]> git.proxmox.com Git - qemu.git/blob - qemu-timer.c
Merge remote branch 'mst/for_anthony' into staging
[qemu.git] / qemu-timer.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "sysemu.h"
26 #include "net.h"
27 #include "monitor.h"
28 #include "console.h"
29
30 #include "hw/hw.h"
31
32 #include <unistd.h>
33 #include <fcntl.h>
34 #include <time.h>
35 #include <errno.h>
36 #include <sys/time.h>
37 #include <signal.h>
38 #ifdef __FreeBSD__
39 #include <sys/param.h>
40 #endif
41
42 #ifdef __linux__
43 #include <sys/ioctl.h>
44 #include <linux/rtc.h>
45 /* For the benefit of older linux systems which don't supply it,
46 we use a local copy of hpet.h. */
47 /* #include <linux/hpet.h> */
48 #include "hpet.h"
49 #endif
50
51 #ifdef _WIN32
52 #include <windows.h>
53 #include <mmsystem.h>
54 #endif
55
56 #include "qemu-timer.h"
57
58 /* Conversion factor from emulated instructions to virtual clock ticks. */
59 int icount_time_shift;
60 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
61 #define MAX_ICOUNT_SHIFT 10
62 /* Compensate for varying guest execution speed. */
63 int64_t qemu_icount_bias;
64 static QEMUTimer *icount_rt_timer;
65 static QEMUTimer *icount_vm_timer;
66
67 /***********************************************************/
68 /* guest cycle counter */
69
70 typedef struct TimersState {
71 int64_t cpu_ticks_prev;
72 int64_t cpu_ticks_offset;
73 int64_t cpu_clock_offset;
74 int32_t cpu_ticks_enabled;
75 int64_t dummy;
76 } TimersState;
77
78 TimersState timers_state;
79
80 /* return the host CPU cycle counter and handle stop/restart */
81 int64_t cpu_get_ticks(void)
82 {
83 if (use_icount) {
84 return cpu_get_icount();
85 }
86 if (!timers_state.cpu_ticks_enabled) {
87 return timers_state.cpu_ticks_offset;
88 } else {
89 int64_t ticks;
90 ticks = cpu_get_real_ticks();
91 if (timers_state.cpu_ticks_prev > ticks) {
92 /* Note: non increasing ticks may happen if the host uses
93 software suspend */
94 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
95 }
96 timers_state.cpu_ticks_prev = ticks;
97 return ticks + timers_state.cpu_ticks_offset;
98 }
99 }
100
101 /* return the host CPU monotonic timer and handle stop/restart */
102 static int64_t cpu_get_clock(void)
103 {
104 int64_t ti;
105 if (!timers_state.cpu_ticks_enabled) {
106 return timers_state.cpu_clock_offset;
107 } else {
108 ti = get_clock();
109 return ti + timers_state.cpu_clock_offset;
110 }
111 }
112
113 static int64_t qemu_icount_delta(void)
114 {
115 if (!use_icount) {
116 return 5000 * (int64_t) 1000000;
117 } else if (use_icount == 1) {
118 /* When not using an adaptive execution frequency
119 we tend to get badly out of sync with real time,
120 so just delay for a reasonable amount of time. */
121 return 0;
122 } else {
123 return cpu_get_icount() - cpu_get_clock();
124 }
125 }
126
127 /* enable cpu_get_ticks() */
128 void cpu_enable_ticks(void)
129 {
130 if (!timers_state.cpu_ticks_enabled) {
131 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
132 timers_state.cpu_clock_offset -= get_clock();
133 timers_state.cpu_ticks_enabled = 1;
134 }
135 }
136
137 /* disable cpu_get_ticks() : the clock is stopped. You must not call
138 cpu_get_ticks() after that. */
139 void cpu_disable_ticks(void)
140 {
141 if (timers_state.cpu_ticks_enabled) {
142 timers_state.cpu_ticks_offset = cpu_get_ticks();
143 timers_state.cpu_clock_offset = cpu_get_clock();
144 timers_state.cpu_ticks_enabled = 0;
145 }
146 }
147
148 /***********************************************************/
149 /* timers */
150
151 #define QEMU_CLOCK_REALTIME 0
152 #define QEMU_CLOCK_VIRTUAL 1
153 #define QEMU_CLOCK_HOST 2
154
155 struct QEMUClock {
156 int type;
157 int enabled;
158 /* XXX: add frequency */
159 };
160
161 struct QEMUTimer {
162 QEMUClock *clock;
163 int64_t expire_time;
164 QEMUTimerCB *cb;
165 void *opaque;
166 struct QEMUTimer *next;
167 };
168
169 struct qemu_alarm_timer {
170 char const *name;
171 int (*start)(struct qemu_alarm_timer *t);
172 void (*stop)(struct qemu_alarm_timer *t);
173 void (*rearm)(struct qemu_alarm_timer *t);
174 void *priv;
175
176 char expired;
177 char pending;
178 };
179
180 static struct qemu_alarm_timer *alarm_timer;
181
182 int qemu_alarm_pending(void)
183 {
184 return alarm_timer->pending;
185 }
186
187 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
188 {
189 return !!t->rearm;
190 }
191
192 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
193 {
194 if (!alarm_has_dynticks(t))
195 return;
196
197 t->rearm(t);
198 }
199
200 /* TODO: MIN_TIMER_REARM_US should be optimized */
201 #define MIN_TIMER_REARM_US 250
202
203 #ifdef _WIN32
204
205 struct qemu_alarm_win32 {
206 MMRESULT timerId;
207 unsigned int period;
208 } alarm_win32_data = {0, 0};
209
210 static int win32_start_timer(struct qemu_alarm_timer *t);
211 static void win32_stop_timer(struct qemu_alarm_timer *t);
212 static void win32_rearm_timer(struct qemu_alarm_timer *t);
213
214 #else
215
216 static int unix_start_timer(struct qemu_alarm_timer *t);
217 static void unix_stop_timer(struct qemu_alarm_timer *t);
218
219 #ifdef __linux__
220
221 static int dynticks_start_timer(struct qemu_alarm_timer *t);
222 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
223 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
224
225 static int hpet_start_timer(struct qemu_alarm_timer *t);
226 static void hpet_stop_timer(struct qemu_alarm_timer *t);
227
228 static int rtc_start_timer(struct qemu_alarm_timer *t);
229 static void rtc_stop_timer(struct qemu_alarm_timer *t);
230
231 #endif /* __linux__ */
232
233 #endif /* _WIN32 */
234
235 /* Correlation between real and virtual time is always going to be
236 fairly approximate, so ignore small variation.
237 When the guest is idle real and virtual time will be aligned in
238 the IO wait loop. */
239 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
240
241 static void icount_adjust(void)
242 {
243 int64_t cur_time;
244 int64_t cur_icount;
245 int64_t delta;
246 static int64_t last_delta;
247 /* If the VM is not running, then do nothing. */
248 if (!vm_running)
249 return;
250
251 cur_time = cpu_get_clock();
252 cur_icount = qemu_get_clock(vm_clock);
253 delta = cur_icount - cur_time;
254 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
255 if (delta > 0
256 && last_delta + ICOUNT_WOBBLE < delta * 2
257 && icount_time_shift > 0) {
258 /* The guest is getting too far ahead. Slow time down. */
259 icount_time_shift--;
260 }
261 if (delta < 0
262 && last_delta - ICOUNT_WOBBLE > delta * 2
263 && icount_time_shift < MAX_ICOUNT_SHIFT) {
264 /* The guest is getting too far behind. Speed time up. */
265 icount_time_shift++;
266 }
267 last_delta = delta;
268 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
269 }
270
271 static void icount_adjust_rt(void * opaque)
272 {
273 qemu_mod_timer(icount_rt_timer,
274 qemu_get_clock(rt_clock) + 1000);
275 icount_adjust();
276 }
277
278 static void icount_adjust_vm(void * opaque)
279 {
280 qemu_mod_timer(icount_vm_timer,
281 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
282 icount_adjust();
283 }
284
285 int64_t qemu_icount_round(int64_t count)
286 {
287 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
288 }
289
290 static struct qemu_alarm_timer alarm_timers[] = {
291 #ifndef _WIN32
292 #ifdef __linux__
293 {"dynticks", dynticks_start_timer,
294 dynticks_stop_timer, dynticks_rearm_timer, NULL},
295 /* HPET - if available - is preferred */
296 {"hpet", hpet_start_timer, hpet_stop_timer, NULL, NULL},
297 /* ...otherwise try RTC */
298 {"rtc", rtc_start_timer, rtc_stop_timer, NULL, NULL},
299 #endif
300 {"unix", unix_start_timer, unix_stop_timer, NULL, NULL},
301 #else
302 {"dynticks", win32_start_timer,
303 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
304 {"win32", win32_start_timer,
305 win32_stop_timer, NULL, &alarm_win32_data},
306 #endif
307 {NULL, }
308 };
309
310 static void show_available_alarms(void)
311 {
312 int i;
313
314 printf("Available alarm timers, in order of precedence:\n");
315 for (i = 0; alarm_timers[i].name; i++)
316 printf("%s\n", alarm_timers[i].name);
317 }
318
319 void configure_alarms(char const *opt)
320 {
321 int i;
322 int cur = 0;
323 int count = ARRAY_SIZE(alarm_timers) - 1;
324 char *arg;
325 char *name;
326 struct qemu_alarm_timer tmp;
327
328 if (!strcmp(opt, "?")) {
329 show_available_alarms();
330 exit(0);
331 }
332
333 arg = qemu_strdup(opt);
334
335 /* Reorder the array */
336 name = strtok(arg, ",");
337 while (name) {
338 for (i = 0; i < count && alarm_timers[i].name; i++) {
339 if (!strcmp(alarm_timers[i].name, name))
340 break;
341 }
342
343 if (i == count) {
344 fprintf(stderr, "Unknown clock %s\n", name);
345 goto next;
346 }
347
348 if (i < cur)
349 /* Ignore */
350 goto next;
351
352 /* Swap */
353 tmp = alarm_timers[i];
354 alarm_timers[i] = alarm_timers[cur];
355 alarm_timers[cur] = tmp;
356
357 cur++;
358 next:
359 name = strtok(NULL, ",");
360 }
361
362 qemu_free(arg);
363
364 if (cur) {
365 /* Disable remaining timers */
366 for (i = cur; i < count; i++)
367 alarm_timers[i].name = NULL;
368 } else {
369 show_available_alarms();
370 exit(1);
371 }
372 }
373
374 #define QEMU_NUM_CLOCKS 3
375
376 QEMUClock *rt_clock;
377 QEMUClock *vm_clock;
378 QEMUClock *host_clock;
379
380 static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
381
382 static QEMUClock *qemu_new_clock(int type)
383 {
384 QEMUClock *clock;
385 clock = qemu_mallocz(sizeof(QEMUClock));
386 clock->type = type;
387 clock->enabled = 1;
388 return clock;
389 }
390
391 void qemu_clock_enable(QEMUClock *clock, int enabled)
392 {
393 clock->enabled = enabled;
394 }
395
396 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
397 {
398 QEMUTimer *ts;
399
400 ts = qemu_mallocz(sizeof(QEMUTimer));
401 ts->clock = clock;
402 ts->cb = cb;
403 ts->opaque = opaque;
404 return ts;
405 }
406
407 void qemu_free_timer(QEMUTimer *ts)
408 {
409 qemu_free(ts);
410 }
411
412 /* stop a timer, but do not dealloc it */
413 void qemu_del_timer(QEMUTimer *ts)
414 {
415 QEMUTimer **pt, *t;
416
417 /* NOTE: this code must be signal safe because
418 qemu_timer_expired() can be called from a signal. */
419 pt = &active_timers[ts->clock->type];
420 for(;;) {
421 t = *pt;
422 if (!t)
423 break;
424 if (t == ts) {
425 *pt = t->next;
426 break;
427 }
428 pt = &t->next;
429 }
430 }
431
432 /* modify the current timer so that it will be fired when current_time
433 >= expire_time. The corresponding callback will be called. */
434 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
435 {
436 QEMUTimer **pt, *t;
437
438 qemu_del_timer(ts);
439
440 /* add the timer in the sorted list */
441 /* NOTE: this code must be signal safe because
442 qemu_timer_expired() can be called from a signal. */
443 pt = &active_timers[ts->clock->type];
444 for(;;) {
445 t = *pt;
446 if (!t)
447 break;
448 if (t->expire_time > expire_time)
449 break;
450 pt = &t->next;
451 }
452 ts->expire_time = expire_time;
453 ts->next = *pt;
454 *pt = ts;
455
456 /* Rearm if necessary */
457 if (pt == &active_timers[ts->clock->type]) {
458 if (!alarm_timer->pending) {
459 qemu_rearm_alarm_timer(alarm_timer);
460 }
461 /* Interrupt execution to force deadline recalculation. */
462 if (use_icount)
463 qemu_notify_event();
464 }
465 }
466
467 int qemu_timer_pending(QEMUTimer *ts)
468 {
469 QEMUTimer *t;
470 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
471 if (t == ts)
472 return 1;
473 }
474 return 0;
475 }
476
477 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
478 {
479 if (!timer_head)
480 return 0;
481 return (timer_head->expire_time <= current_time);
482 }
483
484 static void qemu_run_timers(QEMUClock *clock)
485 {
486 QEMUTimer **ptimer_head, *ts;
487 int64_t current_time;
488
489 if (!clock->enabled)
490 return;
491
492 current_time = qemu_get_clock (clock);
493 ptimer_head = &active_timers[clock->type];
494 for(;;) {
495 ts = *ptimer_head;
496 if (!ts || ts->expire_time > current_time)
497 break;
498 /* remove timer from the list before calling the callback */
499 *ptimer_head = ts->next;
500 ts->next = NULL;
501
502 /* run the callback (the timer list can be modified) */
503 ts->cb(ts->opaque);
504 }
505 }
506
507 int64_t qemu_get_clock(QEMUClock *clock)
508 {
509 switch(clock->type) {
510 case QEMU_CLOCK_REALTIME:
511 return get_clock() / 1000000;
512 default:
513 case QEMU_CLOCK_VIRTUAL:
514 if (use_icount) {
515 return cpu_get_icount();
516 } else {
517 return cpu_get_clock();
518 }
519 case QEMU_CLOCK_HOST:
520 return get_clock_realtime();
521 }
522 }
523
524 int64_t qemu_get_clock_ns(QEMUClock *clock)
525 {
526 switch(clock->type) {
527 case QEMU_CLOCK_REALTIME:
528 return get_clock();
529 default:
530 case QEMU_CLOCK_VIRTUAL:
531 if (use_icount) {
532 return cpu_get_icount();
533 } else {
534 return cpu_get_clock();
535 }
536 case QEMU_CLOCK_HOST:
537 return get_clock_realtime();
538 }
539 }
540
541 void init_clocks(void)
542 {
543 rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
544 vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
545 host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
546
547 rtc_clock = host_clock;
548 }
549
550 /* save a timer */
551 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
552 {
553 uint64_t expire_time;
554
555 if (qemu_timer_pending(ts)) {
556 expire_time = ts->expire_time;
557 } else {
558 expire_time = -1;
559 }
560 qemu_put_be64(f, expire_time);
561 }
562
563 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
564 {
565 uint64_t expire_time;
566
567 expire_time = qemu_get_be64(f);
568 if (expire_time != -1) {
569 qemu_mod_timer(ts, expire_time);
570 } else {
571 qemu_del_timer(ts);
572 }
573 }
574
575 static const VMStateDescription vmstate_timers = {
576 .name = "timer",
577 .version_id = 2,
578 .minimum_version_id = 1,
579 .minimum_version_id_old = 1,
580 .fields = (VMStateField []) {
581 VMSTATE_INT64(cpu_ticks_offset, TimersState),
582 VMSTATE_INT64(dummy, TimersState),
583 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
584 VMSTATE_END_OF_LIST()
585 }
586 };
587
588 void configure_icount(const char *option)
589 {
590 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
591 if (!option)
592 return;
593
594 if (strcmp(option, "auto") != 0) {
595 icount_time_shift = strtol(option, NULL, 0);
596 use_icount = 1;
597 return;
598 }
599
600 use_icount = 2;
601
602 /* 125MIPS seems a reasonable initial guess at the guest speed.
603 It will be corrected fairly quickly anyway. */
604 icount_time_shift = 3;
605
606 /* Have both realtime and virtual time triggers for speed adjustment.
607 The realtime trigger catches emulated time passing too slowly,
608 the virtual time trigger catches emulated time passing too fast.
609 Realtime triggers occur even when idle, so use them less frequently
610 than VM triggers. */
611 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
612 qemu_mod_timer(icount_rt_timer,
613 qemu_get_clock(rt_clock) + 1000);
614 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
615 qemu_mod_timer(icount_vm_timer,
616 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
617 }
618
619 void qemu_run_all_timers(void)
620 {
621 alarm_timer->pending = 0;
622
623 /* rearm timer, if not periodic */
624 if (alarm_timer->expired) {
625 alarm_timer->expired = 0;
626 qemu_rearm_alarm_timer(alarm_timer);
627 }
628
629 /* vm time timers */
630 if (vm_running) {
631 qemu_run_timers(vm_clock);
632 }
633
634 qemu_run_timers(rt_clock);
635 qemu_run_timers(host_clock);
636 }
637
638 #ifdef _WIN32
639 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
640 DWORD_PTR dwUser, DWORD_PTR dw1,
641 DWORD_PTR dw2)
642 #else
643 static void host_alarm_handler(int host_signum)
644 #endif
645 {
646 struct qemu_alarm_timer *t = alarm_timer;
647 if (!t)
648 return;
649
650 #if 0
651 #define DISP_FREQ 1000
652 {
653 static int64_t delta_min = INT64_MAX;
654 static int64_t delta_max, delta_cum, last_clock, delta, ti;
655 static int count;
656 ti = qemu_get_clock(vm_clock);
657 if (last_clock != 0) {
658 delta = ti - last_clock;
659 if (delta < delta_min)
660 delta_min = delta;
661 if (delta > delta_max)
662 delta_max = delta;
663 delta_cum += delta;
664 if (++count == DISP_FREQ) {
665 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
666 muldiv64(delta_min, 1000000, get_ticks_per_sec()),
667 muldiv64(delta_max, 1000000, get_ticks_per_sec()),
668 muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
669 (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
670 count = 0;
671 delta_min = INT64_MAX;
672 delta_max = 0;
673 delta_cum = 0;
674 }
675 }
676 last_clock = ti;
677 }
678 #endif
679 if (alarm_has_dynticks(t) ||
680 (!use_icount &&
681 qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL],
682 qemu_get_clock(vm_clock))) ||
683 qemu_timer_expired(active_timers[QEMU_CLOCK_REALTIME],
684 qemu_get_clock(rt_clock)) ||
685 qemu_timer_expired(active_timers[QEMU_CLOCK_HOST],
686 qemu_get_clock(host_clock))) {
687
688 t->expired = alarm_has_dynticks(t);
689 t->pending = 1;
690 qemu_notify_event();
691 }
692 }
693
694 int64_t qemu_next_deadline(void)
695 {
696 /* To avoid problems with overflow limit this to 2^32. */
697 int64_t delta = INT32_MAX;
698
699 if (active_timers[QEMU_CLOCK_VIRTUAL]) {
700 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
701 qemu_get_clock(vm_clock);
702 }
703 if (active_timers[QEMU_CLOCK_HOST]) {
704 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
705 qemu_get_clock(host_clock);
706 if (hdelta < delta)
707 delta = hdelta;
708 }
709
710 if (delta < 0)
711 delta = 0;
712
713 return delta;
714 }
715
716 #ifndef _WIN32
717
718 #if defined(__linux__)
719
720 #define RTC_FREQ 1024
721
722 static uint64_t qemu_next_deadline_dyntick(void)
723 {
724 int64_t delta;
725 int64_t rtdelta;
726
727 if (use_icount)
728 delta = INT32_MAX;
729 else
730 delta = (qemu_next_deadline() + 999) / 1000;
731
732 if (active_timers[QEMU_CLOCK_REALTIME]) {
733 rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time -
734 qemu_get_clock(rt_clock))*1000;
735 if (rtdelta < delta)
736 delta = rtdelta;
737 }
738
739 if (delta < MIN_TIMER_REARM_US)
740 delta = MIN_TIMER_REARM_US;
741
742 return delta;
743 }
744
745 static void enable_sigio_timer(int fd)
746 {
747 struct sigaction act;
748
749 /* timer signal */
750 sigfillset(&act.sa_mask);
751 act.sa_flags = 0;
752 act.sa_handler = host_alarm_handler;
753
754 sigaction(SIGIO, &act, NULL);
755 fcntl_setfl(fd, O_ASYNC);
756 fcntl(fd, F_SETOWN, getpid());
757 }
758
759 static int hpet_start_timer(struct qemu_alarm_timer *t)
760 {
761 struct hpet_info info;
762 int r, fd;
763
764 fd = qemu_open("/dev/hpet", O_RDONLY);
765 if (fd < 0)
766 return -1;
767
768 /* Set frequency */
769 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
770 if (r < 0) {
771 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
772 "error, but for better emulation accuracy type:\n"
773 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
774 goto fail;
775 }
776
777 /* Check capabilities */
778 r = ioctl(fd, HPET_INFO, &info);
779 if (r < 0)
780 goto fail;
781
782 /* Enable periodic mode */
783 r = ioctl(fd, HPET_EPI, 0);
784 if (info.hi_flags && (r < 0))
785 goto fail;
786
787 /* Enable interrupt */
788 r = ioctl(fd, HPET_IE_ON, 0);
789 if (r < 0)
790 goto fail;
791
792 enable_sigio_timer(fd);
793 t->priv = (void *)(long)fd;
794
795 return 0;
796 fail:
797 close(fd);
798 return -1;
799 }
800
801 static void hpet_stop_timer(struct qemu_alarm_timer *t)
802 {
803 int fd = (long)t->priv;
804
805 close(fd);
806 }
807
808 static int rtc_start_timer(struct qemu_alarm_timer *t)
809 {
810 int rtc_fd;
811 unsigned long current_rtc_freq = 0;
812
813 TFR(rtc_fd = qemu_open("/dev/rtc", O_RDONLY));
814 if (rtc_fd < 0)
815 return -1;
816 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
817 if (current_rtc_freq != RTC_FREQ &&
818 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
819 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
820 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
821 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
822 goto fail;
823 }
824 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
825 fail:
826 close(rtc_fd);
827 return -1;
828 }
829
830 enable_sigio_timer(rtc_fd);
831
832 t->priv = (void *)(long)rtc_fd;
833
834 return 0;
835 }
836
837 static void rtc_stop_timer(struct qemu_alarm_timer *t)
838 {
839 int rtc_fd = (long)t->priv;
840
841 close(rtc_fd);
842 }
843
844 static int dynticks_start_timer(struct qemu_alarm_timer *t)
845 {
846 struct sigevent ev;
847 timer_t host_timer;
848 struct sigaction act;
849
850 sigfillset(&act.sa_mask);
851 act.sa_flags = 0;
852 act.sa_handler = host_alarm_handler;
853
854 sigaction(SIGALRM, &act, NULL);
855
856 /*
857 * Initialize ev struct to 0 to avoid valgrind complaining
858 * about uninitialized data in timer_create call
859 */
860 memset(&ev, 0, sizeof(ev));
861 ev.sigev_value.sival_int = 0;
862 ev.sigev_notify = SIGEV_SIGNAL;
863 ev.sigev_signo = SIGALRM;
864
865 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
866 perror("timer_create");
867
868 /* disable dynticks */
869 fprintf(stderr, "Dynamic Ticks disabled\n");
870
871 return -1;
872 }
873
874 t->priv = (void *)(long)host_timer;
875
876 return 0;
877 }
878
879 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
880 {
881 timer_t host_timer = (timer_t)(long)t->priv;
882
883 timer_delete(host_timer);
884 }
885
886 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
887 {
888 timer_t host_timer = (timer_t)(long)t->priv;
889 struct itimerspec timeout;
890 int64_t nearest_delta_us = INT64_MAX;
891 int64_t current_us;
892
893 assert(alarm_has_dynticks(t));
894 if (!active_timers[QEMU_CLOCK_REALTIME] &&
895 !active_timers[QEMU_CLOCK_VIRTUAL] &&
896 !active_timers[QEMU_CLOCK_HOST])
897 return;
898
899 nearest_delta_us = qemu_next_deadline_dyntick();
900
901 /* check whether a timer is already running */
902 if (timer_gettime(host_timer, &timeout)) {
903 perror("gettime");
904 fprintf(stderr, "Internal timer error: aborting\n");
905 exit(1);
906 }
907 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
908 if (current_us && current_us <= nearest_delta_us)
909 return;
910
911 timeout.it_interval.tv_sec = 0;
912 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
913 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
914 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
915 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
916 perror("settime");
917 fprintf(stderr, "Internal timer error: aborting\n");
918 exit(1);
919 }
920 }
921
922 #endif /* defined(__linux__) */
923
924 static int unix_start_timer(struct qemu_alarm_timer *t)
925 {
926 struct sigaction act;
927 struct itimerval itv;
928 int err;
929
930 /* timer signal */
931 sigfillset(&act.sa_mask);
932 act.sa_flags = 0;
933 act.sa_handler = host_alarm_handler;
934
935 sigaction(SIGALRM, &act, NULL);
936
937 itv.it_interval.tv_sec = 0;
938 /* for i386 kernel 2.6 to get 1 ms */
939 itv.it_interval.tv_usec = 999;
940 itv.it_value.tv_sec = 0;
941 itv.it_value.tv_usec = 10 * 1000;
942
943 err = setitimer(ITIMER_REAL, &itv, NULL);
944 if (err)
945 return -1;
946
947 return 0;
948 }
949
950 static void unix_stop_timer(struct qemu_alarm_timer *t)
951 {
952 struct itimerval itv;
953
954 memset(&itv, 0, sizeof(itv));
955 setitimer(ITIMER_REAL, &itv, NULL);
956 }
957
958 #endif /* !defined(_WIN32) */
959
960
961 #ifdef _WIN32
962
963 static int win32_start_timer(struct qemu_alarm_timer *t)
964 {
965 TIMECAPS tc;
966 struct qemu_alarm_win32 *data = t->priv;
967 UINT flags;
968
969 memset(&tc, 0, sizeof(tc));
970 timeGetDevCaps(&tc, sizeof(tc));
971
972 data->period = tc.wPeriodMin;
973 timeBeginPeriod(data->period);
974
975 flags = TIME_CALLBACK_FUNCTION;
976 if (alarm_has_dynticks(t))
977 flags |= TIME_ONESHOT;
978 else
979 flags |= TIME_PERIODIC;
980
981 data->timerId = timeSetEvent(1, // interval (ms)
982 data->period, // resolution
983 host_alarm_handler, // function
984 (DWORD)t, // parameter
985 flags);
986
987 if (!data->timerId) {
988 fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
989 GetLastError());
990 timeEndPeriod(data->period);
991 return -1;
992 }
993
994 return 0;
995 }
996
997 static void win32_stop_timer(struct qemu_alarm_timer *t)
998 {
999 struct qemu_alarm_win32 *data = t->priv;
1000
1001 timeKillEvent(data->timerId);
1002 timeEndPeriod(data->period);
1003 }
1004
1005 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1006 {
1007 struct qemu_alarm_win32 *data = t->priv;
1008
1009 assert(alarm_has_dynticks(t));
1010 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1011 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1012 !active_timers[QEMU_CLOCK_HOST])
1013 return;
1014
1015 timeKillEvent(data->timerId);
1016
1017 data->timerId = timeSetEvent(1,
1018 data->period,
1019 host_alarm_handler,
1020 (DWORD)t,
1021 TIME_ONESHOT | TIME_CALLBACK_FUNCTION);
1022
1023 if (!data->timerId) {
1024 fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n",
1025 GetLastError());
1026
1027 timeEndPeriod(data->period);
1028 exit(1);
1029 }
1030 }
1031
1032 #endif /* _WIN32 */
1033
1034 static void alarm_timer_on_change_state_rearm(void *opaque, int running, int reason)
1035 {
1036 if (running)
1037 qemu_rearm_alarm_timer((struct qemu_alarm_timer *) opaque);
1038 }
1039
1040 int init_timer_alarm(void)
1041 {
1042 struct qemu_alarm_timer *t = NULL;
1043 int i, err = -1;
1044
1045 for (i = 0; alarm_timers[i].name; i++) {
1046 t = &alarm_timers[i];
1047
1048 err = t->start(t);
1049 if (!err)
1050 break;
1051 }
1052
1053 if (err) {
1054 err = -ENOENT;
1055 goto fail;
1056 }
1057
1058 /* first event is at time 0 */
1059 t->pending = 1;
1060 alarm_timer = t;
1061 qemu_add_vm_change_state_handler(alarm_timer_on_change_state_rearm, t);
1062
1063 return 0;
1064
1065 fail:
1066 return err;
1067 }
1068
1069 void quit_timers(void)
1070 {
1071 struct qemu_alarm_timer *t = alarm_timer;
1072 alarm_timer = NULL;
1073 t->stop(t);
1074 }
1075
1076 int qemu_calculate_timeout(void)
1077 {
1078 int timeout;
1079
1080 #ifdef CONFIG_IOTHREAD
1081 /* When using icount, making forward progress with qemu_icount when the
1082 guest CPU is idle is critical. We only use the static io-thread timeout
1083 for non icount runs. */
1084 if (!use_icount) {
1085 return 1000;
1086 }
1087 #endif
1088
1089 if (!vm_running)
1090 timeout = 5000;
1091 else {
1092 /* XXX: use timeout computed from timers */
1093 int64_t add;
1094 int64_t delta;
1095 /* Advance virtual time to the next event. */
1096 delta = qemu_icount_delta();
1097 if (delta > 0) {
1098 /* If virtual time is ahead of real time then just
1099 wait for IO. */
1100 timeout = (delta + 999999) / 1000000;
1101 } else {
1102 /* Wait for either IO to occur or the next
1103 timer event. */
1104 add = qemu_next_deadline();
1105 /* We advance the timer before checking for IO.
1106 Limit the amount we advance so that early IO
1107 activity won't get the guest too far ahead. */
1108 if (add > 10000000)
1109 add = 10000000;
1110 delta += add;
1111 qemu_icount += qemu_icount_round (add);
1112 timeout = delta / 1000000;
1113 if (timeout < 0)
1114 timeout = 0;
1115 }
1116 }
1117
1118 return timeout;
1119 }
1120