]> git.proxmox.com Git - qemu.git/blob - qemu-doc.texi
Merge branch 'vga.1' of git://git.kraxel.org/qemu
[qemu.git] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4
5 @documentlanguage en
6 @documentencoding UTF-8
7
8 @settitle QEMU Emulator User Documentation
9 @exampleindent 0
10 @paragraphindent 0
11 @c %**end of header
12
13 @ifinfo
14 @direntry
15 * QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16 @end direntry
17 @end ifinfo
18
19 @iftex
20 @titlepage
21 @sp 7
22 @center @titlefont{QEMU Emulator}
23 @sp 1
24 @center @titlefont{User Documentation}
25 @sp 3
26 @end titlepage
27 @end iftex
28
29 @ifnottex
30 @node Top
31 @top
32
33 @menu
34 * Introduction::
35 * Installation::
36 * QEMU PC System emulator::
37 * QEMU System emulator for non PC targets::
38 * QEMU User space emulator::
39 * compilation:: Compilation from the sources
40 * License::
41 * Index::
42 @end menu
43 @end ifnottex
44
45 @contents
46
47 @node Introduction
48 @chapter Introduction
49
50 @menu
51 * intro_features:: Features
52 @end menu
53
54 @node intro_features
55 @section Features
56
57 QEMU is a FAST! processor emulator using dynamic translation to
58 achieve good emulation speed.
59
60 QEMU has two operating modes:
61
62 @itemize
63 @cindex operating modes
64
65 @item
66 @cindex system emulation
67 Full system emulation. In this mode, QEMU emulates a full system (for
68 example a PC), including one or several processors and various
69 peripherals. It can be used to launch different Operating Systems
70 without rebooting the PC or to debug system code.
71
72 @item
73 @cindex user mode emulation
74 User mode emulation. In this mode, QEMU can launch
75 processes compiled for one CPU on another CPU. It can be used to
76 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77 to ease cross-compilation and cross-debugging.
78
79 @end itemize
80
81 QEMU can run without a host kernel driver and yet gives acceptable
82 performance.
83
84 For system emulation, the following hardware targets are supported:
85 @itemize
86 @cindex emulated target systems
87 @cindex supported target systems
88 @item PC (x86 or x86_64 processor)
89 @item ISA PC (old style PC without PCI bus)
90 @item PREP (PowerPC processor)
91 @item G3 Beige PowerMac (PowerPC processor)
92 @item Mac99 PowerMac (PowerPC processor, in progress)
93 @item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94 @item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95 @item Malta board (32-bit and 64-bit MIPS processors)
96 @item MIPS Magnum (64-bit MIPS processor)
97 @item ARM Integrator/CP (ARM)
98 @item ARM Versatile baseboard (ARM)
99 @item ARM RealView Emulation/Platform baseboard (ARM)
100 @item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101 @item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102 @item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103 @item Freescale MCF5208EVB (ColdFire V2).
104 @item Arnewsh MCF5206 evaluation board (ColdFire V2).
105 @item Palm Tungsten|E PDA (OMAP310 processor)
106 @item N800 and N810 tablets (OMAP2420 processor)
107 @item MusicPal (MV88W8618 ARM processor)
108 @item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109 @item Siemens SX1 smartphone (OMAP310 processor)
110 @item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111 @item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
112 @item Avnet LX60/LX110/LX200 boards (Xtensa)
113 @end itemize
114
115 @cindex supported user mode targets
116 For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117 ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118 Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
119
120 @node Installation
121 @chapter Installation
122
123 If you want to compile QEMU yourself, see @ref{compilation}.
124
125 @menu
126 * install_linux:: Linux
127 * install_windows:: Windows
128 * install_mac:: Macintosh
129 @end menu
130
131 @node install_linux
132 @section Linux
133 @cindex installation (Linux)
134
135 If a precompiled package is available for your distribution - you just
136 have to install it. Otherwise, see @ref{compilation}.
137
138 @node install_windows
139 @section Windows
140 @cindex installation (Windows)
141
142 Download the experimental binary installer at
143 @url{http://www.free.oszoo.org/@/download.html}.
144 TODO (no longer available)
145
146 @node install_mac
147 @section Mac OS X
148
149 Download the experimental binary installer at
150 @url{http://www.free.oszoo.org/@/download.html}.
151 TODO (no longer available)
152
153 @node QEMU PC System emulator
154 @chapter QEMU PC System emulator
155 @cindex system emulation (PC)
156
157 @menu
158 * pcsys_introduction:: Introduction
159 * pcsys_quickstart:: Quick Start
160 * sec_invocation:: Invocation
161 * pcsys_keys:: Keys
162 * pcsys_monitor:: QEMU Monitor
163 * disk_images:: Disk Images
164 * pcsys_network:: Network emulation
165 * pcsys_other_devs:: Other Devices
166 * direct_linux_boot:: Direct Linux Boot
167 * pcsys_usb:: USB emulation
168 * vnc_security:: VNC security
169 * gdb_usage:: GDB usage
170 * pcsys_os_specific:: Target OS specific information
171 @end menu
172
173 @node pcsys_introduction
174 @section Introduction
175
176 @c man begin DESCRIPTION
177
178 The QEMU PC System emulator simulates the
179 following peripherals:
180
181 @itemize @minus
182 @item
183 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
184 @item
185 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186 extensions (hardware level, including all non standard modes).
187 @item
188 PS/2 mouse and keyboard
189 @item
190 2 PCI IDE interfaces with hard disk and CD-ROM support
191 @item
192 Floppy disk
193 @item
194 PCI and ISA network adapters
195 @item
196 Serial ports
197 @item
198 Creative SoundBlaster 16 sound card
199 @item
200 ENSONIQ AudioPCI ES1370 sound card
201 @item
202 Intel 82801AA AC97 Audio compatible sound card
203 @item
204 Intel HD Audio Controller and HDA codec
205 @item
206 Adlib (OPL2) - Yamaha YM3812 compatible chip
207 @item
208 Gravis Ultrasound GF1 sound card
209 @item
210 CS4231A compatible sound card
211 @item
212 PCI UHCI USB controller and a virtual USB hub.
213 @end itemize
214
215 SMP is supported with up to 255 CPUs.
216
217 Note that adlib, gus and cs4231a are only available when QEMU was
218 configured with --audio-card-list option containing the name(s) of
219 required card(s).
220
221 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
222 VGA BIOS.
223
224 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
225
226 QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
227 by Tibor "TS" Schütz.
228
229 Note that, by default, GUS shares IRQ(7) with parallel ports and so
230 QEMU must be told to not have parallel ports to have working GUS.
231
232 @example
233 qemu-system-i386 dos.img -soundhw gus -parallel none
234 @end example
235
236 Alternatively:
237 @example
238 qemu-system-i386 dos.img -device gus,irq=5
239 @end example
240
241 Or some other unclaimed IRQ.
242
243 CS4231A is the chip used in Windows Sound System and GUSMAX products
244
245 @c man end
246
247 @node pcsys_quickstart
248 @section Quick Start
249 @cindex quick start
250
251 Download and uncompress the linux image (@file{linux.img}) and type:
252
253 @example
254 qemu-system-i386 linux.img
255 @end example
256
257 Linux should boot and give you a prompt.
258
259 @node sec_invocation
260 @section Invocation
261
262 @example
263 @c man begin SYNOPSIS
264 usage: qemu-system-i386 [options] [@var{disk_image}]
265 @c man end
266 @end example
267
268 @c man begin OPTIONS
269 @var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
270 targets do not need a disk image.
271
272 @include qemu-options.texi
273
274 @c man end
275
276 @node pcsys_keys
277 @section Keys
278
279 @c man begin OPTIONS
280
281 During the graphical emulation, you can use special key combinations to change
282 modes. The default key mappings are shown below, but if you use @code{-alt-grab}
283 then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
284 @code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
285
286 @table @key
287 @item Ctrl-Alt-f
288 @kindex Ctrl-Alt-f
289 Toggle full screen
290
291 @item Ctrl-Alt-+
292 @kindex Ctrl-Alt-+
293 Enlarge the screen
294
295 @item Ctrl-Alt--
296 @kindex Ctrl-Alt--
297 Shrink the screen
298
299 @item Ctrl-Alt-u
300 @kindex Ctrl-Alt-u
301 Restore the screen's un-scaled dimensions
302
303 @item Ctrl-Alt-n
304 @kindex Ctrl-Alt-n
305 Switch to virtual console 'n'. Standard console mappings are:
306 @table @emph
307 @item 1
308 Target system display
309 @item 2
310 Monitor
311 @item 3
312 Serial port
313 @end table
314
315 @item Ctrl-Alt
316 @kindex Ctrl-Alt
317 Toggle mouse and keyboard grab.
318 @end table
319
320 @kindex Ctrl-Up
321 @kindex Ctrl-Down
322 @kindex Ctrl-PageUp
323 @kindex Ctrl-PageDown
324 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
325 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
326
327 @kindex Ctrl-a h
328 During emulation, if you are using the @option{-nographic} option, use
329 @key{Ctrl-a h} to get terminal commands:
330
331 @table @key
332 @item Ctrl-a h
333 @kindex Ctrl-a h
334 @item Ctrl-a ?
335 @kindex Ctrl-a ?
336 Print this help
337 @item Ctrl-a x
338 @kindex Ctrl-a x
339 Exit emulator
340 @item Ctrl-a s
341 @kindex Ctrl-a s
342 Save disk data back to file (if -snapshot)
343 @item Ctrl-a t
344 @kindex Ctrl-a t
345 Toggle console timestamps
346 @item Ctrl-a b
347 @kindex Ctrl-a b
348 Send break (magic sysrq in Linux)
349 @item Ctrl-a c
350 @kindex Ctrl-a c
351 Switch between console and monitor
352 @item Ctrl-a Ctrl-a
353 @kindex Ctrl-a a
354 Send Ctrl-a
355 @end table
356 @c man end
357
358 @ignore
359
360 @c man begin SEEALSO
361 The HTML documentation of QEMU for more precise information and Linux
362 user mode emulator invocation.
363 @c man end
364
365 @c man begin AUTHOR
366 Fabrice Bellard
367 @c man end
368
369 @end ignore
370
371 @node pcsys_monitor
372 @section QEMU Monitor
373 @cindex QEMU monitor
374
375 The QEMU monitor is used to give complex commands to the QEMU
376 emulator. You can use it to:
377
378 @itemize @minus
379
380 @item
381 Remove or insert removable media images
382 (such as CD-ROM or floppies).
383
384 @item
385 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
386 from a disk file.
387
388 @item Inspect the VM state without an external debugger.
389
390 @end itemize
391
392 @subsection Commands
393
394 The following commands are available:
395
396 @include qemu-monitor.texi
397
398 @subsection Integer expressions
399
400 The monitor understands integers expressions for every integer
401 argument. You can use register names to get the value of specifics
402 CPU registers by prefixing them with @emph{$}.
403
404 @node disk_images
405 @section Disk Images
406
407 Since version 0.6.1, QEMU supports many disk image formats, including
408 growable disk images (their size increase as non empty sectors are
409 written), compressed and encrypted disk images. Version 0.8.3 added
410 the new qcow2 disk image format which is essential to support VM
411 snapshots.
412
413 @menu
414 * disk_images_quickstart:: Quick start for disk image creation
415 * disk_images_snapshot_mode:: Snapshot mode
416 * vm_snapshots:: VM snapshots
417 * qemu_img_invocation:: qemu-img Invocation
418 * qemu_nbd_invocation:: qemu-nbd Invocation
419 * host_drives:: Using host drives
420 * disk_images_fat_images:: Virtual FAT disk images
421 * disk_images_nbd:: NBD access
422 * disk_images_sheepdog:: Sheepdog disk images
423 * disk_images_iscsi:: iSCSI LUNs
424 @end menu
425
426 @node disk_images_quickstart
427 @subsection Quick start for disk image creation
428
429 You can create a disk image with the command:
430 @example
431 qemu-img create myimage.img mysize
432 @end example
433 where @var{myimage.img} is the disk image filename and @var{mysize} is its
434 size in kilobytes. You can add an @code{M} suffix to give the size in
435 megabytes and a @code{G} suffix for gigabytes.
436
437 See @ref{qemu_img_invocation} for more information.
438
439 @node disk_images_snapshot_mode
440 @subsection Snapshot mode
441
442 If you use the option @option{-snapshot}, all disk images are
443 considered as read only. When sectors in written, they are written in
444 a temporary file created in @file{/tmp}. You can however force the
445 write back to the raw disk images by using the @code{commit} monitor
446 command (or @key{C-a s} in the serial console).
447
448 @node vm_snapshots
449 @subsection VM snapshots
450
451 VM snapshots are snapshots of the complete virtual machine including
452 CPU state, RAM, device state and the content of all the writable
453 disks. In order to use VM snapshots, you must have at least one non
454 removable and writable block device using the @code{qcow2} disk image
455 format. Normally this device is the first virtual hard drive.
456
457 Use the monitor command @code{savevm} to create a new VM snapshot or
458 replace an existing one. A human readable name can be assigned to each
459 snapshot in addition to its numerical ID.
460
461 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
462 a VM snapshot. @code{info snapshots} lists the available snapshots
463 with their associated information:
464
465 @example
466 (qemu) info snapshots
467 Snapshot devices: hda
468 Snapshot list (from hda):
469 ID TAG VM SIZE DATE VM CLOCK
470 1 start 41M 2006-08-06 12:38:02 00:00:14.954
471 2 40M 2006-08-06 12:43:29 00:00:18.633
472 3 msys 40M 2006-08-06 12:44:04 00:00:23.514
473 @end example
474
475 A VM snapshot is made of a VM state info (its size is shown in
476 @code{info snapshots}) and a snapshot of every writable disk image.
477 The VM state info is stored in the first @code{qcow2} non removable
478 and writable block device. The disk image snapshots are stored in
479 every disk image. The size of a snapshot in a disk image is difficult
480 to evaluate and is not shown by @code{info snapshots} because the
481 associated disk sectors are shared among all the snapshots to save
482 disk space (otherwise each snapshot would need a full copy of all the
483 disk images).
484
485 When using the (unrelated) @code{-snapshot} option
486 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
487 but they are deleted as soon as you exit QEMU.
488
489 VM snapshots currently have the following known limitations:
490 @itemize
491 @item
492 They cannot cope with removable devices if they are removed or
493 inserted after a snapshot is done.
494 @item
495 A few device drivers still have incomplete snapshot support so their
496 state is not saved or restored properly (in particular USB).
497 @end itemize
498
499 @node qemu_img_invocation
500 @subsection @code{qemu-img} Invocation
501
502 @include qemu-img.texi
503
504 @node qemu_nbd_invocation
505 @subsection @code{qemu-nbd} Invocation
506
507 @include qemu-nbd.texi
508
509 @node host_drives
510 @subsection Using host drives
511
512 In addition to disk image files, QEMU can directly access host
513 devices. We describe here the usage for QEMU version >= 0.8.3.
514
515 @subsubsection Linux
516
517 On Linux, you can directly use the host device filename instead of a
518 disk image filename provided you have enough privileges to access
519 it. For example, use @file{/dev/cdrom} to access to the CDROM or
520 @file{/dev/fd0} for the floppy.
521
522 @table @code
523 @item CD
524 You can specify a CDROM device even if no CDROM is loaded. QEMU has
525 specific code to detect CDROM insertion or removal. CDROM ejection by
526 the guest OS is supported. Currently only data CDs are supported.
527 @item Floppy
528 You can specify a floppy device even if no floppy is loaded. Floppy
529 removal is currently not detected accurately (if you change floppy
530 without doing floppy access while the floppy is not loaded, the guest
531 OS will think that the same floppy is loaded).
532 @item Hard disks
533 Hard disks can be used. Normally you must specify the whole disk
534 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
535 see it as a partitioned disk. WARNING: unless you know what you do, it
536 is better to only make READ-ONLY accesses to the hard disk otherwise
537 you may corrupt your host data (use the @option{-snapshot} command
538 line option or modify the device permissions accordingly).
539 @end table
540
541 @subsubsection Windows
542
543 @table @code
544 @item CD
545 The preferred syntax is the drive letter (e.g. @file{d:}). The
546 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
547 supported as an alias to the first CDROM drive.
548
549 Currently there is no specific code to handle removable media, so it
550 is better to use the @code{change} or @code{eject} monitor commands to
551 change or eject media.
552 @item Hard disks
553 Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
554 where @var{N} is the drive number (0 is the first hard disk).
555
556 WARNING: unless you know what you do, it is better to only make
557 READ-ONLY accesses to the hard disk otherwise you may corrupt your
558 host data (use the @option{-snapshot} command line so that the
559 modifications are written in a temporary file).
560 @end table
561
562
563 @subsubsection Mac OS X
564
565 @file{/dev/cdrom} is an alias to the first CDROM.
566
567 Currently there is no specific code to handle removable media, so it
568 is better to use the @code{change} or @code{eject} monitor commands to
569 change or eject media.
570
571 @node disk_images_fat_images
572 @subsection Virtual FAT disk images
573
574 QEMU can automatically create a virtual FAT disk image from a
575 directory tree. In order to use it, just type:
576
577 @example
578 qemu-system-i386 linux.img -hdb fat:/my_directory
579 @end example
580
581 Then you access access to all the files in the @file{/my_directory}
582 directory without having to copy them in a disk image or to export
583 them via SAMBA or NFS. The default access is @emph{read-only}.
584
585 Floppies can be emulated with the @code{:floppy:} option:
586
587 @example
588 qemu-system-i386 linux.img -fda fat:floppy:/my_directory
589 @end example
590
591 A read/write support is available for testing (beta stage) with the
592 @code{:rw:} option:
593
594 @example
595 qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
596 @end example
597
598 What you should @emph{never} do:
599 @itemize
600 @item use non-ASCII filenames ;
601 @item use "-snapshot" together with ":rw:" ;
602 @item expect it to work when loadvm'ing ;
603 @item write to the FAT directory on the host system while accessing it with the guest system.
604 @end itemize
605
606 @node disk_images_nbd
607 @subsection NBD access
608
609 QEMU can access directly to block device exported using the Network Block Device
610 protocol.
611
612 @example
613 qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
614 @end example
615
616 If the NBD server is located on the same host, you can use an unix socket instead
617 of an inet socket:
618
619 @example
620 qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
621 @end example
622
623 In this case, the block device must be exported using qemu-nbd:
624
625 @example
626 qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
627 @end example
628
629 The use of qemu-nbd allows to share a disk between several guests:
630 @example
631 qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
632 @end example
633
634 @noindent
635 and then you can use it with two guests:
636 @example
637 qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
638 qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
639 @end example
640
641 If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
642 own embedded NBD server), you must specify an export name in the URI:
643 @example
644 qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
645 qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
646 @end example
647
648 The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
649 also available. Here are some example of the older syntax:
650 @example
651 qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
652 qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
653 qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
654 @end example
655
656 @node disk_images_sheepdog
657 @subsection Sheepdog disk images
658
659 Sheepdog is a distributed storage system for QEMU. It provides highly
660 available block level storage volumes that can be attached to
661 QEMU-based virtual machines.
662
663 You can create a Sheepdog disk image with the command:
664 @example
665 qemu-img create sheepdog:@var{image} @var{size}
666 @end example
667 where @var{image} is the Sheepdog image name and @var{size} is its
668 size.
669
670 To import the existing @var{filename} to Sheepdog, you can use a
671 convert command.
672 @example
673 qemu-img convert @var{filename} sheepdog:@var{image}
674 @end example
675
676 You can boot from the Sheepdog disk image with the command:
677 @example
678 qemu-system-i386 sheepdog:@var{image}
679 @end example
680
681 You can also create a snapshot of the Sheepdog image like qcow2.
682 @example
683 qemu-img snapshot -c @var{tag} sheepdog:@var{image}
684 @end example
685 where @var{tag} is a tag name of the newly created snapshot.
686
687 To boot from the Sheepdog snapshot, specify the tag name of the
688 snapshot.
689 @example
690 qemu-system-i386 sheepdog:@var{image}:@var{tag}
691 @end example
692
693 You can create a cloned image from the existing snapshot.
694 @example
695 qemu-img create -b sheepdog:@var{base}:@var{tag} sheepdog:@var{image}
696 @end example
697 where @var{base} is a image name of the source snapshot and @var{tag}
698 is its tag name.
699
700 If the Sheepdog daemon doesn't run on the local host, you need to
701 specify one of the Sheepdog servers to connect to.
702 @example
703 qemu-img create sheepdog:@var{hostname}:@var{port}:@var{image} @var{size}
704 qemu-system-i386 sheepdog:@var{hostname}:@var{port}:@var{image}
705 @end example
706
707 @node disk_images_iscsi
708 @subsection iSCSI LUNs
709
710 iSCSI is a popular protocol used to access SCSI devices across a computer
711 network.
712
713 There are two different ways iSCSI devices can be used by QEMU.
714
715 The first method is to mount the iSCSI LUN on the host, and make it appear as
716 any other ordinary SCSI device on the host and then to access this device as a
717 /dev/sd device from QEMU. How to do this differs between host OSes.
718
719 The second method involves using the iSCSI initiator that is built into
720 QEMU. This provides a mechanism that works the same way regardless of which
721 host OS you are running QEMU on. This section will describe this second method
722 of using iSCSI together with QEMU.
723
724 In QEMU, iSCSI devices are described using special iSCSI URLs
725
726 @example
727 URL syntax:
728 iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
729 @end example
730
731 Username and password are optional and only used if your target is set up
732 using CHAP authentication for access control.
733 Alternatively the username and password can also be set via environment
734 variables to have these not show up in the process list
735
736 @example
737 export LIBISCSI_CHAP_USERNAME=<username>
738 export LIBISCSI_CHAP_PASSWORD=<password>
739 iscsi://<host>/<target-iqn-name>/<lun>
740 @end example
741
742 Various session related parameters can be set via special options, either
743 in a configuration file provided via '-readconfig' or directly on the
744 command line.
745
746 If the initiator-name is not specified qemu will use a default name
747 of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
748 virtual machine.
749
750
751 @example
752 Setting a specific initiator name to use when logging in to the target
753 -iscsi initiator-name=iqn.qemu.test:my-initiator
754 @end example
755
756 @example
757 Controlling which type of header digest to negotiate with the target
758 -iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
759 @end example
760
761 These can also be set via a configuration file
762 @example
763 [iscsi]
764 user = "CHAP username"
765 password = "CHAP password"
766 initiator-name = "iqn.qemu.test:my-initiator"
767 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
768 header-digest = "CRC32C"
769 @end example
770
771
772 Setting the target name allows different options for different targets
773 @example
774 [iscsi "iqn.target.name"]
775 user = "CHAP username"
776 password = "CHAP password"
777 initiator-name = "iqn.qemu.test:my-initiator"
778 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
779 header-digest = "CRC32C"
780 @end example
781
782
783 Howto use a configuration file to set iSCSI configuration options:
784 @example
785 cat >iscsi.conf <<EOF
786 [iscsi]
787 user = "me"
788 password = "my password"
789 initiator-name = "iqn.qemu.test:my-initiator"
790 header-digest = "CRC32C"
791 EOF
792
793 qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
794 -readconfig iscsi.conf
795 @end example
796
797
798 Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
799 @example
800 This example shows how to set up an iSCSI target with one CDROM and one DISK
801 using the Linux STGT software target. This target is available on Red Hat based
802 systems as the package 'scsi-target-utils'.
803
804 tgtd --iscsi portal=127.0.0.1:3260
805 tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
806 tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
807 -b /IMAGES/disk.img --device-type=disk
808 tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
809 -b /IMAGES/cd.iso --device-type=cd
810 tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
811
812 qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
813 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
814 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
815 @end example
816
817
818
819 @node pcsys_network
820 @section Network emulation
821
822 QEMU can simulate several network cards (PCI or ISA cards on the PC
823 target) and can connect them to an arbitrary number of Virtual Local
824 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
825 VLAN. VLAN can be connected between separate instances of QEMU to
826 simulate large networks. For simpler usage, a non privileged user mode
827 network stack can replace the TAP device to have a basic network
828 connection.
829
830 @subsection VLANs
831
832 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
833 connection between several network devices. These devices can be for
834 example QEMU virtual Ethernet cards or virtual Host ethernet devices
835 (TAP devices).
836
837 @subsection Using TAP network interfaces
838
839 This is the standard way to connect QEMU to a real network. QEMU adds
840 a virtual network device on your host (called @code{tapN}), and you
841 can then configure it as if it was a real ethernet card.
842
843 @subsubsection Linux host
844
845 As an example, you can download the @file{linux-test-xxx.tar.gz}
846 archive and copy the script @file{qemu-ifup} in @file{/etc} and
847 configure properly @code{sudo} so that the command @code{ifconfig}
848 contained in @file{qemu-ifup} can be executed as root. You must verify
849 that your host kernel supports the TAP network interfaces: the
850 device @file{/dev/net/tun} must be present.
851
852 See @ref{sec_invocation} to have examples of command lines using the
853 TAP network interfaces.
854
855 @subsubsection Windows host
856
857 There is a virtual ethernet driver for Windows 2000/XP systems, called
858 TAP-Win32. But it is not included in standard QEMU for Windows,
859 so you will need to get it separately. It is part of OpenVPN package,
860 so download OpenVPN from : @url{http://openvpn.net/}.
861
862 @subsection Using the user mode network stack
863
864 By using the option @option{-net user} (default configuration if no
865 @option{-net} option is specified), QEMU uses a completely user mode
866 network stack (you don't need root privilege to use the virtual
867 network). The virtual network configuration is the following:
868
869 @example
870
871 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
872 | (10.0.2.2)
873 |
874 ----> DNS server (10.0.2.3)
875 |
876 ----> SMB server (10.0.2.4)
877 @end example
878
879 The QEMU VM behaves as if it was behind a firewall which blocks all
880 incoming connections. You can use a DHCP client to automatically
881 configure the network in the QEMU VM. The DHCP server assign addresses
882 to the hosts starting from 10.0.2.15.
883
884 In order to check that the user mode network is working, you can ping
885 the address 10.0.2.2 and verify that you got an address in the range
886 10.0.2.x from the QEMU virtual DHCP server.
887
888 Note that @code{ping} is not supported reliably to the internet as it
889 would require root privileges. It means you can only ping the local
890 router (10.0.2.2).
891
892 When using the built-in TFTP server, the router is also the TFTP
893 server.
894
895 When using the @option{-redir} option, TCP or UDP connections can be
896 redirected from the host to the guest. It allows for example to
897 redirect X11, telnet or SSH connections.
898
899 @subsection Connecting VLANs between QEMU instances
900
901 Using the @option{-net socket} option, it is possible to make VLANs
902 that span several QEMU instances. See @ref{sec_invocation} to have a
903 basic example.
904
905 @node pcsys_other_devs
906 @section Other Devices
907
908 @subsection Inter-VM Shared Memory device
909
910 With KVM enabled on a Linux host, a shared memory device is available. Guests
911 map a POSIX shared memory region into the guest as a PCI device that enables
912 zero-copy communication to the application level of the guests. The basic
913 syntax is:
914
915 @example
916 qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
917 @end example
918
919 If desired, interrupts can be sent between guest VMs accessing the same shared
920 memory region. Interrupt support requires using a shared memory server and
921 using a chardev socket to connect to it. The code for the shared memory server
922 is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
923 memory server is:
924
925 @example
926 qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
927 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
928 qemu-system-i386 -chardev socket,path=<path>,id=<id>
929 @end example
930
931 When using the server, the guest will be assigned a VM ID (>=0) that allows guests
932 using the same server to communicate via interrupts. Guests can read their
933 VM ID from a device register (see example code). Since receiving the shared
934 memory region from the server is asynchronous, there is a (small) chance the
935 guest may boot before the shared memory is attached. To allow an application
936 to ensure shared memory is attached, the VM ID register will return -1 (an
937 invalid VM ID) until the memory is attached. Once the shared memory is
938 attached, the VM ID will return the guest's valid VM ID. With these semantics,
939 the guest application can check to ensure the shared memory is attached to the
940 guest before proceeding.
941
942 The @option{role} argument can be set to either master or peer and will affect
943 how the shared memory is migrated. With @option{role=master}, the guest will
944 copy the shared memory on migration to the destination host. With
945 @option{role=peer}, the guest will not be able to migrate with the device attached.
946 With the @option{peer} case, the device should be detached and then reattached
947 after migration using the PCI hotplug support.
948
949 @node direct_linux_boot
950 @section Direct Linux Boot
951
952 This section explains how to launch a Linux kernel inside QEMU without
953 having to make a full bootable image. It is very useful for fast Linux
954 kernel testing.
955
956 The syntax is:
957 @example
958 qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
959 @end example
960
961 Use @option{-kernel} to provide the Linux kernel image and
962 @option{-append} to give the kernel command line arguments. The
963 @option{-initrd} option can be used to provide an INITRD image.
964
965 When using the direct Linux boot, a disk image for the first hard disk
966 @file{hda} is required because its boot sector is used to launch the
967 Linux kernel.
968
969 If you do not need graphical output, you can disable it and redirect
970 the virtual serial port and the QEMU monitor to the console with the
971 @option{-nographic} option. The typical command line is:
972 @example
973 qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
974 -append "root=/dev/hda console=ttyS0" -nographic
975 @end example
976
977 Use @key{Ctrl-a c} to switch between the serial console and the
978 monitor (@pxref{pcsys_keys}).
979
980 @node pcsys_usb
981 @section USB emulation
982
983 QEMU emulates a PCI UHCI USB controller. You can virtually plug
984 virtual USB devices or real host USB devices (experimental, works only
985 on Linux hosts). QEMU will automatically create and connect virtual USB hubs
986 as necessary to connect multiple USB devices.
987
988 @menu
989 * usb_devices::
990 * host_usb_devices::
991 @end menu
992 @node usb_devices
993 @subsection Connecting USB devices
994
995 USB devices can be connected with the @option{-usbdevice} commandline option
996 or the @code{usb_add} monitor command. Available devices are:
997
998 @table @code
999 @item mouse
1000 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1001 @item tablet
1002 Pointer device that uses absolute coordinates (like a touchscreen).
1003 This means QEMU is able to report the mouse position without having
1004 to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
1005 @item disk:@var{file}
1006 Mass storage device based on @var{file} (@pxref{disk_images})
1007 @item host:@var{bus.addr}
1008 Pass through the host device identified by @var{bus.addr}
1009 (Linux only)
1010 @item host:@var{vendor_id:product_id}
1011 Pass through the host device identified by @var{vendor_id:product_id}
1012 (Linux only)
1013 @item wacom-tablet
1014 Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1015 above but it can be used with the tslib library because in addition to touch
1016 coordinates it reports touch pressure.
1017 @item keyboard
1018 Standard USB keyboard. Will override the PS/2 keyboard (if present).
1019 @item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1020 Serial converter. This emulates an FTDI FT232BM chip connected to host character
1021 device @var{dev}. The available character devices are the same as for the
1022 @code{-serial} option. The @code{vendorid} and @code{productid} options can be
1023 used to override the default 0403:6001. For instance,
1024 @example
1025 usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1026 @end example
1027 will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1028 serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1029 @item braille
1030 Braille device. This will use BrlAPI to display the braille output on a real
1031 or fake device.
1032 @item net:@var{options}
1033 Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1034 specifies NIC options as with @code{-net nic,}@var{options} (see description).
1035 For instance, user-mode networking can be used with
1036 @example
1037 qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1038 @end example
1039 Currently this cannot be used in machines that support PCI NICs.
1040 @item bt[:@var{hci-type}]
1041 Bluetooth dongle whose type is specified in the same format as with
1042 the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1043 no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1044 This USB device implements the USB Transport Layer of HCI. Example
1045 usage:
1046 @example
1047 qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1048 @end example
1049 @end table
1050
1051 @node host_usb_devices
1052 @subsection Using host USB devices on a Linux host
1053
1054 WARNING: this is an experimental feature. QEMU will slow down when
1055 using it. USB devices requiring real time streaming (i.e. USB Video
1056 Cameras) are not supported yet.
1057
1058 @enumerate
1059 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1060 is actually using the USB device. A simple way to do that is simply to
1061 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1062 to @file{mydriver.o.disabled}.
1063
1064 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1065 @example
1066 ls /proc/bus/usb
1067 001 devices drivers
1068 @end example
1069
1070 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1071 @example
1072 chown -R myuid /proc/bus/usb
1073 @end example
1074
1075 @item Launch QEMU and do in the monitor:
1076 @example
1077 info usbhost
1078 Device 1.2, speed 480 Mb/s
1079 Class 00: USB device 1234:5678, USB DISK
1080 @end example
1081 You should see the list of the devices you can use (Never try to use
1082 hubs, it won't work).
1083
1084 @item Add the device in QEMU by using:
1085 @example
1086 usb_add host:1234:5678
1087 @end example
1088
1089 Normally the guest OS should report that a new USB device is
1090 plugged. You can use the option @option{-usbdevice} to do the same.
1091
1092 @item Now you can try to use the host USB device in QEMU.
1093
1094 @end enumerate
1095
1096 When relaunching QEMU, you may have to unplug and plug again the USB
1097 device to make it work again (this is a bug).
1098
1099 @node vnc_security
1100 @section VNC security
1101
1102 The VNC server capability provides access to the graphical console
1103 of the guest VM across the network. This has a number of security
1104 considerations depending on the deployment scenarios.
1105
1106 @menu
1107 * vnc_sec_none::
1108 * vnc_sec_password::
1109 * vnc_sec_certificate::
1110 * vnc_sec_certificate_verify::
1111 * vnc_sec_certificate_pw::
1112 * vnc_sec_sasl::
1113 * vnc_sec_certificate_sasl::
1114 * vnc_generate_cert::
1115 * vnc_setup_sasl::
1116 @end menu
1117 @node vnc_sec_none
1118 @subsection Without passwords
1119
1120 The simplest VNC server setup does not include any form of authentication.
1121 For this setup it is recommended to restrict it to listen on a UNIX domain
1122 socket only. For example
1123
1124 @example
1125 qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1126 @end example
1127
1128 This ensures that only users on local box with read/write access to that
1129 path can access the VNC server. To securely access the VNC server from a
1130 remote machine, a combination of netcat+ssh can be used to provide a secure
1131 tunnel.
1132
1133 @node vnc_sec_password
1134 @subsection With passwords
1135
1136 The VNC protocol has limited support for password based authentication. Since
1137 the protocol limits passwords to 8 characters it should not be considered
1138 to provide high security. The password can be fairly easily brute-forced by
1139 a client making repeat connections. For this reason, a VNC server using password
1140 authentication should be restricted to only listen on the loopback interface
1141 or UNIX domain sockets. Password authentication is not supported when operating
1142 in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1143 authentication is requested with the @code{password} option, and then once QEMU
1144 is running the password is set with the monitor. Until the monitor is used to
1145 set the password all clients will be rejected.
1146
1147 @example
1148 qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1149 (qemu) change vnc password
1150 Password: ********
1151 (qemu)
1152 @end example
1153
1154 @node vnc_sec_certificate
1155 @subsection With x509 certificates
1156
1157 The QEMU VNC server also implements the VeNCrypt extension allowing use of
1158 TLS for encryption of the session, and x509 certificates for authentication.
1159 The use of x509 certificates is strongly recommended, because TLS on its
1160 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1161 support provides a secure session, but no authentication. This allows any
1162 client to connect, and provides an encrypted session.
1163
1164 @example
1165 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1166 @end example
1167
1168 In the above example @code{/etc/pki/qemu} should contain at least three files,
1169 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1170 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1171 NB the @code{server-key.pem} file should be protected with file mode 0600 to
1172 only be readable by the user owning it.
1173
1174 @node vnc_sec_certificate_verify
1175 @subsection With x509 certificates and client verification
1176
1177 Certificates can also provide a means to authenticate the client connecting.
1178 The server will request that the client provide a certificate, which it will
1179 then validate against the CA certificate. This is a good choice if deploying
1180 in an environment with a private internal certificate authority.
1181
1182 @example
1183 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1184 @end example
1185
1186
1187 @node vnc_sec_certificate_pw
1188 @subsection With x509 certificates, client verification and passwords
1189
1190 Finally, the previous method can be combined with VNC password authentication
1191 to provide two layers of authentication for clients.
1192
1193 @example
1194 qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1195 (qemu) change vnc password
1196 Password: ********
1197 (qemu)
1198 @end example
1199
1200
1201 @node vnc_sec_sasl
1202 @subsection With SASL authentication
1203
1204 The SASL authentication method is a VNC extension, that provides an
1205 easily extendable, pluggable authentication method. This allows for
1206 integration with a wide range of authentication mechanisms, such as
1207 PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1208 The strength of the authentication depends on the exact mechanism
1209 configured. If the chosen mechanism also provides a SSF layer, then
1210 it will encrypt the datastream as well.
1211
1212 Refer to the later docs on how to choose the exact SASL mechanism
1213 used for authentication, but assuming use of one supporting SSF,
1214 then QEMU can be launched with:
1215
1216 @example
1217 qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1218 @end example
1219
1220 @node vnc_sec_certificate_sasl
1221 @subsection With x509 certificates and SASL authentication
1222
1223 If the desired SASL authentication mechanism does not supported
1224 SSF layers, then it is strongly advised to run it in combination
1225 with TLS and x509 certificates. This provides securely encrypted
1226 data stream, avoiding risk of compromising of the security
1227 credentials. This can be enabled, by combining the 'sasl' option
1228 with the aforementioned TLS + x509 options:
1229
1230 @example
1231 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1232 @end example
1233
1234
1235 @node vnc_generate_cert
1236 @subsection Generating certificates for VNC
1237
1238 The GNU TLS packages provides a command called @code{certtool} which can
1239 be used to generate certificates and keys in PEM format. At a minimum it
1240 is necessary to setup a certificate authority, and issue certificates to
1241 each server. If using certificates for authentication, then each client
1242 will also need to be issued a certificate. The recommendation is for the
1243 server to keep its certificates in either @code{/etc/pki/qemu} or for
1244 unprivileged users in @code{$HOME/.pki/qemu}.
1245
1246 @menu
1247 * vnc_generate_ca::
1248 * vnc_generate_server::
1249 * vnc_generate_client::
1250 @end menu
1251 @node vnc_generate_ca
1252 @subsubsection Setup the Certificate Authority
1253
1254 This step only needs to be performed once per organization / organizational
1255 unit. First the CA needs a private key. This key must be kept VERY secret
1256 and secure. If this key is compromised the entire trust chain of the certificates
1257 issued with it is lost.
1258
1259 @example
1260 # certtool --generate-privkey > ca-key.pem
1261 @end example
1262
1263 A CA needs to have a public certificate. For simplicity it can be a self-signed
1264 certificate, or one issue by a commercial certificate issuing authority. To
1265 generate a self-signed certificate requires one core piece of information, the
1266 name of the organization.
1267
1268 @example
1269 # cat > ca.info <<EOF
1270 cn = Name of your organization
1271 ca
1272 cert_signing_key
1273 EOF
1274 # certtool --generate-self-signed \
1275 --load-privkey ca-key.pem
1276 --template ca.info \
1277 --outfile ca-cert.pem
1278 @end example
1279
1280 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1281 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1282
1283 @node vnc_generate_server
1284 @subsubsection Issuing server certificates
1285
1286 Each server (or host) needs to be issued with a key and certificate. When connecting
1287 the certificate is sent to the client which validates it against the CA certificate.
1288 The core piece of information for a server certificate is the hostname. This should
1289 be the fully qualified hostname that the client will connect with, since the client
1290 will typically also verify the hostname in the certificate. On the host holding the
1291 secure CA private key:
1292
1293 @example
1294 # cat > server.info <<EOF
1295 organization = Name of your organization
1296 cn = server.foo.example.com
1297 tls_www_server
1298 encryption_key
1299 signing_key
1300 EOF
1301 # certtool --generate-privkey > server-key.pem
1302 # certtool --generate-certificate \
1303 --load-ca-certificate ca-cert.pem \
1304 --load-ca-privkey ca-key.pem \
1305 --load-privkey server server-key.pem \
1306 --template server.info \
1307 --outfile server-cert.pem
1308 @end example
1309
1310 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1311 to the server for which they were generated. The @code{server-key.pem} is security
1312 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1313
1314 @node vnc_generate_client
1315 @subsubsection Issuing client certificates
1316
1317 If the QEMU VNC server is to use the @code{x509verify} option to validate client
1318 certificates as its authentication mechanism, each client also needs to be issued
1319 a certificate. The client certificate contains enough metadata to uniquely identify
1320 the client, typically organization, state, city, building, etc. On the host holding
1321 the secure CA private key:
1322
1323 @example
1324 # cat > client.info <<EOF
1325 country = GB
1326 state = London
1327 locality = London
1328 organiazation = Name of your organization
1329 cn = client.foo.example.com
1330 tls_www_client
1331 encryption_key
1332 signing_key
1333 EOF
1334 # certtool --generate-privkey > client-key.pem
1335 # certtool --generate-certificate \
1336 --load-ca-certificate ca-cert.pem \
1337 --load-ca-privkey ca-key.pem \
1338 --load-privkey client-key.pem \
1339 --template client.info \
1340 --outfile client-cert.pem
1341 @end example
1342
1343 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1344 copied to the client for which they were generated.
1345
1346
1347 @node vnc_setup_sasl
1348
1349 @subsection Configuring SASL mechanisms
1350
1351 The following documentation assumes use of the Cyrus SASL implementation on a
1352 Linux host, but the principals should apply to any other SASL impl. When SASL
1353 is enabled, the mechanism configuration will be loaded from system default
1354 SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1355 unprivileged user, an environment variable SASL_CONF_PATH can be used
1356 to make it search alternate locations for the service config.
1357
1358 The default configuration might contain
1359
1360 @example
1361 mech_list: digest-md5
1362 sasldb_path: /etc/qemu/passwd.db
1363 @end example
1364
1365 This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1366 Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1367 in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1368 command. While this mechanism is easy to configure and use, it is not
1369 considered secure by modern standards, so only suitable for developers /
1370 ad-hoc testing.
1371
1372 A more serious deployment might use Kerberos, which is done with the 'gssapi'
1373 mechanism
1374
1375 @example
1376 mech_list: gssapi
1377 keytab: /etc/qemu/krb5.tab
1378 @end example
1379
1380 For this to work the administrator of your KDC must generate a Kerberos
1381 principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1382 replacing 'somehost.example.com' with the fully qualified host name of the
1383 machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1384
1385 Other configurations will be left as an exercise for the reader. It should
1386 be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1387 encryption. For all other mechanisms, VNC should always be configured to
1388 use TLS and x509 certificates to protect security credentials from snooping.
1389
1390 @node gdb_usage
1391 @section GDB usage
1392
1393 QEMU has a primitive support to work with gdb, so that you can do
1394 'Ctrl-C' while the virtual machine is running and inspect its state.
1395
1396 In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1397 gdb connection:
1398 @example
1399 qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1400 -append "root=/dev/hda"
1401 Connected to host network interface: tun0
1402 Waiting gdb connection on port 1234
1403 @end example
1404
1405 Then launch gdb on the 'vmlinux' executable:
1406 @example
1407 > gdb vmlinux
1408 @end example
1409
1410 In gdb, connect to QEMU:
1411 @example
1412 (gdb) target remote localhost:1234
1413 @end example
1414
1415 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1416 @example
1417 (gdb) c
1418 @end example
1419
1420 Here are some useful tips in order to use gdb on system code:
1421
1422 @enumerate
1423 @item
1424 Use @code{info reg} to display all the CPU registers.
1425 @item
1426 Use @code{x/10i $eip} to display the code at the PC position.
1427 @item
1428 Use @code{set architecture i8086} to dump 16 bit code. Then use
1429 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1430 @end enumerate
1431
1432 Advanced debugging options:
1433
1434 The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
1435 @table @code
1436 @item maintenance packet qqemu.sstepbits
1437
1438 This will display the MASK bits used to control the single stepping IE:
1439 @example
1440 (gdb) maintenance packet qqemu.sstepbits
1441 sending: "qqemu.sstepbits"
1442 received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1443 @end example
1444 @item maintenance packet qqemu.sstep
1445
1446 This will display the current value of the mask used when single stepping IE:
1447 @example
1448 (gdb) maintenance packet qqemu.sstep
1449 sending: "qqemu.sstep"
1450 received: "0x7"
1451 @end example
1452 @item maintenance packet Qqemu.sstep=HEX_VALUE
1453
1454 This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1455 @example
1456 (gdb) maintenance packet Qqemu.sstep=0x5
1457 sending: "qemu.sstep=0x5"
1458 received: "OK"
1459 @end example
1460 @end table
1461
1462 @node pcsys_os_specific
1463 @section Target OS specific information
1464
1465 @subsection Linux
1466
1467 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1468 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1469 color depth in the guest and the host OS.
1470
1471 When using a 2.6 guest Linux kernel, you should add the option
1472 @code{clock=pit} on the kernel command line because the 2.6 Linux
1473 kernels make very strict real time clock checks by default that QEMU
1474 cannot simulate exactly.
1475
1476 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1477 not activated because QEMU is slower with this patch. The QEMU
1478 Accelerator Module is also much slower in this case. Earlier Fedora
1479 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1480 patch by default. Newer kernels don't have it.
1481
1482 @subsection Windows
1483
1484 If you have a slow host, using Windows 95 is better as it gives the
1485 best speed. Windows 2000 is also a good choice.
1486
1487 @subsubsection SVGA graphic modes support
1488
1489 QEMU emulates a Cirrus Logic GD5446 Video
1490 card. All Windows versions starting from Windows 95 should recognize
1491 and use this graphic card. For optimal performances, use 16 bit color
1492 depth in the guest and the host OS.
1493
1494 If you are using Windows XP as guest OS and if you want to use high
1495 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1496 1280x1024x16), then you should use the VESA VBE virtual graphic card
1497 (option @option{-std-vga}).
1498
1499 @subsubsection CPU usage reduction
1500
1501 Windows 9x does not correctly use the CPU HLT
1502 instruction. The result is that it takes host CPU cycles even when
1503 idle. You can install the utility from
1504 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1505 problem. Note that no such tool is needed for NT, 2000 or XP.
1506
1507 @subsubsection Windows 2000 disk full problem
1508
1509 Windows 2000 has a bug which gives a disk full problem during its
1510 installation. When installing it, use the @option{-win2k-hack} QEMU
1511 option to enable a specific workaround. After Windows 2000 is
1512 installed, you no longer need this option (this option slows down the
1513 IDE transfers).
1514
1515 @subsubsection Windows 2000 shutdown
1516
1517 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1518 can. It comes from the fact that Windows 2000 does not automatically
1519 use the APM driver provided by the BIOS.
1520
1521 In order to correct that, do the following (thanks to Struan
1522 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1523 Add/Troubleshoot a device => Add a new device & Next => No, select the
1524 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1525 (again) a few times. Now the driver is installed and Windows 2000 now
1526 correctly instructs QEMU to shutdown at the appropriate moment.
1527
1528 @subsubsection Share a directory between Unix and Windows
1529
1530 See @ref{sec_invocation} about the help of the option @option{-smb}.
1531
1532 @subsubsection Windows XP security problem
1533
1534 Some releases of Windows XP install correctly but give a security
1535 error when booting:
1536 @example
1537 A problem is preventing Windows from accurately checking the
1538 license for this computer. Error code: 0x800703e6.
1539 @end example
1540
1541 The workaround is to install a service pack for XP after a boot in safe
1542 mode. Then reboot, and the problem should go away. Since there is no
1543 network while in safe mode, its recommended to download the full
1544 installation of SP1 or SP2 and transfer that via an ISO or using the
1545 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1546
1547 @subsection MS-DOS and FreeDOS
1548
1549 @subsubsection CPU usage reduction
1550
1551 DOS does not correctly use the CPU HLT instruction. The result is that
1552 it takes host CPU cycles even when idle. You can install the utility
1553 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1554 problem.
1555
1556 @node QEMU System emulator for non PC targets
1557 @chapter QEMU System emulator for non PC targets
1558
1559 QEMU is a generic emulator and it emulates many non PC
1560 machines. Most of the options are similar to the PC emulator. The
1561 differences are mentioned in the following sections.
1562
1563 @menu
1564 * PowerPC System emulator::
1565 * Sparc32 System emulator::
1566 * Sparc64 System emulator::
1567 * MIPS System emulator::
1568 * ARM System emulator::
1569 * ColdFire System emulator::
1570 * Cris System emulator::
1571 * Microblaze System emulator::
1572 * SH4 System emulator::
1573 * Xtensa System emulator::
1574 @end menu
1575
1576 @node PowerPC System emulator
1577 @section PowerPC System emulator
1578 @cindex system emulation (PowerPC)
1579
1580 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1581 or PowerMac PowerPC system.
1582
1583 QEMU emulates the following PowerMac peripherals:
1584
1585 @itemize @minus
1586 @item
1587 UniNorth or Grackle PCI Bridge
1588 @item
1589 PCI VGA compatible card with VESA Bochs Extensions
1590 @item
1591 2 PMAC IDE interfaces with hard disk and CD-ROM support
1592 @item
1593 NE2000 PCI adapters
1594 @item
1595 Non Volatile RAM
1596 @item
1597 VIA-CUDA with ADB keyboard and mouse.
1598 @end itemize
1599
1600 QEMU emulates the following PREP peripherals:
1601
1602 @itemize @minus
1603 @item
1604 PCI Bridge
1605 @item
1606 PCI VGA compatible card with VESA Bochs Extensions
1607 @item
1608 2 IDE interfaces with hard disk and CD-ROM support
1609 @item
1610 Floppy disk
1611 @item
1612 NE2000 network adapters
1613 @item
1614 Serial port
1615 @item
1616 PREP Non Volatile RAM
1617 @item
1618 PC compatible keyboard and mouse.
1619 @end itemize
1620
1621 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1622 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1623
1624 Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1625 for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1626 v2) portable firmware implementation. The goal is to implement a 100%
1627 IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1628
1629 @c man begin OPTIONS
1630
1631 The following options are specific to the PowerPC emulation:
1632
1633 @table @option
1634
1635 @item -g @var{W}x@var{H}[x@var{DEPTH}]
1636
1637 Set the initial VGA graphic mode. The default is 800x600x15.
1638
1639 @item -prom-env @var{string}
1640
1641 Set OpenBIOS variables in NVRAM, for example:
1642
1643 @example
1644 qemu-system-ppc -prom-env 'auto-boot?=false' \
1645 -prom-env 'boot-device=hd:2,\yaboot' \
1646 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1647 @end example
1648
1649 These variables are not used by Open Hack'Ware.
1650
1651 @end table
1652
1653 @c man end
1654
1655
1656 More information is available at
1657 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1658
1659 @node Sparc32 System emulator
1660 @section Sparc32 System emulator
1661 @cindex system emulation (Sparc32)
1662
1663 Use the executable @file{qemu-system-sparc} to simulate the following
1664 Sun4m architecture machines:
1665 @itemize @minus
1666 @item
1667 SPARCstation 4
1668 @item
1669 SPARCstation 5
1670 @item
1671 SPARCstation 10
1672 @item
1673 SPARCstation 20
1674 @item
1675 SPARCserver 600MP
1676 @item
1677 SPARCstation LX
1678 @item
1679 SPARCstation Voyager
1680 @item
1681 SPARCclassic
1682 @item
1683 SPARCbook
1684 @end itemize
1685
1686 The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1687 but Linux limits the number of usable CPUs to 4.
1688
1689 It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1690 SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1691 emulators are not usable yet.
1692
1693 QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1694
1695 @itemize @minus
1696 @item
1697 IOMMU or IO-UNITs
1698 @item
1699 TCX Frame buffer
1700 @item
1701 Lance (Am7990) Ethernet
1702 @item
1703 Non Volatile RAM M48T02/M48T08
1704 @item
1705 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1706 and power/reset logic
1707 @item
1708 ESP SCSI controller with hard disk and CD-ROM support
1709 @item
1710 Floppy drive (not on SS-600MP)
1711 @item
1712 CS4231 sound device (only on SS-5, not working yet)
1713 @end itemize
1714
1715 The number of peripherals is fixed in the architecture. Maximum
1716 memory size depends on the machine type, for SS-5 it is 256MB and for
1717 others 2047MB.
1718
1719 Since version 0.8.2, QEMU uses OpenBIOS
1720 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1721 firmware implementation. The goal is to implement a 100% IEEE
1722 1275-1994 (referred to as Open Firmware) compliant firmware.
1723
1724 A sample Linux 2.6 series kernel and ram disk image are available on
1725 the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1726 some kernel versions work. Please note that currently Solaris kernels
1727 don't work probably due to interface issues between OpenBIOS and
1728 Solaris.
1729
1730 @c man begin OPTIONS
1731
1732 The following options are specific to the Sparc32 emulation:
1733
1734 @table @option
1735
1736 @item -g @var{W}x@var{H}x[x@var{DEPTH}]
1737
1738 Set the initial TCX graphic mode. The default is 1024x768x8, currently
1739 the only other possible mode is 1024x768x24.
1740
1741 @item -prom-env @var{string}
1742
1743 Set OpenBIOS variables in NVRAM, for example:
1744
1745 @example
1746 qemu-system-sparc -prom-env 'auto-boot?=false' \
1747 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1748 @end example
1749
1750 @item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
1751
1752 Set the emulated machine type. Default is SS-5.
1753
1754 @end table
1755
1756 @c man end
1757
1758 @node Sparc64 System emulator
1759 @section Sparc64 System emulator
1760 @cindex system emulation (Sparc64)
1761
1762 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1763 (UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1764 Niagara (T1) machine. The emulator is not usable for anything yet, but
1765 it can launch some kernels.
1766
1767 QEMU emulates the following peripherals:
1768
1769 @itemize @minus
1770 @item
1771 UltraSparc IIi APB PCI Bridge
1772 @item
1773 PCI VGA compatible card with VESA Bochs Extensions
1774 @item
1775 PS/2 mouse and keyboard
1776 @item
1777 Non Volatile RAM M48T59
1778 @item
1779 PC-compatible serial ports
1780 @item
1781 2 PCI IDE interfaces with hard disk and CD-ROM support
1782 @item
1783 Floppy disk
1784 @end itemize
1785
1786 @c man begin OPTIONS
1787
1788 The following options are specific to the Sparc64 emulation:
1789
1790 @table @option
1791
1792 @item -prom-env @var{string}
1793
1794 Set OpenBIOS variables in NVRAM, for example:
1795
1796 @example
1797 qemu-system-sparc64 -prom-env 'auto-boot?=false'
1798 @end example
1799
1800 @item -M [sun4u|sun4v|Niagara]
1801
1802 Set the emulated machine type. The default is sun4u.
1803
1804 @end table
1805
1806 @c man end
1807
1808 @node MIPS System emulator
1809 @section MIPS System emulator
1810 @cindex system emulation (MIPS)
1811
1812 Four executables cover simulation of 32 and 64-bit MIPS systems in
1813 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1814 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1815 Five different machine types are emulated:
1816
1817 @itemize @minus
1818 @item
1819 A generic ISA PC-like machine "mips"
1820 @item
1821 The MIPS Malta prototype board "malta"
1822 @item
1823 An ACER Pica "pica61". This machine needs the 64-bit emulator.
1824 @item
1825 MIPS emulator pseudo board "mipssim"
1826 @item
1827 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1828 @end itemize
1829
1830 The generic emulation is supported by Debian 'Etch' and is able to
1831 install Debian into a virtual disk image. The following devices are
1832 emulated:
1833
1834 @itemize @minus
1835 @item
1836 A range of MIPS CPUs, default is the 24Kf
1837 @item
1838 PC style serial port
1839 @item
1840 PC style IDE disk
1841 @item
1842 NE2000 network card
1843 @end itemize
1844
1845 The Malta emulation supports the following devices:
1846
1847 @itemize @minus
1848 @item
1849 Core board with MIPS 24Kf CPU and Galileo system controller
1850 @item
1851 PIIX4 PCI/USB/SMbus controller
1852 @item
1853 The Multi-I/O chip's serial device
1854 @item
1855 PCI network cards (PCnet32 and others)
1856 @item
1857 Malta FPGA serial device
1858 @item
1859 Cirrus (default) or any other PCI VGA graphics card
1860 @end itemize
1861
1862 The ACER Pica emulation supports:
1863
1864 @itemize @minus
1865 @item
1866 MIPS R4000 CPU
1867 @item
1868 PC-style IRQ and DMA controllers
1869 @item
1870 PC Keyboard
1871 @item
1872 IDE controller
1873 @end itemize
1874
1875 The mipssim pseudo board emulation provides an environment similar
1876 to what the proprietary MIPS emulator uses for running Linux.
1877 It supports:
1878
1879 @itemize @minus
1880 @item
1881 A range of MIPS CPUs, default is the 24Kf
1882 @item
1883 PC style serial port
1884 @item
1885 MIPSnet network emulation
1886 @end itemize
1887
1888 The MIPS Magnum R4000 emulation supports:
1889
1890 @itemize @minus
1891 @item
1892 MIPS R4000 CPU
1893 @item
1894 PC-style IRQ controller
1895 @item
1896 PC Keyboard
1897 @item
1898 SCSI controller
1899 @item
1900 G364 framebuffer
1901 @end itemize
1902
1903
1904 @node ARM System emulator
1905 @section ARM System emulator
1906 @cindex system emulation (ARM)
1907
1908 Use the executable @file{qemu-system-arm} to simulate a ARM
1909 machine. The ARM Integrator/CP board is emulated with the following
1910 devices:
1911
1912 @itemize @minus
1913 @item
1914 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1915 @item
1916 Two PL011 UARTs
1917 @item
1918 SMC 91c111 Ethernet adapter
1919 @item
1920 PL110 LCD controller
1921 @item
1922 PL050 KMI with PS/2 keyboard and mouse.
1923 @item
1924 PL181 MultiMedia Card Interface with SD card.
1925 @end itemize
1926
1927 The ARM Versatile baseboard is emulated with the following devices:
1928
1929 @itemize @minus
1930 @item
1931 ARM926E, ARM1136 or Cortex-A8 CPU
1932 @item
1933 PL190 Vectored Interrupt Controller
1934 @item
1935 Four PL011 UARTs
1936 @item
1937 SMC 91c111 Ethernet adapter
1938 @item
1939 PL110 LCD controller
1940 @item
1941 PL050 KMI with PS/2 keyboard and mouse.
1942 @item
1943 PCI host bridge. Note the emulated PCI bridge only provides access to
1944 PCI memory space. It does not provide access to PCI IO space.
1945 This means some devices (eg. ne2k_pci NIC) are not usable, and others
1946 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1947 mapped control registers.
1948 @item
1949 PCI OHCI USB controller.
1950 @item
1951 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1952 @item
1953 PL181 MultiMedia Card Interface with SD card.
1954 @end itemize
1955
1956 Several variants of the ARM RealView baseboard are emulated,
1957 including the EB, PB-A8 and PBX-A9. Due to interactions with the
1958 bootloader, only certain Linux kernel configurations work out
1959 of the box on these boards.
1960
1961 Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1962 enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
1963 should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1964 disabled and expect 1024M RAM.
1965
1966 The following devices are emulated:
1967
1968 @itemize @minus
1969 @item
1970 ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
1971 @item
1972 ARM AMBA Generic/Distributed Interrupt Controller
1973 @item
1974 Four PL011 UARTs
1975 @item
1976 SMC 91c111 or SMSC LAN9118 Ethernet adapter
1977 @item
1978 PL110 LCD controller
1979 @item
1980 PL050 KMI with PS/2 keyboard and mouse
1981 @item
1982 PCI host bridge
1983 @item
1984 PCI OHCI USB controller
1985 @item
1986 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1987 @item
1988 PL181 MultiMedia Card Interface with SD card.
1989 @end itemize
1990
1991 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1992 and "Terrier") emulation includes the following peripherals:
1993
1994 @itemize @minus
1995 @item
1996 Intel PXA270 System-on-chip (ARM V5TE core)
1997 @item
1998 NAND Flash memory
1999 @item
2000 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2001 @item
2002 On-chip OHCI USB controller
2003 @item
2004 On-chip LCD controller
2005 @item
2006 On-chip Real Time Clock
2007 @item
2008 TI ADS7846 touchscreen controller on SSP bus
2009 @item
2010 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2011 @item
2012 GPIO-connected keyboard controller and LEDs
2013 @item
2014 Secure Digital card connected to PXA MMC/SD host
2015 @item
2016 Three on-chip UARTs
2017 @item
2018 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2019 @end itemize
2020
2021 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2022 following elements:
2023
2024 @itemize @minus
2025 @item
2026 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2027 @item
2028 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2029 @item
2030 On-chip LCD controller
2031 @item
2032 On-chip Real Time Clock
2033 @item
2034 TI TSC2102i touchscreen controller / analog-digital converter / Audio
2035 CODEC, connected through MicroWire and I@math{^2}S busses
2036 @item
2037 GPIO-connected matrix keypad
2038 @item
2039 Secure Digital card connected to OMAP MMC/SD host
2040 @item
2041 Three on-chip UARTs
2042 @end itemize
2043
2044 Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2045 emulation supports the following elements:
2046
2047 @itemize @minus
2048 @item
2049 Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2050 @item
2051 RAM and non-volatile OneNAND Flash memories
2052 @item
2053 Display connected to EPSON remote framebuffer chip and OMAP on-chip
2054 display controller and a LS041y3 MIPI DBI-C controller
2055 @item
2056 TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2057 driven through SPI bus
2058 @item
2059 National Semiconductor LM8323-controlled qwerty keyboard driven
2060 through I@math{^2}C bus
2061 @item
2062 Secure Digital card connected to OMAP MMC/SD host
2063 @item
2064 Three OMAP on-chip UARTs and on-chip STI debugging console
2065 @item
2066 A Bluetooth(R) transceiver and HCI connected to an UART
2067 @item
2068 Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2069 TUSB6010 chip - only USB host mode is supported
2070 @item
2071 TI TMP105 temperature sensor driven through I@math{^2}C bus
2072 @item
2073 TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2074 @item
2075 Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2076 through CBUS
2077 @end itemize
2078
2079 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2080 devices:
2081
2082 @itemize @minus
2083 @item
2084 Cortex-M3 CPU core.
2085 @item
2086 64k Flash and 8k SRAM.
2087 @item
2088 Timers, UARTs, ADC and I@math{^2}C interface.
2089 @item
2090 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2091 @end itemize
2092
2093 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2094 devices:
2095
2096 @itemize @minus
2097 @item
2098 Cortex-M3 CPU core.
2099 @item
2100 256k Flash and 64k SRAM.
2101 @item
2102 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2103 @item
2104 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2105 @end itemize
2106
2107 The Freecom MusicPal internet radio emulation includes the following
2108 elements:
2109
2110 @itemize @minus
2111 @item
2112 Marvell MV88W8618 ARM core.
2113 @item
2114 32 MB RAM, 256 KB SRAM, 8 MB flash.
2115 @item
2116 Up to 2 16550 UARTs
2117 @item
2118 MV88W8xx8 Ethernet controller
2119 @item
2120 MV88W8618 audio controller, WM8750 CODEC and mixer
2121 @item
2122 128×64 display with brightness control
2123 @item
2124 2 buttons, 2 navigation wheels with button function
2125 @end itemize
2126
2127 The Siemens SX1 models v1 and v2 (default) basic emulation.
2128 The emulation includes the following elements:
2129
2130 @itemize @minus
2131 @item
2132 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2133 @item
2134 ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2135 V1
2136 1 Flash of 16MB and 1 Flash of 8MB
2137 V2
2138 1 Flash of 32MB
2139 @item
2140 On-chip LCD controller
2141 @item
2142 On-chip Real Time Clock
2143 @item
2144 Secure Digital card connected to OMAP MMC/SD host
2145 @item
2146 Three on-chip UARTs
2147 @end itemize
2148
2149 A Linux 2.6 test image is available on the QEMU web site. More
2150 information is available in the QEMU mailing-list archive.
2151
2152 @c man begin OPTIONS
2153
2154 The following options are specific to the ARM emulation:
2155
2156 @table @option
2157
2158 @item -semihosting
2159 Enable semihosting syscall emulation.
2160
2161 On ARM this implements the "Angel" interface.
2162
2163 Note that this allows guest direct access to the host filesystem,
2164 so should only be used with trusted guest OS.
2165
2166 @end table
2167
2168 @node ColdFire System emulator
2169 @section ColdFire System emulator
2170 @cindex system emulation (ColdFire)
2171 @cindex system emulation (M68K)
2172
2173 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2174 The emulator is able to boot a uClinux kernel.
2175
2176 The M5208EVB emulation includes the following devices:
2177
2178 @itemize @minus
2179 @item
2180 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2181 @item
2182 Three Two on-chip UARTs.
2183 @item
2184 Fast Ethernet Controller (FEC)
2185 @end itemize
2186
2187 The AN5206 emulation includes the following devices:
2188
2189 @itemize @minus
2190 @item
2191 MCF5206 ColdFire V2 Microprocessor.
2192 @item
2193 Two on-chip UARTs.
2194 @end itemize
2195
2196 @c man begin OPTIONS
2197
2198 The following options are specific to the ColdFire emulation:
2199
2200 @table @option
2201
2202 @item -semihosting
2203 Enable semihosting syscall emulation.
2204
2205 On M68K this implements the "ColdFire GDB" interface used by libgloss.
2206
2207 Note that this allows guest direct access to the host filesystem,
2208 so should only be used with trusted guest OS.
2209
2210 @end table
2211
2212 @node Cris System emulator
2213 @section Cris System emulator
2214 @cindex system emulation (Cris)
2215
2216 TODO
2217
2218 @node Microblaze System emulator
2219 @section Microblaze System emulator
2220 @cindex system emulation (Microblaze)
2221
2222 TODO
2223
2224 @node SH4 System emulator
2225 @section SH4 System emulator
2226 @cindex system emulation (SH4)
2227
2228 TODO
2229
2230 @node Xtensa System emulator
2231 @section Xtensa System emulator
2232 @cindex system emulation (Xtensa)
2233
2234 Two executables cover simulation of both Xtensa endian options,
2235 @file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2236 Two different machine types are emulated:
2237
2238 @itemize @minus
2239 @item
2240 Xtensa emulator pseudo board "sim"
2241 @item
2242 Avnet LX60/LX110/LX200 board
2243 @end itemize
2244
2245 The sim pseudo board emulation provides an environment similar
2246 to one provided by the proprietary Tensilica ISS.
2247 It supports:
2248
2249 @itemize @minus
2250 @item
2251 A range of Xtensa CPUs, default is the DC232B
2252 @item
2253 Console and filesystem access via semihosting calls
2254 @end itemize
2255
2256 The Avnet LX60/LX110/LX200 emulation supports:
2257
2258 @itemize @minus
2259 @item
2260 A range of Xtensa CPUs, default is the DC232B
2261 @item
2262 16550 UART
2263 @item
2264 OpenCores 10/100 Mbps Ethernet MAC
2265 @end itemize
2266
2267 @c man begin OPTIONS
2268
2269 The following options are specific to the Xtensa emulation:
2270
2271 @table @option
2272
2273 @item -semihosting
2274 Enable semihosting syscall emulation.
2275
2276 Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2277 Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2278
2279 Note that this allows guest direct access to the host filesystem,
2280 so should only be used with trusted guest OS.
2281
2282 @end table
2283 @node QEMU User space emulator
2284 @chapter QEMU User space emulator
2285
2286 @menu
2287 * Supported Operating Systems ::
2288 * Linux User space emulator::
2289 * BSD User space emulator ::
2290 @end menu
2291
2292 @node Supported Operating Systems
2293 @section Supported Operating Systems
2294
2295 The following OS are supported in user space emulation:
2296
2297 @itemize @minus
2298 @item
2299 Linux (referred as qemu-linux-user)
2300 @item
2301 BSD (referred as qemu-bsd-user)
2302 @end itemize
2303
2304 @node Linux User space emulator
2305 @section Linux User space emulator
2306
2307 @menu
2308 * Quick Start::
2309 * Wine launch::
2310 * Command line options::
2311 * Other binaries::
2312 @end menu
2313
2314 @node Quick Start
2315 @subsection Quick Start
2316
2317 In order to launch a Linux process, QEMU needs the process executable
2318 itself and all the target (x86) dynamic libraries used by it.
2319
2320 @itemize
2321
2322 @item On x86, you can just try to launch any process by using the native
2323 libraries:
2324
2325 @example
2326 qemu-i386 -L / /bin/ls
2327 @end example
2328
2329 @code{-L /} tells that the x86 dynamic linker must be searched with a
2330 @file{/} prefix.
2331
2332 @item Since QEMU is also a linux process, you can launch QEMU with
2333 QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2334
2335 @example
2336 qemu-i386 -L / qemu-i386 -L / /bin/ls
2337 @end example
2338
2339 @item On non x86 CPUs, you need first to download at least an x86 glibc
2340 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2341 @code{LD_LIBRARY_PATH} is not set:
2342
2343 @example
2344 unset LD_LIBRARY_PATH
2345 @end example
2346
2347 Then you can launch the precompiled @file{ls} x86 executable:
2348
2349 @example
2350 qemu-i386 tests/i386/ls
2351 @end example
2352 You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2353 QEMU is automatically launched by the Linux kernel when you try to
2354 launch x86 executables. It requires the @code{binfmt_misc} module in the
2355 Linux kernel.
2356
2357 @item The x86 version of QEMU is also included. You can try weird things such as:
2358 @example
2359 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2360 /usr/local/qemu-i386/bin/ls-i386
2361 @end example
2362
2363 @end itemize
2364
2365 @node Wine launch
2366 @subsection Wine launch
2367
2368 @itemize
2369
2370 @item Ensure that you have a working QEMU with the x86 glibc
2371 distribution (see previous section). In order to verify it, you must be
2372 able to do:
2373
2374 @example
2375 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2376 @end example
2377
2378 @item Download the binary x86 Wine install
2379 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2380
2381 @item Configure Wine on your account. Look at the provided script
2382 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2383 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2384
2385 @item Then you can try the example @file{putty.exe}:
2386
2387 @example
2388 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2389 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2390 @end example
2391
2392 @end itemize
2393
2394 @node Command line options
2395 @subsection Command line options
2396
2397 @example
2398 usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2399 @end example
2400
2401 @table @option
2402 @item -h
2403 Print the help
2404 @item -L path
2405 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2406 @item -s size
2407 Set the x86 stack size in bytes (default=524288)
2408 @item -cpu model
2409 Select CPU model (-cpu help for list and additional feature selection)
2410 @item -ignore-environment
2411 Start with an empty environment. Without this option,
2412 the initial environment is a copy of the caller's environment.
2413 @item -E @var{var}=@var{value}
2414 Set environment @var{var} to @var{value}.
2415 @item -U @var{var}
2416 Remove @var{var} from the environment.
2417 @item -B offset
2418 Offset guest address by the specified number of bytes. This is useful when
2419 the address region required by guest applications is reserved on the host.
2420 This option is currently only supported on some hosts.
2421 @item -R size
2422 Pre-allocate a guest virtual address space of the given size (in bytes).
2423 "G", "M", and "k" suffixes may be used when specifying the size.
2424 @end table
2425
2426 Debug options:
2427
2428 @table @option
2429 @item -d
2430 Activate log (logfile=/tmp/qemu.log)
2431 @item -p pagesize
2432 Act as if the host page size was 'pagesize' bytes
2433 @item -g port
2434 Wait gdb connection to port
2435 @item -singlestep
2436 Run the emulation in single step mode.
2437 @end table
2438
2439 Environment variables:
2440
2441 @table @env
2442 @item QEMU_STRACE
2443 Print system calls and arguments similar to the 'strace' program
2444 (NOTE: the actual 'strace' program will not work because the user
2445 space emulator hasn't implemented ptrace). At the moment this is
2446 incomplete. All system calls that don't have a specific argument
2447 format are printed with information for six arguments. Many
2448 flag-style arguments don't have decoders and will show up as numbers.
2449 @end table
2450
2451 @node Other binaries
2452 @subsection Other binaries
2453
2454 @cindex user mode (Alpha)
2455 @command{qemu-alpha} TODO.
2456
2457 @cindex user mode (ARM)
2458 @command{qemu-armeb} TODO.
2459
2460 @cindex user mode (ARM)
2461 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2462 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2463 configurations), and arm-uclinux bFLT format binaries.
2464
2465 @cindex user mode (ColdFire)
2466 @cindex user mode (M68K)
2467 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2468 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2469 coldfire uClinux bFLT format binaries.
2470
2471 The binary format is detected automatically.
2472
2473 @cindex user mode (Cris)
2474 @command{qemu-cris} TODO.
2475
2476 @cindex user mode (i386)
2477 @command{qemu-i386} TODO.
2478 @command{qemu-x86_64} TODO.
2479
2480 @cindex user mode (Microblaze)
2481 @command{qemu-microblaze} TODO.
2482
2483 @cindex user mode (MIPS)
2484 @command{qemu-mips} TODO.
2485 @command{qemu-mipsel} TODO.
2486
2487 @cindex user mode (PowerPC)
2488 @command{qemu-ppc64abi32} TODO.
2489 @command{qemu-ppc64} TODO.
2490 @command{qemu-ppc} TODO.
2491
2492 @cindex user mode (SH4)
2493 @command{qemu-sh4eb} TODO.
2494 @command{qemu-sh4} TODO.
2495
2496 @cindex user mode (SPARC)
2497 @command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2498
2499 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2500 (Sparc64 CPU, 32 bit ABI).
2501
2502 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2503 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2504
2505 @node BSD User space emulator
2506 @section BSD User space emulator
2507
2508 @menu
2509 * BSD Status::
2510 * BSD Quick Start::
2511 * BSD Command line options::
2512 @end menu
2513
2514 @node BSD Status
2515 @subsection BSD Status
2516
2517 @itemize @minus
2518 @item
2519 target Sparc64 on Sparc64: Some trivial programs work.
2520 @end itemize
2521
2522 @node BSD Quick Start
2523 @subsection Quick Start
2524
2525 In order to launch a BSD process, QEMU needs the process executable
2526 itself and all the target dynamic libraries used by it.
2527
2528 @itemize
2529
2530 @item On Sparc64, you can just try to launch any process by using the native
2531 libraries:
2532
2533 @example
2534 qemu-sparc64 /bin/ls
2535 @end example
2536
2537 @end itemize
2538
2539 @node BSD Command line options
2540 @subsection Command line options
2541
2542 @example
2543 usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2544 @end example
2545
2546 @table @option
2547 @item -h
2548 Print the help
2549 @item -L path
2550 Set the library root path (default=/)
2551 @item -s size
2552 Set the stack size in bytes (default=524288)
2553 @item -ignore-environment
2554 Start with an empty environment. Without this option,
2555 the initial environment is a copy of the caller's environment.
2556 @item -E @var{var}=@var{value}
2557 Set environment @var{var} to @var{value}.
2558 @item -U @var{var}
2559 Remove @var{var} from the environment.
2560 @item -bsd type
2561 Set the type of the emulated BSD Operating system. Valid values are
2562 FreeBSD, NetBSD and OpenBSD (default).
2563 @end table
2564
2565 Debug options:
2566
2567 @table @option
2568 @item -d
2569 Activate log (logfile=/tmp/qemu.log)
2570 @item -p pagesize
2571 Act as if the host page size was 'pagesize' bytes
2572 @item -singlestep
2573 Run the emulation in single step mode.
2574 @end table
2575
2576 @node compilation
2577 @chapter Compilation from the sources
2578
2579 @menu
2580 * Linux/Unix::
2581 * Windows::
2582 * Cross compilation for Windows with Linux::
2583 * Mac OS X::
2584 * Make targets::
2585 @end menu
2586
2587 @node Linux/Unix
2588 @section Linux/Unix
2589
2590 @subsection Compilation
2591
2592 First you must decompress the sources:
2593 @example
2594 cd /tmp
2595 tar zxvf qemu-x.y.z.tar.gz
2596 cd qemu-x.y.z
2597 @end example
2598
2599 Then you configure QEMU and build it (usually no options are needed):
2600 @example
2601 ./configure
2602 make
2603 @end example
2604
2605 Then type as root user:
2606 @example
2607 make install
2608 @end example
2609 to install QEMU in @file{/usr/local}.
2610
2611 @node Windows
2612 @section Windows
2613
2614 @itemize
2615 @item Install the current versions of MSYS and MinGW from
2616 @url{http://www.mingw.org/}. You can find detailed installation
2617 instructions in the download section and the FAQ.
2618
2619 @item Download
2620 the MinGW development library of SDL 1.2.x
2621 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2622 @url{http://www.libsdl.org}. Unpack it in a temporary place and
2623 edit the @file{sdl-config} script so that it gives the
2624 correct SDL directory when invoked.
2625
2626 @item Install the MinGW version of zlib and make sure
2627 @file{zlib.h} and @file{libz.dll.a} are in
2628 MinGW's default header and linker search paths.
2629
2630 @item Extract the current version of QEMU.
2631
2632 @item Start the MSYS shell (file @file{msys.bat}).
2633
2634 @item Change to the QEMU directory. Launch @file{./configure} and
2635 @file{make}. If you have problems using SDL, verify that
2636 @file{sdl-config} can be launched from the MSYS command line.
2637
2638 @item You can install QEMU in @file{Program Files/QEMU} by typing
2639 @file{make install}. Don't forget to copy @file{SDL.dll} in
2640 @file{Program Files/QEMU}.
2641
2642 @end itemize
2643
2644 @node Cross compilation for Windows with Linux
2645 @section Cross compilation for Windows with Linux
2646
2647 @itemize
2648 @item
2649 Install the MinGW cross compilation tools available at
2650 @url{http://www.mingw.org/}.
2651
2652 @item Download
2653 the MinGW development library of SDL 1.2.x
2654 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2655 @url{http://www.libsdl.org}. Unpack it in a temporary place and
2656 edit the @file{sdl-config} script so that it gives the
2657 correct SDL directory when invoked. Set up the @code{PATH} environment
2658 variable so that @file{sdl-config} can be launched by
2659 the QEMU configuration script.
2660
2661 @item Install the MinGW version of zlib and make sure
2662 @file{zlib.h} and @file{libz.dll.a} are in
2663 MinGW's default header and linker search paths.
2664
2665 @item
2666 Configure QEMU for Windows cross compilation:
2667 @example
2668 PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2669 @end example
2670 The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2671 MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2672 We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
2673 use --cross-prefix to specify the name of the cross compiler.
2674 You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
2675
2676 Under Fedora Linux, you can run:
2677 @example
2678 yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2679 @end example
2680 to get a suitable cross compilation environment.
2681
2682 @item You can install QEMU in the installation directory by typing
2683 @code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2684 installation directory.
2685
2686 @end itemize
2687
2688 Wine can be used to launch the resulting qemu-system-i386.exe
2689 and all other qemu-system-@var{target}.exe compiled for Win32.
2690
2691 @node Mac OS X
2692 @section Mac OS X
2693
2694 The Mac OS X patches are not fully merged in QEMU, so you should look
2695 at the QEMU mailing list archive to have all the necessary
2696 information.
2697
2698 @node Make targets
2699 @section Make targets
2700
2701 @table @code
2702
2703 @item make
2704 @item make all
2705 Make everything which is typically needed.
2706
2707 @item install
2708 TODO
2709
2710 @item install-doc
2711 TODO
2712
2713 @item make clean
2714 Remove most files which were built during make.
2715
2716 @item make distclean
2717 Remove everything which was built during make.
2718
2719 @item make dvi
2720 @item make html
2721 @item make info
2722 @item make pdf
2723 Create documentation in dvi, html, info or pdf format.
2724
2725 @item make cscope
2726 TODO
2727
2728 @item make defconfig
2729 (Re-)create some build configuration files.
2730 User made changes will be overwritten.
2731
2732 @item tar
2733 @item tarbin
2734 TODO
2735
2736 @end table
2737
2738 @node License
2739 @appendix License
2740
2741 QEMU is a trademark of Fabrice Bellard.
2742
2743 QEMU is released under the GNU General Public License (TODO: add link).
2744 Parts of QEMU have specific licenses, see file LICENSE.
2745
2746 TODO (refer to file LICENSE, include it, include the GPL?)
2747
2748 @node Index
2749 @appendix Index
2750 @menu
2751 * Concept Index::
2752 * Function Index::
2753 * Keystroke Index::
2754 * Program Index::
2755 * Data Type Index::
2756 * Variable Index::
2757 @end menu
2758
2759 @node Concept Index
2760 @section Concept Index
2761 This is the main index. Should we combine all keywords in one index? TODO
2762 @printindex cp
2763
2764 @node Function Index
2765 @section Function Index
2766 This index could be used for command line options and monitor functions.
2767 @printindex fn
2768
2769 @node Keystroke Index
2770 @section Keystroke Index
2771
2772 This is a list of all keystrokes which have a special function
2773 in system emulation.
2774
2775 @printindex ky
2776
2777 @node Program Index
2778 @section Program Index
2779 @printindex pg
2780
2781 @node Data Type Index
2782 @section Data Type Index
2783
2784 This index could be used for qdev device names and options.
2785
2786 @printindex tp
2787
2788 @node Variable Index
2789 @section Variable Index
2790 @printindex vr
2791
2792 @bye