]> git.proxmox.com Git - qemu.git/blob - target-arm/helper.c
Open 2.0 development tree
[qemu.git] / target-arm / helper.c
1 #include "cpu.h"
2 #include "exec/gdbstub.h"
3 #include "helper.h"
4 #include "qemu/host-utils.h"
5 #include "sysemu/arch_init.h"
6 #include "sysemu/sysemu.h"
7 #include "qemu/bitops.h"
8
9 #ifndef CONFIG_USER_ONLY
10 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
11 int access_type, int is_user,
12 hwaddr *phys_ptr, int *prot,
13 target_ulong *page_size);
14 #endif
15
16 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
17 {
18 int nregs;
19
20 /* VFP data registers are always little-endian. */
21 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
22 if (reg < nregs) {
23 stfq_le_p(buf, env->vfp.regs[reg]);
24 return 8;
25 }
26 if (arm_feature(env, ARM_FEATURE_NEON)) {
27 /* Aliases for Q regs. */
28 nregs += 16;
29 if (reg < nregs) {
30 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
31 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
32 return 16;
33 }
34 }
35 switch (reg - nregs) {
36 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
37 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
38 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
39 }
40 return 0;
41 }
42
43 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
44 {
45 int nregs;
46
47 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
48 if (reg < nregs) {
49 env->vfp.regs[reg] = ldfq_le_p(buf);
50 return 8;
51 }
52 if (arm_feature(env, ARM_FEATURE_NEON)) {
53 nregs += 16;
54 if (reg < nregs) {
55 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
56 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
57 return 16;
58 }
59 }
60 switch (reg - nregs) {
61 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
62 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
63 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
64 }
65 return 0;
66 }
67
68 static int raw_read(CPUARMState *env, const ARMCPRegInfo *ri,
69 uint64_t *value)
70 {
71 if (ri->type & ARM_CP_64BIT) {
72 *value = CPREG_FIELD64(env, ri);
73 } else {
74 *value = CPREG_FIELD32(env, ri);
75 }
76 return 0;
77 }
78
79 static int raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
80 uint64_t value)
81 {
82 if (ri->type & ARM_CP_64BIT) {
83 CPREG_FIELD64(env, ri) = value;
84 } else {
85 CPREG_FIELD32(env, ri) = value;
86 }
87 return 0;
88 }
89
90 static bool read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
91 uint64_t *v)
92 {
93 /* Raw read of a coprocessor register (as needed for migration, etc)
94 * return true on success, false if the read is impossible for some reason.
95 */
96 if (ri->type & ARM_CP_CONST) {
97 *v = ri->resetvalue;
98 } else if (ri->raw_readfn) {
99 return (ri->raw_readfn(env, ri, v) == 0);
100 } else if (ri->readfn) {
101 return (ri->readfn(env, ri, v) == 0);
102 } else {
103 if (ri->type & ARM_CP_64BIT) {
104 *v = CPREG_FIELD64(env, ri);
105 } else {
106 *v = CPREG_FIELD32(env, ri);
107 }
108 }
109 return true;
110 }
111
112 static bool write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
113 int64_t v)
114 {
115 /* Raw write of a coprocessor register (as needed for migration, etc).
116 * Return true on success, false if the write is impossible for some reason.
117 * Note that constant registers are treated as write-ignored; the
118 * caller should check for success by whether a readback gives the
119 * value written.
120 */
121 if (ri->type & ARM_CP_CONST) {
122 return true;
123 } else if (ri->raw_writefn) {
124 return (ri->raw_writefn(env, ri, v) == 0);
125 } else if (ri->writefn) {
126 return (ri->writefn(env, ri, v) == 0);
127 } else {
128 if (ri->type & ARM_CP_64BIT) {
129 CPREG_FIELD64(env, ri) = v;
130 } else {
131 CPREG_FIELD32(env, ri) = v;
132 }
133 }
134 return true;
135 }
136
137 bool write_cpustate_to_list(ARMCPU *cpu)
138 {
139 /* Write the coprocessor state from cpu->env to the (index,value) list. */
140 int i;
141 bool ok = true;
142
143 for (i = 0; i < cpu->cpreg_array_len; i++) {
144 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
145 const ARMCPRegInfo *ri;
146 uint64_t v;
147 ri = get_arm_cp_reginfo(cpu, regidx);
148 if (!ri) {
149 ok = false;
150 continue;
151 }
152 if (ri->type & ARM_CP_NO_MIGRATE) {
153 continue;
154 }
155 if (!read_raw_cp_reg(&cpu->env, ri, &v)) {
156 ok = false;
157 continue;
158 }
159 cpu->cpreg_values[i] = v;
160 }
161 return ok;
162 }
163
164 bool write_list_to_cpustate(ARMCPU *cpu)
165 {
166 int i;
167 bool ok = true;
168
169 for (i = 0; i < cpu->cpreg_array_len; i++) {
170 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
171 uint64_t v = cpu->cpreg_values[i];
172 uint64_t readback;
173 const ARMCPRegInfo *ri;
174
175 ri = get_arm_cp_reginfo(cpu, regidx);
176 if (!ri) {
177 ok = false;
178 continue;
179 }
180 if (ri->type & ARM_CP_NO_MIGRATE) {
181 continue;
182 }
183 /* Write value and confirm it reads back as written
184 * (to catch read-only registers and partially read-only
185 * registers where the incoming migration value doesn't match)
186 */
187 if (!write_raw_cp_reg(&cpu->env, ri, v) ||
188 !read_raw_cp_reg(&cpu->env, ri, &readback) ||
189 readback != v) {
190 ok = false;
191 }
192 }
193 return ok;
194 }
195
196 static void add_cpreg_to_list(gpointer key, gpointer opaque)
197 {
198 ARMCPU *cpu = opaque;
199 uint64_t regidx;
200 const ARMCPRegInfo *ri;
201
202 regidx = *(uint32_t *)key;
203 ri = get_arm_cp_reginfo(cpu, regidx);
204
205 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
206 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
207 /* The value array need not be initialized at this point */
208 cpu->cpreg_array_len++;
209 }
210 }
211
212 static void count_cpreg(gpointer key, gpointer opaque)
213 {
214 ARMCPU *cpu = opaque;
215 uint64_t regidx;
216 const ARMCPRegInfo *ri;
217
218 regidx = *(uint32_t *)key;
219 ri = get_arm_cp_reginfo(cpu, regidx);
220
221 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
222 cpu->cpreg_array_len++;
223 }
224 }
225
226 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
227 {
228 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
229 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
230
231 if (aidx > bidx) {
232 return 1;
233 }
234 if (aidx < bidx) {
235 return -1;
236 }
237 return 0;
238 }
239
240 static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
241 {
242 GList **plist = udata;
243
244 *plist = g_list_prepend(*plist, key);
245 }
246
247 void init_cpreg_list(ARMCPU *cpu)
248 {
249 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
250 * Note that we require cpreg_tuples[] to be sorted by key ID.
251 */
252 GList *keys = NULL;
253 int arraylen;
254
255 g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);
256
257 keys = g_list_sort(keys, cpreg_key_compare);
258
259 cpu->cpreg_array_len = 0;
260
261 g_list_foreach(keys, count_cpreg, cpu);
262
263 arraylen = cpu->cpreg_array_len;
264 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
265 cpu->cpreg_values = g_new(uint64_t, arraylen);
266 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
267 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
268 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
269 cpu->cpreg_array_len = 0;
270
271 g_list_foreach(keys, add_cpreg_to_list, cpu);
272
273 assert(cpu->cpreg_array_len == arraylen);
274
275 g_list_free(keys);
276 }
277
278 static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
279 {
280 env->cp15.c3 = value;
281 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
282 return 0;
283 }
284
285 static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
286 {
287 if (env->cp15.c13_fcse != value) {
288 /* Unlike real hardware the qemu TLB uses virtual addresses,
289 * not modified virtual addresses, so this causes a TLB flush.
290 */
291 tlb_flush(env, 1);
292 env->cp15.c13_fcse = value;
293 }
294 return 0;
295 }
296 static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
297 uint64_t value)
298 {
299 if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
300 /* For VMSA (when not using the LPAE long descriptor page table
301 * format) this register includes the ASID, so do a TLB flush.
302 * For PMSA it is purely a process ID and no action is needed.
303 */
304 tlb_flush(env, 1);
305 }
306 env->cp15.c13_context = value;
307 return 0;
308 }
309
310 static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
311 uint64_t value)
312 {
313 /* Invalidate all (TLBIALL) */
314 tlb_flush(env, 1);
315 return 0;
316 }
317
318 static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
319 uint64_t value)
320 {
321 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
322 tlb_flush_page(env, value & TARGET_PAGE_MASK);
323 return 0;
324 }
325
326 static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
327 uint64_t value)
328 {
329 /* Invalidate by ASID (TLBIASID) */
330 tlb_flush(env, value == 0);
331 return 0;
332 }
333
334 static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
335 uint64_t value)
336 {
337 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
338 tlb_flush_page(env, value & TARGET_PAGE_MASK);
339 return 0;
340 }
341
342 static const ARMCPRegInfo cp_reginfo[] = {
343 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
344 * version" bits will read as a reserved value, which should cause
345 * Linux to not try to use the debug hardware.
346 */
347 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
348 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
349 /* MMU Domain access control / MPU write buffer control */
350 { .name = "DACR", .cp = 15,
351 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
352 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
353 .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
354 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
355 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
356 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
357 { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
358 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
359 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
360 /* ??? This covers not just the impdef TLB lockdown registers but also
361 * some v7VMSA registers relating to TEX remap, so it is overly broad.
362 */
363 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
364 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
365 /* MMU TLB control. Note that the wildcarding means we cover not just
366 * the unified TLB ops but also the dside/iside/inner-shareable variants.
367 */
368 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
369 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
370 .type = ARM_CP_NO_MIGRATE },
371 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
372 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
373 .type = ARM_CP_NO_MIGRATE },
374 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
375 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
376 .type = ARM_CP_NO_MIGRATE },
377 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
378 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
379 .type = ARM_CP_NO_MIGRATE },
380 /* Cache maintenance ops; some of this space may be overridden later. */
381 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
382 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
383 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
384 REGINFO_SENTINEL
385 };
386
387 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
388 /* Not all pre-v6 cores implemented this WFI, so this is slightly
389 * over-broad.
390 */
391 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
392 .access = PL1_W, .type = ARM_CP_WFI },
393 REGINFO_SENTINEL
394 };
395
396 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
397 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
398 * is UNPREDICTABLE; we choose to NOP as most implementations do).
399 */
400 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
401 .access = PL1_W, .type = ARM_CP_WFI },
402 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
403 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
404 * OMAPCP will override this space.
405 */
406 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
407 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
408 .resetvalue = 0 },
409 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
410 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
411 .resetvalue = 0 },
412 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
413 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
414 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
415 .resetvalue = 0 },
416 REGINFO_SENTINEL
417 };
418
419 static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
420 {
421 if (env->cp15.c1_coproc != value) {
422 env->cp15.c1_coproc = value;
423 /* ??? Is this safe when called from within a TB? */
424 tb_flush(env);
425 }
426 return 0;
427 }
428
429 static const ARMCPRegInfo v6_cp_reginfo[] = {
430 /* prefetch by MVA in v6, NOP in v7 */
431 { .name = "MVA_prefetch",
432 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
433 .access = PL1_W, .type = ARM_CP_NOP },
434 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
435 .access = PL0_W, .type = ARM_CP_NOP },
436 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
437 .access = PL0_W, .type = ARM_CP_NOP },
438 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
439 .access = PL0_W, .type = ARM_CP_NOP },
440 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
441 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
442 .resetvalue = 0, },
443 /* Watchpoint Fault Address Register : should actually only be present
444 * for 1136, 1176, 11MPCore.
445 */
446 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
447 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
448 { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
449 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
450 .resetvalue = 0, .writefn = cpacr_write },
451 REGINFO_SENTINEL
452 };
453
454
455 static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
456 uint64_t *value)
457 {
458 /* Generic performance monitor register read function for where
459 * user access may be allowed by PMUSERENR.
460 */
461 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
462 return EXCP_UDEF;
463 }
464 *value = CPREG_FIELD32(env, ri);
465 return 0;
466 }
467
468 static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
469 uint64_t value)
470 {
471 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
472 return EXCP_UDEF;
473 }
474 /* only the DP, X, D and E bits are writable */
475 env->cp15.c9_pmcr &= ~0x39;
476 env->cp15.c9_pmcr |= (value & 0x39);
477 return 0;
478 }
479
480 static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
481 uint64_t value)
482 {
483 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
484 return EXCP_UDEF;
485 }
486 value &= (1 << 31);
487 env->cp15.c9_pmcnten |= value;
488 return 0;
489 }
490
491 static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
492 uint64_t value)
493 {
494 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
495 return EXCP_UDEF;
496 }
497 value &= (1 << 31);
498 env->cp15.c9_pmcnten &= ~value;
499 return 0;
500 }
501
502 static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
503 uint64_t value)
504 {
505 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
506 return EXCP_UDEF;
507 }
508 env->cp15.c9_pmovsr &= ~value;
509 return 0;
510 }
511
512 static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
513 uint64_t value)
514 {
515 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
516 return EXCP_UDEF;
517 }
518 env->cp15.c9_pmxevtyper = value & 0xff;
519 return 0;
520 }
521
522 static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
523 uint64_t value)
524 {
525 env->cp15.c9_pmuserenr = value & 1;
526 return 0;
527 }
528
529 static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
530 uint64_t value)
531 {
532 /* We have no event counters so only the C bit can be changed */
533 value &= (1 << 31);
534 env->cp15.c9_pminten |= value;
535 return 0;
536 }
537
538 static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
539 uint64_t value)
540 {
541 value &= (1 << 31);
542 env->cp15.c9_pminten &= ~value;
543 return 0;
544 }
545
546 static int vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
547 uint64_t value)
548 {
549 env->cp15.c12_vbar = value & ~0x1Ful;
550 return 0;
551 }
552
553 static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
554 uint64_t *value)
555 {
556 ARMCPU *cpu = arm_env_get_cpu(env);
557 *value = cpu->ccsidr[env->cp15.c0_cssel];
558 return 0;
559 }
560
561 static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
562 uint64_t value)
563 {
564 env->cp15.c0_cssel = value & 0xf;
565 return 0;
566 }
567
568 static const ARMCPRegInfo v7_cp_reginfo[] = {
569 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
570 * debug components
571 */
572 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
573 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
574 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
575 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
576 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
577 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
578 .access = PL1_W, .type = ARM_CP_NOP },
579 /* Performance monitors are implementation defined in v7,
580 * but with an ARM recommended set of registers, which we
581 * follow (although we don't actually implement any counters)
582 *
583 * Performance registers fall into three categories:
584 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
585 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
586 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
587 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
588 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
589 */
590 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
591 .access = PL0_RW, .resetvalue = 0,
592 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
593 .readfn = pmreg_read, .writefn = pmcntenset_write,
594 .raw_readfn = raw_read, .raw_writefn = raw_write },
595 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
596 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
597 .readfn = pmreg_read, .writefn = pmcntenclr_write,
598 .type = ARM_CP_NO_MIGRATE },
599 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
600 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
601 .readfn = pmreg_read, .writefn = pmovsr_write,
602 .raw_readfn = raw_read, .raw_writefn = raw_write },
603 /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
604 * respect PMUSERENR.
605 */
606 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
607 .access = PL0_W, .type = ARM_CP_NOP },
608 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
609 * We choose to RAZ/WI. XXX should respect PMUSERENR.
610 */
611 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
612 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
613 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
614 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
615 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
616 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
617 .access = PL0_RW,
618 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
619 .readfn = pmreg_read, .writefn = pmxevtyper_write,
620 .raw_readfn = raw_read, .raw_writefn = raw_write },
621 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
622 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
623 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
624 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
625 .access = PL0_R | PL1_RW,
626 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
627 .resetvalue = 0,
628 .writefn = pmuserenr_write, .raw_writefn = raw_write },
629 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
630 .access = PL1_RW,
631 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
632 .resetvalue = 0,
633 .writefn = pmintenset_write, .raw_writefn = raw_write },
634 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
635 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
636 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
637 .resetvalue = 0, .writefn = pmintenclr_write, },
638 { .name = "VBAR", .cp = 15, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
639 .access = PL1_RW, .writefn = vbar_write,
640 .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar),
641 .resetvalue = 0 },
642 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
643 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
644 .resetvalue = 0, },
645 { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
646 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
647 { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
648 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
649 .writefn = csselr_write, .resetvalue = 0 },
650 /* Auxiliary ID register: this actually has an IMPDEF value but for now
651 * just RAZ for all cores:
652 */
653 { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
654 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
655 REGINFO_SENTINEL
656 };
657
658 static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
659 {
660 value &= 1;
661 env->teecr = value;
662 return 0;
663 }
664
665 static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
666 uint64_t *value)
667 {
668 /* This is a helper function because the user access rights
669 * depend on the value of the TEECR.
670 */
671 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
672 return EXCP_UDEF;
673 }
674 *value = env->teehbr;
675 return 0;
676 }
677
678 static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
679 uint64_t value)
680 {
681 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
682 return EXCP_UDEF;
683 }
684 env->teehbr = value;
685 return 0;
686 }
687
688 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
689 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
690 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
691 .resetvalue = 0,
692 .writefn = teecr_write },
693 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
694 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
695 .resetvalue = 0, .raw_readfn = raw_read, .raw_writefn = raw_write,
696 .readfn = teehbr_read, .writefn = teehbr_write },
697 REGINFO_SENTINEL
698 };
699
700 static const ARMCPRegInfo v6k_cp_reginfo[] = {
701 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
702 .access = PL0_RW,
703 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1),
704 .resetvalue = 0 },
705 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
706 .access = PL0_R|PL1_W,
707 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2),
708 .resetvalue = 0 },
709 { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4,
710 .access = PL1_RW,
711 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3),
712 .resetvalue = 0 },
713 REGINFO_SENTINEL
714 };
715
716 #ifndef CONFIG_USER_ONLY
717
718 static uint64_t gt_get_countervalue(CPUARMState *env)
719 {
720 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
721 }
722
723 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
724 {
725 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
726
727 if (gt->ctl & 1) {
728 /* Timer enabled: calculate and set current ISTATUS, irq, and
729 * reset timer to when ISTATUS next has to change
730 */
731 uint64_t count = gt_get_countervalue(&cpu->env);
732 /* Note that this must be unsigned 64 bit arithmetic: */
733 int istatus = count >= gt->cval;
734 uint64_t nexttick;
735
736 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
737 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
738 (istatus && !(gt->ctl & 2)));
739 if (istatus) {
740 /* Next transition is when count rolls back over to zero */
741 nexttick = UINT64_MAX;
742 } else {
743 /* Next transition is when we hit cval */
744 nexttick = gt->cval;
745 }
746 /* Note that the desired next expiry time might be beyond the
747 * signed-64-bit range of a QEMUTimer -- in this case we just
748 * set the timer for as far in the future as possible. When the
749 * timer expires we will reset the timer for any remaining period.
750 */
751 if (nexttick > INT64_MAX / GTIMER_SCALE) {
752 nexttick = INT64_MAX / GTIMER_SCALE;
753 }
754 timer_mod(cpu->gt_timer[timeridx], nexttick);
755 } else {
756 /* Timer disabled: ISTATUS and timer output always clear */
757 gt->ctl &= ~4;
758 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
759 timer_del(cpu->gt_timer[timeridx]);
760 }
761 }
762
763 static int gt_cntfrq_read(CPUARMState *env, const ARMCPRegInfo *ri,
764 uint64_t *value)
765 {
766 /* Not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
767 if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
768 return EXCP_UDEF;
769 }
770 *value = env->cp15.c14_cntfrq;
771 return 0;
772 }
773
774 static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
775 {
776 ARMCPU *cpu = arm_env_get_cpu(env);
777 int timeridx = ri->opc1 & 1;
778
779 timer_del(cpu->gt_timer[timeridx]);
780 }
781
782 static int gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri,
783 uint64_t *value)
784 {
785 int timeridx = ri->opc1 & 1;
786
787 if (arm_current_pl(env) == 0 &&
788 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
789 return EXCP_UDEF;
790 }
791 *value = gt_get_countervalue(env);
792 return 0;
793 }
794
795 static int gt_cval_read(CPUARMState *env, const ARMCPRegInfo *ri,
796 uint64_t *value)
797 {
798 int timeridx = ri->opc1 & 1;
799
800 if (arm_current_pl(env) == 0 &&
801 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
802 return EXCP_UDEF;
803 }
804 *value = env->cp15.c14_timer[timeridx].cval;
805 return 0;
806 }
807
808 static int gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
809 uint64_t value)
810 {
811 int timeridx = ri->opc1 & 1;
812
813 env->cp15.c14_timer[timeridx].cval = value;
814 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
815 return 0;
816 }
817 static int gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
818 uint64_t *value)
819 {
820 int timeridx = ri->crm & 1;
821
822 if (arm_current_pl(env) == 0 &&
823 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
824 return EXCP_UDEF;
825 }
826 *value = (uint32_t)(env->cp15.c14_timer[timeridx].cval -
827 gt_get_countervalue(env));
828 return 0;
829 }
830
831 static int gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
832 uint64_t value)
833 {
834 int timeridx = ri->crm & 1;
835
836 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
837 + sextract64(value, 0, 32);
838 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
839 return 0;
840 }
841
842 static int gt_ctl_read(CPUARMState *env, const ARMCPRegInfo *ri,
843 uint64_t *value)
844 {
845 int timeridx = ri->crm & 1;
846
847 if (arm_current_pl(env) == 0 &&
848 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
849 return EXCP_UDEF;
850 }
851 *value = env->cp15.c14_timer[timeridx].ctl;
852 return 0;
853 }
854
855 static int gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
856 uint64_t value)
857 {
858 ARMCPU *cpu = arm_env_get_cpu(env);
859 int timeridx = ri->crm & 1;
860 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
861
862 env->cp15.c14_timer[timeridx].ctl = value & 3;
863 if ((oldval ^ value) & 1) {
864 /* Enable toggled */
865 gt_recalc_timer(cpu, timeridx);
866 } else if ((oldval & value) & 2) {
867 /* IMASK toggled: don't need to recalculate,
868 * just set the interrupt line based on ISTATUS
869 */
870 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
871 (oldval & 4) && (value & 2));
872 }
873 return 0;
874 }
875
876 void arm_gt_ptimer_cb(void *opaque)
877 {
878 ARMCPU *cpu = opaque;
879
880 gt_recalc_timer(cpu, GTIMER_PHYS);
881 }
882
883 void arm_gt_vtimer_cb(void *opaque)
884 {
885 ARMCPU *cpu = opaque;
886
887 gt_recalc_timer(cpu, GTIMER_VIRT);
888 }
889
890 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
891 /* Note that CNTFRQ is purely reads-as-written for the benefit
892 * of software; writing it doesn't actually change the timer frequency.
893 * Our reset value matches the fixed frequency we implement the timer at.
894 */
895 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
896 .access = PL1_RW | PL0_R,
897 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
898 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
899 .readfn = gt_cntfrq_read, .raw_readfn = raw_read,
900 },
901 /* overall control: mostly access permissions */
902 { .name = "CNTKCTL", .cp = 15, .crn = 14, .crm = 1, .opc1 = 0, .opc2 = 0,
903 .access = PL1_RW,
904 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
905 .resetvalue = 0,
906 },
907 /* per-timer control */
908 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
909 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
910 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
911 .resetvalue = 0,
912 .readfn = gt_ctl_read, .writefn = gt_ctl_write,
913 .raw_readfn = raw_read, .raw_writefn = raw_write,
914 },
915 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
916 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
917 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
918 .resetvalue = 0,
919 .readfn = gt_ctl_read, .writefn = gt_ctl_write,
920 .raw_readfn = raw_read, .raw_writefn = raw_write,
921 },
922 /* TimerValue views: a 32 bit downcounting view of the underlying state */
923 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
924 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
925 .readfn = gt_tval_read, .writefn = gt_tval_write,
926 },
927 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
928 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
929 .readfn = gt_tval_read, .writefn = gt_tval_write,
930 },
931 /* The counter itself */
932 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
933 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
934 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
935 },
936 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
937 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
938 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
939 },
940 /* Comparison value, indicating when the timer goes off */
941 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
942 .access = PL1_RW | PL0_R,
943 .type = ARM_CP_64BIT | ARM_CP_IO,
944 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
945 .resetvalue = 0,
946 .readfn = gt_cval_read, .writefn = gt_cval_write,
947 .raw_readfn = raw_read, .raw_writefn = raw_write,
948 },
949 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
950 .access = PL1_RW | PL0_R,
951 .type = ARM_CP_64BIT | ARM_CP_IO,
952 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
953 .resetvalue = 0,
954 .readfn = gt_cval_read, .writefn = gt_cval_write,
955 .raw_readfn = raw_read, .raw_writefn = raw_write,
956 },
957 REGINFO_SENTINEL
958 };
959
960 #else
961 /* In user-mode none of the generic timer registers are accessible,
962 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
963 * so instead just don't register any of them.
964 */
965 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
966 REGINFO_SENTINEL
967 };
968
969 #endif
970
971 static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
972 {
973 if (arm_feature(env, ARM_FEATURE_LPAE)) {
974 env->cp15.c7_par = value;
975 } else if (arm_feature(env, ARM_FEATURE_V7)) {
976 env->cp15.c7_par = value & 0xfffff6ff;
977 } else {
978 env->cp15.c7_par = value & 0xfffff1ff;
979 }
980 return 0;
981 }
982
983 #ifndef CONFIG_USER_ONLY
984 /* get_phys_addr() isn't present for user-mode-only targets */
985
986 /* Return true if extended addresses are enabled, ie this is an
987 * LPAE implementation and we are using the long-descriptor translation
988 * table format because the TTBCR EAE bit is set.
989 */
990 static inline bool extended_addresses_enabled(CPUARMState *env)
991 {
992 return arm_feature(env, ARM_FEATURE_LPAE)
993 && (env->cp15.c2_control & (1U << 31));
994 }
995
996 static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
997 {
998 hwaddr phys_addr;
999 target_ulong page_size;
1000 int prot;
1001 int ret, is_user = ri->opc2 & 2;
1002 int access_type = ri->opc2 & 1;
1003
1004 if (ri->opc2 & 4) {
1005 /* Other states are only available with TrustZone */
1006 return EXCP_UDEF;
1007 }
1008 ret = get_phys_addr(env, value, access_type, is_user,
1009 &phys_addr, &prot, &page_size);
1010 if (extended_addresses_enabled(env)) {
1011 /* ret is a DFSR/IFSR value for the long descriptor
1012 * translation table format, but with WnR always clear.
1013 * Convert it to a 64-bit PAR.
1014 */
1015 uint64_t par64 = (1 << 11); /* LPAE bit always set */
1016 if (ret == 0) {
1017 par64 |= phys_addr & ~0xfffULL;
1018 /* We don't set the ATTR or SH fields in the PAR. */
1019 } else {
1020 par64 |= 1; /* F */
1021 par64 |= (ret & 0x3f) << 1; /* FS */
1022 /* Note that S2WLK and FSTAGE are always zero, because we don't
1023 * implement virtualization and therefore there can't be a stage 2
1024 * fault.
1025 */
1026 }
1027 env->cp15.c7_par = par64;
1028 env->cp15.c7_par_hi = par64 >> 32;
1029 } else {
1030 /* ret is a DFSR/IFSR value for the short descriptor
1031 * translation table format (with WnR always clear).
1032 * Convert it to a 32-bit PAR.
1033 */
1034 if (ret == 0) {
1035 /* We do not set any attribute bits in the PAR */
1036 if (page_size == (1 << 24)
1037 && arm_feature(env, ARM_FEATURE_V7)) {
1038 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1039 } else {
1040 env->cp15.c7_par = phys_addr & 0xfffff000;
1041 }
1042 } else {
1043 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
1044 ((ret & (12 << 1)) >> 6) |
1045 ((ret & 0xf) << 1) | 1;
1046 }
1047 env->cp15.c7_par_hi = 0;
1048 }
1049 return 0;
1050 }
1051 #endif
1052
1053 static const ARMCPRegInfo vapa_cp_reginfo[] = {
1054 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1055 .access = PL1_RW, .resetvalue = 0,
1056 .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
1057 .writefn = par_write },
1058 #ifndef CONFIG_USER_ONLY
1059 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1060 .access = PL1_W, .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
1061 #endif
1062 REGINFO_SENTINEL
1063 };
1064
1065 /* Return basic MPU access permission bits. */
1066 static uint32_t simple_mpu_ap_bits(uint32_t val)
1067 {
1068 uint32_t ret;
1069 uint32_t mask;
1070 int i;
1071 ret = 0;
1072 mask = 3;
1073 for (i = 0; i < 16; i += 2) {
1074 ret |= (val >> i) & mask;
1075 mask <<= 2;
1076 }
1077 return ret;
1078 }
1079
1080 /* Pad basic MPU access permission bits to extended format. */
1081 static uint32_t extended_mpu_ap_bits(uint32_t val)
1082 {
1083 uint32_t ret;
1084 uint32_t mask;
1085 int i;
1086 ret = 0;
1087 mask = 3;
1088 for (i = 0; i < 16; i += 2) {
1089 ret |= (val & mask) << i;
1090 mask <<= 2;
1091 }
1092 return ret;
1093 }
1094
1095 static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1096 uint64_t value)
1097 {
1098 env->cp15.c5_data = extended_mpu_ap_bits(value);
1099 return 0;
1100 }
1101
1102 static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
1103 uint64_t *value)
1104 {
1105 *value = simple_mpu_ap_bits(env->cp15.c5_data);
1106 return 0;
1107 }
1108
1109 static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1110 uint64_t value)
1111 {
1112 env->cp15.c5_insn = extended_mpu_ap_bits(value);
1113 return 0;
1114 }
1115
1116 static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
1117 uint64_t *value)
1118 {
1119 *value = simple_mpu_ap_bits(env->cp15.c5_insn);
1120 return 0;
1121 }
1122
1123 static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri,
1124 uint64_t *value)
1125 {
1126 if (ri->crm >= 8) {
1127 return EXCP_UDEF;
1128 }
1129 *value = env->cp15.c6_region[ri->crm];
1130 return 0;
1131 }
1132
1133 static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
1134 uint64_t value)
1135 {
1136 if (ri->crm >= 8) {
1137 return EXCP_UDEF;
1138 }
1139 env->cp15.c6_region[ri->crm] = value;
1140 return 0;
1141 }
1142
1143 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
1144 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1145 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1146 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
1147 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
1148 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1149 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1150 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
1151 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
1152 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
1153 .access = PL1_RW,
1154 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1155 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
1156 .access = PL1_RW,
1157 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1158 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1159 .access = PL1_RW,
1160 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
1161 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1162 .access = PL1_RW,
1163 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1164 /* Protection region base and size registers */
1165 { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0,
1166 .opc2 = CP_ANY, .access = PL1_RW,
1167 .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, },
1168 REGINFO_SENTINEL
1169 };
1170
1171 static int vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1172 uint64_t value)
1173 {
1174 int maskshift = extract32(value, 0, 3);
1175
1176 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1177 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
1178 } else {
1179 value &= 7;
1180 }
1181 /* Note that we always calculate c2_mask and c2_base_mask, but
1182 * they are only used for short-descriptor tables (ie if EAE is 0);
1183 * for long-descriptor tables the TTBCR fields are used differently
1184 * and the c2_mask and c2_base_mask values are meaningless.
1185 */
1186 env->cp15.c2_control = value;
1187 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
1188 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
1189 return 0;
1190 }
1191
1192 static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1193 uint64_t value)
1194 {
1195 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1196 /* With LPAE the TTBCR could result in a change of ASID
1197 * via the TTBCR.A1 bit, so do a TLB flush.
1198 */
1199 tlb_flush(env, 1);
1200 }
1201 return vmsa_ttbcr_raw_write(env, ri, value);
1202 }
1203
1204 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1205 {
1206 env->cp15.c2_base_mask = 0xffffc000u;
1207 env->cp15.c2_control = 0;
1208 env->cp15.c2_mask = 0;
1209 }
1210
1211 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
1212 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1213 .access = PL1_RW,
1214 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1215 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1216 .access = PL1_RW,
1217 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1218 { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1219 .access = PL1_RW,
1220 .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
1221 { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1222 .access = PL1_RW,
1223 .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
1224 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1225 .access = PL1_RW, .writefn = vmsa_ttbcr_write,
1226 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
1227 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
1228 { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
1229 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
1230 .resetvalue = 0, },
1231 REGINFO_SENTINEL
1232 };
1233
1234 static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
1235 uint64_t value)
1236 {
1237 env->cp15.c15_ticonfig = value & 0xe7;
1238 /* The OS_TYPE bit in this register changes the reported CPUID! */
1239 env->cp15.c0_cpuid = (value & (1 << 5)) ?
1240 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1241 return 0;
1242 }
1243
1244 static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1245 uint64_t value)
1246 {
1247 env->cp15.c15_threadid = value & 0xffff;
1248 return 0;
1249 }
1250
1251 static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
1252 uint64_t value)
1253 {
1254 /* Wait-for-interrupt (deprecated) */
1255 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1256 return 0;
1257 }
1258
1259 static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
1260 uint64_t value)
1261 {
1262 /* On OMAP there are registers indicating the max/min index of dcache lines
1263 * containing a dirty line; cache flush operations have to reset these.
1264 */
1265 env->cp15.c15_i_max = 0x000;
1266 env->cp15.c15_i_min = 0xff0;
1267 return 0;
1268 }
1269
1270 static const ARMCPRegInfo omap_cp_reginfo[] = {
1271 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
1272 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1273 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1274 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1275 .access = PL1_RW, .type = ARM_CP_NOP },
1276 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1277 .access = PL1_RW,
1278 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
1279 .writefn = omap_ticonfig_write },
1280 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
1281 .access = PL1_RW,
1282 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1283 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1284 .access = PL1_RW, .resetvalue = 0xff0,
1285 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1286 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1287 .access = PL1_RW,
1288 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1289 .writefn = omap_threadid_write },
1290 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1291 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1292 .type = ARM_CP_NO_MIGRATE,
1293 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1294 /* TODO: Peripheral port remap register:
1295 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1296 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1297 * when MMU is off.
1298 */
1299 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1300 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1301 .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
1302 .writefn = omap_cachemaint_write },
1303 { .name = "C9", .cp = 15, .crn = 9,
1304 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1305 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1306 REGINFO_SENTINEL
1307 };
1308
1309 static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1310 uint64_t value)
1311 {
1312 value &= 0x3fff;
1313 if (env->cp15.c15_cpar != value) {
1314 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1315 tb_flush(env);
1316 env->cp15.c15_cpar = value;
1317 }
1318 return 0;
1319 }
1320
1321 static const ARMCPRegInfo xscale_cp_reginfo[] = {
1322 { .name = "XSCALE_CPAR",
1323 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1324 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1325 .writefn = xscale_cpar_write, },
1326 { .name = "XSCALE_AUXCR",
1327 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1328 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1329 .resetvalue = 0, },
1330 REGINFO_SENTINEL
1331 };
1332
1333 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
1334 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1335 * implementation of this implementation-defined space.
1336 * Ideally this should eventually disappear in favour of actually
1337 * implementing the correct behaviour for all cores.
1338 */
1339 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
1340 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1341 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1342 .resetvalue = 0 },
1343 REGINFO_SENTINEL
1344 };
1345
1346 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
1347 /* Cache status: RAZ because we have no cache so it's always clean */
1348 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1349 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1350 .resetvalue = 0 },
1351 REGINFO_SENTINEL
1352 };
1353
1354 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
1355 /* We never have a a block transfer operation in progress */
1356 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1357 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1358 .resetvalue = 0 },
1359 /* The cache ops themselves: these all NOP for QEMU */
1360 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
1361 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1362 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
1363 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1364 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
1365 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1366 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
1367 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1368 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
1369 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1370 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
1371 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1372 REGINFO_SENTINEL
1373 };
1374
1375 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
1376 /* The cache test-and-clean instructions always return (1 << 30)
1377 * to indicate that there are no dirty cache lines.
1378 */
1379 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
1380 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1381 .resetvalue = (1 << 30) },
1382 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
1383 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1384 .resetvalue = (1 << 30) },
1385 REGINFO_SENTINEL
1386 };
1387
1388 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
1389 /* Ignore ReadBuffer accesses */
1390 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
1391 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1392 .access = PL1_RW, .resetvalue = 0,
1393 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
1394 REGINFO_SENTINEL
1395 };
1396
1397 static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1398 uint64_t *value)
1399 {
1400 CPUState *cs = CPU(arm_env_get_cpu(env));
1401 uint32_t mpidr = cs->cpu_index;
1402 /* We don't support setting cluster ID ([8..11])
1403 * so these bits always RAZ.
1404 */
1405 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1406 mpidr |= (1U << 31);
1407 /* Cores which are uniprocessor (non-coherent)
1408 * but still implement the MP extensions set
1409 * bit 30. (For instance, A9UP.) However we do
1410 * not currently model any of those cores.
1411 */
1412 }
1413 *value = mpidr;
1414 return 0;
1415 }
1416
1417 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
1418 { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
1419 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
1420 REGINFO_SENTINEL
1421 };
1422
1423 static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1424 {
1425 *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
1426 return 0;
1427 }
1428
1429 static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1430 {
1431 env->cp15.c7_par_hi = value >> 32;
1432 env->cp15.c7_par = value;
1433 return 0;
1434 }
1435
1436 static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1437 {
1438 env->cp15.c7_par_hi = 0;
1439 env->cp15.c7_par = 0;
1440 }
1441
1442 static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri,
1443 uint64_t *value)
1444 {
1445 *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
1446 return 0;
1447 }
1448
1449 static int ttbr064_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1450 uint64_t value)
1451 {
1452 env->cp15.c2_base0_hi = value >> 32;
1453 env->cp15.c2_base0 = value;
1454 return 0;
1455 }
1456
1457 static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
1458 uint64_t value)
1459 {
1460 /* Writes to the 64 bit format TTBRs may change the ASID */
1461 tlb_flush(env, 1);
1462 return ttbr064_raw_write(env, ri, value);
1463 }
1464
1465 static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1466 {
1467 env->cp15.c2_base0_hi = 0;
1468 env->cp15.c2_base0 = 0;
1469 }
1470
1471 static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri,
1472 uint64_t *value)
1473 {
1474 *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
1475 return 0;
1476 }
1477
1478 static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri,
1479 uint64_t value)
1480 {
1481 env->cp15.c2_base1_hi = value >> 32;
1482 env->cp15.c2_base1 = value;
1483 return 0;
1484 }
1485
1486 static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1487 {
1488 env->cp15.c2_base1_hi = 0;
1489 env->cp15.c2_base1 = 0;
1490 }
1491
1492 static const ARMCPRegInfo lpae_cp_reginfo[] = {
1493 /* NOP AMAIR0/1: the override is because these clash with the rather
1494 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1495 */
1496 { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
1497 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1498 .resetvalue = 0 },
1499 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
1500 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1501 .resetvalue = 0 },
1502 /* 64 bit access versions of the (dummy) debug registers */
1503 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1504 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1505 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1506 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1507 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1508 .access = PL1_RW, .type = ARM_CP_64BIT,
1509 .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
1510 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1511 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read,
1512 .writefn = ttbr064_write, .raw_writefn = ttbr064_raw_write,
1513 .resetfn = ttbr064_reset },
1514 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1515 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read,
1516 .writefn = ttbr164_write, .resetfn = ttbr164_reset },
1517 REGINFO_SENTINEL
1518 };
1519
1520 static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1521 {
1522 env->cp15.c1_sys = value;
1523 /* ??? Lots of these bits are not implemented. */
1524 /* This may enable/disable the MMU, so do a TLB flush. */
1525 tlb_flush(env, 1);
1526 return 0;
1527 }
1528
1529 void register_cp_regs_for_features(ARMCPU *cpu)
1530 {
1531 /* Register all the coprocessor registers based on feature bits */
1532 CPUARMState *env = &cpu->env;
1533 if (arm_feature(env, ARM_FEATURE_M)) {
1534 /* M profile has no coprocessor registers */
1535 return;
1536 }
1537
1538 define_arm_cp_regs(cpu, cp_reginfo);
1539 if (arm_feature(env, ARM_FEATURE_V6)) {
1540 /* The ID registers all have impdef reset values */
1541 ARMCPRegInfo v6_idregs[] = {
1542 { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
1543 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1544 .resetvalue = cpu->id_pfr0 },
1545 { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
1546 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1547 .resetvalue = cpu->id_pfr1 },
1548 { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
1549 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1550 .resetvalue = cpu->id_dfr0 },
1551 { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
1552 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1553 .resetvalue = cpu->id_afr0 },
1554 { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
1555 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1556 .resetvalue = cpu->id_mmfr0 },
1557 { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
1558 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1559 .resetvalue = cpu->id_mmfr1 },
1560 { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
1561 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1562 .resetvalue = cpu->id_mmfr2 },
1563 { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
1564 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1565 .resetvalue = cpu->id_mmfr3 },
1566 { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
1567 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1568 .resetvalue = cpu->id_isar0 },
1569 { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
1570 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1571 .resetvalue = cpu->id_isar1 },
1572 { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
1573 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1574 .resetvalue = cpu->id_isar2 },
1575 { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
1576 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1577 .resetvalue = cpu->id_isar3 },
1578 { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
1579 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1580 .resetvalue = cpu->id_isar4 },
1581 { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
1582 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1583 .resetvalue = cpu->id_isar5 },
1584 /* 6..7 are as yet unallocated and must RAZ */
1585 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
1586 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1587 .resetvalue = 0 },
1588 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
1589 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1590 .resetvalue = 0 },
1591 REGINFO_SENTINEL
1592 };
1593 define_arm_cp_regs(cpu, v6_idregs);
1594 define_arm_cp_regs(cpu, v6_cp_reginfo);
1595 } else {
1596 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
1597 }
1598 if (arm_feature(env, ARM_FEATURE_V6K)) {
1599 define_arm_cp_regs(cpu, v6k_cp_reginfo);
1600 }
1601 if (arm_feature(env, ARM_FEATURE_V7)) {
1602 /* v7 performance monitor control register: same implementor
1603 * field as main ID register, and we implement no event counters.
1604 */
1605 ARMCPRegInfo pmcr = {
1606 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
1607 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
1608 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1609 .readfn = pmreg_read, .writefn = pmcr_write,
1610 .raw_readfn = raw_read, .raw_writefn = raw_write,
1611 };
1612 ARMCPRegInfo clidr = {
1613 .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
1614 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
1615 };
1616 define_one_arm_cp_reg(cpu, &pmcr);
1617 define_one_arm_cp_reg(cpu, &clidr);
1618 define_arm_cp_regs(cpu, v7_cp_reginfo);
1619 } else {
1620 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
1621 }
1622 if (arm_feature(env, ARM_FEATURE_MPU)) {
1623 /* These are the MPU registers prior to PMSAv6. Any new
1624 * PMSA core later than the ARM946 will require that we
1625 * implement the PMSAv6 or PMSAv7 registers, which are
1626 * completely different.
1627 */
1628 assert(!arm_feature(env, ARM_FEATURE_V6));
1629 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
1630 } else {
1631 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
1632 }
1633 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
1634 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
1635 }
1636 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1637 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
1638 }
1639 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1640 define_arm_cp_regs(cpu, vapa_cp_reginfo);
1641 }
1642 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
1643 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
1644 }
1645 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
1646 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
1647 }
1648 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
1649 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
1650 }
1651 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1652 define_arm_cp_regs(cpu, omap_cp_reginfo);
1653 }
1654 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
1655 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
1656 }
1657 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1658 define_arm_cp_regs(cpu, xscale_cp_reginfo);
1659 }
1660 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
1661 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
1662 }
1663 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1664 define_arm_cp_regs(cpu, lpae_cp_reginfo);
1665 }
1666 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1667 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1668 * be read-only (ie write causes UNDEF exception).
1669 */
1670 {
1671 ARMCPRegInfo id_cp_reginfo[] = {
1672 /* Note that the MIDR isn't a simple constant register because
1673 * of the TI925 behaviour where writes to another register can
1674 * cause the MIDR value to change.
1675 *
1676 * Unimplemented registers in the c15 0 0 0 space default to
1677 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
1678 * and friends override accordingly.
1679 */
1680 { .name = "MIDR",
1681 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
1682 .access = PL1_R, .resetvalue = cpu->midr,
1683 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
1684 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
1685 .type = ARM_CP_OVERRIDE },
1686 { .name = "CTR",
1687 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
1688 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
1689 { .name = "TCMTR",
1690 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
1691 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1692 { .name = "TLBTR",
1693 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
1694 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1695 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1696 { .name = "DUMMY",
1697 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
1698 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1699 { .name = "DUMMY",
1700 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
1701 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1702 { .name = "DUMMY",
1703 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
1704 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1705 { .name = "DUMMY",
1706 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
1707 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1708 { .name = "DUMMY",
1709 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
1710 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1711 REGINFO_SENTINEL
1712 };
1713 ARMCPRegInfo crn0_wi_reginfo = {
1714 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
1715 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
1716 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
1717 };
1718 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
1719 arm_feature(env, ARM_FEATURE_STRONGARM)) {
1720 ARMCPRegInfo *r;
1721 /* Register the blanket "writes ignored" value first to cover the
1722 * whole space. Then update the specific ID registers to allow write
1723 * access, so that they ignore writes rather than causing them to
1724 * UNDEF.
1725 */
1726 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
1727 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
1728 r->access = PL1_RW;
1729 }
1730 }
1731 define_arm_cp_regs(cpu, id_cp_reginfo);
1732 }
1733
1734 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
1735 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
1736 }
1737
1738 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
1739 ARMCPRegInfo auxcr = {
1740 .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
1741 .access = PL1_RW, .type = ARM_CP_CONST,
1742 .resetvalue = cpu->reset_auxcr
1743 };
1744 define_one_arm_cp_reg(cpu, &auxcr);
1745 }
1746
1747 /* Generic registers whose values depend on the implementation */
1748 {
1749 ARMCPRegInfo sctlr = {
1750 .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
1751 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
1752 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
1753 .raw_writefn = raw_write,
1754 };
1755 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1756 /* Normally we would always end the TB on an SCTLR write, but Linux
1757 * arch/arm/mach-pxa/sleep.S expects two instructions following
1758 * an MMU enable to execute from cache. Imitate this behaviour.
1759 */
1760 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
1761 }
1762 define_one_arm_cp_reg(cpu, &sctlr);
1763 }
1764 }
1765
1766 ARMCPU *cpu_arm_init(const char *cpu_model)
1767 {
1768 ARMCPU *cpu;
1769 ObjectClass *oc;
1770
1771 oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
1772 if (!oc) {
1773 return NULL;
1774 }
1775 cpu = ARM_CPU(object_new(object_class_get_name(oc)));
1776
1777 /* TODO this should be set centrally, once possible */
1778 object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
1779
1780 return cpu;
1781 }
1782
1783 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
1784 {
1785 CPUState *cs = CPU(cpu);
1786 CPUARMState *env = &cpu->env;
1787
1788 if (arm_feature(env, ARM_FEATURE_NEON)) {
1789 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
1790 51, "arm-neon.xml", 0);
1791 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
1792 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
1793 35, "arm-vfp3.xml", 0);
1794 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
1795 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
1796 19, "arm-vfp.xml", 0);
1797 }
1798 }
1799
1800 /* Sort alphabetically by type name, except for "any". */
1801 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
1802 {
1803 ObjectClass *class_a = (ObjectClass *)a;
1804 ObjectClass *class_b = (ObjectClass *)b;
1805 const char *name_a, *name_b;
1806
1807 name_a = object_class_get_name(class_a);
1808 name_b = object_class_get_name(class_b);
1809 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
1810 return 1;
1811 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
1812 return -1;
1813 } else {
1814 return strcmp(name_a, name_b);
1815 }
1816 }
1817
1818 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
1819 {
1820 ObjectClass *oc = data;
1821 CPUListState *s = user_data;
1822 const char *typename;
1823 char *name;
1824
1825 typename = object_class_get_name(oc);
1826 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
1827 (*s->cpu_fprintf)(s->file, " %s\n",
1828 name);
1829 g_free(name);
1830 }
1831
1832 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
1833 {
1834 CPUListState s = {
1835 .file = f,
1836 .cpu_fprintf = cpu_fprintf,
1837 };
1838 GSList *list;
1839
1840 list = object_class_get_list(TYPE_ARM_CPU, false);
1841 list = g_slist_sort(list, arm_cpu_list_compare);
1842 (*cpu_fprintf)(f, "Available CPUs:\n");
1843 g_slist_foreach(list, arm_cpu_list_entry, &s);
1844 g_slist_free(list);
1845 }
1846
1847 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
1848 {
1849 ObjectClass *oc = data;
1850 CpuDefinitionInfoList **cpu_list = user_data;
1851 CpuDefinitionInfoList *entry;
1852 CpuDefinitionInfo *info;
1853 const char *typename;
1854
1855 typename = object_class_get_name(oc);
1856 info = g_malloc0(sizeof(*info));
1857 info->name = g_strndup(typename,
1858 strlen(typename) - strlen("-" TYPE_ARM_CPU));
1859
1860 entry = g_malloc0(sizeof(*entry));
1861 entry->value = info;
1862 entry->next = *cpu_list;
1863 *cpu_list = entry;
1864 }
1865
1866 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
1867 {
1868 CpuDefinitionInfoList *cpu_list = NULL;
1869 GSList *list;
1870
1871 list = object_class_get_list(TYPE_ARM_CPU, false);
1872 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
1873 g_slist_free(list);
1874
1875 return cpu_list;
1876 }
1877
1878 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1879 const ARMCPRegInfo *r, void *opaque)
1880 {
1881 /* Define implementations of coprocessor registers.
1882 * We store these in a hashtable because typically
1883 * there are less than 150 registers in a space which
1884 * is 16*16*16*8*8 = 262144 in size.
1885 * Wildcarding is supported for the crm, opc1 and opc2 fields.
1886 * If a register is defined twice then the second definition is
1887 * used, so this can be used to define some generic registers and
1888 * then override them with implementation specific variations.
1889 * At least one of the original and the second definition should
1890 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
1891 * against accidental use.
1892 */
1893 int crm, opc1, opc2;
1894 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
1895 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
1896 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
1897 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
1898 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
1899 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
1900 /* 64 bit registers have only CRm and Opc1 fields */
1901 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
1902 /* Check that the register definition has enough info to handle
1903 * reads and writes if they are permitted.
1904 */
1905 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
1906 if (r->access & PL3_R) {
1907 assert(r->fieldoffset || r->readfn);
1908 }
1909 if (r->access & PL3_W) {
1910 assert(r->fieldoffset || r->writefn);
1911 }
1912 }
1913 /* Bad type field probably means missing sentinel at end of reg list */
1914 assert(cptype_valid(r->type));
1915 for (crm = crmmin; crm <= crmmax; crm++) {
1916 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
1917 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
1918 uint32_t *key = g_new(uint32_t, 1);
1919 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
1920 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
1921 *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
1922 if (opaque) {
1923 r2->opaque = opaque;
1924 }
1925 /* Make sure reginfo passed to helpers for wildcarded regs
1926 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
1927 */
1928 r2->crm = crm;
1929 r2->opc1 = opc1;
1930 r2->opc2 = opc2;
1931 /* By convention, for wildcarded registers only the first
1932 * entry is used for migration; the others are marked as
1933 * NO_MIGRATE so we don't try to transfer the register
1934 * multiple times. Special registers (ie NOP/WFI) are
1935 * never migratable.
1936 */
1937 if ((r->type & ARM_CP_SPECIAL) ||
1938 ((r->crm == CP_ANY) && crm != 0) ||
1939 ((r->opc1 == CP_ANY) && opc1 != 0) ||
1940 ((r->opc2 == CP_ANY) && opc2 != 0)) {
1941 r2->type |= ARM_CP_NO_MIGRATE;
1942 }
1943
1944 /* Overriding of an existing definition must be explicitly
1945 * requested.
1946 */
1947 if (!(r->type & ARM_CP_OVERRIDE)) {
1948 ARMCPRegInfo *oldreg;
1949 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
1950 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
1951 fprintf(stderr, "Register redefined: cp=%d %d bit "
1952 "crn=%d crm=%d opc1=%d opc2=%d, "
1953 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
1954 r2->crn, r2->crm, r2->opc1, r2->opc2,
1955 oldreg->name, r2->name);
1956 g_assert_not_reached();
1957 }
1958 }
1959 g_hash_table_insert(cpu->cp_regs, key, r2);
1960 }
1961 }
1962 }
1963 }
1964
1965 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1966 const ARMCPRegInfo *regs, void *opaque)
1967 {
1968 /* Define a whole list of registers */
1969 const ARMCPRegInfo *r;
1970 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
1971 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
1972 }
1973 }
1974
1975 const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
1976 {
1977 return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
1978 }
1979
1980 int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1981 uint64_t value)
1982 {
1983 /* Helper coprocessor write function for write-ignore registers */
1984 return 0;
1985 }
1986
1987 int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1988 {
1989 /* Helper coprocessor write function for read-as-zero registers */
1990 *value = 0;
1991 return 0;
1992 }
1993
1994 static int bad_mode_switch(CPUARMState *env, int mode)
1995 {
1996 /* Return true if it is not valid for us to switch to
1997 * this CPU mode (ie all the UNPREDICTABLE cases in
1998 * the ARM ARM CPSRWriteByInstr pseudocode).
1999 */
2000 switch (mode) {
2001 case ARM_CPU_MODE_USR:
2002 case ARM_CPU_MODE_SYS:
2003 case ARM_CPU_MODE_SVC:
2004 case ARM_CPU_MODE_ABT:
2005 case ARM_CPU_MODE_UND:
2006 case ARM_CPU_MODE_IRQ:
2007 case ARM_CPU_MODE_FIQ:
2008 return 0;
2009 default:
2010 return 1;
2011 }
2012 }
2013
2014 uint32_t cpsr_read(CPUARMState *env)
2015 {
2016 int ZF;
2017 ZF = (env->ZF == 0);
2018 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2019 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
2020 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
2021 | ((env->condexec_bits & 0xfc) << 8)
2022 | (env->GE << 16);
2023 }
2024
2025 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
2026 {
2027 if (mask & CPSR_NZCV) {
2028 env->ZF = (~val) & CPSR_Z;
2029 env->NF = val;
2030 env->CF = (val >> 29) & 1;
2031 env->VF = (val << 3) & 0x80000000;
2032 }
2033 if (mask & CPSR_Q)
2034 env->QF = ((val & CPSR_Q) != 0);
2035 if (mask & CPSR_T)
2036 env->thumb = ((val & CPSR_T) != 0);
2037 if (mask & CPSR_IT_0_1) {
2038 env->condexec_bits &= ~3;
2039 env->condexec_bits |= (val >> 25) & 3;
2040 }
2041 if (mask & CPSR_IT_2_7) {
2042 env->condexec_bits &= 3;
2043 env->condexec_bits |= (val >> 8) & 0xfc;
2044 }
2045 if (mask & CPSR_GE) {
2046 env->GE = (val >> 16) & 0xf;
2047 }
2048
2049 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
2050 if (bad_mode_switch(env, val & CPSR_M)) {
2051 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
2052 * We choose to ignore the attempt and leave the CPSR M field
2053 * untouched.
2054 */
2055 mask &= ~CPSR_M;
2056 } else {
2057 switch_mode(env, val & CPSR_M);
2058 }
2059 }
2060 mask &= ~CACHED_CPSR_BITS;
2061 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
2062 }
2063
2064 /* Sign/zero extend */
2065 uint32_t HELPER(sxtb16)(uint32_t x)
2066 {
2067 uint32_t res;
2068 res = (uint16_t)(int8_t)x;
2069 res |= (uint32_t)(int8_t)(x >> 16) << 16;
2070 return res;
2071 }
2072
2073 uint32_t HELPER(uxtb16)(uint32_t x)
2074 {
2075 uint32_t res;
2076 res = (uint16_t)(uint8_t)x;
2077 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
2078 return res;
2079 }
2080
2081 uint32_t HELPER(clz)(uint32_t x)
2082 {
2083 return clz32(x);
2084 }
2085
2086 int32_t HELPER(sdiv)(int32_t num, int32_t den)
2087 {
2088 if (den == 0)
2089 return 0;
2090 if (num == INT_MIN && den == -1)
2091 return INT_MIN;
2092 return num / den;
2093 }
2094
2095 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
2096 {
2097 if (den == 0)
2098 return 0;
2099 return num / den;
2100 }
2101
2102 uint32_t HELPER(rbit)(uint32_t x)
2103 {
2104 x = ((x & 0xff000000) >> 24)
2105 | ((x & 0x00ff0000) >> 8)
2106 | ((x & 0x0000ff00) << 8)
2107 | ((x & 0x000000ff) << 24);
2108 x = ((x & 0xf0f0f0f0) >> 4)
2109 | ((x & 0x0f0f0f0f) << 4);
2110 x = ((x & 0x88888888) >> 3)
2111 | ((x & 0x44444444) >> 1)
2112 | ((x & 0x22222222) << 1)
2113 | ((x & 0x11111111) << 3);
2114 return x;
2115 }
2116
2117 #if defined(CONFIG_USER_ONLY)
2118
2119 void arm_cpu_do_interrupt(CPUState *cs)
2120 {
2121 ARMCPU *cpu = ARM_CPU(cs);
2122 CPUARMState *env = &cpu->env;
2123
2124 env->exception_index = -1;
2125 }
2126
2127 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
2128 int mmu_idx)
2129 {
2130 if (rw == 2) {
2131 env->exception_index = EXCP_PREFETCH_ABORT;
2132 env->cp15.c6_insn = address;
2133 } else {
2134 env->exception_index = EXCP_DATA_ABORT;
2135 env->cp15.c6_data = address;
2136 }
2137 return 1;
2138 }
2139
2140 /* These should probably raise undefined insn exceptions. */
2141 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2142 {
2143 cpu_abort(env, "v7m_mrs %d\n", reg);
2144 }
2145
2146 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2147 {
2148 cpu_abort(env, "v7m_mrs %d\n", reg);
2149 return 0;
2150 }
2151
2152 void switch_mode(CPUARMState *env, int mode)
2153 {
2154 if (mode != ARM_CPU_MODE_USR)
2155 cpu_abort(env, "Tried to switch out of user mode\n");
2156 }
2157
2158 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2159 {
2160 cpu_abort(env, "banked r13 write\n");
2161 }
2162
2163 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2164 {
2165 cpu_abort(env, "banked r13 read\n");
2166 return 0;
2167 }
2168
2169 #else
2170
2171 /* Map CPU modes onto saved register banks. */
2172 int bank_number(int mode)
2173 {
2174 switch (mode) {
2175 case ARM_CPU_MODE_USR:
2176 case ARM_CPU_MODE_SYS:
2177 return 0;
2178 case ARM_CPU_MODE_SVC:
2179 return 1;
2180 case ARM_CPU_MODE_ABT:
2181 return 2;
2182 case ARM_CPU_MODE_UND:
2183 return 3;
2184 case ARM_CPU_MODE_IRQ:
2185 return 4;
2186 case ARM_CPU_MODE_FIQ:
2187 return 5;
2188 }
2189 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
2190 }
2191
2192 void switch_mode(CPUARMState *env, int mode)
2193 {
2194 int old_mode;
2195 int i;
2196
2197 old_mode = env->uncached_cpsr & CPSR_M;
2198 if (mode == old_mode)
2199 return;
2200
2201 if (old_mode == ARM_CPU_MODE_FIQ) {
2202 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
2203 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
2204 } else if (mode == ARM_CPU_MODE_FIQ) {
2205 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
2206 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
2207 }
2208
2209 i = bank_number(old_mode);
2210 env->banked_r13[i] = env->regs[13];
2211 env->banked_r14[i] = env->regs[14];
2212 env->banked_spsr[i] = env->spsr;
2213
2214 i = bank_number(mode);
2215 env->regs[13] = env->banked_r13[i];
2216 env->regs[14] = env->banked_r14[i];
2217 env->spsr = env->banked_spsr[i];
2218 }
2219
2220 static void v7m_push(CPUARMState *env, uint32_t val)
2221 {
2222 env->regs[13] -= 4;
2223 stl_phys(env->regs[13], val);
2224 }
2225
2226 static uint32_t v7m_pop(CPUARMState *env)
2227 {
2228 uint32_t val;
2229 val = ldl_phys(env->regs[13]);
2230 env->regs[13] += 4;
2231 return val;
2232 }
2233
2234 /* Switch to V7M main or process stack pointer. */
2235 static void switch_v7m_sp(CPUARMState *env, int process)
2236 {
2237 uint32_t tmp;
2238 if (env->v7m.current_sp != process) {
2239 tmp = env->v7m.other_sp;
2240 env->v7m.other_sp = env->regs[13];
2241 env->regs[13] = tmp;
2242 env->v7m.current_sp = process;
2243 }
2244 }
2245
2246 static void do_v7m_exception_exit(CPUARMState *env)
2247 {
2248 uint32_t type;
2249 uint32_t xpsr;
2250
2251 type = env->regs[15];
2252 if (env->v7m.exception != 0)
2253 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
2254
2255 /* Switch to the target stack. */
2256 switch_v7m_sp(env, (type & 4) != 0);
2257 /* Pop registers. */
2258 env->regs[0] = v7m_pop(env);
2259 env->regs[1] = v7m_pop(env);
2260 env->regs[2] = v7m_pop(env);
2261 env->regs[3] = v7m_pop(env);
2262 env->regs[12] = v7m_pop(env);
2263 env->regs[14] = v7m_pop(env);
2264 env->regs[15] = v7m_pop(env);
2265 xpsr = v7m_pop(env);
2266 xpsr_write(env, xpsr, 0xfffffdff);
2267 /* Undo stack alignment. */
2268 if (xpsr & 0x200)
2269 env->regs[13] |= 4;
2270 /* ??? The exception return type specifies Thread/Handler mode. However
2271 this is also implied by the xPSR value. Not sure what to do
2272 if there is a mismatch. */
2273 /* ??? Likewise for mismatches between the CONTROL register and the stack
2274 pointer. */
2275 }
2276
2277 /* Exception names for debug logging; note that not all of these
2278 * precisely correspond to architectural exceptions.
2279 */
2280 static const char * const excnames[] = {
2281 [EXCP_UDEF] = "Undefined Instruction",
2282 [EXCP_SWI] = "SVC",
2283 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
2284 [EXCP_DATA_ABORT] = "Data Abort",
2285 [EXCP_IRQ] = "IRQ",
2286 [EXCP_FIQ] = "FIQ",
2287 [EXCP_BKPT] = "Breakpoint",
2288 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
2289 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
2290 [EXCP_STREX] = "QEMU intercept of STREX",
2291 };
2292
2293 static inline void arm_log_exception(int idx)
2294 {
2295 if (qemu_loglevel_mask(CPU_LOG_INT)) {
2296 const char *exc = NULL;
2297
2298 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
2299 exc = excnames[idx];
2300 }
2301 if (!exc) {
2302 exc = "unknown";
2303 }
2304 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
2305 }
2306 }
2307
2308 void arm_v7m_cpu_do_interrupt(CPUState *cs)
2309 {
2310 ARMCPU *cpu = ARM_CPU(cs);
2311 CPUARMState *env = &cpu->env;
2312 uint32_t xpsr = xpsr_read(env);
2313 uint32_t lr;
2314 uint32_t addr;
2315
2316 arm_log_exception(env->exception_index);
2317
2318 lr = 0xfffffff1;
2319 if (env->v7m.current_sp)
2320 lr |= 4;
2321 if (env->v7m.exception == 0)
2322 lr |= 8;
2323
2324 /* For exceptions we just mark as pending on the NVIC, and let that
2325 handle it. */
2326 /* TODO: Need to escalate if the current priority is higher than the
2327 one we're raising. */
2328 switch (env->exception_index) {
2329 case EXCP_UDEF:
2330 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
2331 return;
2332 case EXCP_SWI:
2333 /* The PC already points to the next instruction. */
2334 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
2335 return;
2336 case EXCP_PREFETCH_ABORT:
2337 case EXCP_DATA_ABORT:
2338 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
2339 return;
2340 case EXCP_BKPT:
2341 if (semihosting_enabled) {
2342 int nr;
2343 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2344 if (nr == 0xab) {
2345 env->regs[15] += 2;
2346 env->regs[0] = do_arm_semihosting(env);
2347 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2348 return;
2349 }
2350 }
2351 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
2352 return;
2353 case EXCP_IRQ:
2354 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
2355 break;
2356 case EXCP_EXCEPTION_EXIT:
2357 do_v7m_exception_exit(env);
2358 return;
2359 default:
2360 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2361 return; /* Never happens. Keep compiler happy. */
2362 }
2363
2364 /* Align stack pointer. */
2365 /* ??? Should only do this if Configuration Control Register
2366 STACKALIGN bit is set. */
2367 if (env->regs[13] & 4) {
2368 env->regs[13] -= 4;
2369 xpsr |= 0x200;
2370 }
2371 /* Switch to the handler mode. */
2372 v7m_push(env, xpsr);
2373 v7m_push(env, env->regs[15]);
2374 v7m_push(env, env->regs[14]);
2375 v7m_push(env, env->regs[12]);
2376 v7m_push(env, env->regs[3]);
2377 v7m_push(env, env->regs[2]);
2378 v7m_push(env, env->regs[1]);
2379 v7m_push(env, env->regs[0]);
2380 switch_v7m_sp(env, 0);
2381 /* Clear IT bits */
2382 env->condexec_bits = 0;
2383 env->regs[14] = lr;
2384 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
2385 env->regs[15] = addr & 0xfffffffe;
2386 env->thumb = addr & 1;
2387 }
2388
2389 /* Handle a CPU exception. */
2390 void arm_cpu_do_interrupt(CPUState *cs)
2391 {
2392 ARMCPU *cpu = ARM_CPU(cs);
2393 CPUARMState *env = &cpu->env;
2394 uint32_t addr;
2395 uint32_t mask;
2396 int new_mode;
2397 uint32_t offset;
2398
2399 assert(!IS_M(env));
2400
2401 arm_log_exception(env->exception_index);
2402
2403 /* TODO: Vectored interrupt controller. */
2404 switch (env->exception_index) {
2405 case EXCP_UDEF:
2406 new_mode = ARM_CPU_MODE_UND;
2407 addr = 0x04;
2408 mask = CPSR_I;
2409 if (env->thumb)
2410 offset = 2;
2411 else
2412 offset = 4;
2413 break;
2414 case EXCP_SWI:
2415 if (semihosting_enabled) {
2416 /* Check for semihosting interrupt. */
2417 if (env->thumb) {
2418 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
2419 & 0xff;
2420 } else {
2421 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
2422 & 0xffffff;
2423 }
2424 /* Only intercept calls from privileged modes, to provide some
2425 semblance of security. */
2426 if (((mask == 0x123456 && !env->thumb)
2427 || (mask == 0xab && env->thumb))
2428 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2429 env->regs[0] = do_arm_semihosting(env);
2430 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2431 return;
2432 }
2433 }
2434 new_mode = ARM_CPU_MODE_SVC;
2435 addr = 0x08;
2436 mask = CPSR_I;
2437 /* The PC already points to the next instruction. */
2438 offset = 0;
2439 break;
2440 case EXCP_BKPT:
2441 /* See if this is a semihosting syscall. */
2442 if (env->thumb && semihosting_enabled) {
2443 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2444 if (mask == 0xab
2445 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2446 env->regs[15] += 2;
2447 env->regs[0] = do_arm_semihosting(env);
2448 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2449 return;
2450 }
2451 }
2452 env->cp15.c5_insn = 2;
2453 /* Fall through to prefetch abort. */
2454 case EXCP_PREFETCH_ABORT:
2455 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
2456 env->cp15.c5_insn, env->cp15.c6_insn);
2457 new_mode = ARM_CPU_MODE_ABT;
2458 addr = 0x0c;
2459 mask = CPSR_A | CPSR_I;
2460 offset = 4;
2461 break;
2462 case EXCP_DATA_ABORT:
2463 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
2464 env->cp15.c5_data, env->cp15.c6_data);
2465 new_mode = ARM_CPU_MODE_ABT;
2466 addr = 0x10;
2467 mask = CPSR_A | CPSR_I;
2468 offset = 8;
2469 break;
2470 case EXCP_IRQ:
2471 new_mode = ARM_CPU_MODE_IRQ;
2472 addr = 0x18;
2473 /* Disable IRQ and imprecise data aborts. */
2474 mask = CPSR_A | CPSR_I;
2475 offset = 4;
2476 break;
2477 case EXCP_FIQ:
2478 new_mode = ARM_CPU_MODE_FIQ;
2479 addr = 0x1c;
2480 /* Disable FIQ, IRQ and imprecise data aborts. */
2481 mask = CPSR_A | CPSR_I | CPSR_F;
2482 offset = 4;
2483 break;
2484 default:
2485 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2486 return; /* Never happens. Keep compiler happy. */
2487 }
2488 /* High vectors. */
2489 if (env->cp15.c1_sys & (1 << 13)) {
2490 /* when enabled, base address cannot be remapped. */
2491 addr += 0xffff0000;
2492 } else {
2493 /* ARM v7 architectures provide a vector base address register to remap
2494 * the interrupt vector table.
2495 * This register is only followed in non-monitor mode, and has a secure
2496 * and un-secure copy. Since the cpu is always in a un-secure operation
2497 * and is never in monitor mode this feature is always active.
2498 * Note: only bits 31:5 are valid.
2499 */
2500 addr += env->cp15.c12_vbar;
2501 }
2502 switch_mode (env, new_mode);
2503 env->spsr = cpsr_read(env);
2504 /* Clear IT bits. */
2505 env->condexec_bits = 0;
2506 /* Switch to the new mode, and to the correct instruction set. */
2507 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
2508 env->uncached_cpsr |= mask;
2509 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
2510 * and we should just guard the thumb mode on V4 */
2511 if (arm_feature(env, ARM_FEATURE_V4T)) {
2512 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
2513 }
2514 env->regs[14] = env->regs[15] + offset;
2515 env->regs[15] = addr;
2516 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
2517 }
2518
2519 /* Check section/page access permissions.
2520 Returns the page protection flags, or zero if the access is not
2521 permitted. */
2522 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
2523 int access_type, int is_user)
2524 {
2525 int prot_ro;
2526
2527 if (domain_prot == 3) {
2528 return PAGE_READ | PAGE_WRITE;
2529 }
2530
2531 if (access_type == 1)
2532 prot_ro = 0;
2533 else
2534 prot_ro = PAGE_READ;
2535
2536 switch (ap) {
2537 case 0:
2538 if (access_type == 1)
2539 return 0;
2540 switch ((env->cp15.c1_sys >> 8) & 3) {
2541 case 1:
2542 return is_user ? 0 : PAGE_READ;
2543 case 2:
2544 return PAGE_READ;
2545 default:
2546 return 0;
2547 }
2548 case 1:
2549 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
2550 case 2:
2551 if (is_user)
2552 return prot_ro;
2553 else
2554 return PAGE_READ | PAGE_WRITE;
2555 case 3:
2556 return PAGE_READ | PAGE_WRITE;
2557 case 4: /* Reserved. */
2558 return 0;
2559 case 5:
2560 return is_user ? 0 : prot_ro;
2561 case 6:
2562 return prot_ro;
2563 case 7:
2564 if (!arm_feature (env, ARM_FEATURE_V6K))
2565 return 0;
2566 return prot_ro;
2567 default:
2568 abort();
2569 }
2570 }
2571
2572 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
2573 {
2574 uint32_t table;
2575
2576 if (address & env->cp15.c2_mask)
2577 table = env->cp15.c2_base1 & 0xffffc000;
2578 else
2579 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
2580
2581 table |= (address >> 18) & 0x3ffc;
2582 return table;
2583 }
2584
2585 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
2586 int is_user, hwaddr *phys_ptr,
2587 int *prot, target_ulong *page_size)
2588 {
2589 int code;
2590 uint32_t table;
2591 uint32_t desc;
2592 int type;
2593 int ap;
2594 int domain;
2595 int domain_prot;
2596 hwaddr phys_addr;
2597
2598 /* Pagetable walk. */
2599 /* Lookup l1 descriptor. */
2600 table = get_level1_table_address(env, address);
2601 desc = ldl_phys(table);
2602 type = (desc & 3);
2603 domain = (desc >> 5) & 0x0f;
2604 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2605 if (type == 0) {
2606 /* Section translation fault. */
2607 code = 5;
2608 goto do_fault;
2609 }
2610 if (domain_prot == 0 || domain_prot == 2) {
2611 if (type == 2)
2612 code = 9; /* Section domain fault. */
2613 else
2614 code = 11; /* Page domain fault. */
2615 goto do_fault;
2616 }
2617 if (type == 2) {
2618 /* 1Mb section. */
2619 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2620 ap = (desc >> 10) & 3;
2621 code = 13;
2622 *page_size = 1024 * 1024;
2623 } else {
2624 /* Lookup l2 entry. */
2625 if (type == 1) {
2626 /* Coarse pagetable. */
2627 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2628 } else {
2629 /* Fine pagetable. */
2630 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
2631 }
2632 desc = ldl_phys(table);
2633 switch (desc & 3) {
2634 case 0: /* Page translation fault. */
2635 code = 7;
2636 goto do_fault;
2637 case 1: /* 64k page. */
2638 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2639 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2640 *page_size = 0x10000;
2641 break;
2642 case 2: /* 4k page. */
2643 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2644 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2645 *page_size = 0x1000;
2646 break;
2647 case 3: /* 1k page. */
2648 if (type == 1) {
2649 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2650 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2651 } else {
2652 /* Page translation fault. */
2653 code = 7;
2654 goto do_fault;
2655 }
2656 } else {
2657 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
2658 }
2659 ap = (desc >> 4) & 3;
2660 *page_size = 0x400;
2661 break;
2662 default:
2663 /* Never happens, but compiler isn't smart enough to tell. */
2664 abort();
2665 }
2666 code = 15;
2667 }
2668 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2669 if (!*prot) {
2670 /* Access permission fault. */
2671 goto do_fault;
2672 }
2673 *prot |= PAGE_EXEC;
2674 *phys_ptr = phys_addr;
2675 return 0;
2676 do_fault:
2677 return code | (domain << 4);
2678 }
2679
2680 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
2681 int is_user, hwaddr *phys_ptr,
2682 int *prot, target_ulong *page_size)
2683 {
2684 int code;
2685 uint32_t table;
2686 uint32_t desc;
2687 uint32_t xn;
2688 uint32_t pxn = 0;
2689 int type;
2690 int ap;
2691 int domain = 0;
2692 int domain_prot;
2693 hwaddr phys_addr;
2694
2695 /* Pagetable walk. */
2696 /* Lookup l1 descriptor. */
2697 table = get_level1_table_address(env, address);
2698 desc = ldl_phys(table);
2699 type = (desc & 3);
2700 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
2701 /* Section translation fault, or attempt to use the encoding
2702 * which is Reserved on implementations without PXN.
2703 */
2704 code = 5;
2705 goto do_fault;
2706 }
2707 if ((type == 1) || !(desc & (1 << 18))) {
2708 /* Page or Section. */
2709 domain = (desc >> 5) & 0x0f;
2710 }
2711 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2712 if (domain_prot == 0 || domain_prot == 2) {
2713 if (type != 1) {
2714 code = 9; /* Section domain fault. */
2715 } else {
2716 code = 11; /* Page domain fault. */
2717 }
2718 goto do_fault;
2719 }
2720 if (type != 1) {
2721 if (desc & (1 << 18)) {
2722 /* Supersection. */
2723 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
2724 *page_size = 0x1000000;
2725 } else {
2726 /* Section. */
2727 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2728 *page_size = 0x100000;
2729 }
2730 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
2731 xn = desc & (1 << 4);
2732 pxn = desc & 1;
2733 code = 13;
2734 } else {
2735 if (arm_feature(env, ARM_FEATURE_PXN)) {
2736 pxn = (desc >> 2) & 1;
2737 }
2738 /* Lookup l2 entry. */
2739 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2740 desc = ldl_phys(table);
2741 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
2742 switch (desc & 3) {
2743 case 0: /* Page translation fault. */
2744 code = 7;
2745 goto do_fault;
2746 case 1: /* 64k page. */
2747 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2748 xn = desc & (1 << 15);
2749 *page_size = 0x10000;
2750 break;
2751 case 2: case 3: /* 4k page. */
2752 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2753 xn = desc & 1;
2754 *page_size = 0x1000;
2755 break;
2756 default:
2757 /* Never happens, but compiler isn't smart enough to tell. */
2758 abort();
2759 }
2760 code = 15;
2761 }
2762 if (domain_prot == 3) {
2763 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2764 } else {
2765 if (pxn && !is_user) {
2766 xn = 1;
2767 }
2768 if (xn && access_type == 2)
2769 goto do_fault;
2770
2771 /* The simplified model uses AP[0] as an access control bit. */
2772 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
2773 /* Access flag fault. */
2774 code = (code == 15) ? 6 : 3;
2775 goto do_fault;
2776 }
2777 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2778 if (!*prot) {
2779 /* Access permission fault. */
2780 goto do_fault;
2781 }
2782 if (!xn) {
2783 *prot |= PAGE_EXEC;
2784 }
2785 }
2786 *phys_ptr = phys_addr;
2787 return 0;
2788 do_fault:
2789 return code | (domain << 4);
2790 }
2791
2792 /* Fault type for long-descriptor MMU fault reporting; this corresponds
2793 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
2794 */
2795 typedef enum {
2796 translation_fault = 1,
2797 access_fault = 2,
2798 permission_fault = 3,
2799 } MMUFaultType;
2800
2801 static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
2802 int access_type, int is_user,
2803 hwaddr *phys_ptr, int *prot,
2804 target_ulong *page_size_ptr)
2805 {
2806 /* Read an LPAE long-descriptor translation table. */
2807 MMUFaultType fault_type = translation_fault;
2808 uint32_t level = 1;
2809 uint32_t epd;
2810 uint32_t tsz;
2811 uint64_t ttbr;
2812 int ttbr_select;
2813 int n;
2814 hwaddr descaddr;
2815 uint32_t tableattrs;
2816 target_ulong page_size;
2817 uint32_t attrs;
2818
2819 /* Determine whether this address is in the region controlled by
2820 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
2821 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
2822 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
2823 */
2824 uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
2825 uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
2826 if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
2827 /* there is a ttbr0 region and we are in it (high bits all zero) */
2828 ttbr_select = 0;
2829 } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
2830 /* there is a ttbr1 region and we are in it (high bits all one) */
2831 ttbr_select = 1;
2832 } else if (!t0sz) {
2833 /* ttbr0 region is "everything not in the ttbr1 region" */
2834 ttbr_select = 0;
2835 } else if (!t1sz) {
2836 /* ttbr1 region is "everything not in the ttbr0 region" */
2837 ttbr_select = 1;
2838 } else {
2839 /* in the gap between the two regions, this is a Translation fault */
2840 fault_type = translation_fault;
2841 goto do_fault;
2842 }
2843
2844 /* Note that QEMU ignores shareability and cacheability attributes,
2845 * so we don't need to do anything with the SH, ORGN, IRGN fields
2846 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
2847 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
2848 * implement any ASID-like capability so we can ignore it (instead
2849 * we will always flush the TLB any time the ASID is changed).
2850 */
2851 if (ttbr_select == 0) {
2852 ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
2853 epd = extract32(env->cp15.c2_control, 7, 1);
2854 tsz = t0sz;
2855 } else {
2856 ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
2857 epd = extract32(env->cp15.c2_control, 23, 1);
2858 tsz = t1sz;
2859 }
2860
2861 if (epd) {
2862 /* Translation table walk disabled => Translation fault on TLB miss */
2863 goto do_fault;
2864 }
2865
2866 /* If the region is small enough we will skip straight to a 2nd level
2867 * lookup. This affects the number of bits of the address used in
2868 * combination with the TTBR to find the first descriptor. ('n' here
2869 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
2870 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
2871 */
2872 if (tsz > 1) {
2873 level = 2;
2874 n = 14 - tsz;
2875 } else {
2876 n = 5 - tsz;
2877 }
2878
2879 /* Clear the vaddr bits which aren't part of the within-region address,
2880 * so that we don't have to special case things when calculating the
2881 * first descriptor address.
2882 */
2883 address &= (0xffffffffU >> tsz);
2884
2885 /* Now we can extract the actual base address from the TTBR */
2886 descaddr = extract64(ttbr, 0, 40);
2887 descaddr &= ~((1ULL << n) - 1);
2888
2889 tableattrs = 0;
2890 for (;;) {
2891 uint64_t descriptor;
2892
2893 descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
2894 descriptor = ldq_phys(descaddr);
2895 if (!(descriptor & 1) ||
2896 (!(descriptor & 2) && (level == 3))) {
2897 /* Invalid, or the Reserved level 3 encoding */
2898 goto do_fault;
2899 }
2900 descaddr = descriptor & 0xfffffff000ULL;
2901
2902 if ((descriptor & 2) && (level < 3)) {
2903 /* Table entry. The top five bits are attributes which may
2904 * propagate down through lower levels of the table (and
2905 * which are all arranged so that 0 means "no effect", so
2906 * we can gather them up by ORing in the bits at each level).
2907 */
2908 tableattrs |= extract64(descriptor, 59, 5);
2909 level++;
2910 continue;
2911 }
2912 /* Block entry at level 1 or 2, or page entry at level 3.
2913 * These are basically the same thing, although the number
2914 * of bits we pull in from the vaddr varies.
2915 */
2916 page_size = (1 << (39 - (9 * level)));
2917 descaddr |= (address & (page_size - 1));
2918 /* Extract attributes from the descriptor and merge with table attrs */
2919 attrs = extract64(descriptor, 2, 10)
2920 | (extract64(descriptor, 52, 12) << 10);
2921 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
2922 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
2923 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
2924 * means "force PL1 access only", which means forcing AP[1] to 0.
2925 */
2926 if (extract32(tableattrs, 2, 1)) {
2927 attrs &= ~(1 << 4);
2928 }
2929 /* Since we're always in the Non-secure state, NSTable is ignored. */
2930 break;
2931 }
2932 /* Here descaddr is the final physical address, and attributes
2933 * are all in attrs.
2934 */
2935 fault_type = access_fault;
2936 if ((attrs & (1 << 8)) == 0) {
2937 /* Access flag */
2938 goto do_fault;
2939 }
2940 fault_type = permission_fault;
2941 if (is_user && !(attrs & (1 << 4))) {
2942 /* Unprivileged access not enabled */
2943 goto do_fault;
2944 }
2945 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2946 if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
2947 /* XN or PXN */
2948 if (access_type == 2) {
2949 goto do_fault;
2950 }
2951 *prot &= ~PAGE_EXEC;
2952 }
2953 if (attrs & (1 << 5)) {
2954 /* Write access forbidden */
2955 if (access_type == 1) {
2956 goto do_fault;
2957 }
2958 *prot &= ~PAGE_WRITE;
2959 }
2960
2961 *phys_ptr = descaddr;
2962 *page_size_ptr = page_size;
2963 return 0;
2964
2965 do_fault:
2966 /* Long-descriptor format IFSR/DFSR value */
2967 return (1 << 9) | (fault_type << 2) | level;
2968 }
2969
2970 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
2971 int access_type, int is_user,
2972 hwaddr *phys_ptr, int *prot)
2973 {
2974 int n;
2975 uint32_t mask;
2976 uint32_t base;
2977
2978 *phys_ptr = address;
2979 for (n = 7; n >= 0; n--) {
2980 base = env->cp15.c6_region[n];
2981 if ((base & 1) == 0)
2982 continue;
2983 mask = 1 << ((base >> 1) & 0x1f);
2984 /* Keep this shift separate from the above to avoid an
2985 (undefined) << 32. */
2986 mask = (mask << 1) - 1;
2987 if (((base ^ address) & ~mask) == 0)
2988 break;
2989 }
2990 if (n < 0)
2991 return 2;
2992
2993 if (access_type == 2) {
2994 mask = env->cp15.c5_insn;
2995 } else {
2996 mask = env->cp15.c5_data;
2997 }
2998 mask = (mask >> (n * 4)) & 0xf;
2999 switch (mask) {
3000 case 0:
3001 return 1;
3002 case 1:
3003 if (is_user)
3004 return 1;
3005 *prot = PAGE_READ | PAGE_WRITE;
3006 break;
3007 case 2:
3008 *prot = PAGE_READ;
3009 if (!is_user)
3010 *prot |= PAGE_WRITE;
3011 break;
3012 case 3:
3013 *prot = PAGE_READ | PAGE_WRITE;
3014 break;
3015 case 5:
3016 if (is_user)
3017 return 1;
3018 *prot = PAGE_READ;
3019 break;
3020 case 6:
3021 *prot = PAGE_READ;
3022 break;
3023 default:
3024 /* Bad permission. */
3025 return 1;
3026 }
3027 *prot |= PAGE_EXEC;
3028 return 0;
3029 }
3030
3031 /* get_phys_addr - get the physical address for this virtual address
3032 *
3033 * Find the physical address corresponding to the given virtual address,
3034 * by doing a translation table walk on MMU based systems or using the
3035 * MPU state on MPU based systems.
3036 *
3037 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
3038 * prot and page_size are not filled in, and the return value provides
3039 * information on why the translation aborted, in the format of a
3040 * DFSR/IFSR fault register, with the following caveats:
3041 * * we honour the short vs long DFSR format differences.
3042 * * the WnR bit is never set (the caller must do this).
3043 * * for MPU based systems we don't bother to return a full FSR format
3044 * value.
3045 *
3046 * @env: CPUARMState
3047 * @address: virtual address to get physical address for
3048 * @access_type: 0 for read, 1 for write, 2 for execute
3049 * @is_user: 0 for privileged access, 1 for user
3050 * @phys_ptr: set to the physical address corresponding to the virtual address
3051 * @prot: set to the permissions for the page containing phys_ptr
3052 * @page_size: set to the size of the page containing phys_ptr
3053 */
3054 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
3055 int access_type, int is_user,
3056 hwaddr *phys_ptr, int *prot,
3057 target_ulong *page_size)
3058 {
3059 /* Fast Context Switch Extension. */
3060 if (address < 0x02000000)
3061 address += env->cp15.c13_fcse;
3062
3063 if ((env->cp15.c1_sys & 1) == 0) {
3064 /* MMU/MPU disabled. */
3065 *phys_ptr = address;
3066 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3067 *page_size = TARGET_PAGE_SIZE;
3068 return 0;
3069 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
3070 *page_size = TARGET_PAGE_SIZE;
3071 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
3072 prot);
3073 } else if (extended_addresses_enabled(env)) {
3074 return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
3075 prot, page_size);
3076 } else if (env->cp15.c1_sys & (1 << 23)) {
3077 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
3078 prot, page_size);
3079 } else {
3080 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
3081 prot, page_size);
3082 }
3083 }
3084
3085 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
3086 int access_type, int mmu_idx)
3087 {
3088 hwaddr phys_addr;
3089 target_ulong page_size;
3090 int prot;
3091 int ret, is_user;
3092
3093 is_user = mmu_idx == MMU_USER_IDX;
3094 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
3095 &page_size);
3096 if (ret == 0) {
3097 /* Map a single [sub]page. */
3098 phys_addr &= ~(hwaddr)0x3ff;
3099 address &= ~(uint32_t)0x3ff;
3100 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
3101 return 0;
3102 }
3103
3104 if (access_type == 2) {
3105 env->cp15.c5_insn = ret;
3106 env->cp15.c6_insn = address;
3107 env->exception_index = EXCP_PREFETCH_ABORT;
3108 } else {
3109 env->cp15.c5_data = ret;
3110 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
3111 env->cp15.c5_data |= (1 << 11);
3112 env->cp15.c6_data = address;
3113 env->exception_index = EXCP_DATA_ABORT;
3114 }
3115 return 1;
3116 }
3117
3118 hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
3119 {
3120 ARMCPU *cpu = ARM_CPU(cs);
3121 hwaddr phys_addr;
3122 target_ulong page_size;
3123 int prot;
3124 int ret;
3125
3126 ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size);
3127
3128 if (ret != 0) {
3129 return -1;
3130 }
3131
3132 return phys_addr;
3133 }
3134
3135 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
3136 {
3137 if ((env->uncached_cpsr & CPSR_M) == mode) {
3138 env->regs[13] = val;
3139 } else {
3140 env->banked_r13[bank_number(mode)] = val;
3141 }
3142 }
3143
3144 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
3145 {
3146 if ((env->uncached_cpsr & CPSR_M) == mode) {
3147 return env->regs[13];
3148 } else {
3149 return env->banked_r13[bank_number(mode)];
3150 }
3151 }
3152
3153 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
3154 {
3155 switch (reg) {
3156 case 0: /* APSR */
3157 return xpsr_read(env) & 0xf8000000;
3158 case 1: /* IAPSR */
3159 return xpsr_read(env) & 0xf80001ff;
3160 case 2: /* EAPSR */
3161 return xpsr_read(env) & 0xff00fc00;
3162 case 3: /* xPSR */
3163 return xpsr_read(env) & 0xff00fdff;
3164 case 5: /* IPSR */
3165 return xpsr_read(env) & 0x000001ff;
3166 case 6: /* EPSR */
3167 return xpsr_read(env) & 0x0700fc00;
3168 case 7: /* IEPSR */
3169 return xpsr_read(env) & 0x0700edff;
3170 case 8: /* MSP */
3171 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
3172 case 9: /* PSP */
3173 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
3174 case 16: /* PRIMASK */
3175 return (env->uncached_cpsr & CPSR_I) != 0;
3176 case 17: /* BASEPRI */
3177 case 18: /* BASEPRI_MAX */
3178 return env->v7m.basepri;
3179 case 19: /* FAULTMASK */
3180 return (env->uncached_cpsr & CPSR_F) != 0;
3181 case 20: /* CONTROL */
3182 return env->v7m.control;
3183 default:
3184 /* ??? For debugging only. */
3185 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
3186 return 0;
3187 }
3188 }
3189
3190 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
3191 {
3192 switch (reg) {
3193 case 0: /* APSR */
3194 xpsr_write(env, val, 0xf8000000);
3195 break;
3196 case 1: /* IAPSR */
3197 xpsr_write(env, val, 0xf8000000);
3198 break;
3199 case 2: /* EAPSR */
3200 xpsr_write(env, val, 0xfe00fc00);
3201 break;
3202 case 3: /* xPSR */
3203 xpsr_write(env, val, 0xfe00fc00);
3204 break;
3205 case 5: /* IPSR */
3206 /* IPSR bits are readonly. */
3207 break;
3208 case 6: /* EPSR */
3209 xpsr_write(env, val, 0x0600fc00);
3210 break;
3211 case 7: /* IEPSR */
3212 xpsr_write(env, val, 0x0600fc00);
3213 break;
3214 case 8: /* MSP */
3215 if (env->v7m.current_sp)
3216 env->v7m.other_sp = val;
3217 else
3218 env->regs[13] = val;
3219 break;
3220 case 9: /* PSP */
3221 if (env->v7m.current_sp)
3222 env->regs[13] = val;
3223 else
3224 env->v7m.other_sp = val;
3225 break;
3226 case 16: /* PRIMASK */
3227 if (val & 1)
3228 env->uncached_cpsr |= CPSR_I;
3229 else
3230 env->uncached_cpsr &= ~CPSR_I;
3231 break;
3232 case 17: /* BASEPRI */
3233 env->v7m.basepri = val & 0xff;
3234 break;
3235 case 18: /* BASEPRI_MAX */
3236 val &= 0xff;
3237 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
3238 env->v7m.basepri = val;
3239 break;
3240 case 19: /* FAULTMASK */
3241 if (val & 1)
3242 env->uncached_cpsr |= CPSR_F;
3243 else
3244 env->uncached_cpsr &= ~CPSR_F;
3245 break;
3246 case 20: /* CONTROL */
3247 env->v7m.control = val & 3;
3248 switch_v7m_sp(env, (val & 2) != 0);
3249 break;
3250 default:
3251 /* ??? For debugging only. */
3252 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
3253 return;
3254 }
3255 }
3256
3257 #endif
3258
3259 /* Note that signed overflow is undefined in C. The following routines are
3260 careful to use unsigned types where modulo arithmetic is required.
3261 Failure to do so _will_ break on newer gcc. */
3262
3263 /* Signed saturating arithmetic. */
3264
3265 /* Perform 16-bit signed saturating addition. */
3266 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
3267 {
3268 uint16_t res;
3269
3270 res = a + b;
3271 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
3272 if (a & 0x8000)
3273 res = 0x8000;
3274 else
3275 res = 0x7fff;
3276 }
3277 return res;
3278 }
3279
3280 /* Perform 8-bit signed saturating addition. */
3281 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
3282 {
3283 uint8_t res;
3284
3285 res = a + b;
3286 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
3287 if (a & 0x80)
3288 res = 0x80;
3289 else
3290 res = 0x7f;
3291 }
3292 return res;
3293 }
3294
3295 /* Perform 16-bit signed saturating subtraction. */
3296 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
3297 {
3298 uint16_t res;
3299
3300 res = a - b;
3301 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
3302 if (a & 0x8000)
3303 res = 0x8000;
3304 else
3305 res = 0x7fff;
3306 }
3307 return res;
3308 }
3309
3310 /* Perform 8-bit signed saturating subtraction. */
3311 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
3312 {
3313 uint8_t res;
3314
3315 res = a - b;
3316 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
3317 if (a & 0x80)
3318 res = 0x80;
3319 else
3320 res = 0x7f;
3321 }
3322 return res;
3323 }
3324
3325 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
3326 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
3327 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
3328 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
3329 #define PFX q
3330
3331 #include "op_addsub.h"
3332
3333 /* Unsigned saturating arithmetic. */
3334 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
3335 {
3336 uint16_t res;
3337 res = a + b;
3338 if (res < a)
3339 res = 0xffff;
3340 return res;
3341 }
3342
3343 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
3344 {
3345 if (a > b)
3346 return a - b;
3347 else
3348 return 0;
3349 }
3350
3351 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
3352 {
3353 uint8_t res;
3354 res = a + b;
3355 if (res < a)
3356 res = 0xff;
3357 return res;
3358 }
3359
3360 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
3361 {
3362 if (a > b)
3363 return a - b;
3364 else
3365 return 0;
3366 }
3367
3368 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
3369 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
3370 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
3371 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
3372 #define PFX uq
3373
3374 #include "op_addsub.h"
3375
3376 /* Signed modulo arithmetic. */
3377 #define SARITH16(a, b, n, op) do { \
3378 int32_t sum; \
3379 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
3380 RESULT(sum, n, 16); \
3381 if (sum >= 0) \
3382 ge |= 3 << (n * 2); \
3383 } while(0)
3384
3385 #define SARITH8(a, b, n, op) do { \
3386 int32_t sum; \
3387 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
3388 RESULT(sum, n, 8); \
3389 if (sum >= 0) \
3390 ge |= 1 << n; \
3391 } while(0)
3392
3393
3394 #define ADD16(a, b, n) SARITH16(a, b, n, +)
3395 #define SUB16(a, b, n) SARITH16(a, b, n, -)
3396 #define ADD8(a, b, n) SARITH8(a, b, n, +)
3397 #define SUB8(a, b, n) SARITH8(a, b, n, -)
3398 #define PFX s
3399 #define ARITH_GE
3400
3401 #include "op_addsub.h"
3402
3403 /* Unsigned modulo arithmetic. */
3404 #define ADD16(a, b, n) do { \
3405 uint32_t sum; \
3406 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
3407 RESULT(sum, n, 16); \
3408 if ((sum >> 16) == 1) \
3409 ge |= 3 << (n * 2); \
3410 } while(0)
3411
3412 #define ADD8(a, b, n) do { \
3413 uint32_t sum; \
3414 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
3415 RESULT(sum, n, 8); \
3416 if ((sum >> 8) == 1) \
3417 ge |= 1 << n; \
3418 } while(0)
3419
3420 #define SUB16(a, b, n) do { \
3421 uint32_t sum; \
3422 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
3423 RESULT(sum, n, 16); \
3424 if ((sum >> 16) == 0) \
3425 ge |= 3 << (n * 2); \
3426 } while(0)
3427
3428 #define SUB8(a, b, n) do { \
3429 uint32_t sum; \
3430 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
3431 RESULT(sum, n, 8); \
3432 if ((sum >> 8) == 0) \
3433 ge |= 1 << n; \
3434 } while(0)
3435
3436 #define PFX u
3437 #define ARITH_GE
3438
3439 #include "op_addsub.h"
3440
3441 /* Halved signed arithmetic. */
3442 #define ADD16(a, b, n) \
3443 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
3444 #define SUB16(a, b, n) \
3445 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
3446 #define ADD8(a, b, n) \
3447 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
3448 #define SUB8(a, b, n) \
3449 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
3450 #define PFX sh
3451
3452 #include "op_addsub.h"
3453
3454 /* Halved unsigned arithmetic. */
3455 #define ADD16(a, b, n) \
3456 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3457 #define SUB16(a, b, n) \
3458 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3459 #define ADD8(a, b, n) \
3460 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3461 #define SUB8(a, b, n) \
3462 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3463 #define PFX uh
3464
3465 #include "op_addsub.h"
3466
3467 static inline uint8_t do_usad(uint8_t a, uint8_t b)
3468 {
3469 if (a > b)
3470 return a - b;
3471 else
3472 return b - a;
3473 }
3474
3475 /* Unsigned sum of absolute byte differences. */
3476 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
3477 {
3478 uint32_t sum;
3479 sum = do_usad(a, b);
3480 sum += do_usad(a >> 8, b >> 8);
3481 sum += do_usad(a >> 16, b >>16);
3482 sum += do_usad(a >> 24, b >> 24);
3483 return sum;
3484 }
3485
3486 /* For ARMv6 SEL instruction. */
3487 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
3488 {
3489 uint32_t mask;
3490
3491 mask = 0;
3492 if (flags & 1)
3493 mask |= 0xff;
3494 if (flags & 2)
3495 mask |= 0xff00;
3496 if (flags & 4)
3497 mask |= 0xff0000;
3498 if (flags & 8)
3499 mask |= 0xff000000;
3500 return (a & mask) | (b & ~mask);
3501 }
3502
3503 /* VFP support. We follow the convention used for VFP instructions:
3504 Single precision routines have a "s" suffix, double precision a
3505 "d" suffix. */
3506
3507 /* Convert host exception flags to vfp form. */
3508 static inline int vfp_exceptbits_from_host(int host_bits)
3509 {
3510 int target_bits = 0;
3511
3512 if (host_bits & float_flag_invalid)
3513 target_bits |= 1;
3514 if (host_bits & float_flag_divbyzero)
3515 target_bits |= 2;
3516 if (host_bits & float_flag_overflow)
3517 target_bits |= 4;
3518 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
3519 target_bits |= 8;
3520 if (host_bits & float_flag_inexact)
3521 target_bits |= 0x10;
3522 if (host_bits & float_flag_input_denormal)
3523 target_bits |= 0x80;
3524 return target_bits;
3525 }
3526
3527 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
3528 {
3529 int i;
3530 uint32_t fpscr;
3531
3532 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
3533 | (env->vfp.vec_len << 16)
3534 | (env->vfp.vec_stride << 20);
3535 i = get_float_exception_flags(&env->vfp.fp_status);
3536 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
3537 fpscr |= vfp_exceptbits_from_host(i);
3538 return fpscr;
3539 }
3540
3541 uint32_t vfp_get_fpscr(CPUARMState *env)
3542 {
3543 return HELPER(vfp_get_fpscr)(env);
3544 }
3545
3546 /* Convert vfp exception flags to target form. */
3547 static inline int vfp_exceptbits_to_host(int target_bits)
3548 {
3549 int host_bits = 0;
3550
3551 if (target_bits & 1)
3552 host_bits |= float_flag_invalid;
3553 if (target_bits & 2)
3554 host_bits |= float_flag_divbyzero;
3555 if (target_bits & 4)
3556 host_bits |= float_flag_overflow;
3557 if (target_bits & 8)
3558 host_bits |= float_flag_underflow;
3559 if (target_bits & 0x10)
3560 host_bits |= float_flag_inexact;
3561 if (target_bits & 0x80)
3562 host_bits |= float_flag_input_denormal;
3563 return host_bits;
3564 }
3565
3566 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
3567 {
3568 int i;
3569 uint32_t changed;
3570
3571 changed = env->vfp.xregs[ARM_VFP_FPSCR];
3572 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
3573 env->vfp.vec_len = (val >> 16) & 7;
3574 env->vfp.vec_stride = (val >> 20) & 3;
3575
3576 changed ^= val;
3577 if (changed & (3 << 22)) {
3578 i = (val >> 22) & 3;
3579 switch (i) {
3580 case 0:
3581 i = float_round_nearest_even;
3582 break;
3583 case 1:
3584 i = float_round_up;
3585 break;
3586 case 2:
3587 i = float_round_down;
3588 break;
3589 case 3:
3590 i = float_round_to_zero;
3591 break;
3592 }
3593 set_float_rounding_mode(i, &env->vfp.fp_status);
3594 }
3595 if (changed & (1 << 24)) {
3596 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3597 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3598 }
3599 if (changed & (1 << 25))
3600 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
3601
3602 i = vfp_exceptbits_to_host(val);
3603 set_float_exception_flags(i, &env->vfp.fp_status);
3604 set_float_exception_flags(0, &env->vfp.standard_fp_status);
3605 }
3606
3607 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
3608 {
3609 HELPER(vfp_set_fpscr)(env, val);
3610 }
3611
3612 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
3613
3614 #define VFP_BINOP(name) \
3615 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
3616 { \
3617 float_status *fpst = fpstp; \
3618 return float32_ ## name(a, b, fpst); \
3619 } \
3620 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
3621 { \
3622 float_status *fpst = fpstp; \
3623 return float64_ ## name(a, b, fpst); \
3624 }
3625 VFP_BINOP(add)
3626 VFP_BINOP(sub)
3627 VFP_BINOP(mul)
3628 VFP_BINOP(div)
3629 #undef VFP_BINOP
3630
3631 float32 VFP_HELPER(neg, s)(float32 a)
3632 {
3633 return float32_chs(a);
3634 }
3635
3636 float64 VFP_HELPER(neg, d)(float64 a)
3637 {
3638 return float64_chs(a);
3639 }
3640
3641 float32 VFP_HELPER(abs, s)(float32 a)
3642 {
3643 return float32_abs(a);
3644 }
3645
3646 float64 VFP_HELPER(abs, d)(float64 a)
3647 {
3648 return float64_abs(a);
3649 }
3650
3651 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
3652 {
3653 return float32_sqrt(a, &env->vfp.fp_status);
3654 }
3655
3656 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
3657 {
3658 return float64_sqrt(a, &env->vfp.fp_status);
3659 }
3660
3661 /* XXX: check quiet/signaling case */
3662 #define DO_VFP_cmp(p, type) \
3663 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
3664 { \
3665 uint32_t flags; \
3666 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
3667 case 0: flags = 0x6; break; \
3668 case -1: flags = 0x8; break; \
3669 case 1: flags = 0x2; break; \
3670 default: case 2: flags = 0x3; break; \
3671 } \
3672 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3673 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3674 } \
3675 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
3676 { \
3677 uint32_t flags; \
3678 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
3679 case 0: flags = 0x6; break; \
3680 case -1: flags = 0x8; break; \
3681 case 1: flags = 0x2; break; \
3682 default: case 2: flags = 0x3; break; \
3683 } \
3684 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3685 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3686 }
3687 DO_VFP_cmp(s, float32)
3688 DO_VFP_cmp(d, float64)
3689 #undef DO_VFP_cmp
3690
3691 /* Integer to float and float to integer conversions */
3692
3693 #define CONV_ITOF(name, fsz, sign) \
3694 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
3695 { \
3696 float_status *fpst = fpstp; \
3697 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
3698 }
3699
3700 #define CONV_FTOI(name, fsz, sign, round) \
3701 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
3702 { \
3703 float_status *fpst = fpstp; \
3704 if (float##fsz##_is_any_nan(x)) { \
3705 float_raise(float_flag_invalid, fpst); \
3706 return 0; \
3707 } \
3708 return float##fsz##_to_##sign##int32##round(x, fpst); \
3709 }
3710
3711 #define FLOAT_CONVS(name, p, fsz, sign) \
3712 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
3713 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
3714 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
3715
3716 FLOAT_CONVS(si, s, 32, )
3717 FLOAT_CONVS(si, d, 64, )
3718 FLOAT_CONVS(ui, s, 32, u)
3719 FLOAT_CONVS(ui, d, 64, u)
3720
3721 #undef CONV_ITOF
3722 #undef CONV_FTOI
3723 #undef FLOAT_CONVS
3724
3725 /* floating point conversion */
3726 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
3727 {
3728 float64 r = float32_to_float64(x, &env->vfp.fp_status);
3729 /* ARM requires that S<->D conversion of any kind of NaN generates
3730 * a quiet NaN by forcing the most significant frac bit to 1.
3731 */
3732 return float64_maybe_silence_nan(r);
3733 }
3734
3735 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
3736 {
3737 float32 r = float64_to_float32(x, &env->vfp.fp_status);
3738 /* ARM requires that S<->D conversion of any kind of NaN generates
3739 * a quiet NaN by forcing the most significant frac bit to 1.
3740 */
3741 return float32_maybe_silence_nan(r);
3742 }
3743
3744 /* VFP3 fixed point conversion. */
3745 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
3746 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
3747 void *fpstp) \
3748 { \
3749 float_status *fpst = fpstp; \
3750 float##fsz tmp; \
3751 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
3752 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
3753 } \
3754 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
3755 void *fpstp) \
3756 { \
3757 float_status *fpst = fpstp; \
3758 float##fsz tmp; \
3759 if (float##fsz##_is_any_nan(x)) { \
3760 float_raise(float_flag_invalid, fpst); \
3761 return 0; \
3762 } \
3763 tmp = float##fsz##_scalbn(x, shift, fpst); \
3764 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
3765 }
3766
3767 VFP_CONV_FIX(sh, d, 64, int16, )
3768 VFP_CONV_FIX(sl, d, 64, int32, )
3769 VFP_CONV_FIX(uh, d, 64, uint16, u)
3770 VFP_CONV_FIX(ul, d, 64, uint32, u)
3771 VFP_CONV_FIX(sh, s, 32, int16, )
3772 VFP_CONV_FIX(sl, s, 32, int32, )
3773 VFP_CONV_FIX(uh, s, 32, uint16, u)
3774 VFP_CONV_FIX(ul, s, 32, uint32, u)
3775 #undef VFP_CONV_FIX
3776
3777 /* Half precision conversions. */
3778 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
3779 {
3780 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3781 float32 r = float16_to_float32(make_float16(a), ieee, s);
3782 if (ieee) {
3783 return float32_maybe_silence_nan(r);
3784 }
3785 return r;
3786 }
3787
3788 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
3789 {
3790 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3791 float16 r = float32_to_float16(a, ieee, s);
3792 if (ieee) {
3793 r = float16_maybe_silence_nan(r);
3794 }
3795 return float16_val(r);
3796 }
3797
3798 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3799 {
3800 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
3801 }
3802
3803 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3804 {
3805 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
3806 }
3807
3808 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3809 {
3810 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
3811 }
3812
3813 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3814 {
3815 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
3816 }
3817
3818 #define float32_two make_float32(0x40000000)
3819 #define float32_three make_float32(0x40400000)
3820 #define float32_one_point_five make_float32(0x3fc00000)
3821
3822 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
3823 {
3824 float_status *s = &env->vfp.standard_fp_status;
3825 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3826 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3827 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3828 float_raise(float_flag_input_denormal, s);
3829 }
3830 return float32_two;
3831 }
3832 return float32_sub(float32_two, float32_mul(a, b, s), s);
3833 }
3834
3835 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
3836 {
3837 float_status *s = &env->vfp.standard_fp_status;
3838 float32 product;
3839 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3840 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3841 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3842 float_raise(float_flag_input_denormal, s);
3843 }
3844 return float32_one_point_five;
3845 }
3846 product = float32_mul(a, b, s);
3847 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
3848 }
3849
3850 /* NEON helpers. */
3851
3852 /* Constants 256 and 512 are used in some helpers; we avoid relying on
3853 * int->float conversions at run-time. */
3854 #define float64_256 make_float64(0x4070000000000000LL)
3855 #define float64_512 make_float64(0x4080000000000000LL)
3856
3857 /* The algorithm that must be used to calculate the estimate
3858 * is specified by the ARM ARM.
3859 */
3860 static float64 recip_estimate(float64 a, CPUARMState *env)
3861 {
3862 /* These calculations mustn't set any fp exception flags,
3863 * so we use a local copy of the fp_status.
3864 */
3865 float_status dummy_status = env->vfp.standard_fp_status;
3866 float_status *s = &dummy_status;
3867 /* q = (int)(a * 512.0) */
3868 float64 q = float64_mul(float64_512, a, s);
3869 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3870
3871 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3872 q = int64_to_float64(q_int, s);
3873 q = float64_add(q, float64_half, s);
3874 q = float64_div(q, float64_512, s);
3875 q = float64_div(float64_one, q, s);
3876
3877 /* s = (int)(256.0 * r + 0.5) */
3878 q = float64_mul(q, float64_256, s);
3879 q = float64_add(q, float64_half, s);
3880 q_int = float64_to_int64_round_to_zero(q, s);
3881
3882 /* return (double)s / 256.0 */
3883 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3884 }
3885
3886 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
3887 {
3888 float_status *s = &env->vfp.standard_fp_status;
3889 float64 f64;
3890 uint32_t val32 = float32_val(a);
3891
3892 int result_exp;
3893 int a_exp = (val32 & 0x7f800000) >> 23;
3894 int sign = val32 & 0x80000000;
3895
3896 if (float32_is_any_nan(a)) {
3897 if (float32_is_signaling_nan(a)) {
3898 float_raise(float_flag_invalid, s);
3899 }
3900 return float32_default_nan;
3901 } else if (float32_is_infinity(a)) {
3902 return float32_set_sign(float32_zero, float32_is_neg(a));
3903 } else if (float32_is_zero_or_denormal(a)) {
3904 if (!float32_is_zero(a)) {
3905 float_raise(float_flag_input_denormal, s);
3906 }
3907 float_raise(float_flag_divbyzero, s);
3908 return float32_set_sign(float32_infinity, float32_is_neg(a));
3909 } else if (a_exp >= 253) {
3910 float_raise(float_flag_underflow, s);
3911 return float32_set_sign(float32_zero, float32_is_neg(a));
3912 }
3913
3914 f64 = make_float64((0x3feULL << 52)
3915 | ((int64_t)(val32 & 0x7fffff) << 29));
3916
3917 result_exp = 253 - a_exp;
3918
3919 f64 = recip_estimate(f64, env);
3920
3921 val32 = sign
3922 | ((result_exp & 0xff) << 23)
3923 | ((float64_val(f64) >> 29) & 0x7fffff);
3924 return make_float32(val32);
3925 }
3926
3927 /* The algorithm that must be used to calculate the estimate
3928 * is specified by the ARM ARM.
3929 */
3930 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
3931 {
3932 /* These calculations mustn't set any fp exception flags,
3933 * so we use a local copy of the fp_status.
3934 */
3935 float_status dummy_status = env->vfp.standard_fp_status;
3936 float_status *s = &dummy_status;
3937 float64 q;
3938 int64_t q_int;
3939
3940 if (float64_lt(a, float64_half, s)) {
3941 /* range 0.25 <= a < 0.5 */
3942
3943 /* a in units of 1/512 rounded down */
3944 /* q0 = (int)(a * 512.0); */
3945 q = float64_mul(float64_512, a, s);
3946 q_int = float64_to_int64_round_to_zero(q, s);
3947
3948 /* reciprocal root r */
3949 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
3950 q = int64_to_float64(q_int, s);
3951 q = float64_add(q, float64_half, s);
3952 q = float64_div(q, float64_512, s);
3953 q = float64_sqrt(q, s);
3954 q = float64_div(float64_one, q, s);
3955 } else {
3956 /* range 0.5 <= a < 1.0 */
3957
3958 /* a in units of 1/256 rounded down */
3959 /* q1 = (int)(a * 256.0); */
3960 q = float64_mul(float64_256, a, s);
3961 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3962
3963 /* reciprocal root r */
3964 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3965 q = int64_to_float64(q_int, s);
3966 q = float64_add(q, float64_half, s);
3967 q = float64_div(q, float64_256, s);
3968 q = float64_sqrt(q, s);
3969 q = float64_div(float64_one, q, s);
3970 }
3971 /* r in units of 1/256 rounded to nearest */
3972 /* s = (int)(256.0 * r + 0.5); */
3973
3974 q = float64_mul(q, float64_256,s );
3975 q = float64_add(q, float64_half, s);
3976 q_int = float64_to_int64_round_to_zero(q, s);
3977
3978 /* return (double)s / 256.0;*/
3979 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3980 }
3981
3982 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
3983 {
3984 float_status *s = &env->vfp.standard_fp_status;
3985 int result_exp;
3986 float64 f64;
3987 uint32_t val;
3988 uint64_t val64;
3989
3990 val = float32_val(a);
3991
3992 if (float32_is_any_nan(a)) {
3993 if (float32_is_signaling_nan(a)) {
3994 float_raise(float_flag_invalid, s);
3995 }
3996 return float32_default_nan;
3997 } else if (float32_is_zero_or_denormal(a)) {
3998 if (!float32_is_zero(a)) {
3999 float_raise(float_flag_input_denormal, s);
4000 }
4001 float_raise(float_flag_divbyzero, s);
4002 return float32_set_sign(float32_infinity, float32_is_neg(a));
4003 } else if (float32_is_neg(a)) {
4004 float_raise(float_flag_invalid, s);
4005 return float32_default_nan;
4006 } else if (float32_is_infinity(a)) {
4007 return float32_zero;
4008 }
4009
4010 /* Normalize to a double-precision value between 0.25 and 1.0,
4011 * preserving the parity of the exponent. */
4012 if ((val & 0x800000) == 0) {
4013 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
4014 | (0x3feULL << 52)
4015 | ((uint64_t)(val & 0x7fffff) << 29));
4016 } else {
4017 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
4018 | (0x3fdULL << 52)
4019 | ((uint64_t)(val & 0x7fffff) << 29));
4020 }
4021
4022 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
4023
4024 f64 = recip_sqrt_estimate(f64, env);
4025
4026 val64 = float64_val(f64);
4027
4028 val = ((result_exp & 0xff) << 23)
4029 | ((val64 >> 29) & 0x7fffff);
4030 return make_float32(val);
4031 }
4032
4033 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
4034 {
4035 float64 f64;
4036
4037 if ((a & 0x80000000) == 0) {
4038 return 0xffffffff;
4039 }
4040
4041 f64 = make_float64((0x3feULL << 52)
4042 | ((int64_t)(a & 0x7fffffff) << 21));
4043
4044 f64 = recip_estimate (f64, env);
4045
4046 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4047 }
4048
4049 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
4050 {
4051 float64 f64;
4052
4053 if ((a & 0xc0000000) == 0) {
4054 return 0xffffffff;
4055 }
4056
4057 if (a & 0x80000000) {
4058 f64 = make_float64((0x3feULL << 52)
4059 | ((uint64_t)(a & 0x7fffffff) << 21));
4060 } else { /* bits 31-30 == '01' */
4061 f64 = make_float64((0x3fdULL << 52)
4062 | ((uint64_t)(a & 0x3fffffff) << 22));
4063 }
4064
4065 f64 = recip_sqrt_estimate(f64, env);
4066
4067 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4068 }
4069
4070 /* VFPv4 fused multiply-accumulate */
4071 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
4072 {
4073 float_status *fpst = fpstp;
4074 return float32_muladd(a, b, c, 0, fpst);
4075 }
4076
4077 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
4078 {
4079 float_status *fpst = fpstp;
4080 return float64_muladd(a, b, c, 0, fpst);
4081 }