]> git.proxmox.com Git - qemu.git/blob - migration-rdma.c
rdma: bugfix: make IPv6 support work
[qemu.git] / migration-rdma.c
1 /*
2 * RDMA protocol and interfaces
3 *
4 * Copyright IBM, Corp. 2010-2013
5 *
6 * Authors:
7 * Michael R. Hines <mrhines@us.ibm.com>
8 * Jiuxing Liu <jl@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or
11 * later. See the COPYING file in the top-level directory.
12 *
13 */
14 #include "qemu-common.h"
15 #include "migration/migration.h"
16 #include "migration/qemu-file.h"
17 #include "exec/cpu-common.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/sockets.h"
20 #include "qemu/bitmap.h"
21 #include "block/coroutine.h"
22 #include <stdio.h>
23 #include <sys/types.h>
24 #include <sys/socket.h>
25 #include <netdb.h>
26 #include <arpa/inet.h>
27 #include <string.h>
28 #include <rdma/rdma_cma.h>
29
30 #define DEBUG_RDMA
31 //#define DEBUG_RDMA_VERBOSE
32 //#define DEBUG_RDMA_REALLY_VERBOSE
33
34 #ifdef DEBUG_RDMA
35 #define DPRINTF(fmt, ...) \
36 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF(fmt, ...) \
39 do { } while (0)
40 #endif
41
42 #ifdef DEBUG_RDMA_VERBOSE
43 #define DDPRINTF(fmt, ...) \
44 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
45 #else
46 #define DDPRINTF(fmt, ...) \
47 do { } while (0)
48 #endif
49
50 #ifdef DEBUG_RDMA_REALLY_VERBOSE
51 #define DDDPRINTF(fmt, ...) \
52 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
53 #else
54 #define DDDPRINTF(fmt, ...) \
55 do { } while (0)
56 #endif
57
58 /*
59 * Print and error on both the Monitor and the Log file.
60 */
61 #define ERROR(errp, fmt, ...) \
62 do { \
63 fprintf(stderr, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
64 if (errp && (*(errp) == NULL)) { \
65 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
66 } \
67 } while (0)
68
69 #define RDMA_RESOLVE_TIMEOUT_MS 10000
70
71 /* Do not merge data if larger than this. */
72 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
73 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
74
75 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
76
77 /*
78 * This is only for non-live state being migrated.
79 * Instead of RDMA_WRITE messages, we use RDMA_SEND
80 * messages for that state, which requires a different
81 * delivery design than main memory.
82 */
83 #define RDMA_SEND_INCREMENT 32768
84
85 /*
86 * Maximum size infiniband SEND message
87 */
88 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
89 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
90
91 #define RDMA_CONTROL_VERSION_CURRENT 1
92 /*
93 * Capabilities for negotiation.
94 */
95 #define RDMA_CAPABILITY_PIN_ALL 0x01
96
97 /*
98 * Add the other flags above to this list of known capabilities
99 * as they are introduced.
100 */
101 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
102
103 #define CHECK_ERROR_STATE() \
104 do { \
105 if (rdma->error_state) { \
106 if (!rdma->error_reported) { \
107 fprintf(stderr, "RDMA is in an error state waiting migration" \
108 " to abort!\n"); \
109 rdma->error_reported = 1; \
110 } \
111 return rdma->error_state; \
112 } \
113 } while (0);
114
115 /*
116 * A work request ID is 64-bits and we split up these bits
117 * into 3 parts:
118 *
119 * bits 0-15 : type of control message, 2^16
120 * bits 16-29: ram block index, 2^14
121 * bits 30-63: ram block chunk number, 2^34
122 *
123 * The last two bit ranges are only used for RDMA writes,
124 * in order to track their completion and potentially
125 * also track unregistration status of the message.
126 */
127 #define RDMA_WRID_TYPE_SHIFT 0UL
128 #define RDMA_WRID_BLOCK_SHIFT 16UL
129 #define RDMA_WRID_CHUNK_SHIFT 30UL
130
131 #define RDMA_WRID_TYPE_MASK \
132 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
133
134 #define RDMA_WRID_BLOCK_MASK \
135 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
136
137 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
138
139 /*
140 * RDMA migration protocol:
141 * 1. RDMA Writes (data messages, i.e. RAM)
142 * 2. IB Send/Recv (control channel messages)
143 */
144 enum {
145 RDMA_WRID_NONE = 0,
146 RDMA_WRID_RDMA_WRITE = 1,
147 RDMA_WRID_SEND_CONTROL = 2000,
148 RDMA_WRID_RECV_CONTROL = 4000,
149 };
150
151 const char *wrid_desc[] = {
152 [RDMA_WRID_NONE] = "NONE",
153 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
154 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
155 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
156 };
157
158 /*
159 * Work request IDs for IB SEND messages only (not RDMA writes).
160 * This is used by the migration protocol to transmit
161 * control messages (such as device state and registration commands)
162 *
163 * We could use more WRs, but we have enough for now.
164 */
165 enum {
166 RDMA_WRID_READY = 0,
167 RDMA_WRID_DATA,
168 RDMA_WRID_CONTROL,
169 RDMA_WRID_MAX,
170 };
171
172 /*
173 * SEND/RECV IB Control Messages.
174 */
175 enum {
176 RDMA_CONTROL_NONE = 0,
177 RDMA_CONTROL_ERROR,
178 RDMA_CONTROL_READY, /* ready to receive */
179 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
180 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
181 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
182 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
183 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
184 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
185 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
186 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
187 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
188 };
189
190 const char *control_desc[] = {
191 [RDMA_CONTROL_NONE] = "NONE",
192 [RDMA_CONTROL_ERROR] = "ERROR",
193 [RDMA_CONTROL_READY] = "READY",
194 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
195 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
196 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
197 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
198 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
199 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
200 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
201 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
202 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
203 };
204
205 /*
206 * Memory and MR structures used to represent an IB Send/Recv work request.
207 * This is *not* used for RDMA writes, only IB Send/Recv.
208 */
209 typedef struct {
210 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
211 struct ibv_mr *control_mr; /* registration metadata */
212 size_t control_len; /* length of the message */
213 uint8_t *control_curr; /* start of unconsumed bytes */
214 } RDMAWorkRequestData;
215
216 /*
217 * Negotiate RDMA capabilities during connection-setup time.
218 */
219 typedef struct {
220 uint32_t version;
221 uint32_t flags;
222 } RDMACapabilities;
223
224 static void caps_to_network(RDMACapabilities *cap)
225 {
226 cap->version = htonl(cap->version);
227 cap->flags = htonl(cap->flags);
228 }
229
230 static void network_to_caps(RDMACapabilities *cap)
231 {
232 cap->version = ntohl(cap->version);
233 cap->flags = ntohl(cap->flags);
234 }
235
236 /*
237 * Representation of a RAMBlock from an RDMA perspective.
238 * This is not transmitted, only local.
239 * This and subsequent structures cannot be linked lists
240 * because we're using a single IB message to transmit
241 * the information. It's small anyway, so a list is overkill.
242 */
243 typedef struct RDMALocalBlock {
244 uint8_t *local_host_addr; /* local virtual address */
245 uint64_t remote_host_addr; /* remote virtual address */
246 uint64_t offset;
247 uint64_t length;
248 struct ibv_mr **pmr; /* MRs for chunk-level registration */
249 struct ibv_mr *mr; /* MR for non-chunk-level registration */
250 uint32_t *remote_keys; /* rkeys for chunk-level registration */
251 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
252 int index; /* which block are we */
253 bool is_ram_block;
254 int nb_chunks;
255 unsigned long *transit_bitmap;
256 unsigned long *unregister_bitmap;
257 } RDMALocalBlock;
258
259 /*
260 * Also represents a RAMblock, but only on the dest.
261 * This gets transmitted by the dest during connection-time
262 * to the source VM and then is used to populate the
263 * corresponding RDMALocalBlock with
264 * the information needed to perform the actual RDMA.
265 */
266 typedef struct QEMU_PACKED RDMARemoteBlock {
267 uint64_t remote_host_addr;
268 uint64_t offset;
269 uint64_t length;
270 uint32_t remote_rkey;
271 uint32_t padding;
272 } RDMARemoteBlock;
273
274 static uint64_t htonll(uint64_t v)
275 {
276 union { uint32_t lv[2]; uint64_t llv; } u;
277 u.lv[0] = htonl(v >> 32);
278 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
279 return u.llv;
280 }
281
282 static uint64_t ntohll(uint64_t v) {
283 union { uint32_t lv[2]; uint64_t llv; } u;
284 u.llv = v;
285 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
286 }
287
288 static void remote_block_to_network(RDMARemoteBlock *rb)
289 {
290 rb->remote_host_addr = htonll(rb->remote_host_addr);
291 rb->offset = htonll(rb->offset);
292 rb->length = htonll(rb->length);
293 rb->remote_rkey = htonl(rb->remote_rkey);
294 }
295
296 static void network_to_remote_block(RDMARemoteBlock *rb)
297 {
298 rb->remote_host_addr = ntohll(rb->remote_host_addr);
299 rb->offset = ntohll(rb->offset);
300 rb->length = ntohll(rb->length);
301 rb->remote_rkey = ntohl(rb->remote_rkey);
302 }
303
304 /*
305 * Virtual address of the above structures used for transmitting
306 * the RAMBlock descriptions at connection-time.
307 * This structure is *not* transmitted.
308 */
309 typedef struct RDMALocalBlocks {
310 int nb_blocks;
311 bool init; /* main memory init complete */
312 RDMALocalBlock *block;
313 } RDMALocalBlocks;
314
315 /*
316 * Main data structure for RDMA state.
317 * While there is only one copy of this structure being allocated right now,
318 * this is the place where one would start if you wanted to consider
319 * having more than one RDMA connection open at the same time.
320 */
321 typedef struct RDMAContext {
322 char *host;
323 int port;
324
325 RDMAWorkRequestData wr_data[RDMA_WRID_MAX + 1];
326
327 /*
328 * This is used by *_exchange_send() to figure out whether or not
329 * the initial "READY" message has already been received or not.
330 * This is because other functions may potentially poll() and detect
331 * the READY message before send() does, in which case we need to
332 * know if it completed.
333 */
334 int control_ready_expected;
335
336 /* number of outstanding writes */
337 int nb_sent;
338
339 /* store info about current buffer so that we can
340 merge it with future sends */
341 uint64_t current_addr;
342 uint64_t current_length;
343 /* index of ram block the current buffer belongs to */
344 int current_index;
345 /* index of the chunk in the current ram block */
346 int current_chunk;
347
348 bool pin_all;
349
350 /*
351 * infiniband-specific variables for opening the device
352 * and maintaining connection state and so forth.
353 *
354 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
355 * cm_id->verbs, cm_id->channel, and cm_id->qp.
356 */
357 struct rdma_cm_id *cm_id; /* connection manager ID */
358 struct rdma_cm_id *listen_id;
359
360 struct ibv_context *verbs;
361 struct rdma_event_channel *channel;
362 struct ibv_qp *qp; /* queue pair */
363 struct ibv_comp_channel *comp_channel; /* completion channel */
364 struct ibv_pd *pd; /* protection domain */
365 struct ibv_cq *cq; /* completion queue */
366
367 /*
368 * If a previous write failed (perhaps because of a failed
369 * memory registration, then do not attempt any future work
370 * and remember the error state.
371 */
372 int error_state;
373 int error_reported;
374
375 /*
376 * Description of ram blocks used throughout the code.
377 */
378 RDMALocalBlocks local_ram_blocks;
379 RDMARemoteBlock *block;
380
381 /*
382 * Migration on *destination* started.
383 * Then use coroutine yield function.
384 * Source runs in a thread, so we don't care.
385 */
386 int migration_started_on_destination;
387
388 int total_registrations;
389 int total_writes;
390
391 int unregister_current, unregister_next;
392 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
393
394 GHashTable *blockmap;
395 bool ipv6;
396 } RDMAContext;
397
398 /*
399 * Interface to the rest of the migration call stack.
400 */
401 typedef struct QEMUFileRDMA {
402 RDMAContext *rdma;
403 size_t len;
404 void *file;
405 } QEMUFileRDMA;
406
407 /*
408 * Main structure for IB Send/Recv control messages.
409 * This gets prepended at the beginning of every Send/Recv.
410 */
411 typedef struct QEMU_PACKED {
412 uint32_t len; /* Total length of data portion */
413 uint32_t type; /* which control command to perform */
414 uint32_t repeat; /* number of commands in data portion of same type */
415 uint32_t padding;
416 } RDMAControlHeader;
417
418 static void control_to_network(RDMAControlHeader *control)
419 {
420 control->type = htonl(control->type);
421 control->len = htonl(control->len);
422 control->repeat = htonl(control->repeat);
423 }
424
425 static void network_to_control(RDMAControlHeader *control)
426 {
427 control->type = ntohl(control->type);
428 control->len = ntohl(control->len);
429 control->repeat = ntohl(control->repeat);
430 }
431
432 /*
433 * Register a single Chunk.
434 * Information sent by the source VM to inform the dest
435 * to register an single chunk of memory before we can perform
436 * the actual RDMA operation.
437 */
438 typedef struct QEMU_PACKED {
439 union QEMU_PACKED {
440 uint64_t current_addr; /* offset into the ramblock of the chunk */
441 uint64_t chunk; /* chunk to lookup if unregistering */
442 } key;
443 uint32_t current_index; /* which ramblock the chunk belongs to */
444 uint32_t padding;
445 uint64_t chunks; /* how many sequential chunks to register */
446 } RDMARegister;
447
448 static void register_to_network(RDMARegister *reg)
449 {
450 reg->key.current_addr = htonll(reg->key.current_addr);
451 reg->current_index = htonl(reg->current_index);
452 reg->chunks = htonll(reg->chunks);
453 }
454
455 static void network_to_register(RDMARegister *reg)
456 {
457 reg->key.current_addr = ntohll(reg->key.current_addr);
458 reg->current_index = ntohl(reg->current_index);
459 reg->chunks = ntohll(reg->chunks);
460 }
461
462 typedef struct QEMU_PACKED {
463 uint32_t value; /* if zero, we will madvise() */
464 uint32_t block_idx; /* which ram block index */
465 uint64_t offset; /* where in the remote ramblock this chunk */
466 uint64_t length; /* length of the chunk */
467 } RDMACompress;
468
469 static void compress_to_network(RDMACompress *comp)
470 {
471 comp->value = htonl(comp->value);
472 comp->block_idx = htonl(comp->block_idx);
473 comp->offset = htonll(comp->offset);
474 comp->length = htonll(comp->length);
475 }
476
477 static void network_to_compress(RDMACompress *comp)
478 {
479 comp->value = ntohl(comp->value);
480 comp->block_idx = ntohl(comp->block_idx);
481 comp->offset = ntohll(comp->offset);
482 comp->length = ntohll(comp->length);
483 }
484
485 /*
486 * The result of the dest's memory registration produces an "rkey"
487 * which the source VM must reference in order to perform
488 * the RDMA operation.
489 */
490 typedef struct QEMU_PACKED {
491 uint32_t rkey;
492 uint32_t padding;
493 uint64_t host_addr;
494 } RDMARegisterResult;
495
496 static void result_to_network(RDMARegisterResult *result)
497 {
498 result->rkey = htonl(result->rkey);
499 result->host_addr = htonll(result->host_addr);
500 };
501
502 static void network_to_result(RDMARegisterResult *result)
503 {
504 result->rkey = ntohl(result->rkey);
505 result->host_addr = ntohll(result->host_addr);
506 };
507
508 const char *print_wrid(int wrid);
509 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
510 uint8_t *data, RDMAControlHeader *resp,
511 int *resp_idx,
512 int (*callback)(RDMAContext *rdma));
513
514 static inline uint64_t ram_chunk_index(uint8_t *start, uint8_t *host)
515 {
516 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
517 }
518
519 static inline uint8_t *ram_chunk_start(RDMALocalBlock *rdma_ram_block,
520 uint64_t i)
521 {
522 return (uint8_t *) (((uintptr_t) rdma_ram_block->local_host_addr)
523 + (i << RDMA_REG_CHUNK_SHIFT));
524 }
525
526 static inline uint8_t *ram_chunk_end(RDMALocalBlock *rdma_ram_block, uint64_t i)
527 {
528 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
529 (1UL << RDMA_REG_CHUNK_SHIFT);
530
531 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
532 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
533 }
534
535 return result;
536 }
537
538 static int __qemu_rdma_add_block(RDMAContext *rdma, void *host_addr,
539 ram_addr_t block_offset, uint64_t length)
540 {
541 RDMALocalBlocks *local = &rdma->local_ram_blocks;
542 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
543 (void *) block_offset);
544 RDMALocalBlock *old = local->block;
545
546 assert(block == NULL);
547
548 local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1));
549
550 if (local->nb_blocks) {
551 int x;
552
553 for (x = 0; x < local->nb_blocks; x++) {
554 g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
555 g_hash_table_insert(rdma->blockmap, (void *)old[x].offset,
556 &local->block[x]);
557 }
558 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
559 g_free(old);
560 }
561
562 block = &local->block[local->nb_blocks];
563
564 block->local_host_addr = host_addr;
565 block->offset = block_offset;
566 block->length = length;
567 block->index = local->nb_blocks;
568 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
569 block->transit_bitmap = bitmap_new(block->nb_chunks);
570 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
571 block->unregister_bitmap = bitmap_new(block->nb_chunks);
572 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
573 block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t));
574
575 block->is_ram_block = local->init ? false : true;
576
577 g_hash_table_insert(rdma->blockmap, (void *) block_offset, block);
578
579 DDPRINTF("Added Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
580 " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
581 local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
582 block->length, (uint64_t) (block->local_host_addr + block->length),
583 BITS_TO_LONGS(block->nb_chunks) *
584 sizeof(unsigned long) * 8, block->nb_chunks);
585
586 local->nb_blocks++;
587
588 return 0;
589 }
590
591 /*
592 * Memory regions need to be registered with the device and queue pairs setup
593 * in advanced before the migration starts. This tells us where the RAM blocks
594 * are so that we can register them individually.
595 */
596 static void qemu_rdma_init_one_block(void *host_addr,
597 ram_addr_t block_offset, ram_addr_t length, void *opaque)
598 {
599 __qemu_rdma_add_block(opaque, host_addr, block_offset, length);
600 }
601
602 /*
603 * Identify the RAMBlocks and their quantity. They will be references to
604 * identify chunk boundaries inside each RAMBlock and also be referenced
605 * during dynamic page registration.
606 */
607 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
608 {
609 RDMALocalBlocks *local = &rdma->local_ram_blocks;
610
611 assert(rdma->blockmap == NULL);
612 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
613 memset(local, 0, sizeof *local);
614 qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
615 DPRINTF("Allocated %d local ram block structures\n", local->nb_blocks);
616 rdma->block = (RDMARemoteBlock *) g_malloc0(sizeof(RDMARemoteBlock) *
617 rdma->local_ram_blocks.nb_blocks);
618 local->init = true;
619 return 0;
620 }
621
622 static int __qemu_rdma_delete_block(RDMAContext *rdma, ram_addr_t block_offset)
623 {
624 RDMALocalBlocks *local = &rdma->local_ram_blocks;
625 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
626 (void *) block_offset);
627 RDMALocalBlock *old = local->block;
628 int x;
629
630 assert(block);
631
632 if (block->pmr) {
633 int j;
634
635 for (j = 0; j < block->nb_chunks; j++) {
636 if (!block->pmr[j]) {
637 continue;
638 }
639 ibv_dereg_mr(block->pmr[j]);
640 rdma->total_registrations--;
641 }
642 g_free(block->pmr);
643 block->pmr = NULL;
644 }
645
646 if (block->mr) {
647 ibv_dereg_mr(block->mr);
648 rdma->total_registrations--;
649 block->mr = NULL;
650 }
651
652 g_free(block->transit_bitmap);
653 block->transit_bitmap = NULL;
654
655 g_free(block->unregister_bitmap);
656 block->unregister_bitmap = NULL;
657
658 g_free(block->remote_keys);
659 block->remote_keys = NULL;
660
661 for (x = 0; x < local->nb_blocks; x++) {
662 g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
663 }
664
665 if (local->nb_blocks > 1) {
666
667 local->block = g_malloc0(sizeof(RDMALocalBlock) *
668 (local->nb_blocks - 1));
669
670 if (block->index) {
671 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
672 }
673
674 if (block->index < (local->nb_blocks - 1)) {
675 memcpy(local->block + block->index, old + (block->index + 1),
676 sizeof(RDMALocalBlock) *
677 (local->nb_blocks - (block->index + 1)));
678 }
679 } else {
680 assert(block == local->block);
681 local->block = NULL;
682 }
683
684 DDPRINTF("Deleted Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
685 " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
686 local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
687 block->length, (uint64_t) (block->local_host_addr + block->length),
688 BITS_TO_LONGS(block->nb_chunks) *
689 sizeof(unsigned long) * 8, block->nb_chunks);
690
691 g_free(old);
692
693 local->nb_blocks--;
694
695 if (local->nb_blocks) {
696 for (x = 0; x < local->nb_blocks; x++) {
697 g_hash_table_insert(rdma->blockmap, (void *)local->block[x].offset,
698 &local->block[x]);
699 }
700 }
701
702 return 0;
703 }
704
705 /*
706 * Put in the log file which RDMA device was opened and the details
707 * associated with that device.
708 */
709 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
710 {
711 printf("%s RDMA Device opened: kernel name %s "
712 "uverbs device name %s, "
713 "infiniband_verbs class device path %s,"
714 " infiniband class device path %s\n",
715 who,
716 verbs->device->name,
717 verbs->device->dev_name,
718 verbs->device->dev_path,
719 verbs->device->ibdev_path);
720 }
721
722 /*
723 * Put in the log file the RDMA gid addressing information,
724 * useful for folks who have trouble understanding the
725 * RDMA device hierarchy in the kernel.
726 */
727 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
728 {
729 char sgid[33];
730 char dgid[33];
731 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
732 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
733 DPRINTF("%s Source GID: %s, Dest GID: %s\n", who, sgid, dgid);
734 }
735
736 /*
737 * Figure out which RDMA device corresponds to the requested IP hostname
738 * Also create the initial connection manager identifiers for opening
739 * the connection.
740 */
741 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
742 {
743 int ret;
744 struct addrinfo *res;
745 char port_str[16];
746 struct rdma_cm_event *cm_event;
747 char ip[40] = "unknown";
748 int af = rdma->ipv6 ? PF_INET6 : PF_INET;
749
750 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
751 ERROR(errp, "RDMA hostname has not been set\n");
752 return -1;
753 }
754
755 /* create CM channel */
756 rdma->channel = rdma_create_event_channel();
757 if (!rdma->channel) {
758 ERROR(errp, "could not create CM channel\n");
759 return -1;
760 }
761
762 /* create CM id */
763 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
764 if (ret) {
765 ERROR(errp, "could not create channel id\n");
766 goto err_resolve_create_id;
767 }
768
769 snprintf(port_str, 16, "%d", rdma->port);
770 port_str[15] = '\0';
771
772 ret = getaddrinfo(rdma->host, port_str, NULL, &res);
773 if (ret < 0) {
774 ERROR(errp, "could not getaddrinfo address %s\n", rdma->host);
775 goto err_resolve_get_addr;
776 }
777
778 inet_ntop(af, &((struct sockaddr_in *) res->ai_addr)->sin_addr,
779 ip, sizeof ip);
780 DPRINTF("%s => %s\n", rdma->host, ip);
781
782 /* resolve the first address */
783 ret = rdma_resolve_addr(rdma->cm_id, NULL, res->ai_addr,
784 RDMA_RESOLVE_TIMEOUT_MS);
785 if (ret) {
786 ERROR(errp, "could not resolve address %s\n", rdma->host);
787 goto err_resolve_get_addr;
788 }
789
790 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
791
792 ret = rdma_get_cm_event(rdma->channel, &cm_event);
793 if (ret) {
794 ERROR(errp, "could not perform event_addr_resolved\n");
795 goto err_resolve_get_addr;
796 }
797
798 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
799 ERROR(errp, "result not equal to event_addr_resolved %s\n",
800 rdma_event_str(cm_event->event));
801 perror("rdma_resolve_addr");
802 goto err_resolve_get_addr;
803 }
804 rdma_ack_cm_event(cm_event);
805
806 /* resolve route */
807 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
808 if (ret) {
809 ERROR(errp, "could not resolve rdma route\n");
810 goto err_resolve_get_addr;
811 }
812
813 ret = rdma_get_cm_event(rdma->channel, &cm_event);
814 if (ret) {
815 ERROR(errp, "could not perform event_route_resolved\n");
816 goto err_resolve_get_addr;
817 }
818 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
819 ERROR(errp, "result not equal to event_route_resolved: %s\n",
820 rdma_event_str(cm_event->event));
821 rdma_ack_cm_event(cm_event);
822 goto err_resolve_get_addr;
823 }
824 rdma_ack_cm_event(cm_event);
825 rdma->verbs = rdma->cm_id->verbs;
826 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
827 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
828 return 0;
829
830 err_resolve_get_addr:
831 rdma_destroy_id(rdma->cm_id);
832 rdma->cm_id = NULL;
833 err_resolve_create_id:
834 rdma_destroy_event_channel(rdma->channel);
835 rdma->channel = NULL;
836
837 return -1;
838 }
839
840 /*
841 * Create protection domain and completion queues
842 */
843 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
844 {
845 /* allocate pd */
846 rdma->pd = ibv_alloc_pd(rdma->verbs);
847 if (!rdma->pd) {
848 fprintf(stderr, "failed to allocate protection domain\n");
849 return -1;
850 }
851
852 /* create completion channel */
853 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
854 if (!rdma->comp_channel) {
855 fprintf(stderr, "failed to allocate completion channel\n");
856 goto err_alloc_pd_cq;
857 }
858
859 /*
860 * Completion queue can be filled by both read and write work requests,
861 * so must reflect the sum of both possible queue sizes.
862 */
863 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
864 NULL, rdma->comp_channel, 0);
865 if (!rdma->cq) {
866 fprintf(stderr, "failed to allocate completion queue\n");
867 goto err_alloc_pd_cq;
868 }
869
870 return 0;
871
872 err_alloc_pd_cq:
873 if (rdma->pd) {
874 ibv_dealloc_pd(rdma->pd);
875 }
876 if (rdma->comp_channel) {
877 ibv_destroy_comp_channel(rdma->comp_channel);
878 }
879 rdma->pd = NULL;
880 rdma->comp_channel = NULL;
881 return -1;
882
883 }
884
885 /*
886 * Create queue pairs.
887 */
888 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
889 {
890 struct ibv_qp_init_attr attr = { 0 };
891 int ret;
892
893 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
894 attr.cap.max_recv_wr = 3;
895 attr.cap.max_send_sge = 1;
896 attr.cap.max_recv_sge = 1;
897 attr.send_cq = rdma->cq;
898 attr.recv_cq = rdma->cq;
899 attr.qp_type = IBV_QPT_RC;
900
901 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
902 if (ret) {
903 return -1;
904 }
905
906 rdma->qp = rdma->cm_id->qp;
907 return 0;
908 }
909
910 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
911 {
912 int i;
913 RDMALocalBlocks *local = &rdma->local_ram_blocks;
914
915 for (i = 0; i < local->nb_blocks; i++) {
916 local->block[i].mr =
917 ibv_reg_mr(rdma->pd,
918 local->block[i].local_host_addr,
919 local->block[i].length,
920 IBV_ACCESS_LOCAL_WRITE |
921 IBV_ACCESS_REMOTE_WRITE
922 );
923 if (!local->block[i].mr) {
924 perror("Failed to register local dest ram block!\n");
925 break;
926 }
927 rdma->total_registrations++;
928 }
929
930 if (i >= local->nb_blocks) {
931 return 0;
932 }
933
934 for (i--; i >= 0; i--) {
935 ibv_dereg_mr(local->block[i].mr);
936 rdma->total_registrations--;
937 }
938
939 return -1;
940
941 }
942
943 /*
944 * Find the ram block that corresponds to the page requested to be
945 * transmitted by QEMU.
946 *
947 * Once the block is found, also identify which 'chunk' within that
948 * block that the page belongs to.
949 *
950 * This search cannot fail or the migration will fail.
951 */
952 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
953 uint64_t block_offset,
954 uint64_t offset,
955 uint64_t length,
956 uint64_t *block_index,
957 uint64_t *chunk_index)
958 {
959 uint64_t current_addr = block_offset + offset;
960 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
961 (void *) block_offset);
962 assert(block);
963 assert(current_addr >= block->offset);
964 assert((current_addr + length) <= (block->offset + block->length));
965
966 *block_index = block->index;
967 *chunk_index = ram_chunk_index(block->local_host_addr,
968 block->local_host_addr + (current_addr - block->offset));
969
970 return 0;
971 }
972
973 /*
974 * Register a chunk with IB. If the chunk was already registered
975 * previously, then skip.
976 *
977 * Also return the keys associated with the registration needed
978 * to perform the actual RDMA operation.
979 */
980 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
981 RDMALocalBlock *block, uint8_t *host_addr,
982 uint32_t *lkey, uint32_t *rkey, int chunk,
983 uint8_t *chunk_start, uint8_t *chunk_end)
984 {
985 if (block->mr) {
986 if (lkey) {
987 *lkey = block->mr->lkey;
988 }
989 if (rkey) {
990 *rkey = block->mr->rkey;
991 }
992 return 0;
993 }
994
995 /* allocate memory to store chunk MRs */
996 if (!block->pmr) {
997 block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *));
998 if (!block->pmr) {
999 return -1;
1000 }
1001 }
1002
1003 /*
1004 * If 'rkey', then we're the destination, so grant access to the source.
1005 *
1006 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1007 */
1008 if (!block->pmr[chunk]) {
1009 uint64_t len = chunk_end - chunk_start;
1010
1011 DDPRINTF("Registering %" PRIu64 " bytes @ %p\n",
1012 len, chunk_start);
1013
1014 block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1015 chunk_start, len,
1016 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1017 IBV_ACCESS_REMOTE_WRITE) : 0));
1018
1019 if (!block->pmr[chunk]) {
1020 perror("Failed to register chunk!");
1021 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1022 " start %" PRIu64 " end %" PRIu64 " host %" PRIu64
1023 " local %" PRIu64 " registrations: %d\n",
1024 block->index, chunk, (uint64_t) chunk_start,
1025 (uint64_t) chunk_end, (uint64_t) host_addr,
1026 (uint64_t) block->local_host_addr,
1027 rdma->total_registrations);
1028 return -1;
1029 }
1030 rdma->total_registrations++;
1031 }
1032
1033 if (lkey) {
1034 *lkey = block->pmr[chunk]->lkey;
1035 }
1036 if (rkey) {
1037 *rkey = block->pmr[chunk]->rkey;
1038 }
1039 return 0;
1040 }
1041
1042 /*
1043 * Register (at connection time) the memory used for control
1044 * channel messages.
1045 */
1046 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1047 {
1048 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1049 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1050 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1051 if (rdma->wr_data[idx].control_mr) {
1052 rdma->total_registrations++;
1053 return 0;
1054 }
1055 fprintf(stderr, "qemu_rdma_reg_control failed!\n");
1056 return -1;
1057 }
1058
1059 const char *print_wrid(int wrid)
1060 {
1061 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1062 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1063 }
1064 return wrid_desc[wrid];
1065 }
1066
1067 /*
1068 * RDMA requires memory registration (mlock/pinning), but this is not good for
1069 * overcommitment.
1070 *
1071 * In preparation for the future where LRU information or workload-specific
1072 * writable writable working set memory access behavior is available to QEMU
1073 * it would be nice to have in place the ability to UN-register/UN-pin
1074 * particular memory regions from the RDMA hardware when it is determine that
1075 * those regions of memory will likely not be accessed again in the near future.
1076 *
1077 * While we do not yet have such information right now, the following
1078 * compile-time option allows us to perform a non-optimized version of this
1079 * behavior.
1080 *
1081 * By uncommenting this option, you will cause *all* RDMA transfers to be
1082 * unregistered immediately after the transfer completes on both sides of the
1083 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1084 *
1085 * This will have a terrible impact on migration performance, so until future
1086 * workload information or LRU information is available, do not attempt to use
1087 * this feature except for basic testing.
1088 */
1089 //#define RDMA_UNREGISTRATION_EXAMPLE
1090
1091 /*
1092 * Perform a non-optimized memory unregistration after every transfer
1093 * for demonsration purposes, only if pin-all is not requested.
1094 *
1095 * Potential optimizations:
1096 * 1. Start a new thread to run this function continuously
1097 - for bit clearing
1098 - and for receipt of unregister messages
1099 * 2. Use an LRU.
1100 * 3. Use workload hints.
1101 */
1102 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1103 {
1104 while (rdma->unregistrations[rdma->unregister_current]) {
1105 int ret;
1106 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1107 uint64_t chunk =
1108 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1109 uint64_t index =
1110 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1111 RDMALocalBlock *block =
1112 &(rdma->local_ram_blocks.block[index]);
1113 RDMARegister reg = { .current_index = index };
1114 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1115 };
1116 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1117 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1118 .repeat = 1,
1119 };
1120
1121 DDPRINTF("Processing unregister for chunk: %" PRIu64
1122 " at position %d\n", chunk, rdma->unregister_current);
1123
1124 rdma->unregistrations[rdma->unregister_current] = 0;
1125 rdma->unregister_current++;
1126
1127 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1128 rdma->unregister_current = 0;
1129 }
1130
1131
1132 /*
1133 * Unregistration is speculative (because migration is single-threaded
1134 * and we cannot break the protocol's inifinband message ordering).
1135 * Thus, if the memory is currently being used for transmission,
1136 * then abort the attempt to unregister and try again
1137 * later the next time a completion is received for this memory.
1138 */
1139 clear_bit(chunk, block->unregister_bitmap);
1140
1141 if (test_bit(chunk, block->transit_bitmap)) {
1142 DDPRINTF("Cannot unregister inflight chunk: %" PRIu64 "\n", chunk);
1143 continue;
1144 }
1145
1146 DDPRINTF("Sending unregister for chunk: %" PRIu64 "\n", chunk);
1147
1148 ret = ibv_dereg_mr(block->pmr[chunk]);
1149 block->pmr[chunk] = NULL;
1150 block->remote_keys[chunk] = 0;
1151
1152 if (ret != 0) {
1153 perror("unregistration chunk failed");
1154 return -ret;
1155 }
1156 rdma->total_registrations--;
1157
1158 reg.key.chunk = chunk;
1159 register_to_network(&reg);
1160 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1161 &resp, NULL, NULL);
1162 if (ret < 0) {
1163 return ret;
1164 }
1165
1166 DDPRINTF("Unregister for chunk: %" PRIu64 " complete.\n", chunk);
1167 }
1168
1169 return 0;
1170 }
1171
1172 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1173 uint64_t chunk)
1174 {
1175 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1176
1177 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1178 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1179
1180 return result;
1181 }
1182
1183 /*
1184 * Set bit for unregistration in the next iteration.
1185 * We cannot transmit right here, but will unpin later.
1186 */
1187 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1188 uint64_t chunk, uint64_t wr_id)
1189 {
1190 if (rdma->unregistrations[rdma->unregister_next] != 0) {
1191 fprintf(stderr, "rdma migration: queue is full!\n");
1192 } else {
1193 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1194
1195 if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1196 DDPRINTF("Appending unregister chunk %" PRIu64
1197 " at position %d\n", chunk, rdma->unregister_next);
1198
1199 rdma->unregistrations[rdma->unregister_next++] =
1200 qemu_rdma_make_wrid(wr_id, index, chunk);
1201
1202 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1203 rdma->unregister_next = 0;
1204 }
1205 } else {
1206 DDPRINTF("Unregister chunk %" PRIu64 " already in queue.\n",
1207 chunk);
1208 }
1209 }
1210 }
1211
1212 /*
1213 * Consult the connection manager to see a work request
1214 * (of any kind) has completed.
1215 * Return the work request ID that completed.
1216 */
1217 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out)
1218 {
1219 int ret;
1220 struct ibv_wc wc;
1221 uint64_t wr_id;
1222
1223 ret = ibv_poll_cq(rdma->cq, 1, &wc);
1224
1225 if (!ret) {
1226 *wr_id_out = RDMA_WRID_NONE;
1227 return 0;
1228 }
1229
1230 if (ret < 0) {
1231 fprintf(stderr, "ibv_poll_cq return %d!\n", ret);
1232 return ret;
1233 }
1234
1235 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1236
1237 if (wc.status != IBV_WC_SUCCESS) {
1238 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1239 wc.status, ibv_wc_status_str(wc.status));
1240 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1241
1242 return -1;
1243 }
1244
1245 if (rdma->control_ready_expected &&
1246 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1247 DDDPRINTF("completion %s #%" PRId64 " received (%" PRId64 ")"
1248 " left %d\n", wrid_desc[RDMA_WRID_RECV_CONTROL],
1249 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1250 rdma->control_ready_expected = 0;
1251 }
1252
1253 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1254 uint64_t chunk =
1255 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1256 uint64_t index =
1257 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1258 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1259
1260 DDDPRINTF("completions %s (%" PRId64 ") left %d, "
1261 "block %" PRIu64 ", chunk: %" PRIu64 " %p %p\n",
1262 print_wrid(wr_id), wr_id, rdma->nb_sent, index, chunk,
1263 block->local_host_addr, (void *)block->remote_host_addr);
1264
1265 clear_bit(chunk, block->transit_bitmap);
1266
1267 if (rdma->nb_sent > 0) {
1268 rdma->nb_sent--;
1269 }
1270
1271 if (!rdma->pin_all) {
1272 /*
1273 * FYI: If one wanted to signal a specific chunk to be unregistered
1274 * using LRU or workload-specific information, this is the function
1275 * you would call to do so. That chunk would then get asynchronously
1276 * unregistered later.
1277 */
1278 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1279 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1280 #endif
1281 }
1282 } else {
1283 DDDPRINTF("other completion %s (%" PRId64 ") received left %d\n",
1284 print_wrid(wr_id), wr_id, rdma->nb_sent);
1285 }
1286
1287 *wr_id_out = wc.wr_id;
1288
1289 return 0;
1290 }
1291
1292 /*
1293 * Block until the next work request has completed.
1294 *
1295 * First poll to see if a work request has already completed,
1296 * otherwise block.
1297 *
1298 * If we encounter completed work requests for IDs other than
1299 * the one we're interested in, then that's generally an error.
1300 *
1301 * The only exception is actual RDMA Write completions. These
1302 * completions only need to be recorded, but do not actually
1303 * need further processing.
1304 */
1305 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested)
1306 {
1307 int num_cq_events = 0, ret = 0;
1308 struct ibv_cq *cq;
1309 void *cq_ctx;
1310 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1311
1312 if (ibv_req_notify_cq(rdma->cq, 0)) {
1313 return -1;
1314 }
1315 /* poll cq first */
1316 while (wr_id != wrid_requested) {
1317 ret = qemu_rdma_poll(rdma, &wr_id_in);
1318 if (ret < 0) {
1319 return ret;
1320 }
1321
1322 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1323
1324 if (wr_id == RDMA_WRID_NONE) {
1325 break;
1326 }
1327 if (wr_id != wrid_requested) {
1328 DDDPRINTF("A Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1329 print_wrid(wrid_requested),
1330 wrid_requested, print_wrid(wr_id), wr_id);
1331 }
1332 }
1333
1334 if (wr_id == wrid_requested) {
1335 return 0;
1336 }
1337
1338 while (1) {
1339 /*
1340 * Coroutine doesn't start until process_incoming_migration()
1341 * so don't yield unless we know we're running inside of a coroutine.
1342 */
1343 if (rdma->migration_started_on_destination) {
1344 yield_until_fd_readable(rdma->comp_channel->fd);
1345 }
1346
1347 if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
1348 perror("ibv_get_cq_event");
1349 goto err_block_for_wrid;
1350 }
1351
1352 num_cq_events++;
1353
1354 if (ibv_req_notify_cq(cq, 0)) {
1355 goto err_block_for_wrid;
1356 }
1357
1358 while (wr_id != wrid_requested) {
1359 ret = qemu_rdma_poll(rdma, &wr_id_in);
1360 if (ret < 0) {
1361 goto err_block_for_wrid;
1362 }
1363
1364 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1365
1366 if (wr_id == RDMA_WRID_NONE) {
1367 break;
1368 }
1369 if (wr_id != wrid_requested) {
1370 DDDPRINTF("B Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1371 print_wrid(wrid_requested), wrid_requested,
1372 print_wrid(wr_id), wr_id);
1373 }
1374 }
1375
1376 if (wr_id == wrid_requested) {
1377 goto success_block_for_wrid;
1378 }
1379 }
1380
1381 success_block_for_wrid:
1382 if (num_cq_events) {
1383 ibv_ack_cq_events(cq, num_cq_events);
1384 }
1385 return 0;
1386
1387 err_block_for_wrid:
1388 if (num_cq_events) {
1389 ibv_ack_cq_events(cq, num_cq_events);
1390 }
1391 return ret;
1392 }
1393
1394 /*
1395 * Post a SEND message work request for the control channel
1396 * containing some data and block until the post completes.
1397 */
1398 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1399 RDMAControlHeader *head)
1400 {
1401 int ret = 0;
1402 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_MAX];
1403 struct ibv_send_wr *bad_wr;
1404 struct ibv_sge sge = {
1405 .addr = (uint64_t)(wr->control),
1406 .length = head->len + sizeof(RDMAControlHeader),
1407 .lkey = wr->control_mr->lkey,
1408 };
1409 struct ibv_send_wr send_wr = {
1410 .wr_id = RDMA_WRID_SEND_CONTROL,
1411 .opcode = IBV_WR_SEND,
1412 .send_flags = IBV_SEND_SIGNALED,
1413 .sg_list = &sge,
1414 .num_sge = 1,
1415 };
1416
1417 DDDPRINTF("CONTROL: sending %s..\n", control_desc[head->type]);
1418
1419 /*
1420 * We don't actually need to do a memcpy() in here if we used
1421 * the "sge" properly, but since we're only sending control messages
1422 * (not RAM in a performance-critical path), then its OK for now.
1423 *
1424 * The copy makes the RDMAControlHeader simpler to manipulate
1425 * for the time being.
1426 */
1427 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1428 control_to_network((void *) wr->control);
1429
1430 if (buf) {
1431 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1432 }
1433
1434
1435 if (ibv_post_send(rdma->qp, &send_wr, &bad_wr)) {
1436 return -1;
1437 }
1438
1439 if (ret < 0) {
1440 fprintf(stderr, "Failed to use post IB SEND for control!\n");
1441 return ret;
1442 }
1443
1444 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL);
1445 if (ret < 0) {
1446 fprintf(stderr, "rdma migration: send polling control error!\n");
1447 }
1448
1449 return ret;
1450 }
1451
1452 /*
1453 * Post a RECV work request in anticipation of some future receipt
1454 * of data on the control channel.
1455 */
1456 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1457 {
1458 struct ibv_recv_wr *bad_wr;
1459 struct ibv_sge sge = {
1460 .addr = (uint64_t)(rdma->wr_data[idx].control),
1461 .length = RDMA_CONTROL_MAX_BUFFER,
1462 .lkey = rdma->wr_data[idx].control_mr->lkey,
1463 };
1464
1465 struct ibv_recv_wr recv_wr = {
1466 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1467 .sg_list = &sge,
1468 .num_sge = 1,
1469 };
1470
1471
1472 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1473 return -1;
1474 }
1475
1476 return 0;
1477 }
1478
1479 /*
1480 * Block and wait for a RECV control channel message to arrive.
1481 */
1482 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1483 RDMAControlHeader *head, int expecting, int idx)
1484 {
1485 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx);
1486
1487 if (ret < 0) {
1488 fprintf(stderr, "rdma migration: recv polling control error!\n");
1489 return ret;
1490 }
1491
1492 network_to_control((void *) rdma->wr_data[idx].control);
1493 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1494
1495 DDDPRINTF("CONTROL: %s receiving...\n", control_desc[expecting]);
1496
1497 if (expecting == RDMA_CONTROL_NONE) {
1498 DDDPRINTF("Surprise: got %s (%d)\n",
1499 control_desc[head->type], head->type);
1500 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1501 fprintf(stderr, "Was expecting a %s (%d) control message"
1502 ", but got: %s (%d), length: %d\n",
1503 control_desc[expecting], expecting,
1504 control_desc[head->type], head->type, head->len);
1505 return -EIO;
1506 }
1507
1508 return 0;
1509 }
1510
1511 /*
1512 * When a RECV work request has completed, the work request's
1513 * buffer is pointed at the header.
1514 *
1515 * This will advance the pointer to the data portion
1516 * of the control message of the work request's buffer that
1517 * was populated after the work request finished.
1518 */
1519 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1520 RDMAControlHeader *head)
1521 {
1522 rdma->wr_data[idx].control_len = head->len;
1523 rdma->wr_data[idx].control_curr =
1524 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1525 }
1526
1527 /*
1528 * This is an 'atomic' high-level operation to deliver a single, unified
1529 * control-channel message.
1530 *
1531 * Additionally, if the user is expecting some kind of reply to this message,
1532 * they can request a 'resp' response message be filled in by posting an
1533 * additional work request on behalf of the user and waiting for an additional
1534 * completion.
1535 *
1536 * The extra (optional) response is used during registration to us from having
1537 * to perform an *additional* exchange of message just to provide a response by
1538 * instead piggy-backing on the acknowledgement.
1539 */
1540 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1541 uint8_t *data, RDMAControlHeader *resp,
1542 int *resp_idx,
1543 int (*callback)(RDMAContext *rdma))
1544 {
1545 int ret = 0;
1546
1547 /*
1548 * Wait until the dest is ready before attempting to deliver the message
1549 * by waiting for a READY message.
1550 */
1551 if (rdma->control_ready_expected) {
1552 RDMAControlHeader resp;
1553 ret = qemu_rdma_exchange_get_response(rdma,
1554 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1555 if (ret < 0) {
1556 return ret;
1557 }
1558 }
1559
1560 /*
1561 * If the user is expecting a response, post a WR in anticipation of it.
1562 */
1563 if (resp) {
1564 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1565 if (ret) {
1566 fprintf(stderr, "rdma migration: error posting"
1567 " extra control recv for anticipated result!");
1568 return ret;
1569 }
1570 }
1571
1572 /*
1573 * Post a WR to replace the one we just consumed for the READY message.
1574 */
1575 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1576 if (ret) {
1577 fprintf(stderr, "rdma migration: error posting first control recv!");
1578 return ret;
1579 }
1580
1581 /*
1582 * Deliver the control message that was requested.
1583 */
1584 ret = qemu_rdma_post_send_control(rdma, data, head);
1585
1586 if (ret < 0) {
1587 fprintf(stderr, "Failed to send control buffer!\n");
1588 return ret;
1589 }
1590
1591 /*
1592 * If we're expecting a response, block and wait for it.
1593 */
1594 if (resp) {
1595 if (callback) {
1596 DDPRINTF("Issuing callback before receiving response...\n");
1597 ret = callback(rdma);
1598 if (ret < 0) {
1599 return ret;
1600 }
1601 }
1602
1603 DDPRINTF("Waiting for response %s\n", control_desc[resp->type]);
1604 ret = qemu_rdma_exchange_get_response(rdma, resp,
1605 resp->type, RDMA_WRID_DATA);
1606
1607 if (ret < 0) {
1608 return ret;
1609 }
1610
1611 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1612 if (resp_idx) {
1613 *resp_idx = RDMA_WRID_DATA;
1614 }
1615 DDPRINTF("Response %s received.\n", control_desc[resp->type]);
1616 }
1617
1618 rdma->control_ready_expected = 1;
1619
1620 return 0;
1621 }
1622
1623 /*
1624 * This is an 'atomic' high-level operation to receive a single, unified
1625 * control-channel message.
1626 */
1627 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1628 int expecting)
1629 {
1630 RDMAControlHeader ready = {
1631 .len = 0,
1632 .type = RDMA_CONTROL_READY,
1633 .repeat = 1,
1634 };
1635 int ret;
1636
1637 /*
1638 * Inform the source that we're ready to receive a message.
1639 */
1640 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1641
1642 if (ret < 0) {
1643 fprintf(stderr, "Failed to send control buffer!\n");
1644 return ret;
1645 }
1646
1647 /*
1648 * Block and wait for the message.
1649 */
1650 ret = qemu_rdma_exchange_get_response(rdma, head,
1651 expecting, RDMA_WRID_READY);
1652
1653 if (ret < 0) {
1654 return ret;
1655 }
1656
1657 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1658
1659 /*
1660 * Post a new RECV work request to replace the one we just consumed.
1661 */
1662 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1663 if (ret) {
1664 fprintf(stderr, "rdma migration: error posting second control recv!");
1665 return ret;
1666 }
1667
1668 return 0;
1669 }
1670
1671 /*
1672 * Write an actual chunk of memory using RDMA.
1673 *
1674 * If we're using dynamic registration on the dest-side, we have to
1675 * send a registration command first.
1676 */
1677 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1678 int current_index, uint64_t current_addr,
1679 uint64_t length)
1680 {
1681 struct ibv_sge sge;
1682 struct ibv_send_wr send_wr = { 0 };
1683 struct ibv_send_wr *bad_wr;
1684 int reg_result_idx, ret, count = 0;
1685 uint64_t chunk, chunks;
1686 uint8_t *chunk_start, *chunk_end;
1687 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1688 RDMARegister reg;
1689 RDMARegisterResult *reg_result;
1690 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1691 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1692 .type = RDMA_CONTROL_REGISTER_REQUEST,
1693 .repeat = 1,
1694 };
1695
1696 retry:
1697 sge.addr = (uint64_t)(block->local_host_addr +
1698 (current_addr - block->offset));
1699 sge.length = length;
1700
1701 chunk = ram_chunk_index(block->local_host_addr, (uint8_t *) sge.addr);
1702 chunk_start = ram_chunk_start(block, chunk);
1703
1704 if (block->is_ram_block) {
1705 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1706
1707 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1708 chunks--;
1709 }
1710 } else {
1711 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1712
1713 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1714 chunks--;
1715 }
1716 }
1717
1718 DDPRINTF("Writing %" PRIu64 " chunks, (%" PRIu64 " MB)\n",
1719 chunks + 1, (chunks + 1) * (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
1720
1721 chunk_end = ram_chunk_end(block, chunk + chunks);
1722
1723 if (!rdma->pin_all) {
1724 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1725 qemu_rdma_unregister_waiting(rdma);
1726 #endif
1727 }
1728
1729 while (test_bit(chunk, block->transit_bitmap)) {
1730 (void)count;
1731 DDPRINTF("(%d) Not clobbering: block: %d chunk %" PRIu64
1732 " current %" PRIu64 " len %" PRIu64 " %d %d\n",
1733 count++, current_index, chunk,
1734 sge.addr, length, rdma->nb_sent, block->nb_chunks);
1735
1736 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE);
1737
1738 if (ret < 0) {
1739 fprintf(stderr, "Failed to Wait for previous write to complete "
1740 "block %d chunk %" PRIu64
1741 " current %" PRIu64 " len %" PRIu64 " %d\n",
1742 current_index, chunk, sge.addr, length, rdma->nb_sent);
1743 return ret;
1744 }
1745 }
1746
1747 if (!rdma->pin_all || !block->is_ram_block) {
1748 if (!block->remote_keys[chunk]) {
1749 /*
1750 * This chunk has not yet been registered, so first check to see
1751 * if the entire chunk is zero. If so, tell the other size to
1752 * memset() + madvise() the entire chunk without RDMA.
1753 */
1754
1755 if (can_use_buffer_find_nonzero_offset((void *)sge.addr, length)
1756 && buffer_find_nonzero_offset((void *)sge.addr,
1757 length) == length) {
1758 RDMACompress comp = {
1759 .offset = current_addr,
1760 .value = 0,
1761 .block_idx = current_index,
1762 .length = length,
1763 };
1764
1765 head.len = sizeof(comp);
1766 head.type = RDMA_CONTROL_COMPRESS;
1767
1768 DDPRINTF("Entire chunk is zero, sending compress: %"
1769 PRIu64 " for %d "
1770 "bytes, index: %d, offset: %" PRId64 "...\n",
1771 chunk, sge.length, current_index, current_addr);
1772
1773 compress_to_network(&comp);
1774 ret = qemu_rdma_exchange_send(rdma, &head,
1775 (uint8_t *) &comp, NULL, NULL, NULL);
1776
1777 if (ret < 0) {
1778 return -EIO;
1779 }
1780
1781 acct_update_position(f, sge.length, true);
1782
1783 return 1;
1784 }
1785
1786 /*
1787 * Otherwise, tell other side to register.
1788 */
1789 reg.current_index = current_index;
1790 if (block->is_ram_block) {
1791 reg.key.current_addr = current_addr;
1792 } else {
1793 reg.key.chunk = chunk;
1794 }
1795 reg.chunks = chunks;
1796
1797 DDPRINTF("Sending registration request chunk %" PRIu64 " for %d "
1798 "bytes, index: %d, offset: %" PRId64 "...\n",
1799 chunk, sge.length, current_index, current_addr);
1800
1801 register_to_network(&reg);
1802 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1803 &resp, &reg_result_idx, NULL);
1804 if (ret < 0) {
1805 return ret;
1806 }
1807
1808 /* try to overlap this single registration with the one we sent. */
1809 if (qemu_rdma_register_and_get_keys(rdma, block,
1810 (uint8_t *) sge.addr,
1811 &sge.lkey, NULL, chunk,
1812 chunk_start, chunk_end)) {
1813 fprintf(stderr, "cannot get lkey!\n");
1814 return -EINVAL;
1815 }
1816
1817 reg_result = (RDMARegisterResult *)
1818 rdma->wr_data[reg_result_idx].control_curr;
1819
1820 network_to_result(reg_result);
1821
1822 DDPRINTF("Received registration result:"
1823 " my key: %x their key %x, chunk %" PRIu64 "\n",
1824 block->remote_keys[chunk], reg_result->rkey, chunk);
1825
1826 block->remote_keys[chunk] = reg_result->rkey;
1827 block->remote_host_addr = reg_result->host_addr;
1828 } else {
1829 /* already registered before */
1830 if (qemu_rdma_register_and_get_keys(rdma, block,
1831 (uint8_t *)sge.addr,
1832 &sge.lkey, NULL, chunk,
1833 chunk_start, chunk_end)) {
1834 fprintf(stderr, "cannot get lkey!\n");
1835 return -EINVAL;
1836 }
1837 }
1838
1839 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
1840 } else {
1841 send_wr.wr.rdma.rkey = block->remote_rkey;
1842
1843 if (qemu_rdma_register_and_get_keys(rdma, block, (uint8_t *)sge.addr,
1844 &sge.lkey, NULL, chunk,
1845 chunk_start, chunk_end)) {
1846 fprintf(stderr, "cannot get lkey!\n");
1847 return -EINVAL;
1848 }
1849 }
1850
1851 /*
1852 * Encode the ram block index and chunk within this wrid.
1853 * We will use this information at the time of completion
1854 * to figure out which bitmap to check against and then which
1855 * chunk in the bitmap to look for.
1856 */
1857 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
1858 current_index, chunk);
1859
1860 send_wr.opcode = IBV_WR_RDMA_WRITE;
1861 send_wr.send_flags = IBV_SEND_SIGNALED;
1862 send_wr.sg_list = &sge;
1863 send_wr.num_sge = 1;
1864 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
1865 (current_addr - block->offset);
1866
1867 DDDPRINTF("Posting chunk: %" PRIu64 ", addr: %lx"
1868 " remote: %lx, bytes %" PRIu32 "\n",
1869 chunk, sge.addr, send_wr.wr.rdma.remote_addr,
1870 sge.length);
1871
1872 /*
1873 * ibv_post_send() does not return negative error numbers,
1874 * per the specification they are positive - no idea why.
1875 */
1876 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1877
1878 if (ret == ENOMEM) {
1879 DDPRINTF("send queue is full. wait a little....\n");
1880 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE);
1881 if (ret < 0) {
1882 fprintf(stderr, "rdma migration: failed to make "
1883 "room in full send queue! %d\n", ret);
1884 return ret;
1885 }
1886
1887 goto retry;
1888
1889 } else if (ret > 0) {
1890 perror("rdma migration: post rdma write failed");
1891 return -ret;
1892 }
1893
1894 set_bit(chunk, block->transit_bitmap);
1895 acct_update_position(f, sge.length, false);
1896 rdma->total_writes++;
1897
1898 return 0;
1899 }
1900
1901 /*
1902 * Push out any unwritten RDMA operations.
1903 *
1904 * We support sending out multiple chunks at the same time.
1905 * Not all of them need to get signaled in the completion queue.
1906 */
1907 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
1908 {
1909 int ret;
1910
1911 if (!rdma->current_length) {
1912 return 0;
1913 }
1914
1915 ret = qemu_rdma_write_one(f, rdma,
1916 rdma->current_index, rdma->current_addr, rdma->current_length);
1917
1918 if (ret < 0) {
1919 return ret;
1920 }
1921
1922 if (ret == 0) {
1923 rdma->nb_sent++;
1924 DDDPRINTF("sent total: %d\n", rdma->nb_sent);
1925 }
1926
1927 rdma->current_length = 0;
1928 rdma->current_addr = 0;
1929
1930 return 0;
1931 }
1932
1933 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
1934 uint64_t offset, uint64_t len)
1935 {
1936 RDMALocalBlock *block =
1937 &(rdma->local_ram_blocks.block[rdma->current_index]);
1938 uint8_t *host_addr = block->local_host_addr + (offset - block->offset);
1939 uint8_t *chunk_end = ram_chunk_end(block, rdma->current_chunk);
1940
1941 if (rdma->current_length == 0) {
1942 return 0;
1943 }
1944
1945 /*
1946 * Only merge into chunk sequentially.
1947 */
1948 if (offset != (rdma->current_addr + rdma->current_length)) {
1949 return 0;
1950 }
1951
1952 if (rdma->current_index < 0) {
1953 return 0;
1954 }
1955
1956 if (offset < block->offset) {
1957 return 0;
1958 }
1959
1960 if ((offset + len) > (block->offset + block->length)) {
1961 return 0;
1962 }
1963
1964 if (rdma->current_chunk < 0) {
1965 return 0;
1966 }
1967
1968 if ((host_addr + len) > chunk_end) {
1969 return 0;
1970 }
1971
1972 return 1;
1973 }
1974
1975 /*
1976 * We're not actually writing here, but doing three things:
1977 *
1978 * 1. Identify the chunk the buffer belongs to.
1979 * 2. If the chunk is full or the buffer doesn't belong to the current
1980 * chunk, then start a new chunk and flush() the old chunk.
1981 * 3. To keep the hardware busy, we also group chunks into batches
1982 * and only require that a batch gets acknowledged in the completion
1983 * qeueue instead of each individual chunk.
1984 */
1985 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
1986 uint64_t block_offset, uint64_t offset,
1987 uint64_t len)
1988 {
1989 uint64_t current_addr = block_offset + offset;
1990 uint64_t index = rdma->current_index;
1991 uint64_t chunk = rdma->current_chunk;
1992 int ret;
1993
1994 /* If we cannot merge it, we flush the current buffer first. */
1995 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
1996 ret = qemu_rdma_write_flush(f, rdma);
1997 if (ret) {
1998 return ret;
1999 }
2000 rdma->current_length = 0;
2001 rdma->current_addr = current_addr;
2002
2003 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2004 offset, len, &index, &chunk);
2005 if (ret) {
2006 fprintf(stderr, "ram block search failed\n");
2007 return ret;
2008 }
2009 rdma->current_index = index;
2010 rdma->current_chunk = chunk;
2011 }
2012
2013 /* merge it */
2014 rdma->current_length += len;
2015
2016 /* flush it if buffer is too large */
2017 if (rdma->current_length >= RDMA_MERGE_MAX) {
2018 return qemu_rdma_write_flush(f, rdma);
2019 }
2020
2021 return 0;
2022 }
2023
2024 static void qemu_rdma_cleanup(RDMAContext *rdma)
2025 {
2026 struct rdma_cm_event *cm_event;
2027 int ret, idx;
2028
2029 if (rdma->cm_id) {
2030 if (rdma->error_state) {
2031 RDMAControlHeader head = { .len = 0,
2032 .type = RDMA_CONTROL_ERROR,
2033 .repeat = 1,
2034 };
2035 fprintf(stderr, "Early error. Sending error.\n");
2036 qemu_rdma_post_send_control(rdma, NULL, &head);
2037 }
2038
2039 ret = rdma_disconnect(rdma->cm_id);
2040 if (!ret) {
2041 DDPRINTF("waiting for disconnect\n");
2042 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2043 if (!ret) {
2044 rdma_ack_cm_event(cm_event);
2045 }
2046 }
2047 DDPRINTF("Disconnected.\n");
2048 rdma->cm_id = NULL;
2049 }
2050
2051 g_free(rdma->block);
2052 rdma->block = NULL;
2053
2054 for (idx = 0; idx <= RDMA_WRID_MAX; idx++) {
2055 if (rdma->wr_data[idx].control_mr) {
2056 rdma->total_registrations--;
2057 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2058 }
2059 rdma->wr_data[idx].control_mr = NULL;
2060 }
2061
2062 if (rdma->local_ram_blocks.block) {
2063 while (rdma->local_ram_blocks.nb_blocks) {
2064 __qemu_rdma_delete_block(rdma,
2065 rdma->local_ram_blocks.block->offset);
2066 }
2067 }
2068
2069 if (rdma->qp) {
2070 ibv_destroy_qp(rdma->qp);
2071 rdma->qp = NULL;
2072 }
2073 if (rdma->cq) {
2074 ibv_destroy_cq(rdma->cq);
2075 rdma->cq = NULL;
2076 }
2077 if (rdma->comp_channel) {
2078 ibv_destroy_comp_channel(rdma->comp_channel);
2079 rdma->comp_channel = NULL;
2080 }
2081 if (rdma->pd) {
2082 ibv_dealloc_pd(rdma->pd);
2083 rdma->pd = NULL;
2084 }
2085 if (rdma->listen_id) {
2086 rdma_destroy_id(rdma->listen_id);
2087 rdma->listen_id = NULL;
2088 }
2089 if (rdma->cm_id) {
2090 rdma_destroy_id(rdma->cm_id);
2091 rdma->cm_id = NULL;
2092 }
2093 if (rdma->channel) {
2094 rdma_destroy_event_channel(rdma->channel);
2095 rdma->channel = NULL;
2096 }
2097 }
2098
2099
2100 static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
2101 {
2102 int ret, idx;
2103 Error *local_err = NULL, **temp = &local_err;
2104
2105 /*
2106 * Will be validated against destination's actual capabilities
2107 * after the connect() completes.
2108 */
2109 rdma->pin_all = pin_all;
2110
2111 ret = qemu_rdma_resolve_host(rdma, temp);
2112 if (ret) {
2113 goto err_rdma_source_init;
2114 }
2115
2116 ret = qemu_rdma_alloc_pd_cq(rdma);
2117 if (ret) {
2118 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2119 " limits may be too low. Please check $ ulimit -a # and "
2120 "search for 'ulimit -l' in the output\n");
2121 goto err_rdma_source_init;
2122 }
2123
2124 ret = qemu_rdma_alloc_qp(rdma);
2125 if (ret) {
2126 ERROR(temp, "rdma migration: error allocating qp!\n");
2127 goto err_rdma_source_init;
2128 }
2129
2130 ret = qemu_rdma_init_ram_blocks(rdma);
2131 if (ret) {
2132 ERROR(temp, "rdma migration: error initializing ram blocks!\n");
2133 goto err_rdma_source_init;
2134 }
2135
2136 for (idx = 0; idx <= RDMA_WRID_MAX; idx++) {
2137 ret = qemu_rdma_reg_control(rdma, idx);
2138 if (ret) {
2139 ERROR(temp, "rdma migration: error registering %d control!\n",
2140 idx);
2141 goto err_rdma_source_init;
2142 }
2143 }
2144
2145 return 0;
2146
2147 err_rdma_source_init:
2148 error_propagate(errp, local_err);
2149 qemu_rdma_cleanup(rdma);
2150 return -1;
2151 }
2152
2153 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2154 {
2155 RDMACapabilities cap = {
2156 .version = RDMA_CONTROL_VERSION_CURRENT,
2157 .flags = 0,
2158 };
2159 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2160 .retry_count = 5,
2161 .private_data = &cap,
2162 .private_data_len = sizeof(cap),
2163 };
2164 struct rdma_cm_event *cm_event;
2165 int ret;
2166
2167 /*
2168 * Only negotiate the capability with destination if the user
2169 * on the source first requested the capability.
2170 */
2171 if (rdma->pin_all) {
2172 DPRINTF("Server pin-all memory requested.\n");
2173 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2174 }
2175
2176 caps_to_network(&cap);
2177
2178 ret = rdma_connect(rdma->cm_id, &conn_param);
2179 if (ret) {
2180 perror("rdma_connect");
2181 ERROR(errp, "connecting to destination!\n");
2182 rdma_destroy_id(rdma->cm_id);
2183 rdma->cm_id = NULL;
2184 goto err_rdma_source_connect;
2185 }
2186
2187 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2188 if (ret) {
2189 perror("rdma_get_cm_event after rdma_connect");
2190 ERROR(errp, "connecting to destination!\n");
2191 rdma_ack_cm_event(cm_event);
2192 rdma_destroy_id(rdma->cm_id);
2193 rdma->cm_id = NULL;
2194 goto err_rdma_source_connect;
2195 }
2196
2197 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2198 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2199 ERROR(errp, "connecting to destination!\n");
2200 rdma_ack_cm_event(cm_event);
2201 rdma_destroy_id(rdma->cm_id);
2202 rdma->cm_id = NULL;
2203 goto err_rdma_source_connect;
2204 }
2205
2206 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2207 network_to_caps(&cap);
2208
2209 /*
2210 * Verify that the *requested* capabilities are supported by the destination
2211 * and disable them otherwise.
2212 */
2213 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2214 ERROR(errp, "Server cannot support pinning all memory. "
2215 "Will register memory dynamically.\n");
2216 rdma->pin_all = false;
2217 }
2218
2219 DPRINTF("Pin all memory: %s\n", rdma->pin_all ? "enabled" : "disabled");
2220
2221 rdma_ack_cm_event(cm_event);
2222
2223 ret = qemu_rdma_post_recv_control(rdma, 0);
2224 if (ret) {
2225 ERROR(errp, "posting second control recv!\n");
2226 goto err_rdma_source_connect;
2227 }
2228
2229 rdma->control_ready_expected = 1;
2230 rdma->nb_sent = 0;
2231 return 0;
2232
2233 err_rdma_source_connect:
2234 qemu_rdma_cleanup(rdma);
2235 return -1;
2236 }
2237
2238 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2239 {
2240 int ret = -EINVAL, idx;
2241 int af = rdma->ipv6 ? PF_INET6 : PF_INET;
2242 struct sockaddr_in sin;
2243 struct rdma_cm_id *listen_id;
2244 char ip[40] = "unknown";
2245 struct addrinfo *res;
2246 char port_str[16];
2247
2248 for (idx = 0; idx <= RDMA_WRID_MAX; idx++) {
2249 rdma->wr_data[idx].control_len = 0;
2250 rdma->wr_data[idx].control_curr = NULL;
2251 }
2252
2253 if (rdma->host == NULL) {
2254 ERROR(errp, "RDMA host is not set!\n");
2255 rdma->error_state = -EINVAL;
2256 return -1;
2257 }
2258 /* create CM channel */
2259 rdma->channel = rdma_create_event_channel();
2260 if (!rdma->channel) {
2261 ERROR(errp, "could not create rdma event channel\n");
2262 rdma->error_state = -EINVAL;
2263 return -1;
2264 }
2265
2266 /* create CM id */
2267 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2268 if (ret) {
2269 ERROR(errp, "could not create cm_id!\n");
2270 goto err_dest_init_create_listen_id;
2271 }
2272
2273 memset(&sin, 0, sizeof(sin));
2274 sin.sin_family = af;
2275 sin.sin_port = htons(rdma->port);
2276 snprintf(port_str, 16, "%d", rdma->port);
2277 port_str[15] = '\0';
2278
2279 if (rdma->host && strcmp("", rdma->host)) {
2280 ret = getaddrinfo(rdma->host, port_str, NULL, &res);
2281 if (ret < 0) {
2282 ERROR(errp, "could not getaddrinfo address %s\n", rdma->host);
2283 goto err_dest_init_bind_addr;
2284 }
2285
2286
2287 inet_ntop(af, &((struct sockaddr_in *) res->ai_addr)->sin_addr,
2288 ip, sizeof ip);
2289 } else {
2290 ERROR(errp, "migration host and port not specified!\n");
2291 ret = -EINVAL;
2292 goto err_dest_init_bind_addr;
2293 }
2294
2295 DPRINTF("%s => %s\n", rdma->host, ip);
2296
2297 ret = rdma_bind_addr(listen_id, res->ai_addr);
2298 if (ret) {
2299 ERROR(errp, "Error: could not rdma_bind_addr!\n");
2300 goto err_dest_init_bind_addr;
2301 }
2302
2303 rdma->listen_id = listen_id;
2304 qemu_rdma_dump_gid("dest_init", listen_id);
2305 return 0;
2306
2307 err_dest_init_bind_addr:
2308 rdma_destroy_id(listen_id);
2309 err_dest_init_create_listen_id:
2310 rdma_destroy_event_channel(rdma->channel);
2311 rdma->channel = NULL;
2312 rdma->error_state = ret;
2313 return ret;
2314
2315 }
2316
2317 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2318 {
2319 RDMAContext *rdma = NULL;
2320 InetSocketAddress *addr;
2321
2322 if (host_port) {
2323 rdma = g_malloc0(sizeof(RDMAContext));
2324 memset(rdma, 0, sizeof(RDMAContext));
2325 rdma->current_index = -1;
2326 rdma->current_chunk = -1;
2327
2328 addr = inet_parse(host_port, NULL);
2329 if (addr != NULL) {
2330 rdma->port = atoi(addr->port);
2331 rdma->host = g_strdup(addr->host);
2332 rdma->ipv6 = addr->ipv6;
2333 } else {
2334 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2335 g_free(rdma);
2336 return NULL;
2337 }
2338 }
2339
2340 return rdma;
2341 }
2342
2343 /*
2344 * QEMUFile interface to the control channel.
2345 * SEND messages for control only.
2346 * pc.ram is handled with regular RDMA messages.
2347 */
2348 static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf,
2349 int64_t pos, int size)
2350 {
2351 QEMUFileRDMA *r = opaque;
2352 QEMUFile *f = r->file;
2353 RDMAContext *rdma = r->rdma;
2354 size_t remaining = size;
2355 uint8_t * data = (void *) buf;
2356 int ret;
2357
2358 CHECK_ERROR_STATE();
2359
2360 /*
2361 * Push out any writes that
2362 * we're queued up for pc.ram.
2363 */
2364 ret = qemu_rdma_write_flush(f, rdma);
2365 if (ret < 0) {
2366 rdma->error_state = ret;
2367 return ret;
2368 }
2369
2370 while (remaining) {
2371 RDMAControlHeader head;
2372
2373 r->len = MIN(remaining, RDMA_SEND_INCREMENT);
2374 remaining -= r->len;
2375
2376 head.len = r->len;
2377 head.type = RDMA_CONTROL_QEMU_FILE;
2378
2379 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2380
2381 if (ret < 0) {
2382 rdma->error_state = ret;
2383 return ret;
2384 }
2385
2386 data += r->len;
2387 }
2388
2389 return size;
2390 }
2391
2392 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2393 int size, int idx)
2394 {
2395 size_t len = 0;
2396
2397 if (rdma->wr_data[idx].control_len) {
2398 DDDPRINTF("RDMA %" PRId64 " of %d bytes already in buffer\n",
2399 rdma->wr_data[idx].control_len, size);
2400
2401 len = MIN(size, rdma->wr_data[idx].control_len);
2402 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2403 rdma->wr_data[idx].control_curr += len;
2404 rdma->wr_data[idx].control_len -= len;
2405 }
2406
2407 return len;
2408 }
2409
2410 /*
2411 * QEMUFile interface to the control channel.
2412 * RDMA links don't use bytestreams, so we have to
2413 * return bytes to QEMUFile opportunistically.
2414 */
2415 static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf,
2416 int64_t pos, int size)
2417 {
2418 QEMUFileRDMA *r = opaque;
2419 RDMAContext *rdma = r->rdma;
2420 RDMAControlHeader head;
2421 int ret = 0;
2422
2423 CHECK_ERROR_STATE();
2424
2425 /*
2426 * First, we hold on to the last SEND message we
2427 * were given and dish out the bytes until we run
2428 * out of bytes.
2429 */
2430 r->len = qemu_rdma_fill(r->rdma, buf, size, 0);
2431 if (r->len) {
2432 return r->len;
2433 }
2434
2435 /*
2436 * Once we run out, we block and wait for another
2437 * SEND message to arrive.
2438 */
2439 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2440
2441 if (ret < 0) {
2442 rdma->error_state = ret;
2443 return ret;
2444 }
2445
2446 /*
2447 * SEND was received with new bytes, now try again.
2448 */
2449 return qemu_rdma_fill(r->rdma, buf, size, 0);
2450 }
2451
2452 /*
2453 * Block until all the outstanding chunks have been delivered by the hardware.
2454 */
2455 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2456 {
2457 int ret;
2458
2459 if (qemu_rdma_write_flush(f, rdma) < 0) {
2460 return -EIO;
2461 }
2462
2463 while (rdma->nb_sent) {
2464 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE);
2465 if (ret < 0) {
2466 fprintf(stderr, "rdma migration: complete polling error!\n");
2467 return -EIO;
2468 }
2469 }
2470
2471 qemu_rdma_unregister_waiting(rdma);
2472
2473 return 0;
2474 }
2475
2476 static int qemu_rdma_close(void *opaque)
2477 {
2478 DPRINTF("Shutting down connection.\n");
2479 QEMUFileRDMA *r = opaque;
2480 if (r->rdma) {
2481 qemu_rdma_cleanup(r->rdma);
2482 g_free(r->rdma);
2483 }
2484 g_free(r);
2485 return 0;
2486 }
2487
2488 /*
2489 * Parameters:
2490 * @offset == 0 :
2491 * This means that 'block_offset' is a full virtual address that does not
2492 * belong to a RAMBlock of the virtual machine and instead
2493 * represents a private malloc'd memory area that the caller wishes to
2494 * transfer.
2495 *
2496 * @offset != 0 :
2497 * Offset is an offset to be added to block_offset and used
2498 * to also lookup the corresponding RAMBlock.
2499 *
2500 * @size > 0 :
2501 * Initiate an transfer this size.
2502 *
2503 * @size == 0 :
2504 * A 'hint' or 'advice' that means that we wish to speculatively
2505 * and asynchronously unregister this memory. In this case, there is no
2506 * guarantee that the unregister will actually happen, for example,
2507 * if the memory is being actively transmitted. Additionally, the memory
2508 * may be re-registered at any future time if a write within the same
2509 * chunk was requested again, even if you attempted to unregister it
2510 * here.
2511 *
2512 * @size < 0 : TODO, not yet supported
2513 * Unregister the memory NOW. This means that the caller does not
2514 * expect there to be any future RDMA transfers and we just want to clean
2515 * things up. This is used in case the upper layer owns the memory and
2516 * cannot wait for qemu_fclose() to occur.
2517 *
2518 * @bytes_sent : User-specificed pointer to indicate how many bytes were
2519 * sent. Usually, this will not be more than a few bytes of
2520 * the protocol because most transfers are sent asynchronously.
2521 */
2522 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
2523 ram_addr_t block_offset, ram_addr_t offset,
2524 size_t size, int *bytes_sent)
2525 {
2526 QEMUFileRDMA *rfile = opaque;
2527 RDMAContext *rdma = rfile->rdma;
2528 int ret;
2529
2530 CHECK_ERROR_STATE();
2531
2532 qemu_fflush(f);
2533
2534 if (size > 0) {
2535 /*
2536 * Add this page to the current 'chunk'. If the chunk
2537 * is full, or the page doen't belong to the current chunk,
2538 * an actual RDMA write will occur and a new chunk will be formed.
2539 */
2540 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
2541 if (ret < 0) {
2542 fprintf(stderr, "rdma migration: write error! %d\n", ret);
2543 goto err;
2544 }
2545
2546 /*
2547 * We always return 1 bytes because the RDMA
2548 * protocol is completely asynchronous. We do not yet know
2549 * whether an identified chunk is zero or not because we're
2550 * waiting for other pages to potentially be merged with
2551 * the current chunk. So, we have to call qemu_update_position()
2552 * later on when the actual write occurs.
2553 */
2554 if (bytes_sent) {
2555 *bytes_sent = 1;
2556 }
2557 } else {
2558 uint64_t index, chunk;
2559
2560 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2561 if (size < 0) {
2562 ret = qemu_rdma_drain_cq(f, rdma);
2563 if (ret < 0) {
2564 fprintf(stderr, "rdma: failed to synchronously drain"
2565 " completion queue before unregistration.\n");
2566 goto err;
2567 }
2568 }
2569 */
2570
2571 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2572 offset, size, &index, &chunk);
2573
2574 if (ret) {
2575 fprintf(stderr, "ram block search failed\n");
2576 goto err;
2577 }
2578
2579 qemu_rdma_signal_unregister(rdma, index, chunk, 0);
2580
2581 /*
2582 * TODO: Synchronous, guaranteed unregistration (should not occur during
2583 * fast-path). Otherwise, unregisters will process on the next call to
2584 * qemu_rdma_drain_cq()
2585 if (size < 0) {
2586 qemu_rdma_unregister_waiting(rdma);
2587 }
2588 */
2589 }
2590
2591 /*
2592 * Drain the Completion Queue if possible, but do not block,
2593 * just poll.
2594 *
2595 * If nothing to poll, the end of the iteration will do this
2596 * again to make sure we don't overflow the request queue.
2597 */
2598 while (1) {
2599 uint64_t wr_id, wr_id_in;
2600 int ret = qemu_rdma_poll(rdma, &wr_id_in);
2601 if (ret < 0) {
2602 fprintf(stderr, "rdma migration: polling error! %d\n", ret);
2603 goto err;
2604 }
2605
2606 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
2607
2608 if (wr_id == RDMA_WRID_NONE) {
2609 break;
2610 }
2611 }
2612
2613 return RAM_SAVE_CONTROL_DELAYED;
2614 err:
2615 rdma->error_state = ret;
2616 return ret;
2617 }
2618
2619 static int qemu_rdma_accept(RDMAContext *rdma)
2620 {
2621 RDMACapabilities cap;
2622 struct rdma_conn_param conn_param = {
2623 .responder_resources = 2,
2624 .private_data = &cap,
2625 .private_data_len = sizeof(cap),
2626 };
2627 struct rdma_cm_event *cm_event;
2628 struct ibv_context *verbs;
2629 int ret = -EINVAL;
2630 int idx;
2631
2632 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2633 if (ret) {
2634 goto err_rdma_dest_wait;
2635 }
2636
2637 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
2638 rdma_ack_cm_event(cm_event);
2639 goto err_rdma_dest_wait;
2640 }
2641
2642 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2643
2644 network_to_caps(&cap);
2645
2646 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
2647 fprintf(stderr, "Unknown source RDMA version: %d, bailing...\n",
2648 cap.version);
2649 rdma_ack_cm_event(cm_event);
2650 goto err_rdma_dest_wait;
2651 }
2652
2653 /*
2654 * Respond with only the capabilities this version of QEMU knows about.
2655 */
2656 cap.flags &= known_capabilities;
2657
2658 /*
2659 * Enable the ones that we do know about.
2660 * Add other checks here as new ones are introduced.
2661 */
2662 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
2663 rdma->pin_all = true;
2664 }
2665
2666 rdma->cm_id = cm_event->id;
2667 verbs = cm_event->id->verbs;
2668
2669 rdma_ack_cm_event(cm_event);
2670
2671 DPRINTF("Memory pin all: %s\n", rdma->pin_all ? "enabled" : "disabled");
2672
2673 caps_to_network(&cap);
2674
2675 DPRINTF("verbs context after listen: %p\n", verbs);
2676
2677 if (!rdma->verbs) {
2678 rdma->verbs = verbs;
2679 } else if (rdma->verbs != verbs) {
2680 fprintf(stderr, "ibv context not matching %p, %p!\n",
2681 rdma->verbs, verbs);
2682 goto err_rdma_dest_wait;
2683 }
2684
2685 qemu_rdma_dump_id("dest_init", verbs);
2686
2687 ret = qemu_rdma_alloc_pd_cq(rdma);
2688 if (ret) {
2689 fprintf(stderr, "rdma migration: error allocating pd and cq!\n");
2690 goto err_rdma_dest_wait;
2691 }
2692
2693 ret = qemu_rdma_alloc_qp(rdma);
2694 if (ret) {
2695 fprintf(stderr, "rdma migration: error allocating qp!\n");
2696 goto err_rdma_dest_wait;
2697 }
2698
2699 ret = qemu_rdma_init_ram_blocks(rdma);
2700 if (ret) {
2701 fprintf(stderr, "rdma migration: error initializing ram blocks!\n");
2702 goto err_rdma_dest_wait;
2703 }
2704
2705 for (idx = 0; idx <= RDMA_WRID_MAX; idx++) {
2706 ret = qemu_rdma_reg_control(rdma, idx);
2707 if (ret) {
2708 fprintf(stderr, "rdma: error registering %d control!\n", idx);
2709 goto err_rdma_dest_wait;
2710 }
2711 }
2712
2713 qemu_set_fd_handler2(rdma->channel->fd, NULL, NULL, NULL, NULL);
2714
2715 ret = rdma_accept(rdma->cm_id, &conn_param);
2716 if (ret) {
2717 fprintf(stderr, "rdma_accept returns %d!\n", ret);
2718 goto err_rdma_dest_wait;
2719 }
2720
2721 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2722 if (ret) {
2723 fprintf(stderr, "rdma_accept get_cm_event failed %d!\n", ret);
2724 goto err_rdma_dest_wait;
2725 }
2726
2727 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2728 fprintf(stderr, "rdma_accept not event established!\n");
2729 rdma_ack_cm_event(cm_event);
2730 goto err_rdma_dest_wait;
2731 }
2732
2733 rdma_ack_cm_event(cm_event);
2734
2735 ret = qemu_rdma_post_recv_control(rdma, 0);
2736 if (ret) {
2737 fprintf(stderr, "rdma migration: error posting second control recv!\n");
2738 goto err_rdma_dest_wait;
2739 }
2740
2741 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
2742
2743 return 0;
2744
2745 err_rdma_dest_wait:
2746 rdma->error_state = ret;
2747 qemu_rdma_cleanup(rdma);
2748 return ret;
2749 }
2750
2751 /*
2752 * During each iteration of the migration, we listen for instructions
2753 * by the source VM to perform dynamic page registrations before they
2754 * can perform RDMA operations.
2755 *
2756 * We respond with the 'rkey'.
2757 *
2758 * Keep doing this until the source tells us to stop.
2759 */
2760 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque,
2761 uint64_t flags)
2762 {
2763 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
2764 .type = RDMA_CONTROL_REGISTER_RESULT,
2765 .repeat = 0,
2766 };
2767 RDMAControlHeader unreg_resp = { .len = 0,
2768 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
2769 .repeat = 0,
2770 };
2771 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
2772 .repeat = 1 };
2773 QEMUFileRDMA *rfile = opaque;
2774 RDMAContext *rdma = rfile->rdma;
2775 RDMALocalBlocks *local = &rdma->local_ram_blocks;
2776 RDMAControlHeader head;
2777 RDMARegister *reg, *registers;
2778 RDMACompress *comp;
2779 RDMARegisterResult *reg_result;
2780 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
2781 RDMALocalBlock *block;
2782 void *host_addr;
2783 int ret = 0;
2784 int idx = 0;
2785 int count = 0;
2786 int i = 0;
2787
2788 CHECK_ERROR_STATE();
2789
2790 do {
2791 DDDPRINTF("Waiting for next request %" PRIu64 "...\n", flags);
2792
2793 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
2794
2795 if (ret < 0) {
2796 break;
2797 }
2798
2799 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
2800 fprintf(stderr, "rdma: Too many requests in this message (%d)."
2801 "Bailing.\n", head.repeat);
2802 ret = -EIO;
2803 break;
2804 }
2805
2806 switch (head.type) {
2807 case RDMA_CONTROL_COMPRESS:
2808 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
2809 network_to_compress(comp);
2810
2811 DDPRINTF("Zapping zero chunk: %" PRId64
2812 " bytes, index %d, offset %" PRId64 "\n",
2813 comp->length, comp->block_idx, comp->offset);
2814 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
2815
2816 host_addr = block->local_host_addr +
2817 (comp->offset - block->offset);
2818
2819 ram_handle_compressed(host_addr, comp->value, comp->length);
2820 break;
2821
2822 case RDMA_CONTROL_REGISTER_FINISHED:
2823 DDDPRINTF("Current registrations complete.\n");
2824 goto out;
2825
2826 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
2827 DPRINTF("Initial setup info requested.\n");
2828
2829 if (rdma->pin_all) {
2830 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
2831 if (ret) {
2832 fprintf(stderr, "rdma migration: error dest "
2833 "registering ram blocks!\n");
2834 goto out;
2835 }
2836 }
2837
2838 /*
2839 * Dest uses this to prepare to transmit the RAMBlock descriptions
2840 * to the source VM after connection setup.
2841 * Both sides use the "remote" structure to communicate and update
2842 * their "local" descriptions with what was sent.
2843 */
2844 for (i = 0; i < local->nb_blocks; i++) {
2845 rdma->block[i].remote_host_addr =
2846 (uint64_t)(local->block[i].local_host_addr);
2847
2848 if (rdma->pin_all) {
2849 rdma->block[i].remote_rkey = local->block[i].mr->rkey;
2850 }
2851
2852 rdma->block[i].offset = local->block[i].offset;
2853 rdma->block[i].length = local->block[i].length;
2854
2855 remote_block_to_network(&rdma->block[i]);
2856 }
2857
2858 blocks.len = rdma->local_ram_blocks.nb_blocks
2859 * sizeof(RDMARemoteBlock);
2860
2861
2862 ret = qemu_rdma_post_send_control(rdma,
2863 (uint8_t *) rdma->block, &blocks);
2864
2865 if (ret < 0) {
2866 fprintf(stderr, "rdma migration: error sending remote info!\n");
2867 goto out;
2868 }
2869
2870 break;
2871 case RDMA_CONTROL_REGISTER_REQUEST:
2872 DDPRINTF("There are %d registration requests\n", head.repeat);
2873
2874 reg_resp.repeat = head.repeat;
2875 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
2876
2877 for (count = 0; count < head.repeat; count++) {
2878 uint64_t chunk;
2879 uint8_t *chunk_start, *chunk_end;
2880
2881 reg = &registers[count];
2882 network_to_register(reg);
2883
2884 reg_result = &results[count];
2885
2886 DDPRINTF("Registration request (%d): index %d, current_addr %"
2887 PRIu64 " chunks: %" PRIu64 "\n", count,
2888 reg->current_index, reg->key.current_addr, reg->chunks);
2889
2890 block = &(rdma->local_ram_blocks.block[reg->current_index]);
2891 if (block->is_ram_block) {
2892 host_addr = (block->local_host_addr +
2893 (reg->key.current_addr - block->offset));
2894 chunk = ram_chunk_index(block->local_host_addr,
2895 (uint8_t *) host_addr);
2896 } else {
2897 chunk = reg->key.chunk;
2898 host_addr = block->local_host_addr +
2899 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
2900 }
2901 chunk_start = ram_chunk_start(block, chunk);
2902 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
2903 if (qemu_rdma_register_and_get_keys(rdma, block,
2904 (uint8_t *)host_addr, NULL, &reg_result->rkey,
2905 chunk, chunk_start, chunk_end)) {
2906 fprintf(stderr, "cannot get rkey!\n");
2907 ret = -EINVAL;
2908 goto out;
2909 }
2910
2911 reg_result->host_addr = (uint64_t) block->local_host_addr;
2912
2913 DDPRINTF("Registered rkey for this request: %x\n",
2914 reg_result->rkey);
2915
2916 result_to_network(reg_result);
2917 }
2918
2919 ret = qemu_rdma_post_send_control(rdma,
2920 (uint8_t *) results, &reg_resp);
2921
2922 if (ret < 0) {
2923 fprintf(stderr, "Failed to send control buffer!\n");
2924 goto out;
2925 }
2926 break;
2927 case RDMA_CONTROL_UNREGISTER_REQUEST:
2928 DDPRINTF("There are %d unregistration requests\n", head.repeat);
2929 unreg_resp.repeat = head.repeat;
2930 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
2931
2932 for (count = 0; count < head.repeat; count++) {
2933 reg = &registers[count];
2934 network_to_register(reg);
2935
2936 DDPRINTF("Unregistration request (%d): "
2937 " index %d, chunk %" PRIu64 "\n",
2938 count, reg->current_index, reg->key.chunk);
2939
2940 block = &(rdma->local_ram_blocks.block[reg->current_index]);
2941
2942 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
2943 block->pmr[reg->key.chunk] = NULL;
2944
2945 if (ret != 0) {
2946 perror("rdma unregistration chunk failed");
2947 ret = -ret;
2948 goto out;
2949 }
2950
2951 rdma->total_registrations--;
2952
2953 DDPRINTF("Unregistered chunk %" PRIu64 " successfully.\n",
2954 reg->key.chunk);
2955 }
2956
2957 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
2958
2959 if (ret < 0) {
2960 fprintf(stderr, "Failed to send control buffer!\n");
2961 goto out;
2962 }
2963 break;
2964 case RDMA_CONTROL_REGISTER_RESULT:
2965 fprintf(stderr, "Invalid RESULT message at dest.\n");
2966 ret = -EIO;
2967 goto out;
2968 default:
2969 fprintf(stderr, "Unknown control message %s\n",
2970 control_desc[head.type]);
2971 ret = -EIO;
2972 goto out;
2973 }
2974 } while (1);
2975 out:
2976 if (ret < 0) {
2977 rdma->error_state = ret;
2978 }
2979 return ret;
2980 }
2981
2982 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
2983 uint64_t flags)
2984 {
2985 QEMUFileRDMA *rfile = opaque;
2986 RDMAContext *rdma = rfile->rdma;
2987
2988 CHECK_ERROR_STATE();
2989
2990 DDDPRINTF("start section: %" PRIu64 "\n", flags);
2991 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
2992 qemu_fflush(f);
2993
2994 return 0;
2995 }
2996
2997 /*
2998 * Inform dest that dynamic registrations are done for now.
2999 * First, flush writes, if any.
3000 */
3001 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3002 uint64_t flags)
3003 {
3004 Error *local_err = NULL, **errp = &local_err;
3005 QEMUFileRDMA *rfile = opaque;
3006 RDMAContext *rdma = rfile->rdma;
3007 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3008 int ret = 0;
3009
3010 CHECK_ERROR_STATE();
3011
3012 qemu_fflush(f);
3013 ret = qemu_rdma_drain_cq(f, rdma);
3014
3015 if (ret < 0) {
3016 goto err;
3017 }
3018
3019 if (flags == RAM_CONTROL_SETUP) {
3020 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3021 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3022 int reg_result_idx, i, j, nb_remote_blocks;
3023
3024 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3025 DPRINTF("Sending registration setup for ram blocks...\n");
3026
3027 /*
3028 * Make sure that we parallelize the pinning on both sides.
3029 * For very large guests, doing this serially takes a really
3030 * long time, so we have to 'interleave' the pinning locally
3031 * with the control messages by performing the pinning on this
3032 * side before we receive the control response from the other
3033 * side that the pinning has completed.
3034 */
3035 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3036 &reg_result_idx, rdma->pin_all ?
3037 qemu_rdma_reg_whole_ram_blocks : NULL);
3038 if (ret < 0) {
3039 ERROR(errp, "receiving remote info!\n");
3040 return ret;
3041 }
3042
3043 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3044 memcpy(rdma->block,
3045 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3046
3047 nb_remote_blocks = resp.len / sizeof(RDMARemoteBlock);
3048
3049 /*
3050 * The protocol uses two different sets of rkeys (mutually exclusive):
3051 * 1. One key to represent the virtual address of the entire ram block.
3052 * (dynamic chunk registration disabled - pin everything with one rkey.)
3053 * 2. One to represent individual chunks within a ram block.
3054 * (dynamic chunk registration enabled - pin individual chunks.)
3055 *
3056 * Once the capability is successfully negotiated, the destination transmits
3057 * the keys to use (or sends them later) including the virtual addresses
3058 * and then propagates the remote ram block descriptions to his local copy.
3059 */
3060
3061 if (local->nb_blocks != nb_remote_blocks) {
3062 ERROR(errp, "ram blocks mismatch #1! "
3063 "Your QEMU command line parameters are probably "
3064 "not identical on both the source and destination.\n");
3065 return -EINVAL;
3066 }
3067
3068 for (i = 0; i < nb_remote_blocks; i++) {
3069 network_to_remote_block(&rdma->block[i]);
3070
3071 /* search local ram blocks */
3072 for (j = 0; j < local->nb_blocks; j++) {
3073 if (rdma->block[i].offset != local->block[j].offset) {
3074 continue;
3075 }
3076
3077 if (rdma->block[i].length != local->block[j].length) {
3078 ERROR(errp, "ram blocks mismatch #2! "
3079 "Your QEMU command line parameters are probably "
3080 "not identical on both the source and destination.\n");
3081 return -EINVAL;
3082 }
3083 local->block[j].remote_host_addr =
3084 rdma->block[i].remote_host_addr;
3085 local->block[j].remote_rkey = rdma->block[i].remote_rkey;
3086 break;
3087 }
3088
3089 if (j >= local->nb_blocks) {
3090 ERROR(errp, "ram blocks mismatch #3! "
3091 "Your QEMU command line parameters are probably "
3092 "not identical on both the source and destination.\n");
3093 return -EINVAL;
3094 }
3095 }
3096 }
3097
3098 DDDPRINTF("Sending registration finish %" PRIu64 "...\n", flags);
3099
3100 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3101 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3102
3103 if (ret < 0) {
3104 goto err;
3105 }
3106
3107 return 0;
3108 err:
3109 rdma->error_state = ret;
3110 return ret;
3111 }
3112
3113 static int qemu_rdma_get_fd(void *opaque)
3114 {
3115 QEMUFileRDMA *rfile = opaque;
3116 RDMAContext *rdma = rfile->rdma;
3117
3118 return rdma->comp_channel->fd;
3119 }
3120
3121 const QEMUFileOps rdma_read_ops = {
3122 .get_buffer = qemu_rdma_get_buffer,
3123 .get_fd = qemu_rdma_get_fd,
3124 .close = qemu_rdma_close,
3125 .hook_ram_load = qemu_rdma_registration_handle,
3126 };
3127
3128 const QEMUFileOps rdma_write_ops = {
3129 .put_buffer = qemu_rdma_put_buffer,
3130 .close = qemu_rdma_close,
3131 .before_ram_iterate = qemu_rdma_registration_start,
3132 .after_ram_iterate = qemu_rdma_registration_stop,
3133 .save_page = qemu_rdma_save_page,
3134 };
3135
3136 static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3137 {
3138 QEMUFileRDMA *r = g_malloc0(sizeof(QEMUFileRDMA));
3139
3140 if (qemu_file_mode_is_not_valid(mode)) {
3141 return NULL;
3142 }
3143
3144 r->rdma = rdma;
3145
3146 if (mode[0] == 'w') {
3147 r->file = qemu_fopen_ops(r, &rdma_write_ops);
3148 } else {
3149 r->file = qemu_fopen_ops(r, &rdma_read_ops);
3150 }
3151
3152 return r->file;
3153 }
3154
3155 static void rdma_accept_incoming_migration(void *opaque)
3156 {
3157 RDMAContext *rdma = opaque;
3158 int ret;
3159 QEMUFile *f;
3160 Error *local_err = NULL, **errp = &local_err;
3161
3162 DPRINTF("Accepting rdma connection...\n");
3163 ret = qemu_rdma_accept(rdma);
3164
3165 if (ret) {
3166 ERROR(errp, "RDMA Migration initialization failed!\n");
3167 return;
3168 }
3169
3170 DPRINTF("Accepted migration\n");
3171
3172 f = qemu_fopen_rdma(rdma, "rb");
3173 if (f == NULL) {
3174 ERROR(errp, "could not qemu_fopen_rdma!\n");
3175 qemu_rdma_cleanup(rdma);
3176 return;
3177 }
3178
3179 rdma->migration_started_on_destination = 1;
3180 process_incoming_migration(f);
3181 }
3182
3183 void rdma_start_incoming_migration(const char *host_port, Error **errp)
3184 {
3185 int ret;
3186 RDMAContext *rdma;
3187 Error *local_err = NULL;
3188
3189 DPRINTF("Starting RDMA-based incoming migration\n");
3190 rdma = qemu_rdma_data_init(host_port, &local_err);
3191
3192 if (rdma == NULL) {
3193 goto err;
3194 }
3195
3196 ret = qemu_rdma_dest_init(rdma, &local_err);
3197
3198 if (ret) {
3199 goto err;
3200 }
3201
3202 DPRINTF("qemu_rdma_dest_init success\n");
3203
3204 ret = rdma_listen(rdma->listen_id, 5);
3205
3206 if (ret) {
3207 ERROR(errp, "listening on socket!\n");
3208 goto err;
3209 }
3210
3211 DPRINTF("rdma_listen success\n");
3212
3213 qemu_set_fd_handler2(rdma->channel->fd, NULL,
3214 rdma_accept_incoming_migration, NULL,
3215 (void *)(intptr_t) rdma);
3216 return;
3217 err:
3218 error_propagate(errp, local_err);
3219 g_free(rdma);
3220 }
3221
3222 void rdma_start_outgoing_migration(void *opaque,
3223 const char *host_port, Error **errp)
3224 {
3225 MigrationState *s = opaque;
3226 Error *local_err = NULL, **temp = &local_err;
3227 RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err);
3228 int ret = 0;
3229
3230 if (rdma == NULL) {
3231 ERROR(temp, "Failed to initialize RDMA data structures! %d\n", ret);
3232 goto err;
3233 }
3234
3235 ret = qemu_rdma_source_init(rdma, &local_err,
3236 s->enabled_capabilities[MIGRATION_CAPABILITY_X_RDMA_PIN_ALL]);
3237
3238 if (ret) {
3239 goto err;
3240 }
3241
3242 DPRINTF("qemu_rdma_source_init success\n");
3243 ret = qemu_rdma_connect(rdma, &local_err);
3244
3245 if (ret) {
3246 goto err;
3247 }
3248
3249 DPRINTF("qemu_rdma_source_connect success\n");
3250
3251 s->file = qemu_fopen_rdma(rdma, "wb");
3252 migrate_fd_connect(s);
3253 return;
3254 err:
3255 error_propagate(errp, local_err);
3256 g_free(rdma);
3257 migrate_fd_error(s);
3258 }