cap = {
2178 .version = RDMA_CONTROL_VERSION_CURRENT,
2179 .flags = 0,
2180 };
2181 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2182 .retry_count = 5,
2183 .private_data = &cap,
2184 .private_data_len = sizeof(cap),
2185 };
2186 struct rdma_cm_event *cm_event;
2187 int ret;
2188
2189 /*
2190 * Only negotiate the capability with destination if the user
2191 * on the source first requested the capability.
2192 */
2193 if (rdma->pin_all) {
2194 DPRINTF("Server pin-all memory requested.\n");
2195 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2196 }
2197
2198 caps_to_network(&cap);
2199
2200 ret = rdma_connect(rdma->cm_id, &conn_param);
2201 if (ret) {
2202 perror("rdma_connect");
2203 ERROR(errp, "connecting to destination!");
2204 rdma_destroy_id(rdma->cm_id);
2205 rdma->cm_id = NULL;
2206 goto err_rdma_source_connect;
2207 }
2208
2209 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2210 if (ret) {
2211 perror("rdma_get_cm_event after rdma_connect");
2212 ERROR(errp, "connecting to destination!");
2213 rdma_ack_cm_event(cm_event);
2214 rdma_destroy_id(rdma->cm_id);
2215 rdma->cm_id = NULL;
2216 goto err_rdma_source_connect;
2217 }
2218
2219 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2220 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2221 ERROR(errp, "connecting to destination!");
2222 rdma_ack_cm_event(cm_event);
2223 rdma_destroy_id(rdma->cm_id);
2224 rdma->cm_id = NULL;
2225 goto err_rdma_source_connect;
2226 }
2227
2228 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2229 network_to_caps(&cap);
2230
2231 /*
2232 * Verify that the *requested* capabilities are supported by the destination
2233 * and disable them otherwise.
2234 */
2235 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2236 ERROR(errp, "Server cannot support pinning all memory. "
2237 "Will register memory dynamically.");
2238 rdma->pin_all = false;
2239 }
2240
2241 DPRINTF("Pin all memory: %s\n", rdma->pin_all ? "enabled" : "disabled");
2242
2243 rdma_ack_cm_event(cm_event);
2244
2245 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2246 if (ret) {
2247 ERROR(errp, "posting second control recv!");
2248 goto err_rdma_source_connect;
2249 }
2250
2251 rdma->control_ready_expected = 1;
2252 rdma->nb_sent = 0;
2253 return 0;
2254
2255 err_rdma_source_connect:
2256 qemu_rdma_cleanup(rdma);
2257 return -1;
2258 }
2259
2260 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2261 {
2262 int ret = -EINVAL, idx;
2263 int af = rdma->ipv6 ? PF_INET6 : PF_INET;
2264 struct sockaddr_in sin;
2265 struct rdma_cm_id *listen_id;
2266 char ip[40] = "unknown";
2267 struct addrinfo *res;
2268 char port_str[16];
2269
2270 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2271 rdma->wr_data[idx].control_len = 0;
2272 rdma->wr_data[idx].control_curr = NULL;
2273 }
2274
2275 if (rdma->host == NULL) {
2276 ERROR(errp, "RDMA host is not set!");
2277 rdma->error_state = -EINVAL;
2278 return -1;
2279 }
2280 /* create CM channel */
2281 rdma->channel = rdma_create_event_channel();
2282 if (!rdma->channel) {
2283 ERROR(errp, "could not create rdma event channel");
2284 rdma->error_state = -EINVAL;
2285 return -1;
2286 }
2287
2288 /* create CM id */
2289 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2290 if (ret) {
2291 ERROR(errp, "could not create cm_id!");
2292 goto err_dest_init_create_listen_id;
2293 }
2294
2295 memset(&sin, 0, sizeof(sin));
2296 sin.sin_family = af;
2297 sin.sin_port = htons(rdma->port);
2298 snprintf(port_str, 16, "%d", rdma->port);
2299 port_str[15] = '\0';
2300
2301 if (rdma->host && strcmp("", rdma->host)) {
2302 ret = getaddrinfo(rdma->host, port_str, NULL, &res);
2303 if (ret < 0) {
2304 ERROR(errp, "could not getaddrinfo address %s", rdma->host);
2305 goto err_dest_init_bind_addr;
2306 }
2307
2308
2309 inet_ntop(af, &((struct sockaddr_in *) res->ai_addr)->sin_addr,
2310 ip, sizeof ip);
2311 } else {
2312 ERROR(errp, "migration host and port not specified!");
2313 ret = -EINVAL;
2314 goto err_dest_init_bind_addr;
2315 }
2316
2317 DPRINTF("%s => %s\n", rdma->host, ip);
2318
2319 ret = rdma_bind_addr(listen_id, res->ai_addr);
2320 if (ret) {
2321 ERROR(errp, "Error: could not rdma_bind_addr!");
2322 goto err_dest_init_bind_addr;
2323 }
2324
2325 rdma->listen_id = listen_id;
2326 qemu_rdma_dump_gid("dest_init", listen_id);
2327 return 0;
2328
2329 err_dest_init_bind_addr:
2330 rdma_destroy_id(listen_id);
2331 err_dest_init_create_listen_id:
2332 rdma_destroy_event_channel(rdma->channel);
2333 rdma->channel = NULL;
2334 rdma->error_state = ret;
2335 return ret;
2336
2337 }
2338
2339 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2340 {
2341 RDMAContext *rdma = NULL;
2342 InetSocketAddress *addr;
2343
2344 if (host_port) {
2345 rdma = g_malloc0(sizeof(RDMAContext));
2346 memset(rdma, 0, sizeof(RDMAContext));
2347 rdma->current_index = -1;
2348 rdma->current_chunk = -1;
2349
2350 addr = inet_parse(host_port, NULL);
2351 if (addr != NULL) {
2352 rdma->port = atoi(addr->port);
2353 rdma->host = g_strdup(addr->host);
2354 rdma->ipv6 = addr->ipv6;
2355 } else {
2356 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2357 g_free(rdma);
2358 return NULL;
2359 }
2360 }
2361
2362 return rdma;
2363 }
2364
2365 /*
2366 * QEMUFile interface to the control channel.
2367 * SEND messages for control only.
2368 * pc.ram is handled with regular RDMA messages.
2369 */
2370 static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf,
2371 int64_t pos, int size)
2372 {
2373 QEMUFileRDMA *r = opaque;
2374 QEMUFile *f = r->file;
2375 RDMAContext *rdma = r->rdma;
2376 size_t remaining = size;
2377 uint8_t * data = (void *) buf;
2378 int ret;
2379
2380 CHECK_ERROR_STATE();
2381
2382 /*
2383 * Push out any writes that
2384 * we're queued up for pc.ram.
2385 */
2386 ret = qemu_rdma_write_flush(f, rdma);
2387 if (ret < 0) {
2388 rdma->error_state = ret;
2389 return ret;
2390 }
2391
2392 while (remaining) {
2393 RDMAControlHeader head;
2394
2395 r->len = MIN(remaining, RDMA_SEND_INCREMENT);
2396 remaining -= r->len;
2397
2398 head.len = r->len;
2399 head.type = RDMA_CONTROL_QEMU_FILE;
2400
2401 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2402
2403 if (ret < 0) {
2404 rdma->error_state = ret;
2405 return ret;
2406 }
2407
2408 data += r->len;
2409 }
2410
2411 return size;
2412 }
2413
2414 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2415 int size, int idx)
2416 {
2417 size_t len = 0;
2418
2419 if (rdma->wr_data[idx].control_len) {
2420 DDDPRINTF("RDMA %" PRId64 " of %d bytes already in buffer\n",
2421 rdma->wr_data[idx].control_len, size);
2422
2423 len = MIN(size, rdma->wr_data[idx].control_len);
2424 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2425 rdma->wr_data[idx].control_curr += len;
2426 rdma->wr_data[idx].control_len -= len;
2427 }
2428
2429 return len;
2430 }
2431
2432 /*
2433 * QEMUFile interface to the control channel.
2434 * RDMA links don't use bytestreams, so we have to
2435 * return bytes to QEMUFile opportunistically.
2436 */
2437 static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf,
2438 int64_t pos, int size)
2439 {
2440 QEMUFileRDMA *r = opaque;
2441 RDMAContext *rdma = r->rdma;
2442 RDMAControlHeader head;
2443 int ret = 0;
2444
2445 CHECK_ERROR_STATE();
2446
2447 /*
2448 * First, we hold on to the last SEND message we
2449 * were given and dish out the bytes until we run
2450 * out of bytes.
2451 */
2452 r->len = qemu_rdma_fill(r->rdma, buf, size, 0);
2453 if (r->len) {
2454 return r->len;
2455 }
2456
2457 /*
2458 * Once we run out, we block and wait for another
2459 * SEND message to arrive.
2460 */
2461 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2462
2463 if (ret < 0) {
2464 rdma->error_state = ret;
2465 return ret;
2466 }
2467
2468 /*
2469 * SEND was received with new bytes, now try again.
2470 */
2471 return qemu_rdma_fill(r->rdma, buf, size, 0);
2472 }
2473
2474 /*
2475 * Block until all the outstanding chunks have been delivered by the hardware.
2476 */
2477 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2478 {
2479 int ret;
2480
2481 if (qemu_rdma_write_flush(f, rdma) < 0) {
2482 return -EIO;
2483 }
2484
2485 while (rdma->nb_sent) {
2486 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2487 if (ret < 0) {
2488 fprintf(stderr, "rdma migration: complete polling error!\n");
2489 return -EIO;
2490 }
2491 }
2492
2493 qemu_rdma_unregister_waiting(rdma);
2494
2495 return 0;
2496 }
2497
2498 static int qemu_rdma_close(void *opaque)
2499 {
2500 DPRINTF("Shutting down connection.\n");
2501 QEMUFileRDMA *r = opaque;
2502 if (r->rdma) {
2503 qemu_rdma_cleanup(r->rdma);
2504 g_free(r->rdma);
2505 }
2506 g_free(r);
2507 return 0;
2508 }
2509
2510 /*
2511 * Parameters:
2512 * @offset == 0 :
2513 * This means that 'block_offset' is a full virtual address that does not
2514 * belong to a RAMBlock of the virtual machine and instead
2515 * represents a private malloc'd memory area that the caller wishes to
2516 * transfer.
2517 *
2518 * @offset != 0 :
2519 * Offset is an offset to be added to block_offset and used
2520 * to also lookup the corresponding RAMBlock.
2521 *
2522 * @size > 0 :
2523 * Initiate an transfer this size.
2524 *
2525 * @size == 0 :
2526 * A 'hint' or 'advice' that means that we wish to speculatively
2527 * and asynchronously unregister this memory. In this case, there is no
2528 * guarantee that the unregister will actually happen, for example,
2529 * if the memory is being actively transmitted. Additionally, the memory
2530 * may be re-registered at any future time if a write within the same
2531 * chunk was requested again, even if you attempted to unregister it
2532 * here.
2533 *
2534 * @size < 0 : TODO, not yet supported
2535 * Unregister the memory NOW. This means that the caller does not
2536 * expect there to be any future RDMA transfers and we just want to clean
2537 * things up. This is used in case the upper layer owns the memory and
2538 * cannot wait for qemu_fclose() to occur.
2539 *
2540 * @bytes_sent : User-specificed pointer to indicate how many bytes were
2541 * sent. Usually, this will not be more than a few bytes of
2542 * the protocol because most transfers are sent asynchronously.
2543 */
2544 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
2545 ram_addr_t block_offset, ram_addr_t offset,
2546 size_t size, int *bytes_sent)
2547 {
2548 QEMUFileRDMA *rfile = opaque;
2549 RDMAContext *rdma = rfile->rdma;
2550 int ret;
2551
2552 CHECK_ERROR_STATE();
2553
2554 qemu_fflush(f);
2555
2556 if (size > 0) {
2557 /*
2558 * Add this page to the current 'chunk'. If the chunk
2559 * is full, or the page doen't belong to the current chunk,
2560 * an actual RDMA write will occur and a new chunk will be formed.
2561 */
2562 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
2563 if (ret < 0) {
2564 fprintf(stderr, "rdma migration: write error! %d\n", ret);
2565 goto err;
2566 }
2567
2568 /*
2569 * We always return 1 bytes because the RDMA
2570 * protocol is completely asynchronous. We do not yet know
2571 * whether an identified chunk is zero or not because we're
2572 * waiting for other pages to potentially be merged with
2573 * the current chunk. So, we have to call qemu_update_position()
2574 * later on when the actual write occurs.
2575 */
2576 if (bytes_sent) {
2577 *bytes_sent = 1;
2578 }
2579 } else {
2580 uint64_t index, chunk;
2581
2582 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2583 if (size < 0) {
2584 ret = qemu_rdma_drain_cq(f, rdma);
2585 if (ret < 0) {
2586 fprintf(stderr, "rdma: failed to synchronously drain"
2587 " completion queue before unregistration.\n");
2588 goto err;
2589 }
2590 }
2591 */
2592
2593 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2594 offset, size, &index, &chunk);
2595
2596 if (ret) {
2597 fprintf(stderr, "ram block search failed\n");
2598 goto err;
2599 }
2600
2601 qemu_rdma_signal_unregister(rdma, index, chunk, 0);
2602
2603 /*
2604 * TODO: Synchronous, guaranteed unregistration (should not occur during
2605 * fast-path). Otherwise, unregisters will process on the next call to
2606 * qemu_rdma_drain_cq()
2607 if (size < 0) {
2608 qemu_rdma_unregister_waiting(rdma);
2609 }
2610 */
2611 }
2612
2613 /*
2614 * Drain the Completion Queue if possible, but do not block,
2615 * just poll.
2616 *
2617 * If nothing to poll, the end of the iteration will do this
2618 * again to make sure we don't overflow the request queue.
2619 */
2620 while (1) {
2621 uint64_t wr_id, wr_id_in;
2622 int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
2623 if (ret < 0) {
2624 fprintf(stderr, "rdma migration: polling error! %d\n", ret);
2625 goto err;
2626 }
2627
2628 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
2629
2630 if (wr_id == RDMA_WRID_NONE) {
2631 break;
2632 }
2633 }
2634
2635 return RAM_SAVE_CONTROL_DELAYED;
2636 err:
2637 rdma->error_state = ret;
2638 return ret;
2639 }
2640
2641 static int qemu_rdma_accept(RDMAContext *rdma)
2642 {
2643 RDMACapabilities cap;
2644 struct rdma_conn_param conn_param = {
2645 .responder_resources = 2,
2646 .private_data = &cap,
2647 .private_data_len = sizeof(cap),
2648 };
2649 struct rdma_cm_event *cm_event;
2650 struct ibv_context *verbs;
2651 int ret = -EINVAL;
2652 int idx;
2653
2654 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2655 if (ret) {
2656 goto err_rdma_dest_wait;
2657 }
2658
2659 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
2660 rdma_ack_cm_event(cm_event);
2661 goto err_rdma_dest_wait;
2662 }
2663
2664 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2665
2666 network_to_caps(&cap);
2667
2668 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
2669 fprintf(stderr, "Unknown source RDMA version: %d, bailing...\n",
2670 cap.version);
2671 rdma_ack_cm_event(cm_event);
2672 goto err_rdma_dest_wait;
2673 }
2674
2675 /*
2676 * Respond with only the capabilities this version of QEMU knows about.
2677 */
2678 cap.flags &= known_capabilities;
2679
2680 /*
2681 * Enable the ones that we do know about.
2682 * Add other checks here as new ones are introduced.
2683 */
2684 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
2685 rdma->pin_all = true;
2686 }
2687
2688 rdma->cm_id = cm_event->id;
2689 verbs = cm_event->id->verbs;
2690
2691 rdma_ack_cm_event(cm_event);
2692
2693 DPRINTF("Memory pin all: %s\n", rdma->pin_all ? "enabled" : "disabled");
2694
2695 caps_to_network(&cap);
2696
2697 DPRINTF("verbs context after listen: %p\n", verbs);
2698
2699 if (!rdma->verbs) {
2700 rdma->verbs = verbs;
2701 } else if (rdma->verbs != verbs) {
2702 fprintf(stderr, "ibv context not matching %p, %p!\n",
2703 rdma->verbs, verbs);
2704 goto err_rdma_dest_wait;
2705 }
2706
2707 qemu_rdma_dump_id("dest_init", verbs);
2708
2709 ret = qemu_rdma_alloc_pd_cq(rdma);
2710 if (ret) {
2711 fprintf(stderr, "rdma migration: error allocating pd and cq!\n");
2712 goto err_rdma_dest_wait;
2713 }
2714
2715 ret = qemu_rdma_alloc_qp(rdma);
2716 if (ret) {
2717 fprintf(stderr, "rdma migration: error allocating qp!\n");
2718 goto err_rdma_dest_wait;
2719 }
2720
2721 ret = qemu_rdma_init_ram_blocks(rdma);
2722 if (ret) {
2723 fprintf(stderr, "rdma migration: error initializing ram blocks!\n");
2724 goto err_rdma_dest_wait;
2725 }
2726
2727 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2728 ret = qemu_rdma_reg_control(rdma, idx);
2729 if (ret) {
2730 fprintf(stderr, "rdma: error registering %d control!\n", idx);
2731 goto err_rdma_dest_wait;
2732 }
2733 }
2734
2735 qemu_set_fd_handler2(rdma->channel->fd, NULL, NULL, NULL, NULL);
2736
2737 ret = rdma_accept(rdma->cm_id, &conn_param);
2738 if (ret) {
2739 fprintf(stderr, "rdma_accept returns %d!\n", ret);
2740 goto err_rdma_dest_wait;
2741 }
2742
2743 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2744 if (ret) {
2745 fprintf(stderr, "rdma_accept get_cm_event failed %d!\n", ret);
2746 goto err_rdma_dest_wait;
2747 }
2748
2749 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2750 fprintf(stderr, "rdma_accept not event established!\n");
2751 rdma_ack_cm_event(cm_event);
2752 goto err_rdma_dest_wait;
2753 }
2754
2755 rdma_ack_cm_event(cm_event);
2756
2757 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2758 if (ret) {
2759 fprintf(stderr, "rdma migration: error posting second control recv!\n");
2760 goto err_rdma_dest_wait;
2761 }
2762
2763 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
2764
2765 return 0;
2766
2767 err_rdma_dest_wait:
2768 rdma->error_state = ret;
2769 qemu_rdma_cleanup(rdma);
2770 return ret;
2771 }
2772
2773 /*
2774 * During each iteration of the migration, we listen for instructions
2775 * by the source VM to perform dynamic page registrations before they
2776 * can perform RDMA operations.
2777 *
2778 * We respond with the 'rkey'.
2779 *
2780 * Keep doing this until the source tells us to stop.
2781 */
2782 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque,
2783 uint64_t flags)
2784 {
2785 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
2786 .type = RDMA_CONTROL_REGISTER_RESULT,
2787 .repeat = 0,
2788 };
2789 RDMAControlHeader unreg_resp = { .len = 0,
2790 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
2791 .repeat = 0,
2792 };
2793 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
2794 .repeat = 1 };
2795 QEMUFileRDMA *rfile = opaque;
2796 RDMAContext *rdma = rfile->rdma;
2797 RDMALocalBlocks *local = &rdma->local_ram_blocks;
2798 RDMAControlHeader head;
2799 RDMARegister *reg, *registers;
2800 RDMACompress *comp;
2801 RDMARegisterResult *reg_result;
2802 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
2803 RDMALocalBlock *block;
2804 void *host_addr;
2805 int ret = 0;
2806 int idx = 0;
2807 int count = 0;
2808 int i = 0;
2809
2810 CHECK_ERROR_STATE();
2811
2812 do {
2813 DDDPRINTF("Waiting for next request %" PRIu64 "...\n", flags);
2814
2815 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
2816
2817 if (ret < 0) {
2818 break;
2819 }
2820
2821 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
2822 fprintf(stderr, "rdma: Too many requests in this message (%d)."
2823 "Bailing.\n", head.repeat);
2824 ret = -EIO;
2825 break;
2826 }
2827
2828 switch (head.type) {
2829 case RDMA_CONTROL_COMPRESS:
2830 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
2831 network_to_compress(comp);
2832
2833 DDPRINTF("Zapping zero chunk: %" PRId64
2834 " bytes, index %d, offset %" PRId64 "\n",
2835 comp->length, comp->block_idx, comp->offset);
2836 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
2837
2838 host_addr = block->local_host_addr +
2839 (comp->offset - block->offset);
2840
2841 ram_handle_compressed(host_addr, comp->value, comp->length);
2842 break;
2843
2844 case RDMA_CONTROL_REGISTER_FINISHED:
2845 DDDPRINTF("Current registrations complete.\n");
2846 goto out;
2847
2848 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
2849 DPRINTF("Initial setup info requested.\n");
2850
2851 if (rdma->pin_all) {
2852 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
2853 if (ret) {
2854 fprintf(stderr, "rdma migration: error dest "
2855 "registering ram blocks!\n");
2856 goto out;
2857 }
2858 }
2859
2860 /*
2861 * Dest uses this to prepare to transmit the RAMBlock descriptions
2862 * to the source VM after connection setup.
2863 * Both sides use the "remote" structure to communicate and update
2864 * their "local" descriptions with what was sent.
2865 */
2866 for (i = 0; i < local->nb_blocks; i++) {
2867 rdma->block[i].remote_host_addr =
2868 (uint64_t)(local->block[i].local_host_addr);
2869
2870 if (rdma->pin_all) {
2871 rdma->block[i].remote_rkey = local->block[i].mr->rkey;
2872 }
2873
2874 rdma->block[i].offset = local->block[i].offset;
2875 rdma->block[i].length = local->block[i].length;
2876
2877 remote_block_to_network(&rdma->block[i]);
2878 }
2879
2880 blocks.len = rdma->local_ram_blocks.nb_blocks
2881 * sizeof(RDMARemoteBlock);
2882
2883
2884 ret = qemu_rdma_post_send_control(rdma,
2885 (uint8_t *) rdma->block, &blocks);
2886
2887 if (ret < 0) {
2888 fprintf(stderr, "rdma migration: error sending remote info!\n");
2889 goto out;
2890 }
2891
2892 break;
2893 case RDMA_CONTROL_REGISTER_REQUEST:
2894 DDPRINTF("There are %d registration requests\n", head.repeat);
2895
2896 reg_resp.repeat = head.repeat;
2897 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
2898
2899 for (count = 0; count < head.repeat; count++) {
2900 uint64_t chunk;
2901 uint8_t *chunk_start, *chunk_end;
2902
2903 reg = &registers[count];
2904 network_to_register(reg);
2905
2906 reg_result = &results[count];
2907
2908 DDPRINTF("Registration request (%d): index %d, current_addr %"
2909 PRIu64 " chunks: %" PRIu64 "\n", count,
2910 reg->current_index, reg->key.current_addr, reg->chunks);
2911
2912 block = &(rdma->local_ram_blocks.block[reg->current_index]);
2913 if (block->is_ram_block) {
2914 host_addr = (block->local_host_addr +
2915 (reg->key.current_addr - block->offset));
2916 chunk = ram_chunk_index(block->local_host_addr,
2917 (uint8_t *) host_addr);
2918 } else {
2919 chunk = reg->key.chunk;
2920 host_addr = block->local_host_addr +
2921 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
2922 }
2923 chunk_start = ram_chunk_start(block, chunk);
2924 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
2925 if (qemu_rdma_register_and_get_keys(rdma, block,
2926 (uint8_t *)host_addr, NULL, &reg_result->rkey,
2927 chunk, chunk_start, chunk_end)) {
2928 fprintf(stderr, "cannot get rkey!\n");
2929 ret = -EINVAL;
2930 goto out;
2931 }
2932
2933 reg_result->host_addr = (uint64_t) block->local_host_addr;
2934
2935 DDPRINTF("Registered rkey for this request: %x\n",
2936 reg_result->rkey);
2937
2938 result_to_network(reg_result);
2939 }
2940
2941 ret = qemu_rdma_post_send_control(rdma,
2942 (uint8_t *) results, &reg_resp);
2943
2944 if (ret < 0) {
2945 fprintf(stderr, "Failed to send control buffer!\n");
2946 goto out;
2947 }
2948 break;
2949 case RDMA_CONTROL_UNREGISTER_REQUEST:
2950 DDPRINTF("There are %d unregistration requests\n", head.repeat);
2951 unreg_resp.repeat = head.repeat;
2952 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
2953
2954 for (count = 0; count < head.repeat; count++) {
2955 reg = &registers[count];
2956 network_to_register(reg);
2957
2958 DDPRINTF("Unregistration request (%d): "
2959 " index %d, chunk %" PRIu64 "\n",
2960 count, reg->current_index, reg->key.chunk);
2961
2962 block = &(rdma->local_ram_blocks.block[reg->current_index]);
2963
2964 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
2965 block->pmr[reg->key.chunk] = NULL;
2966
2967 if (ret != 0) {
2968 perror("rdma unregistration chunk failed");
2969 ret = -ret;
2970 goto out;
2971 }
2972
2973 rdma->total_registrations--;
2974
2975 DDPRINTF("Unregistered chunk %" PRIu64 " successfully.\n",
2976 reg->key.chunk);
2977 }
2978
2979 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
2980
2981 if (ret < 0) {
2982 fprintf(stderr, "Failed to send control buffer!\n");
2983 goto out;
2984 }
2985 break;
2986 case RDMA_CONTROL_REGISTER_RESULT:
2987 fprintf(stderr, "Invalid RESULT message at dest.\n");
2988 ret = -EIO;
2989 goto out;
2990 default:
2991 fprintf(stderr, "Unknown control message %s\n",
2992 control_desc[head.type]);
2993 ret = -EIO;
2994 goto out;
2995 }
2996 } while (1);
2997 out:
2998 if (ret < 0) {
2999 rdma->error_state = ret;
3000 }
3001 return ret;
3002 }
3003
3004 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3005 uint64_t flags)
3006 {
3007 QEMUFileRDMA *rfile = opaque;
3008 RDMAContext *rdma = rfile->rdma;
3009
3010 CHECK_ERROR_STATE();
3011
3012 DDDPRINTF("start section: %" PRIu64 "\n", flags);
3013 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3014 qemu_fflush(f);
3015
3016 return 0;
3017 }
3018
3019 /*
3020 * Inform dest that dynamic registrations are done for now.
3021 * First, flush writes, if any.
3022 */
3023 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3024 uint64_t flags)
3025 {
3026 Error *local_err = NULL, **errp = &local_err;
3027 QEMUFileRDMA *rfile = opaque;
3028 RDMAContext *rdma = rfile->rdma;
3029 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3030 int ret = 0;
3031
3032 CHECK_ERROR_STATE();
3033
3034 qemu_fflush(f);
3035 ret = qemu_rdma_drain_cq(f, rdma);
3036
3037 if (ret < 0) {
3038 goto err;
3039 }
3040
3041 if (flags == RAM_CONTROL_SETUP) {
3042 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3043 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3044 int reg_result_idx, i, j, nb_remote_blocks;
3045
3046 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3047 DPRINTF("Sending registration setup for ram blocks...\n");
3048
3049 /*
3050 * Make sure that we parallelize the pinning on both sides.
3051 * For very large guests, doing this serially takes a really
3052 * long time, so we have to 'interleave' the pinning locally
3053 * with the control messages by performing the pinning on this
3054 * side before we receive the control response from the other
3055 * side that the pinning has completed.
3056 */
3057 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3058 &reg_result_idx, rdma->pin_all ?
3059 qemu_rdma_reg_whole_ram_blocks : NULL);
3060 if (ret < 0) {
3061 ERROR(errp, "receiving remote info!");
3062 return ret;
3063 }
3064
3065 nb_remote_blocks = resp.len / sizeof(RDMARemoteBlock);
3066
3067 /*
3068 * The protocol uses two different sets of rkeys (mutually exclusive):
3069 * 1. One key to represent the virtual address of the entire ram block.
3070 * (dynamic chunk registration disabled - pin everything with one rkey.)
3071 * 2. One to represent individual chunks within a ram block.
3072 * (dynamic chunk registration enabled - pin individual chunks.)
3073 *
3074 * Once the capability is successfully negotiated, the destination transmits
3075 * the keys to use (or sends them later) including the virtual addresses
3076 * and then propagates the remote ram block descriptions to his local copy.
3077 */
3078
3079 if (local->nb_blocks != nb_remote_blocks) {
3080 ERROR(errp, "ram blocks mismatch #1! "
3081 "Your QEMU command line parameters are probably "
3082 "not identical on both the source and destination.");
3083 return -EINVAL;
3084 }
3085
3086 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3087 memcpy(rdma->block,
3088 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3089 for (i = 0; i < nb_remote_blocks; i++) {
3090 network_to_remote_block(&rdma->block[i]);
3091
3092 /* search local ram blocks */
3093 for (j = 0; j < local->nb_blocks; j++) {
3094 if (rdma->block[i].offset != local->block[j].offset) {
3095 continue;
3096 }
3097
3098 if (rdma->block[i].length != local->block[j].length) {
3099 ERROR(errp, "ram blocks mismatch #2! "
3100 "Your QEMU command line parameters are probably "
3101 "not identical on both the source and destination.");
3102 return -EINVAL;
3103 }
3104 local->block[j].remote_host_addr =
3105 rdma->block[i].remote_host_addr;
3106 local->block[j].remote_rkey = rdma->block[i].remote_rkey;
3107 break;
3108 }
3109
3110 if (j >= local->nb_blocks) {
3111 ERROR(errp, "ram blocks mismatch #3! "
3112 "Your QEMU command line parameters are probably "
3113 "not identical on both the source and destination.");
3114 return -EINVAL;
3115 }
3116 }
3117 }
3118
3119 DDDPRINTF("Sending registration finish %" PRIu64 "...\n", flags);
3120
3121 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3122 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3123
3124 if (ret < 0) {
3125 goto err;
3126 }
3127
3128 return 0;
3129 err:
3130 rdma->error_state = ret;
3131 return ret;
3132 }
3133
3134 static int qemu_rdma_get_fd(void *opaque)
3135 {
3136 QEMUFileRDMA *rfile = opaque;
3137 RDMAContext *rdma = rfile->rdma;
3138
3139 return rdma->comp_channel->fd;
3140 }
3141
3142 const QEMUFileOps rdma_read_ops = {
3143 .get_buffer = qemu_rdma_get_buffer,
3144 .get_fd = qemu_rdma_get_fd,
3145 .close = qemu_rdma_close,
3146 .hook_ram_load = qemu_rdma_registration_handle,
3147 };
3148
3149 const QEMUFileOps rdma_write_ops = {
3150 .put_buffer = qemu_rdma_put_buffer,
3151 .close = qemu_rdma_close,
3152 .before_ram_iterate = qemu_rdma_registration_start,
3153 .after_ram_iterate = qemu_rdma_registration_stop,
3154 .save_page = qemu_rdma_save_page,
3155 };
3156
3157 static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3158 {
3159 QEMUFileRDMA *r = g_malloc0(sizeof(QEMUFileRDMA));
3160
3161 if (qemu_file_mode_is_not_valid(mode)) {
3162 return NULL;
3163 }
3164
3165 r->rdma = rdma;
3166
3167 if (mode[0] == 'w') {
3168 r->file = qemu_fopen_ops(r, &rdma_write_ops);
3169 } else {
3170 r->file = qemu_fopen_ops(r, &rdma_read_ops);
3171 }
3172
3173 return r->file;
3174 }
3175
3176 static void rdma_accept_incoming_migration(void *opaque)
3177 {
3178 RDMAContext *rdma = opaque;
3179 int ret;
3180 QEMUFile *f;
3181 Error *local_err = NULL, **errp = &local_err;
3182
3183 DPRINTF("Accepting rdma connection...\n");
3184 ret = qemu_rdma_accept(rdma);
3185
3186 if (ret) {
3187 ERROR(errp, "RDMA Migration initialization failed!");
3188 return;
3189 }
3190
3191 DPRINTF("Accepted migration\n");
3192
3193 f = qemu_fopen_rdma(rdma, "rb");
3194 if (f == NULL) {
3195 ERROR(errp, "could not qemu_fopen_rdma!");
3196 qemu_rdma_cleanup(rdma);
3197 return;
3198 }
3199
3200 rdma->migration_started_on_destination = 1;
3201 process_incoming_migration(f);
3202 }
3203
3204 void rdma_start_incoming_migration(const char *host_port, Error **errp)
3205 {
3206 int ret;
3207 RDMAContext *rdma;
3208 Error *local_err = NULL;
3209
3210 DPRINTF("Starting RDMA-based incoming migration\n");
3211 rdma = qemu_rdma_data_init(host_port, &local_err);
3212
3213 if (rdma == NULL) {
3214 goto err;
3215 }
3216
3217 ret = qemu_rdma_dest_init(rdma, &local_err);
3218
3219 if (ret) {
3220 goto err;
3221 }
3222
3223 DPRINTF("qemu_rdma_dest_init success\n");
3224
3225 ret = rdma_listen(rdma->listen_id, 5);
3226
3227 if (ret) {
3228 ERROR(errp, "listening on socket!");
3229 goto err;
3230 }
3231
3232 DPRINTF("rdma_listen success\n");
3233
3234 qemu_set_fd_handler2(rdma->channel->fd, NULL,
3235 rdma_accept_incoming_migration, NULL,
3236 (void *)(intptr_t) rdma);
3237 return;
3238 err:
3239 error_propagate(errp, local_err);
3240 g_free(rdma);
3241 }
3242
3243 void rdma_start_outgoing_migration(void *opaque,
3244 const char *host_port, Error **errp)
3245 {
3246 MigrationState *s = opaque;
3247 Error *local_err = NULL, **temp = &local_err;
3248 RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err);
3249 int ret = 0;
3250
3251 if (rdma == NULL) {
3252 ERROR(temp, "Failed to initialize RDMA data structures! %d", ret);
3253 goto err;
3254 }
3255
3256 ret = qemu_rdma_source_init(rdma, &local_err,
3257 s->enabled_capabilities[MIGRATION_CAPABILITY_X_RDMA_PIN_ALL]);
3258
3259 if (ret) {
3260 goto err;
3261 }
3262
3263 DPRINTF("qemu_rdma_source_init success\n");
3264 ret = qemu_rdma_connect(rdma, &local_err);
3265
3266 if (ret) {
3267 goto err;
3268 }
3269
3270 DPRINTF("qemu_rdma_source_connect success\n");
3271
3272 s->file = qemu_fopen_rdma(rdma, "wb");
3273 migrate_fd_connect(s);
3274 return;
3275 err:
3276 error_propagate(errp, local_err);
3277 g_free(rdma);
3278 migrate_fd_error(s);
3279 }