]> git.proxmox.com Git - qemu.git/blob - op-i386.c
distribution patches
[qemu.git] / op-i386.c
1 /*
2 * i386 micro operations
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "exec-i386.h"
21
22 /* NOTE: data are not static to force relocation generation by GCC */
23
24 uint8_t parity_table[256] = {
25 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
26 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
27 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
28 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
29 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
30 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
31 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
32 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
33 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
34 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
35 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
36 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
37 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
38 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
39 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
40 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
41 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
42 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
43 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
44 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
45 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
46 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
47 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
48 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
49 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
50 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
51 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
52 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
53 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
54 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
55 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
56 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
57 };
58
59 /* modulo 17 table */
60 const uint8_t rclw_table[32] = {
61 0, 1, 2, 3, 4, 5, 6, 7,
62 8, 9,10,11,12,13,14,15,
63 16, 0, 1, 2, 3, 4, 5, 6,
64 7, 8, 9,10,11,12,13,14,
65 };
66
67 /* modulo 9 table */
68 const uint8_t rclb_table[32] = {
69 0, 1, 2, 3, 4, 5, 6, 7,
70 8, 0, 1, 2, 3, 4, 5, 6,
71 7, 8, 0, 1, 2, 3, 4, 5,
72 6, 7, 8, 0, 1, 2, 3, 4,
73 };
74
75 #ifdef USE_X86LDOUBLE
76 /* an array of Intel 80-bit FP constants, to be loaded via integer ops */
77 typedef unsigned short f15ld[5];
78 const f15ld f15rk[] =
79 {
80 /*0*/ {0x0000,0x0000,0x0000,0x0000,0x0000},
81 /*1*/ {0x0000,0x0000,0x0000,0x8000,0x3fff},
82 /*pi*/ {0xc235,0x2168,0xdaa2,0xc90f,0x4000},
83 /*lg2*/ {0xf799,0xfbcf,0x9a84,0x9a20,0x3ffd},
84 /*ln2*/ {0x79ac,0xd1cf,0x17f7,0xb172,0x3ffe},
85 /*l2e*/ {0xf0bc,0x5c17,0x3b29,0xb8aa,0x3fff},
86 /*l2t*/ {0x8afe,0xcd1b,0x784b,0xd49a,0x4000}
87 };
88 #else
89 /* the same, 64-bit version */
90 typedef unsigned short f15ld[4];
91 const f15ld f15rk[] =
92 {
93 #ifndef WORDS_BIGENDIAN
94 /*0*/ {0x0000,0x0000,0x0000,0x0000},
95 /*1*/ {0x0000,0x0000,0x0000,0x3ff0},
96 /*pi*/ {0x2d18,0x5444,0x21fb,0x4009},
97 /*lg2*/ {0x79ff,0x509f,0x4413,0x3fd3},
98 /*ln2*/ {0x39ef,0xfefa,0x2e42,0x3fe6},
99 /*l2e*/ {0x82fe,0x652b,0x1547,0x3ff7},
100 /*l2t*/ {0xa371,0x0979,0x934f,0x400a}
101 #else
102 /*0*/ {0x0000,0x0000,0x0000,0x0000},
103 /*1*/ {0x3ff0,0x0000,0x0000,0x0000},
104 /*pi*/ {0x4009,0x21fb,0x5444,0x2d18},
105 /*lg2*/ {0x3fd3,0x4413,0x509f,0x79ff},
106 /*ln2*/ {0x3fe6,0x2e42,0xfefa,0x39ef},
107 /*l2e*/ {0x3ff7,0x1547,0x652b,0x82fe},
108 /*l2t*/ {0x400a,0x934f,0x0979,0xa371}
109 #endif
110 };
111 #endif
112
113 /* n must be a constant to be efficient */
114 static inline int lshift(int x, int n)
115 {
116 if (n >= 0)
117 return x << n;
118 else
119 return x >> (-n);
120 }
121
122 /* we define the various pieces of code used by the JIT */
123
124 #define REG EAX
125 #define REGNAME _EAX
126 #include "opreg_template.h"
127 #undef REG
128 #undef REGNAME
129
130 #define REG ECX
131 #define REGNAME _ECX
132 #include "opreg_template.h"
133 #undef REG
134 #undef REGNAME
135
136 #define REG EDX
137 #define REGNAME _EDX
138 #include "opreg_template.h"
139 #undef REG
140 #undef REGNAME
141
142 #define REG EBX
143 #define REGNAME _EBX
144 #include "opreg_template.h"
145 #undef REG
146 #undef REGNAME
147
148 #define REG ESP
149 #define REGNAME _ESP
150 #include "opreg_template.h"
151 #undef REG
152 #undef REGNAME
153
154 #define REG EBP
155 #define REGNAME _EBP
156 #include "opreg_template.h"
157 #undef REG
158 #undef REGNAME
159
160 #define REG ESI
161 #define REGNAME _ESI
162 #include "opreg_template.h"
163 #undef REG
164 #undef REGNAME
165
166 #define REG EDI
167 #define REGNAME _EDI
168 #include "opreg_template.h"
169 #undef REG
170 #undef REGNAME
171
172 /* operations with flags */
173
174 void OPPROTO op_addl_T0_T1_cc(void)
175 {
176 CC_SRC = T0;
177 T0 += T1;
178 CC_DST = T0;
179 }
180
181 void OPPROTO op_orl_T0_T1_cc(void)
182 {
183 T0 |= T1;
184 CC_DST = T0;
185 }
186
187 void OPPROTO op_andl_T0_T1_cc(void)
188 {
189 T0 &= T1;
190 CC_DST = T0;
191 }
192
193 void OPPROTO op_subl_T0_T1_cc(void)
194 {
195 CC_SRC = T0;
196 T0 -= T1;
197 CC_DST = T0;
198 }
199
200 void OPPROTO op_xorl_T0_T1_cc(void)
201 {
202 T0 ^= T1;
203 CC_DST = T0;
204 }
205
206 void OPPROTO op_cmpl_T0_T1_cc(void)
207 {
208 CC_SRC = T0;
209 CC_DST = T0 - T1;
210 }
211
212 void OPPROTO op_negl_T0_cc(void)
213 {
214 CC_SRC = 0;
215 T0 = -T0;
216 CC_DST = T0;
217 }
218
219 void OPPROTO op_incl_T0_cc(void)
220 {
221 CC_SRC = cc_table[CC_OP].compute_c();
222 T0++;
223 CC_DST = T0;
224 }
225
226 void OPPROTO op_decl_T0_cc(void)
227 {
228 CC_SRC = cc_table[CC_OP].compute_c();
229 T0--;
230 CC_DST = T0;
231 }
232
233 void OPPROTO op_testl_T0_T1_cc(void)
234 {
235 CC_DST = T0 & T1;
236 }
237
238 /* operations without flags */
239
240 void OPPROTO op_addl_T0_T1(void)
241 {
242 T0 += T1;
243 }
244
245 void OPPROTO op_orl_T0_T1(void)
246 {
247 T0 |= T1;
248 }
249
250 void OPPROTO op_andl_T0_T1(void)
251 {
252 T0 &= T1;
253 }
254
255 void OPPROTO op_subl_T0_T1(void)
256 {
257 T0 -= T1;
258 }
259
260 void OPPROTO op_xorl_T0_T1(void)
261 {
262 T0 ^= T1;
263 }
264
265 void OPPROTO op_negl_T0(void)
266 {
267 T0 = -T0;
268 }
269
270 void OPPROTO op_incl_T0(void)
271 {
272 T0++;
273 }
274
275 void OPPROTO op_decl_T0(void)
276 {
277 T0--;
278 }
279
280 void OPPROTO op_notl_T0(void)
281 {
282 T0 = ~T0;
283 }
284
285 void OPPROTO op_bswapl_T0(void)
286 {
287 T0 = bswap32(T0);
288 }
289
290 /* multiply/divide */
291 void OPPROTO op_mulb_AL_T0(void)
292 {
293 unsigned int res;
294 res = (uint8_t)EAX * (uint8_t)T0;
295 EAX = (EAX & 0xffff0000) | res;
296 CC_SRC = (res & 0xff00);
297 }
298
299 void OPPROTO op_imulb_AL_T0(void)
300 {
301 int res;
302 res = (int8_t)EAX * (int8_t)T0;
303 EAX = (EAX & 0xffff0000) | (res & 0xffff);
304 CC_SRC = (res != (int8_t)res);
305 }
306
307 void OPPROTO op_mulw_AX_T0(void)
308 {
309 unsigned int res;
310 res = (uint16_t)EAX * (uint16_t)T0;
311 EAX = (EAX & 0xffff0000) | (res & 0xffff);
312 EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
313 CC_SRC = res >> 16;
314 }
315
316 void OPPROTO op_imulw_AX_T0(void)
317 {
318 int res;
319 res = (int16_t)EAX * (int16_t)T0;
320 EAX = (EAX & 0xffff0000) | (res & 0xffff);
321 EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
322 CC_SRC = (res != (int16_t)res);
323 }
324
325 void OPPROTO op_mull_EAX_T0(void)
326 {
327 uint64_t res;
328 res = (uint64_t)((uint32_t)EAX) * (uint64_t)((uint32_t)T0);
329 EAX = res;
330 EDX = res >> 32;
331 CC_SRC = res >> 32;
332 }
333
334 void OPPROTO op_imull_EAX_T0(void)
335 {
336 int64_t res;
337 res = (int64_t)((int32_t)EAX) * (int64_t)((int32_t)T0);
338 EAX = res;
339 EDX = res >> 32;
340 CC_SRC = (res != (int32_t)res);
341 }
342
343 void OPPROTO op_imulw_T0_T1(void)
344 {
345 int res;
346 res = (int16_t)T0 * (int16_t)T1;
347 T0 = res;
348 CC_SRC = (res != (int16_t)res);
349 }
350
351 void OPPROTO op_imull_T0_T1(void)
352 {
353 int64_t res;
354 res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
355 T0 = res;
356 CC_SRC = (res != (int32_t)res);
357 }
358
359 /* division, flags are undefined */
360 /* XXX: add exceptions for overflow */
361 void OPPROTO op_divb_AL_T0(void)
362 {
363 unsigned int num, den, q, r;
364
365 num = (EAX & 0xffff);
366 den = (T0 & 0xff);
367 if (den == 0)
368 raise_exception(EXCP00_DIVZ);
369 q = (num / den) & 0xff;
370 r = (num % den) & 0xff;
371 EAX = (EAX & 0xffff0000) | (r << 8) | q;
372 }
373
374 void OPPROTO op_idivb_AL_T0(void)
375 {
376 int num, den, q, r;
377
378 num = (int16_t)EAX;
379 den = (int8_t)T0;
380 if (den == 0)
381 raise_exception(EXCP00_DIVZ);
382 q = (num / den) & 0xff;
383 r = (num % den) & 0xff;
384 EAX = (EAX & 0xffff0000) | (r << 8) | q;
385 }
386
387 void OPPROTO op_divw_AX_T0(void)
388 {
389 unsigned int num, den, q, r;
390
391 num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
392 den = (T0 & 0xffff);
393 if (den == 0)
394 raise_exception(EXCP00_DIVZ);
395 q = (num / den) & 0xffff;
396 r = (num % den) & 0xffff;
397 EAX = (EAX & 0xffff0000) | q;
398 EDX = (EDX & 0xffff0000) | r;
399 }
400
401 void OPPROTO op_idivw_AX_T0(void)
402 {
403 int num, den, q, r;
404
405 num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
406 den = (int16_t)T0;
407 if (den == 0)
408 raise_exception(EXCP00_DIVZ);
409 q = (num / den) & 0xffff;
410 r = (num % den) & 0xffff;
411 EAX = (EAX & 0xffff0000) | q;
412 EDX = (EDX & 0xffff0000) | r;
413 }
414
415 void OPPROTO op_divl_EAX_T0(void)
416 {
417 unsigned int den, q, r;
418 uint64_t num;
419
420 num = EAX | ((uint64_t)EDX << 32);
421 den = T0;
422 if (den == 0)
423 raise_exception(EXCP00_DIVZ);
424 q = (num / den);
425 r = (num % den);
426 EAX = q;
427 EDX = r;
428 }
429
430 void OPPROTO op_idivl_EAX_T0(void)
431 {
432 int den, q, r;
433 int64_t num;
434
435 num = EAX | ((uint64_t)EDX << 32);
436 den = T0;
437 if (den == 0)
438 raise_exception(EXCP00_DIVZ);
439 q = (num / den);
440 r = (num % den);
441 EAX = q;
442 EDX = r;
443 }
444
445 /* constant load & misc op */
446
447 void OPPROTO op_movl_T0_im(void)
448 {
449 T0 = PARAM1;
450 }
451
452 void OPPROTO op_addl_T0_im(void)
453 {
454 T0 += PARAM1;
455 }
456
457 void OPPROTO op_andl_T0_ffff(void)
458 {
459 T0 = T0 & 0xffff;
460 }
461
462 void OPPROTO op_movl_T0_T1(void)
463 {
464 T0 = T1;
465 }
466
467 void OPPROTO op_movl_T1_im(void)
468 {
469 T1 = PARAM1;
470 }
471
472 void OPPROTO op_addl_T1_im(void)
473 {
474 T1 += PARAM1;
475 }
476
477 void OPPROTO op_movl_T1_A0(void)
478 {
479 T1 = A0;
480 }
481
482 void OPPROTO op_movl_A0_im(void)
483 {
484 A0 = PARAM1;
485 }
486
487 void OPPROTO op_addl_A0_im(void)
488 {
489 A0 += PARAM1;
490 }
491
492 void OPPROTO op_andl_A0_ffff(void)
493 {
494 A0 = A0 & 0xffff;
495 }
496
497 /* memory access */
498
499 void OPPROTO op_ldub_T0_A0(void)
500 {
501 T0 = ldub((uint8_t *)A0);
502 }
503
504 void OPPROTO op_ldsb_T0_A0(void)
505 {
506 T0 = ldsb((int8_t *)A0);
507 }
508
509 void OPPROTO op_lduw_T0_A0(void)
510 {
511 T0 = lduw((uint8_t *)A0);
512 }
513
514 void OPPROTO op_ldsw_T0_A0(void)
515 {
516 T0 = ldsw((int8_t *)A0);
517 }
518
519 void OPPROTO op_ldl_T0_A0(void)
520 {
521 T0 = ldl((uint8_t *)A0);
522 }
523
524 void OPPROTO op_ldub_T1_A0(void)
525 {
526 T1 = ldub((uint8_t *)A0);
527 }
528
529 void OPPROTO op_ldsb_T1_A0(void)
530 {
531 T1 = ldsb((int8_t *)A0);
532 }
533
534 void OPPROTO op_lduw_T1_A0(void)
535 {
536 T1 = lduw((uint8_t *)A0);
537 }
538
539 void OPPROTO op_ldsw_T1_A0(void)
540 {
541 T1 = ldsw((int8_t *)A0);
542 }
543
544 void OPPROTO op_ldl_T1_A0(void)
545 {
546 T1 = ldl((uint8_t *)A0);
547 }
548
549 void OPPROTO op_stb_T0_A0(void)
550 {
551 stb((uint8_t *)A0, T0);
552 }
553
554 void OPPROTO op_stw_T0_A0(void)
555 {
556 stw((uint8_t *)A0, T0);
557 }
558
559 void OPPROTO op_stl_T0_A0(void)
560 {
561 stl((uint8_t *)A0, T0);
562 }
563
564 /* used for bit operations */
565
566 void OPPROTO op_add_bitw_A0_T1(void)
567 {
568 A0 += ((int32_t)T1 >> 4) << 1;
569 }
570
571 void OPPROTO op_add_bitl_A0_T1(void)
572 {
573 A0 += ((int32_t)T1 >> 5) << 2;
574 }
575
576 /* indirect jump */
577
578 void OPPROTO op_jmp_T0(void)
579 {
580 EIP = T0;
581 }
582
583 void OPPROTO op_jmp_im(void)
584 {
585 EIP = PARAM1;
586 }
587
588 void OPPROTO op_int_im(void)
589 {
590 EIP = PARAM1;
591 raise_exception(EXCP0D_GPF);
592 }
593
594 void OPPROTO op_int3(void)
595 {
596 EIP = PARAM1;
597 raise_exception(EXCP03_INT3);
598 }
599
600 void OPPROTO op_into(void)
601 {
602 int eflags;
603 eflags = cc_table[CC_OP].compute_all();
604 if (eflags & CC_O) {
605 EIP = PARAM1;
606 raise_exception(EXCP04_INTO);
607 } else {
608 EIP = PARAM2;
609 }
610 }
611
612 /* string ops */
613
614 #define ldul ldl
615
616 #define SHIFT 0
617 #include "ops_template.h"
618 #undef SHIFT
619
620 #define SHIFT 1
621 #include "ops_template.h"
622 #undef SHIFT
623
624 #define SHIFT 2
625 #include "ops_template.h"
626 #undef SHIFT
627
628 /* sign extend */
629
630 void OPPROTO op_movsbl_T0_T0(void)
631 {
632 T0 = (int8_t)T0;
633 }
634
635 void OPPROTO op_movzbl_T0_T0(void)
636 {
637 T0 = (uint8_t)T0;
638 }
639
640 void OPPROTO op_movswl_T0_T0(void)
641 {
642 T0 = (int16_t)T0;
643 }
644
645 void OPPROTO op_movzwl_T0_T0(void)
646 {
647 T0 = (uint16_t)T0;
648 }
649
650 void OPPROTO op_movswl_EAX_AX(void)
651 {
652 EAX = (int16_t)EAX;
653 }
654
655 void OPPROTO op_movsbw_AX_AL(void)
656 {
657 EAX = (EAX & 0xffff0000) | ((int8_t)EAX & 0xffff);
658 }
659
660 void OPPROTO op_movslq_EDX_EAX(void)
661 {
662 EDX = (int32_t)EAX >> 31;
663 }
664
665 void OPPROTO op_movswl_DX_AX(void)
666 {
667 EDX = (EDX & 0xffff0000) | (((int16_t)EAX >> 15) & 0xffff);
668 }
669
670 /* push/pop */
671
672 void op_pushl_T0(void)
673 {
674 uint32_t offset;
675 offset = ESP - 4;
676 stl((void *)offset, T0);
677 /* modify ESP after to handle exceptions correctly */
678 ESP = offset;
679 }
680
681 void op_pushw_T0(void)
682 {
683 uint32_t offset;
684 offset = ESP - 2;
685 stw((void *)offset, T0);
686 /* modify ESP after to handle exceptions correctly */
687 ESP = offset;
688 }
689
690 void op_pushl_ss32_T0(void)
691 {
692 uint32_t offset;
693 offset = ESP - 4;
694 stl(env->seg_cache[R_SS].base + offset, T0);
695 /* modify ESP after to handle exceptions correctly */
696 ESP = offset;
697 }
698
699 void op_pushw_ss32_T0(void)
700 {
701 uint32_t offset;
702 offset = ESP - 2;
703 stw(env->seg_cache[R_SS].base + offset, T0);
704 /* modify ESP after to handle exceptions correctly */
705 ESP = offset;
706 }
707
708 void op_pushl_ss16_T0(void)
709 {
710 uint32_t offset;
711 offset = (ESP - 4) & 0xffff;
712 stl(env->seg_cache[R_SS].base + offset, T0);
713 /* modify ESP after to handle exceptions correctly */
714 ESP = (ESP & ~0xffff) | offset;
715 }
716
717 void op_pushw_ss16_T0(void)
718 {
719 uint32_t offset;
720 offset = (ESP - 2) & 0xffff;
721 stw(env->seg_cache[R_SS].base + offset, T0);
722 /* modify ESP after to handle exceptions correctly */
723 ESP = (ESP & ~0xffff) | offset;
724 }
725
726 /* NOTE: ESP update is done after */
727 void op_popl_T0(void)
728 {
729 T0 = ldl((void *)ESP);
730 }
731
732 void op_popw_T0(void)
733 {
734 T0 = lduw((void *)ESP);
735 }
736
737 void op_popl_ss32_T0(void)
738 {
739 T0 = ldl(env->seg_cache[R_SS].base + ESP);
740 }
741
742 void op_popw_ss32_T0(void)
743 {
744 T0 = lduw(env->seg_cache[R_SS].base + ESP);
745 }
746
747 void op_popl_ss16_T0(void)
748 {
749 T0 = ldl(env->seg_cache[R_SS].base + (ESP & 0xffff));
750 }
751
752 void op_popw_ss16_T0(void)
753 {
754 T0 = lduw(env->seg_cache[R_SS].base + (ESP & 0xffff));
755 }
756
757 void op_addl_ESP_4(void)
758 {
759 ESP += 4;
760 }
761
762 void op_addl_ESP_2(void)
763 {
764 ESP += 2;
765 }
766
767 void op_addw_ESP_4(void)
768 {
769 ESP = (ESP & ~0xffff) | ((ESP + 4) & 0xffff);
770 }
771
772 void op_addw_ESP_2(void)
773 {
774 ESP = (ESP & ~0xffff) | ((ESP + 2) & 0xffff);
775 }
776
777 void op_addl_ESP_im(void)
778 {
779 ESP += PARAM1;
780 }
781
782 void op_addw_ESP_im(void)
783 {
784 ESP = (ESP & ~0xffff) | ((ESP + PARAM1) & 0xffff);
785 }
786
787 /* rdtsc */
788 #ifndef __i386__
789 uint64_t emu_time;
790 #endif
791 void op_rdtsc(void)
792 {
793 uint64_t val;
794 #ifdef __i386__
795 asm("rdtsc" : "=A" (val));
796 #else
797 /* better than nothing: the time increases */
798 val = emu_time++;
799 #endif
800 EAX = val;
801 EDX = val >> 32;
802 }
803
804 /* bcd */
805
806 /* XXX: exception */
807 void OPPROTO op_aam(void)
808 {
809 int base = PARAM1;
810 int al, ah;
811 al = EAX & 0xff;
812 ah = al / base;
813 al = al % base;
814 EAX = (EAX & ~0xffff) | al | (ah << 8);
815 CC_DST = al;
816 }
817
818 void OPPROTO op_aad(void)
819 {
820 int base = PARAM1;
821 int al, ah;
822 al = EAX & 0xff;
823 ah = (EAX >> 8) & 0xff;
824 al = ((ah * base) + al) & 0xff;
825 EAX = (EAX & ~0xffff) | al;
826 CC_DST = al;
827 }
828
829 void OPPROTO op_aaa(void)
830 {
831 int icarry;
832 int al, ah, af;
833 int eflags;
834
835 eflags = cc_table[CC_OP].compute_all();
836 af = eflags & CC_A;
837 al = EAX & 0xff;
838 ah = (EAX >> 8) & 0xff;
839
840 icarry = (al > 0xf9);
841 if (((al & 0x0f) > 9 ) || af) {
842 al = (al + 6) & 0x0f;
843 ah = (ah + 1 + icarry) & 0xff;
844 eflags |= CC_C | CC_A;
845 } else {
846 eflags &= ~(CC_C | CC_A);
847 al &= 0x0f;
848 }
849 EAX = (EAX & ~0xffff) | al | (ah << 8);
850 CC_SRC = eflags;
851 }
852
853 void OPPROTO op_aas(void)
854 {
855 int icarry;
856 int al, ah, af;
857 int eflags;
858
859 eflags = cc_table[CC_OP].compute_all();
860 af = eflags & CC_A;
861 al = EAX & 0xff;
862 ah = (EAX >> 8) & 0xff;
863
864 icarry = (al < 6);
865 if (((al & 0x0f) > 9 ) || af) {
866 al = (al - 6) & 0x0f;
867 ah = (ah - 1 - icarry) & 0xff;
868 eflags |= CC_C | CC_A;
869 } else {
870 eflags &= ~(CC_C | CC_A);
871 al &= 0x0f;
872 }
873 EAX = (EAX & ~0xffff) | al | (ah << 8);
874 CC_SRC = eflags;
875 }
876
877 void OPPROTO op_daa(void)
878 {
879 int al, af, cf;
880 int eflags;
881
882 eflags = cc_table[CC_OP].compute_all();
883 cf = eflags & CC_C;
884 af = eflags & CC_A;
885 al = EAX & 0xff;
886
887 eflags = 0;
888 if (((al & 0x0f) > 9 ) || af) {
889 al = (al + 6) & 0xff;
890 eflags |= CC_A;
891 }
892 if ((al > 0x9f) || cf) {
893 al = (al + 0x60) & 0xff;
894 eflags |= CC_C;
895 }
896 EAX = (EAX & ~0xff) | al;
897 /* well, speed is not an issue here, so we compute the flags by hand */
898 eflags |= (al == 0) << 6; /* zf */
899 eflags |= parity_table[al]; /* pf */
900 eflags |= (al & 0x80); /* sf */
901 CC_SRC = eflags;
902 }
903
904 void OPPROTO op_das(void)
905 {
906 int al, al1, af, cf;
907 int eflags;
908
909 eflags = cc_table[CC_OP].compute_all();
910 cf = eflags & CC_C;
911 af = eflags & CC_A;
912 al = EAX & 0xff;
913
914 eflags = 0;
915 al1 = al;
916 if (((al & 0x0f) > 9 ) || af) {
917 eflags |= CC_A;
918 if (al < 6 || cf)
919 eflags |= CC_C;
920 al = (al - 6) & 0xff;
921 }
922 if ((al1 > 0x99) || cf) {
923 al = (al - 0x60) & 0xff;
924 eflags |= CC_C;
925 }
926 EAX = (EAX & ~0xff) | al;
927 /* well, speed is not an issue here, so we compute the flags by hand */
928 eflags |= (al == 0) << 6; /* zf */
929 eflags |= parity_table[al]; /* pf */
930 eflags |= (al & 0x80); /* sf */
931 CC_SRC = eflags;
932 }
933
934 /* segment handling */
935
936 void load_seg(int seg_reg, int selector)
937 {
938 SegmentCache *sc;
939 SegmentDescriptorTable *dt;
940 int index;
941 uint32_t e1, e2;
942 uint8_t *ptr;
943
944 env->segs[seg_reg] = selector;
945 sc = &env->seg_cache[seg_reg];
946 if (env->vm86) {
947 sc->base = (void *)(selector << 4);
948 sc->limit = 0xffff;
949 sc->seg_32bit = 0;
950 } else {
951 if (selector & 0x4)
952 dt = &env->ldt;
953 else
954 dt = &env->gdt;
955 index = selector & ~7;
956 if ((index + 7) > dt->limit)
957 raise_exception(EXCP0D_GPF);
958 ptr = dt->base + index;
959 e1 = ldl(ptr);
960 e2 = ldl(ptr + 4);
961 sc->base = (void *)((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
962 sc->limit = (e1 & 0xffff) | (e2 & 0x000f0000);
963 if (e2 & (1 << 23))
964 sc->limit = (sc->limit << 12) | 0xfff;
965 sc->seg_32bit = (e2 >> 22) & 1;
966 #if 0
967 fprintf(logfile, "load_seg: sel=0x%04x base=0x%08lx limit=0x%08lx seg_32bit=%d\n",
968 selector, (unsigned long)sc->base, sc->limit, sc->seg_32bit);
969 #endif
970 }
971 }
972
973 void OPPROTO op_movl_seg_T0(void)
974 {
975 load_seg(PARAM1, T0 & 0xffff);
976 }
977
978 void OPPROTO op_movl_T0_seg(void)
979 {
980 T0 = env->segs[PARAM1];
981 }
982
983 void OPPROTO op_addl_A0_seg(void)
984 {
985 A0 += *(unsigned long *)((char *)env + PARAM1);
986 }
987
988 /* flags handling */
989
990 /* slow jumps cases (compute x86 flags) */
991 void OPPROTO op_jo_cc(void)
992 {
993 int eflags;
994 eflags = cc_table[CC_OP].compute_all();
995 if (eflags & CC_O)
996 EIP = PARAM1;
997 else
998 EIP = PARAM2;
999 FORCE_RET();
1000 }
1001
1002 void OPPROTO op_jb_cc(void)
1003 {
1004 if (cc_table[CC_OP].compute_c())
1005 EIP = PARAM1;
1006 else
1007 EIP = PARAM2;
1008 FORCE_RET();
1009 }
1010
1011 void OPPROTO op_jz_cc(void)
1012 {
1013 int eflags;
1014 eflags = cc_table[CC_OP].compute_all();
1015 if (eflags & CC_Z)
1016 EIP = PARAM1;
1017 else
1018 EIP = PARAM2;
1019 FORCE_RET();
1020 }
1021
1022 void OPPROTO op_jbe_cc(void)
1023 {
1024 int eflags;
1025 eflags = cc_table[CC_OP].compute_all();
1026 if (eflags & (CC_Z | CC_C))
1027 EIP = PARAM1;
1028 else
1029 EIP = PARAM2;
1030 FORCE_RET();
1031 }
1032
1033 void OPPROTO op_js_cc(void)
1034 {
1035 int eflags;
1036 eflags = cc_table[CC_OP].compute_all();
1037 if (eflags & CC_S)
1038 EIP = PARAM1;
1039 else
1040 EIP = PARAM2;
1041 FORCE_RET();
1042 }
1043
1044 void OPPROTO op_jp_cc(void)
1045 {
1046 int eflags;
1047 eflags = cc_table[CC_OP].compute_all();
1048 if (eflags & CC_P)
1049 EIP = PARAM1;
1050 else
1051 EIP = PARAM2;
1052 FORCE_RET();
1053 }
1054
1055 void OPPROTO op_jl_cc(void)
1056 {
1057 int eflags;
1058 eflags = cc_table[CC_OP].compute_all();
1059 if ((eflags ^ (eflags >> 4)) & 0x80)
1060 EIP = PARAM1;
1061 else
1062 EIP = PARAM2;
1063 FORCE_RET();
1064 }
1065
1066 void OPPROTO op_jle_cc(void)
1067 {
1068 int eflags;
1069 eflags = cc_table[CC_OP].compute_all();
1070 if (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z))
1071 EIP = PARAM1;
1072 else
1073 EIP = PARAM2;
1074 FORCE_RET();
1075 }
1076
1077 /* slow set cases (compute x86 flags) */
1078 void OPPROTO op_seto_T0_cc(void)
1079 {
1080 int eflags;
1081 eflags = cc_table[CC_OP].compute_all();
1082 T0 = (eflags >> 11) & 1;
1083 }
1084
1085 void OPPROTO op_setb_T0_cc(void)
1086 {
1087 T0 = cc_table[CC_OP].compute_c();
1088 }
1089
1090 void OPPROTO op_setz_T0_cc(void)
1091 {
1092 int eflags;
1093 eflags = cc_table[CC_OP].compute_all();
1094 T0 = (eflags >> 6) & 1;
1095 }
1096
1097 void OPPROTO op_setbe_T0_cc(void)
1098 {
1099 int eflags;
1100 eflags = cc_table[CC_OP].compute_all();
1101 T0 = (eflags & (CC_Z | CC_C)) != 0;
1102 }
1103
1104 void OPPROTO op_sets_T0_cc(void)
1105 {
1106 int eflags;
1107 eflags = cc_table[CC_OP].compute_all();
1108 T0 = (eflags >> 7) & 1;
1109 }
1110
1111 void OPPROTO op_setp_T0_cc(void)
1112 {
1113 int eflags;
1114 eflags = cc_table[CC_OP].compute_all();
1115 T0 = (eflags >> 2) & 1;
1116 }
1117
1118 void OPPROTO op_setl_T0_cc(void)
1119 {
1120 int eflags;
1121 eflags = cc_table[CC_OP].compute_all();
1122 T0 = ((eflags ^ (eflags >> 4)) >> 7) & 1;
1123 }
1124
1125 void OPPROTO op_setle_T0_cc(void)
1126 {
1127 int eflags;
1128 eflags = cc_table[CC_OP].compute_all();
1129 T0 = (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z)) != 0;
1130 }
1131
1132 void OPPROTO op_xor_T0_1(void)
1133 {
1134 T0 ^= 1;
1135 }
1136
1137 void OPPROTO op_set_cc_op(void)
1138 {
1139 CC_OP = PARAM1;
1140 }
1141
1142 void OPPROTO op_movl_eflags_T0(void)
1143 {
1144 CC_SRC = T0;
1145 DF = 1 - (2 * ((T0 >> 10) & 1));
1146 }
1147
1148 /* XXX: compute only O flag */
1149 void OPPROTO op_movb_eflags_T0(void)
1150 {
1151 int of;
1152 of = cc_table[CC_OP].compute_all() & CC_O;
1153 CC_SRC = T0 | of;
1154 }
1155
1156 void OPPROTO op_movl_T0_eflags(void)
1157 {
1158 T0 = cc_table[CC_OP].compute_all();
1159 T0 |= (DF & DIRECTION_FLAG);
1160 }
1161
1162 void OPPROTO op_cld(void)
1163 {
1164 DF = 1;
1165 }
1166
1167 void OPPROTO op_std(void)
1168 {
1169 DF = -1;
1170 }
1171
1172 void OPPROTO op_clc(void)
1173 {
1174 int eflags;
1175 eflags = cc_table[CC_OP].compute_all();
1176 eflags &= ~CC_C;
1177 CC_SRC = eflags;
1178 }
1179
1180 void OPPROTO op_stc(void)
1181 {
1182 int eflags;
1183 eflags = cc_table[CC_OP].compute_all();
1184 eflags |= CC_C;
1185 CC_SRC = eflags;
1186 }
1187
1188 void OPPROTO op_cmc(void)
1189 {
1190 int eflags;
1191 eflags = cc_table[CC_OP].compute_all();
1192 eflags ^= CC_C;
1193 CC_SRC = eflags;
1194 }
1195
1196 void OPPROTO op_salc(void)
1197 {
1198 int cf;
1199 cf = cc_table[CC_OP].compute_c();
1200 EAX = (EAX & ~0xff) | ((-cf) & 0xff);
1201 }
1202
1203 static int compute_all_eflags(void)
1204 {
1205 return CC_SRC;
1206 }
1207
1208 static int compute_c_eflags(void)
1209 {
1210 return CC_SRC & CC_C;
1211 }
1212
1213 static int compute_c_mul(void)
1214 {
1215 int cf;
1216 cf = (CC_SRC != 0);
1217 return cf;
1218 }
1219
1220 static int compute_all_mul(void)
1221 {
1222 int cf, pf, af, zf, sf, of;
1223 cf = (CC_SRC != 0);
1224 pf = 0; /* undefined */
1225 af = 0; /* undefined */
1226 zf = 0; /* undefined */
1227 sf = 0; /* undefined */
1228 of = cf << 11;
1229 return cf | pf | af | zf | sf | of;
1230 }
1231
1232 CCTable cc_table[CC_OP_NB] = {
1233 [CC_OP_DYNAMIC] = { /* should never happen */ },
1234
1235 [CC_OP_EFLAGS] = { compute_all_eflags, compute_c_eflags },
1236
1237 [CC_OP_MUL] = { compute_all_mul, compute_c_mul },
1238
1239 [CC_OP_ADDB] = { compute_all_addb, compute_c_addb },
1240 [CC_OP_ADDW] = { compute_all_addw, compute_c_addw },
1241 [CC_OP_ADDL] = { compute_all_addl, compute_c_addl },
1242
1243 [CC_OP_ADCB] = { compute_all_adcb, compute_c_adcb },
1244 [CC_OP_ADCW] = { compute_all_adcw, compute_c_adcw },
1245 [CC_OP_ADCL] = { compute_all_adcl, compute_c_adcl },
1246
1247 [CC_OP_SUBB] = { compute_all_subb, compute_c_subb },
1248 [CC_OP_SUBW] = { compute_all_subw, compute_c_subw },
1249 [CC_OP_SUBL] = { compute_all_subl, compute_c_subl },
1250
1251 [CC_OP_SBBB] = { compute_all_sbbb, compute_c_sbbb },
1252 [CC_OP_SBBW] = { compute_all_sbbw, compute_c_sbbw },
1253 [CC_OP_SBBL] = { compute_all_sbbl, compute_c_sbbl },
1254
1255 [CC_OP_LOGICB] = { compute_all_logicb, compute_c_logicb },
1256 [CC_OP_LOGICW] = { compute_all_logicw, compute_c_logicw },
1257 [CC_OP_LOGICL] = { compute_all_logicl, compute_c_logicl },
1258
1259 [CC_OP_INCB] = { compute_all_incb, compute_c_incl },
1260 [CC_OP_INCW] = { compute_all_incw, compute_c_incl },
1261 [CC_OP_INCL] = { compute_all_incl, compute_c_incl },
1262
1263 [CC_OP_DECB] = { compute_all_decb, compute_c_incl },
1264 [CC_OP_DECW] = { compute_all_decw, compute_c_incl },
1265 [CC_OP_DECL] = { compute_all_decl, compute_c_incl },
1266
1267 [CC_OP_SHLB] = { compute_all_shlb, compute_c_shll },
1268 [CC_OP_SHLW] = { compute_all_shlw, compute_c_shll },
1269 [CC_OP_SHLL] = { compute_all_shll, compute_c_shll },
1270
1271 [CC_OP_SARB] = { compute_all_sarb, compute_c_shll },
1272 [CC_OP_SARW] = { compute_all_sarw, compute_c_shll },
1273 [CC_OP_SARL] = { compute_all_sarl, compute_c_shll },
1274 };
1275
1276 /* floating point support */
1277
1278 #ifdef USE_X86LDOUBLE
1279 /* use long double functions */
1280 #define lrint lrintl
1281 #define llrint llrintl
1282 #define fabs fabsl
1283 #define sin sinl
1284 #define cos cosl
1285 #define sqrt sqrtl
1286 #define pow powl
1287 #define log logl
1288 #define tan tanl
1289 #define atan2 atan2l
1290 #define floor floorl
1291 #define ceil ceill
1292 #define rint rintl
1293 #endif
1294
1295 extern int lrint(CPU86_LDouble x);
1296 extern int64_t llrint(CPU86_LDouble x);
1297 extern CPU86_LDouble fabs(CPU86_LDouble x);
1298 extern CPU86_LDouble sin(CPU86_LDouble x);
1299 extern CPU86_LDouble cos(CPU86_LDouble x);
1300 extern CPU86_LDouble sqrt(CPU86_LDouble x);
1301 extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
1302 extern CPU86_LDouble log(CPU86_LDouble x);
1303 extern CPU86_LDouble tan(CPU86_LDouble x);
1304 extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
1305 extern CPU86_LDouble floor(CPU86_LDouble x);
1306 extern CPU86_LDouble ceil(CPU86_LDouble x);
1307 extern CPU86_LDouble rint(CPU86_LDouble x);
1308
1309 #define RC_MASK 0xc00
1310 #define RC_NEAR 0x000
1311 #define RC_DOWN 0x400
1312 #define RC_UP 0x800
1313 #define RC_CHOP 0xc00
1314
1315 #define MAXTAN 9223372036854775808.0
1316
1317 #ifdef USE_X86LDOUBLE
1318
1319 /* only for x86 */
1320 typedef union {
1321 long double d;
1322 struct {
1323 unsigned long long lower;
1324 unsigned short upper;
1325 } l;
1326 } CPU86_LDoubleU;
1327
1328 /* the following deal with x86 long double-precision numbers */
1329 #define MAXEXPD 0x7fff
1330 #define EXPBIAS 16383
1331 #define EXPD(fp) (fp.l.upper & 0x7fff)
1332 #define SIGND(fp) ((fp.l.upper) & 0x8000)
1333 #define MANTD(fp) (fp.l.lower)
1334 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
1335
1336 #else
1337
1338 typedef union {
1339 double d;
1340 #ifndef WORDS_BIGENDIAN
1341 struct {
1342 unsigned long lower;
1343 long upper;
1344 } l;
1345 #else
1346 struct {
1347 long upper;
1348 unsigned long lower;
1349 } l;
1350 #endif
1351 long long ll;
1352 } CPU86_LDoubleU;
1353
1354 /* the following deal with IEEE double-precision numbers */
1355 #define MAXEXPD 0x7ff
1356 #define EXPBIAS 1023
1357 #define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
1358 #define SIGND(fp) ((fp.l.upper) & 0x80000000)
1359 #define MANTD(fp) (fp.ll & ((1LL << 52) - 1))
1360 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
1361 #endif
1362
1363 /* fp load FT0 */
1364
1365 void OPPROTO op_flds_FT0_A0(void)
1366 {
1367 FT0 = ldfl((void *)A0);
1368 }
1369
1370 void OPPROTO op_fldl_FT0_A0(void)
1371 {
1372 FT0 = ldfq((void *)A0);
1373 }
1374
1375 /* helpers are needed to avoid static constant reference. XXX: find a better way */
1376 #ifdef USE_INT_TO_FLOAT_HELPERS
1377
1378 void helper_fild_FT0_A0(void)
1379 {
1380 FT0 = (CPU86_LDouble)ldsw((void *)A0);
1381 }
1382
1383 void helper_fildl_FT0_A0(void)
1384 {
1385 FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1386 }
1387
1388 void helper_fildll_FT0_A0(void)
1389 {
1390 FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1391 }
1392
1393 void OPPROTO op_fild_FT0_A0(void)
1394 {
1395 helper_fild_FT0_A0();
1396 }
1397
1398 void OPPROTO op_fildl_FT0_A0(void)
1399 {
1400 helper_fildl_FT0_A0();
1401 }
1402
1403 void OPPROTO op_fildll_FT0_A0(void)
1404 {
1405 helper_fildll_FT0_A0();
1406 }
1407
1408 #else
1409
1410 void OPPROTO op_fild_FT0_A0(void)
1411 {
1412 FT0 = (CPU86_LDouble)ldsw((void *)A0);
1413 }
1414
1415 void OPPROTO op_fildl_FT0_A0(void)
1416 {
1417 FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1418 }
1419
1420 void OPPROTO op_fildll_FT0_A0(void)
1421 {
1422 FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1423 }
1424 #endif
1425
1426 /* fp load ST0 */
1427
1428 void OPPROTO op_flds_ST0_A0(void)
1429 {
1430 ST0 = ldfl((void *)A0);
1431 }
1432
1433 void OPPROTO op_fldl_ST0_A0(void)
1434 {
1435 ST0 = ldfq((void *)A0);
1436 }
1437
1438 #ifdef USE_X86LDOUBLE
1439 void OPPROTO op_fldt_ST0_A0(void)
1440 {
1441 ST0 = *(long double *)A0;
1442 }
1443 #else
1444 void helper_fldt_ST0_A0(void)
1445 {
1446 CPU86_LDoubleU temp;
1447 int upper, e;
1448 /* mantissa */
1449 upper = lduw((uint8_t *)A0 + 8);
1450 /* XXX: handle overflow ? */
1451 e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
1452 e |= (upper >> 4) & 0x800; /* sign */
1453 temp.ll = ((ldq((void *)A0) >> 11) & ((1LL << 52) - 1)) | ((uint64_t)e << 52);
1454 ST0 = temp.d;
1455 }
1456
1457 void OPPROTO op_fldt_ST0_A0(void)
1458 {
1459 helper_fldt_ST0_A0();
1460 }
1461 #endif
1462
1463 /* helpers are needed to avoid static constant reference. XXX: find a better way */
1464 #ifdef USE_INT_TO_FLOAT_HELPERS
1465
1466 void helper_fild_ST0_A0(void)
1467 {
1468 ST0 = (CPU86_LDouble)ldsw((void *)A0);
1469 }
1470
1471 void helper_fildl_ST0_A0(void)
1472 {
1473 ST0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1474 }
1475
1476 void helper_fildll_ST0_A0(void)
1477 {
1478 ST0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1479 }
1480
1481 void OPPROTO op_fild_ST0_A0(void)
1482 {
1483 helper_fild_ST0_A0();
1484 }
1485
1486 void OPPROTO op_fildl_ST0_A0(void)
1487 {
1488 helper_fildl_ST0_A0();
1489 }
1490
1491 void OPPROTO op_fildll_ST0_A0(void)
1492 {
1493 helper_fildll_ST0_A0();
1494 }
1495
1496 #else
1497
1498 void OPPROTO op_fild_ST0_A0(void)
1499 {
1500 ST0 = (CPU86_LDouble)ldsw((void *)A0);
1501 }
1502
1503 void OPPROTO op_fildl_ST0_A0(void)
1504 {
1505 ST0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1506 }
1507
1508 void OPPROTO op_fildll_ST0_A0(void)
1509 {
1510 ST0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1511 }
1512
1513 #endif
1514
1515 /* fp store */
1516
1517 void OPPROTO op_fsts_ST0_A0(void)
1518 {
1519 stfl((void *)A0, (float)ST0);
1520 }
1521
1522 void OPPROTO op_fstl_ST0_A0(void)
1523 {
1524 stfq((void *)A0, (double)ST0);
1525 }
1526
1527 #ifdef USE_X86LDOUBLE
1528 void OPPROTO op_fstt_ST0_A0(void)
1529 {
1530 *(long double *)A0 = ST0;
1531 }
1532 #else
1533 void helper_fstt_ST0_A0(void)
1534 {
1535 CPU86_LDoubleU temp;
1536 int e;
1537 temp.d = ST0;
1538 /* mantissa */
1539 stq((void *)A0, (MANTD(temp) << 11) | (1LL << 63));
1540 /* exponent + sign */
1541 e = EXPD(temp) - EXPBIAS + 16383;
1542 e |= SIGND(temp) >> 16;
1543 stw((uint8_t *)A0 + 8, e);
1544 }
1545
1546 void OPPROTO op_fstt_ST0_A0(void)
1547 {
1548 helper_fstt_ST0_A0();
1549 }
1550 #endif
1551
1552 void OPPROTO op_fist_ST0_A0(void)
1553 {
1554 int val;
1555 val = lrint(ST0);
1556 stw((void *)A0, val);
1557 }
1558
1559 void OPPROTO op_fistl_ST0_A0(void)
1560 {
1561 int val;
1562 val = lrint(ST0);
1563 stl((void *)A0, val);
1564 }
1565
1566 void OPPROTO op_fistll_ST0_A0(void)
1567 {
1568 int64_t val;
1569 val = llrint(ST0);
1570 stq((void *)A0, val);
1571 }
1572
1573 /* BCD ops */
1574
1575 #define MUL10(iv) ( iv + iv + (iv << 3) )
1576
1577 void helper_fbld_ST0_A0(void)
1578 {
1579 uint8_t *seg;
1580 CPU86_LDouble fpsrcop;
1581 int m32i;
1582 unsigned int v;
1583
1584 /* in this code, seg/m32i will be used as temporary ptr/int */
1585 seg = (uint8_t *)A0 + 8;
1586 v = ldub(seg--);
1587 /* XXX: raise exception */
1588 if (v != 0)
1589 return;
1590 v = ldub(seg--);
1591 /* XXX: raise exception */
1592 if ((v & 0xf0) != 0)
1593 return;
1594 m32i = v; /* <-- d14 */
1595 v = ldub(seg--);
1596 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d13 */
1597 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d12 */
1598 v = ldub(seg--);
1599 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d11 */
1600 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d10 */
1601 v = ldub(seg--);
1602 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d9 */
1603 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d8 */
1604 fpsrcop = ((CPU86_LDouble)m32i) * 100000000.0;
1605
1606 v = ldub(seg--);
1607 m32i = (v >> 4); /* <-- d7 */
1608 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d6 */
1609 v = ldub(seg--);
1610 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d5 */
1611 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d4 */
1612 v = ldub(seg--);
1613 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d3 */
1614 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d2 */
1615 v = ldub(seg);
1616 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d1 */
1617 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d0 */
1618 fpsrcop += ((CPU86_LDouble)m32i);
1619 if ( ldub(seg+9) & 0x80 )
1620 fpsrcop = -fpsrcop;
1621 ST0 = fpsrcop;
1622 }
1623
1624 void OPPROTO op_fbld_ST0_A0(void)
1625 {
1626 helper_fbld_ST0_A0();
1627 }
1628
1629 void helper_fbst_ST0_A0(void)
1630 {
1631 CPU86_LDouble fptemp;
1632 CPU86_LDouble fpsrcop;
1633 int v;
1634 uint8_t *mem_ref, *mem_end;
1635
1636 fpsrcop = rint(ST0);
1637 mem_ref = (uint8_t *)A0;
1638 mem_end = mem_ref + 8;
1639 if ( fpsrcop < 0.0 ) {
1640 stw(mem_end, 0x8000);
1641 fpsrcop = -fpsrcop;
1642 } else {
1643 stw(mem_end, 0x0000);
1644 }
1645 while (mem_ref < mem_end) {
1646 if (fpsrcop == 0.0)
1647 break;
1648 fptemp = floor(fpsrcop/10.0);
1649 v = ((int)(fpsrcop - fptemp*10.0));
1650 if (fptemp == 0.0) {
1651 stb(mem_ref++, v);
1652 break;
1653 }
1654 fpsrcop = fptemp;
1655 fptemp = floor(fpsrcop/10.0);
1656 v |= (((int)(fpsrcop - fptemp*10.0)) << 4);
1657 stb(mem_ref++, v);
1658 fpsrcop = fptemp;
1659 }
1660 while (mem_ref < mem_end) {
1661 stb(mem_ref++, 0);
1662 }
1663 }
1664
1665 void OPPROTO op_fbst_ST0_A0(void)
1666 {
1667 helper_fbst_ST0_A0();
1668 }
1669
1670 /* FPU move */
1671
1672 static inline void fpush(void)
1673 {
1674 env->fpstt = (env->fpstt - 1) & 7;
1675 env->fptags[env->fpstt] = 0; /* validate stack entry */
1676 }
1677
1678 static inline void fpop(void)
1679 {
1680 env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
1681 env->fpstt = (env->fpstt + 1) & 7;
1682 }
1683
1684 void OPPROTO op_fpush(void)
1685 {
1686 fpush();
1687 }
1688
1689 void OPPROTO op_fpop(void)
1690 {
1691 fpop();
1692 }
1693
1694 void OPPROTO op_fdecstp(void)
1695 {
1696 env->fpstt = (env->fpstt - 1) & 7;
1697 env->fpus &= (~0x4700);
1698 }
1699
1700 void OPPROTO op_fincstp(void)
1701 {
1702 env->fpstt = (env->fpstt + 1) & 7;
1703 env->fpus &= (~0x4700);
1704 }
1705
1706 void OPPROTO op_fmov_ST0_FT0(void)
1707 {
1708 ST0 = FT0;
1709 }
1710
1711 void OPPROTO op_fmov_FT0_STN(void)
1712 {
1713 FT0 = ST(PARAM1);
1714 }
1715
1716 void OPPROTO op_fmov_ST0_STN(void)
1717 {
1718 ST0 = ST(PARAM1);
1719 }
1720
1721 void OPPROTO op_fmov_STN_ST0(void)
1722 {
1723 ST(PARAM1) = ST0;
1724 }
1725
1726 void OPPROTO op_fxchg_ST0_STN(void)
1727 {
1728 CPU86_LDouble tmp;
1729 tmp = ST(PARAM1);
1730 ST(PARAM1) = ST0;
1731 ST0 = tmp;
1732 }
1733
1734 /* FPU operations */
1735
1736 /* XXX: handle nans */
1737 void OPPROTO op_fcom_ST0_FT0(void)
1738 {
1739 env->fpus &= (~0x4500); /* (C3,C2,C0) <-- 000 */
1740 if (ST0 < FT0)
1741 env->fpus |= 0x100; /* (C3,C2,C0) <-- 001 */
1742 else if (ST0 == FT0)
1743 env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
1744 FORCE_RET();
1745 }
1746
1747 /* XXX: handle nans */
1748 void OPPROTO op_fucom_ST0_FT0(void)
1749 {
1750 env->fpus &= (~0x4500); /* (C3,C2,C0) <-- 000 */
1751 if (ST0 < FT0)
1752 env->fpus |= 0x100; /* (C3,C2,C0) <-- 001 */
1753 else if (ST0 == FT0)
1754 env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
1755 FORCE_RET();
1756 }
1757
1758 void OPPROTO op_fadd_ST0_FT0(void)
1759 {
1760 ST0 += FT0;
1761 }
1762
1763 void OPPROTO op_fmul_ST0_FT0(void)
1764 {
1765 ST0 *= FT0;
1766 }
1767
1768 void OPPROTO op_fsub_ST0_FT0(void)
1769 {
1770 ST0 -= FT0;
1771 }
1772
1773 void OPPROTO op_fsubr_ST0_FT0(void)
1774 {
1775 ST0 = FT0 - ST0;
1776 }
1777
1778 void OPPROTO op_fdiv_ST0_FT0(void)
1779 {
1780 ST0 /= FT0;
1781 }
1782
1783 void OPPROTO op_fdivr_ST0_FT0(void)
1784 {
1785 ST0 = FT0 / ST0;
1786 }
1787
1788 /* fp operations between STN and ST0 */
1789
1790 void OPPROTO op_fadd_STN_ST0(void)
1791 {
1792 ST(PARAM1) += ST0;
1793 }
1794
1795 void OPPROTO op_fmul_STN_ST0(void)
1796 {
1797 ST(PARAM1) *= ST0;
1798 }
1799
1800 void OPPROTO op_fsub_STN_ST0(void)
1801 {
1802 ST(PARAM1) -= ST0;
1803 }
1804
1805 void OPPROTO op_fsubr_STN_ST0(void)
1806 {
1807 CPU86_LDouble *p;
1808 p = &ST(PARAM1);
1809 *p = ST0 - *p;
1810 }
1811
1812 void OPPROTO op_fdiv_STN_ST0(void)
1813 {
1814 ST(PARAM1) /= ST0;
1815 }
1816
1817 void OPPROTO op_fdivr_STN_ST0(void)
1818 {
1819 CPU86_LDouble *p;
1820 p = &ST(PARAM1);
1821 *p = ST0 / *p;
1822 }
1823
1824 /* misc FPU operations */
1825 void OPPROTO op_fchs_ST0(void)
1826 {
1827 ST0 = -ST0;
1828 }
1829
1830 void OPPROTO op_fabs_ST0(void)
1831 {
1832 ST0 = fabs(ST0);
1833 }
1834
1835 void helper_fxam_ST0(void)
1836 {
1837 CPU86_LDoubleU temp;
1838 int expdif;
1839
1840 temp.d = ST0;
1841
1842 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
1843 if (SIGND(temp))
1844 env->fpus |= 0x200; /* C1 <-- 1 */
1845
1846 expdif = EXPD(temp);
1847 if (expdif == MAXEXPD) {
1848 if (MANTD(temp) == 0)
1849 env->fpus |= 0x500 /*Infinity*/;
1850 else
1851 env->fpus |= 0x100 /*NaN*/;
1852 } else if (expdif == 0) {
1853 if (MANTD(temp) == 0)
1854 env->fpus |= 0x4000 /*Zero*/;
1855 else
1856 env->fpus |= 0x4400 /*Denormal*/;
1857 } else {
1858 env->fpus |= 0x400;
1859 }
1860 }
1861
1862 void OPPROTO op_fxam_ST0(void)
1863 {
1864 helper_fxam_ST0();
1865 }
1866
1867 void OPPROTO op_fld1_ST0(void)
1868 {
1869 ST0 = *(CPU86_LDouble *)&f15rk[1];
1870 }
1871
1872 void OPPROTO op_fldl2t_ST0(void)
1873 {
1874 ST0 = *(CPU86_LDouble *)&f15rk[6];
1875 }
1876
1877 void OPPROTO op_fldl2e_ST0(void)
1878 {
1879 ST0 = *(CPU86_LDouble *)&f15rk[5];
1880 }
1881
1882 void OPPROTO op_fldpi_ST0(void)
1883 {
1884 ST0 = *(CPU86_LDouble *)&f15rk[2];
1885 }
1886
1887 void OPPROTO op_fldlg2_ST0(void)
1888 {
1889 ST0 = *(CPU86_LDouble *)&f15rk[3];
1890 }
1891
1892 void OPPROTO op_fldln2_ST0(void)
1893 {
1894 ST0 = *(CPU86_LDouble *)&f15rk[4];
1895 }
1896
1897 void OPPROTO op_fldz_ST0(void)
1898 {
1899 ST0 = *(CPU86_LDouble *)&f15rk[0];
1900 }
1901
1902 void OPPROTO op_fldz_FT0(void)
1903 {
1904 ST0 = *(CPU86_LDouble *)&f15rk[0];
1905 }
1906
1907 void helper_f2xm1(void)
1908 {
1909 ST0 = pow(2.0,ST0) - 1.0;
1910 }
1911
1912 void helper_fyl2x(void)
1913 {
1914 CPU86_LDouble fptemp;
1915
1916 fptemp = ST0;
1917 if (fptemp>0.0){
1918 fptemp = log(fptemp)/log(2.0); /* log2(ST) */
1919 ST1 *= fptemp;
1920 fpop();
1921 } else {
1922 env->fpus &= (~0x4700);
1923 env->fpus |= 0x400;
1924 }
1925 }
1926
1927 void helper_fptan(void)
1928 {
1929 CPU86_LDouble fptemp;
1930
1931 fptemp = ST0;
1932 if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
1933 env->fpus |= 0x400;
1934 } else {
1935 ST0 = tan(fptemp);
1936 fpush();
1937 ST0 = 1.0;
1938 env->fpus &= (~0x400); /* C2 <-- 0 */
1939 /* the above code is for |arg| < 2**52 only */
1940 }
1941 }
1942
1943 void helper_fpatan(void)
1944 {
1945 CPU86_LDouble fptemp, fpsrcop;
1946
1947 fpsrcop = ST1;
1948 fptemp = ST0;
1949 ST1 = atan2(fpsrcop,fptemp);
1950 fpop();
1951 }
1952
1953 void helper_fxtract(void)
1954 {
1955 CPU86_LDoubleU temp;
1956 unsigned int expdif;
1957
1958 temp.d = ST0;
1959 expdif = EXPD(temp) - EXPBIAS;
1960 /*DP exponent bias*/
1961 ST0 = expdif;
1962 fpush();
1963 BIASEXPONENT(temp);
1964 ST0 = temp.d;
1965 }
1966
1967 void helper_fprem1(void)
1968 {
1969 CPU86_LDouble dblq, fpsrcop, fptemp;
1970 CPU86_LDoubleU fpsrcop1, fptemp1;
1971 int expdif;
1972 int q;
1973
1974 fpsrcop = ST0;
1975 fptemp = ST1;
1976 fpsrcop1.d = fpsrcop;
1977 fptemp1.d = fptemp;
1978 expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
1979 if (expdif < 53) {
1980 dblq = fpsrcop / fptemp;
1981 dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
1982 ST0 = fpsrcop - fptemp*dblq;
1983 q = (int)dblq; /* cutting off top bits is assumed here */
1984 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
1985 /* (C0,C1,C3) <-- (q2,q1,q0) */
1986 env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
1987 env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
1988 env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
1989 } else {
1990 env->fpus |= 0x400; /* C2 <-- 1 */
1991 fptemp = pow(2.0, expdif-50);
1992 fpsrcop = (ST0 / ST1) / fptemp;
1993 /* fpsrcop = integer obtained by rounding to the nearest */
1994 fpsrcop = (fpsrcop-floor(fpsrcop) < ceil(fpsrcop)-fpsrcop)?
1995 floor(fpsrcop): ceil(fpsrcop);
1996 ST0 -= (ST1 * fpsrcop * fptemp);
1997 }
1998 }
1999
2000 void helper_fprem(void)
2001 {
2002 CPU86_LDouble dblq, fpsrcop, fptemp;
2003 CPU86_LDoubleU fpsrcop1, fptemp1;
2004 int expdif;
2005 int q;
2006
2007 fpsrcop = ST0;
2008 fptemp = ST1;
2009 fpsrcop1.d = fpsrcop;
2010 fptemp1.d = fptemp;
2011 expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
2012 if ( expdif < 53 ) {
2013 dblq = fpsrcop / fptemp;
2014 dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
2015 ST0 = fpsrcop - fptemp*dblq;
2016 q = (int)dblq; /* cutting off top bits is assumed here */
2017 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2018 /* (C0,C1,C3) <-- (q2,q1,q0) */
2019 env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
2020 env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
2021 env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
2022 } else {
2023 env->fpus |= 0x400; /* C2 <-- 1 */
2024 fptemp = pow(2.0, expdif-50);
2025 fpsrcop = (ST0 / ST1) / fptemp;
2026 /* fpsrcop = integer obtained by chopping */
2027 fpsrcop = (fpsrcop < 0.0)?
2028 -(floor(fabs(fpsrcop))): floor(fpsrcop);
2029 ST0 -= (ST1 * fpsrcop * fptemp);
2030 }
2031 }
2032
2033 void helper_fyl2xp1(void)
2034 {
2035 CPU86_LDouble fptemp;
2036
2037 fptemp = ST0;
2038 if ((fptemp+1.0)>0.0) {
2039 fptemp = log(fptemp+1.0) / log(2.0); /* log2(ST+1.0) */
2040 ST1 *= fptemp;
2041 fpop();
2042 } else {
2043 env->fpus &= (~0x4700);
2044 env->fpus |= 0x400;
2045 }
2046 }
2047
2048 void helper_fsqrt(void)
2049 {
2050 CPU86_LDouble fptemp;
2051
2052 fptemp = ST0;
2053 if (fptemp<0.0) {
2054 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2055 env->fpus |= 0x400;
2056 }
2057 ST0 = sqrt(fptemp);
2058 }
2059
2060 void helper_fsincos(void)
2061 {
2062 CPU86_LDouble fptemp;
2063
2064 fptemp = ST0;
2065 if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2066 env->fpus |= 0x400;
2067 } else {
2068 ST0 = sin(fptemp);
2069 fpush();
2070 ST0 = cos(fptemp);
2071 env->fpus &= (~0x400); /* C2 <-- 0 */
2072 /* the above code is for |arg| < 2**63 only */
2073 }
2074 }
2075
2076 void helper_frndint(void)
2077 {
2078 ST0 = rint(ST0);
2079 }
2080
2081 void helper_fscale(void)
2082 {
2083 CPU86_LDouble fpsrcop, fptemp;
2084
2085 fpsrcop = 2.0;
2086 fptemp = pow(fpsrcop,ST1);
2087 ST0 *= fptemp;
2088 }
2089
2090 void helper_fsin(void)
2091 {
2092 CPU86_LDouble fptemp;
2093
2094 fptemp = ST0;
2095 if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2096 env->fpus |= 0x400;
2097 } else {
2098 ST0 = sin(fptemp);
2099 env->fpus &= (~0x400); /* C2 <-- 0 */
2100 /* the above code is for |arg| < 2**53 only */
2101 }
2102 }
2103
2104 void helper_fcos(void)
2105 {
2106 CPU86_LDouble fptemp;
2107
2108 fptemp = ST0;
2109 if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2110 env->fpus |= 0x400;
2111 } else {
2112 ST0 = cos(fptemp);
2113 env->fpus &= (~0x400); /* C2 <-- 0 */
2114 /* the above code is for |arg5 < 2**63 only */
2115 }
2116 }
2117
2118 /* associated heplers to reduce generated code length and to simplify
2119 relocation (FP constants are usually stored in .rodata section) */
2120
2121 void OPPROTO op_f2xm1(void)
2122 {
2123 helper_f2xm1();
2124 }
2125
2126 void OPPROTO op_fyl2x(void)
2127 {
2128 helper_fyl2x();
2129 }
2130
2131 void OPPROTO op_fptan(void)
2132 {
2133 helper_fptan();
2134 }
2135
2136 void OPPROTO op_fpatan(void)
2137 {
2138 helper_fpatan();
2139 }
2140
2141 void OPPROTO op_fxtract(void)
2142 {
2143 helper_fxtract();
2144 }
2145
2146 void OPPROTO op_fprem1(void)
2147 {
2148 helper_fprem1();
2149 }
2150
2151
2152 void OPPROTO op_fprem(void)
2153 {
2154 helper_fprem();
2155 }
2156
2157 void OPPROTO op_fyl2xp1(void)
2158 {
2159 helper_fyl2xp1();
2160 }
2161
2162 void OPPROTO op_fsqrt(void)
2163 {
2164 helper_fsqrt();
2165 }
2166
2167 void OPPROTO op_fsincos(void)
2168 {
2169 helper_fsincos();
2170 }
2171
2172 void OPPROTO op_frndint(void)
2173 {
2174 helper_frndint();
2175 }
2176
2177 void OPPROTO op_fscale(void)
2178 {
2179 helper_fscale();
2180 }
2181
2182 void OPPROTO op_fsin(void)
2183 {
2184 helper_fsin();
2185 }
2186
2187 void OPPROTO op_fcos(void)
2188 {
2189 helper_fcos();
2190 }
2191
2192 void OPPROTO op_fnstsw_A0(void)
2193 {
2194 int fpus;
2195 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
2196 stw((void *)A0, fpus);
2197 }
2198
2199 void OPPROTO op_fnstsw_EAX(void)
2200 {
2201 int fpus;
2202 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
2203 EAX = (EAX & 0xffff0000) | fpus;
2204 }
2205
2206 void OPPROTO op_fnstcw_A0(void)
2207 {
2208 stw((void *)A0, env->fpuc);
2209 }
2210
2211 void OPPROTO op_fldcw_A0(void)
2212 {
2213 int rnd_type;
2214 env->fpuc = lduw((void *)A0);
2215 /* set rounding mode */
2216 switch(env->fpuc & RC_MASK) {
2217 default:
2218 case RC_NEAR:
2219 rnd_type = FE_TONEAREST;
2220 break;
2221 case RC_DOWN:
2222 rnd_type = FE_DOWNWARD;
2223 break;
2224 case RC_UP:
2225 rnd_type = FE_UPWARD;
2226 break;
2227 case RC_CHOP:
2228 rnd_type = FE_TOWARDZERO;
2229 break;
2230 }
2231 fesetround(rnd_type);
2232 }
2233
2234 void OPPROTO op_fclex(void)
2235 {
2236 env->fpus &= 0x7f00;
2237 }
2238
2239 void OPPROTO op_fninit(void)
2240 {
2241 env->fpus = 0;
2242 env->fpstt = 0;
2243 env->fpuc = 0x37f;
2244 env->fptags[0] = 1;
2245 env->fptags[1] = 1;
2246 env->fptags[2] = 1;
2247 env->fptags[3] = 1;
2248 env->fptags[4] = 1;
2249 env->fptags[5] = 1;
2250 env->fptags[6] = 1;
2251 env->fptags[7] = 1;
2252 }
2253
2254 /* threading support */
2255 void OPPROTO op_lock(void)
2256 {
2257 cpu_lock();
2258 }
2259
2260 void OPPROTO op_unlock(void)
2261 {
2262 cpu_unlock();
2263 }