]> git.proxmox.com Git - qemu.git/blob - target-arm/op_helper.c
Merge remote-tracking branch 'sstabellini/compile-xs' into staging
[qemu.git] / target-arm / op_helper.c
1 /*
2 * ARM helper routines
3 *
4 * Copyright (c) 2005-2007 CodeSourcery, LLC
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "cpu.h"
20 #include "dyngen-exec.h"
21 #include "helper.h"
22
23 #define SIGNBIT (uint32_t)0x80000000
24 #define SIGNBIT64 ((uint64_t)1 << 63)
25
26 static void raise_exception(int tt)
27 {
28 env->exception_index = tt;
29 cpu_loop_exit(env);
30 }
31
32 uint32_t HELPER(neon_tbl)(uint32_t ireg, uint32_t def,
33 uint32_t rn, uint32_t maxindex)
34 {
35 uint32_t val;
36 uint32_t tmp;
37 int index;
38 int shift;
39 uint64_t *table;
40 table = (uint64_t *)&env->vfp.regs[rn];
41 val = 0;
42 for (shift = 0; shift < 32; shift += 8) {
43 index = (ireg >> shift) & 0xff;
44 if (index < maxindex) {
45 tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
46 val |= tmp << shift;
47 } else {
48 val |= def & (0xff << shift);
49 }
50 }
51 return val;
52 }
53
54 #if !defined(CONFIG_USER_ONLY)
55
56 #include "softmmu_exec.h"
57
58 #define MMUSUFFIX _mmu
59
60 #define SHIFT 0
61 #include "softmmu_template.h"
62
63 #define SHIFT 1
64 #include "softmmu_template.h"
65
66 #define SHIFT 2
67 #include "softmmu_template.h"
68
69 #define SHIFT 3
70 #include "softmmu_template.h"
71
72 /* try to fill the TLB and return an exception if error. If retaddr is
73 NULL, it means that the function was called in C code (i.e. not
74 from generated code or from helper.c) */
75 /* XXX: fix it to restore all registers */
76 void tlb_fill(CPUARMState *env1, target_ulong addr, int is_write, int mmu_idx,
77 uintptr_t retaddr)
78 {
79 TranslationBlock *tb;
80 CPUARMState *saved_env;
81 int ret;
82
83 saved_env = env;
84 env = env1;
85 ret = cpu_arm_handle_mmu_fault(env, addr, is_write, mmu_idx);
86 if (unlikely(ret)) {
87 if (retaddr) {
88 /* now we have a real cpu fault */
89 tb = tb_find_pc(retaddr);
90 if (tb) {
91 /* the PC is inside the translated code. It means that we have
92 a virtual CPU fault */
93 cpu_restore_state(tb, env, retaddr);
94 }
95 }
96 raise_exception(env->exception_index);
97 }
98 env = saved_env;
99 }
100 #endif
101
102 /* FIXME: Pass an axplicit pointer to QF to CPUARMState, and move saturating
103 instructions into helper.c */
104 uint32_t HELPER(add_setq)(uint32_t a, uint32_t b)
105 {
106 uint32_t res = a + b;
107 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
108 env->QF = 1;
109 return res;
110 }
111
112 uint32_t HELPER(add_saturate)(uint32_t a, uint32_t b)
113 {
114 uint32_t res = a + b;
115 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
116 env->QF = 1;
117 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
118 }
119 return res;
120 }
121
122 uint32_t HELPER(sub_saturate)(uint32_t a, uint32_t b)
123 {
124 uint32_t res = a - b;
125 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
126 env->QF = 1;
127 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
128 }
129 return res;
130 }
131
132 uint32_t HELPER(double_saturate)(int32_t val)
133 {
134 uint32_t res;
135 if (val >= 0x40000000) {
136 res = ~SIGNBIT;
137 env->QF = 1;
138 } else if (val <= (int32_t)0xc0000000) {
139 res = SIGNBIT;
140 env->QF = 1;
141 } else {
142 res = val << 1;
143 }
144 return res;
145 }
146
147 uint32_t HELPER(add_usaturate)(uint32_t a, uint32_t b)
148 {
149 uint32_t res = a + b;
150 if (res < a) {
151 env->QF = 1;
152 res = ~0;
153 }
154 return res;
155 }
156
157 uint32_t HELPER(sub_usaturate)(uint32_t a, uint32_t b)
158 {
159 uint32_t res = a - b;
160 if (res > a) {
161 env->QF = 1;
162 res = 0;
163 }
164 return res;
165 }
166
167 /* Signed saturation. */
168 static inline uint32_t do_ssat(int32_t val, int shift)
169 {
170 int32_t top;
171 uint32_t mask;
172
173 top = val >> shift;
174 mask = (1u << shift) - 1;
175 if (top > 0) {
176 env->QF = 1;
177 return mask;
178 } else if (top < -1) {
179 env->QF = 1;
180 return ~mask;
181 }
182 return val;
183 }
184
185 /* Unsigned saturation. */
186 static inline uint32_t do_usat(int32_t val, int shift)
187 {
188 uint32_t max;
189
190 max = (1u << shift) - 1;
191 if (val < 0) {
192 env->QF = 1;
193 return 0;
194 } else if (val > max) {
195 env->QF = 1;
196 return max;
197 }
198 return val;
199 }
200
201 /* Signed saturate. */
202 uint32_t HELPER(ssat)(uint32_t x, uint32_t shift)
203 {
204 return do_ssat(x, shift);
205 }
206
207 /* Dual halfword signed saturate. */
208 uint32_t HELPER(ssat16)(uint32_t x, uint32_t shift)
209 {
210 uint32_t res;
211
212 res = (uint16_t)do_ssat((int16_t)x, shift);
213 res |= do_ssat(((int32_t)x) >> 16, shift) << 16;
214 return res;
215 }
216
217 /* Unsigned saturate. */
218 uint32_t HELPER(usat)(uint32_t x, uint32_t shift)
219 {
220 return do_usat(x, shift);
221 }
222
223 /* Dual halfword unsigned saturate. */
224 uint32_t HELPER(usat16)(uint32_t x, uint32_t shift)
225 {
226 uint32_t res;
227
228 res = (uint16_t)do_usat((int16_t)x, shift);
229 res |= do_usat(((int32_t)x) >> 16, shift) << 16;
230 return res;
231 }
232
233 void HELPER(wfi)(void)
234 {
235 env->exception_index = EXCP_HLT;
236 env->halted = 1;
237 cpu_loop_exit(env);
238 }
239
240 void HELPER(exception)(uint32_t excp)
241 {
242 env->exception_index = excp;
243 cpu_loop_exit(env);
244 }
245
246 uint32_t HELPER(cpsr_read)(void)
247 {
248 return cpsr_read(env) & ~CPSR_EXEC;
249 }
250
251 void HELPER(cpsr_write)(uint32_t val, uint32_t mask)
252 {
253 cpsr_write(env, val, mask);
254 }
255
256 /* Access to user mode registers from privileged modes. */
257 uint32_t HELPER(get_user_reg)(uint32_t regno)
258 {
259 uint32_t val;
260
261 if (regno == 13) {
262 val = env->banked_r13[0];
263 } else if (regno == 14) {
264 val = env->banked_r14[0];
265 } else if (regno >= 8
266 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
267 val = env->usr_regs[regno - 8];
268 } else {
269 val = env->regs[regno];
270 }
271 return val;
272 }
273
274 void HELPER(set_user_reg)(uint32_t regno, uint32_t val)
275 {
276 if (regno == 13) {
277 env->banked_r13[0] = val;
278 } else if (regno == 14) {
279 env->banked_r14[0] = val;
280 } else if (regno >= 8
281 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
282 env->usr_regs[regno - 8] = val;
283 } else {
284 env->regs[regno] = val;
285 }
286 }
287
288 void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
289 {
290 const ARMCPRegInfo *ri = rip;
291 int excp = ri->writefn(env, ri, value);
292 if (excp) {
293 raise_exception(excp);
294 }
295 }
296
297 uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
298 {
299 const ARMCPRegInfo *ri = rip;
300 uint64_t value;
301 int excp = ri->readfn(env, ri, &value);
302 if (excp) {
303 raise_exception(excp);
304 }
305 return value;
306 }
307
308 void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
309 {
310 const ARMCPRegInfo *ri = rip;
311 int excp = ri->writefn(env, ri, value);
312 if (excp) {
313 raise_exception(excp);
314 }
315 }
316
317 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
318 {
319 const ARMCPRegInfo *ri = rip;
320 uint64_t value;
321 int excp = ri->readfn(env, ri, &value);
322 if (excp) {
323 raise_exception(excp);
324 }
325 return value;
326 }
327
328 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
329 The only way to do that in TCG is a conditional branch, which clobbers
330 all our temporaries. For now implement these as helper functions. */
331
332 uint32_t HELPER (add_cc)(uint32_t a, uint32_t b)
333 {
334 uint32_t result;
335 result = a + b;
336 env->NF = env->ZF = result;
337 env->CF = result < a;
338 env->VF = (a ^ b ^ -1) & (a ^ result);
339 return result;
340 }
341
342 uint32_t HELPER(adc_cc)(uint32_t a, uint32_t b)
343 {
344 uint32_t result;
345 if (!env->CF) {
346 result = a + b;
347 env->CF = result < a;
348 } else {
349 result = a + b + 1;
350 env->CF = result <= a;
351 }
352 env->VF = (a ^ b ^ -1) & (a ^ result);
353 env->NF = env->ZF = result;
354 return result;
355 }
356
357 uint32_t HELPER(sub_cc)(uint32_t a, uint32_t b)
358 {
359 uint32_t result;
360 result = a - b;
361 env->NF = env->ZF = result;
362 env->CF = a >= b;
363 env->VF = (a ^ b) & (a ^ result);
364 return result;
365 }
366
367 uint32_t HELPER(sbc_cc)(uint32_t a, uint32_t b)
368 {
369 uint32_t result;
370 if (!env->CF) {
371 result = a - b - 1;
372 env->CF = a > b;
373 } else {
374 result = a - b;
375 env->CF = a >= b;
376 }
377 env->VF = (a ^ b) & (a ^ result);
378 env->NF = env->ZF = result;
379 return result;
380 }
381
382 /* Similarly for variable shift instructions. */
383
384 uint32_t HELPER(shl)(uint32_t x, uint32_t i)
385 {
386 int shift = i & 0xff;
387 if (shift >= 32)
388 return 0;
389 return x << shift;
390 }
391
392 uint32_t HELPER(shr)(uint32_t x, uint32_t i)
393 {
394 int shift = i & 0xff;
395 if (shift >= 32)
396 return 0;
397 return (uint32_t)x >> shift;
398 }
399
400 uint32_t HELPER(sar)(uint32_t x, uint32_t i)
401 {
402 int shift = i & 0xff;
403 if (shift >= 32)
404 shift = 31;
405 return (int32_t)x >> shift;
406 }
407
408 uint32_t HELPER(shl_cc)(uint32_t x, uint32_t i)
409 {
410 int shift = i & 0xff;
411 if (shift >= 32) {
412 if (shift == 32)
413 env->CF = x & 1;
414 else
415 env->CF = 0;
416 return 0;
417 } else if (shift != 0) {
418 env->CF = (x >> (32 - shift)) & 1;
419 return x << shift;
420 }
421 return x;
422 }
423
424 uint32_t HELPER(shr_cc)(uint32_t x, uint32_t i)
425 {
426 int shift = i & 0xff;
427 if (shift >= 32) {
428 if (shift == 32)
429 env->CF = (x >> 31) & 1;
430 else
431 env->CF = 0;
432 return 0;
433 } else if (shift != 0) {
434 env->CF = (x >> (shift - 1)) & 1;
435 return x >> shift;
436 }
437 return x;
438 }
439
440 uint32_t HELPER(sar_cc)(uint32_t x, uint32_t i)
441 {
442 int shift = i & 0xff;
443 if (shift >= 32) {
444 env->CF = (x >> 31) & 1;
445 return (int32_t)x >> 31;
446 } else if (shift != 0) {
447 env->CF = (x >> (shift - 1)) & 1;
448 return (int32_t)x >> shift;
449 }
450 return x;
451 }
452
453 uint32_t HELPER(ror_cc)(uint32_t x, uint32_t i)
454 {
455 int shift1, shift;
456 shift1 = i & 0xff;
457 shift = shift1 & 0x1f;
458 if (shift == 0) {
459 if (shift1 != 0)
460 env->CF = (x >> 31) & 1;
461 return x;
462 } else {
463 env->CF = (x >> (shift - 1)) & 1;
464 return ((uint32_t)x >> shift) | (x << (32 - shift));
465 }
466 }