]> git.proxmox.com Git - qemu.git/blob - target-i386/exec.h
io map checks
[qemu.git] / target-i386 / exec.h
1 /*
2 * i386 execution defines
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "dyngen-exec.h"
21
22 /* at least 4 register variables are defines */
23 register struct CPUX86State *env asm(AREG0);
24 register uint32_t T0 asm(AREG1);
25 register uint32_t T1 asm(AREG2);
26 register uint32_t T2 asm(AREG3);
27
28 #define A0 T2
29
30 /* if more registers are available, we define some registers too */
31 #ifdef AREG4
32 register uint32_t EAX asm(AREG4);
33 #define reg_EAX
34 #endif
35
36 #ifdef AREG5
37 register uint32_t ESP asm(AREG5);
38 #define reg_ESP
39 #endif
40
41 #ifdef AREG6
42 register uint32_t EBP asm(AREG6);
43 #define reg_EBP
44 #endif
45
46 #ifdef AREG7
47 register uint32_t ECX asm(AREG7);
48 #define reg_ECX
49 #endif
50
51 #ifdef AREG8
52 register uint32_t EDX asm(AREG8);
53 #define reg_EDX
54 #endif
55
56 #ifdef AREG9
57 register uint32_t EBX asm(AREG9);
58 #define reg_EBX
59 #endif
60
61 #ifdef AREG10
62 register uint32_t ESI asm(AREG10);
63 #define reg_ESI
64 #endif
65
66 #ifdef AREG11
67 register uint32_t EDI asm(AREG11);
68 #define reg_EDI
69 #endif
70
71 extern FILE *logfile;
72 extern int loglevel;
73
74 #ifndef reg_EAX
75 #define EAX (env->regs[R_EAX])
76 #endif
77 #ifndef reg_ECX
78 #define ECX (env->regs[R_ECX])
79 #endif
80 #ifndef reg_EDX
81 #define EDX (env->regs[R_EDX])
82 #endif
83 #ifndef reg_EBX
84 #define EBX (env->regs[R_EBX])
85 #endif
86 #ifndef reg_ESP
87 #define ESP (env->regs[R_ESP])
88 #endif
89 #ifndef reg_EBP
90 #define EBP (env->regs[R_EBP])
91 #endif
92 #ifndef reg_ESI
93 #define ESI (env->regs[R_ESI])
94 #endif
95 #ifndef reg_EDI
96 #define EDI (env->regs[R_EDI])
97 #endif
98 #define EIP (env->eip)
99 #define DF (env->df)
100
101 #define CC_SRC (env->cc_src)
102 #define CC_DST (env->cc_dst)
103 #define CC_OP (env->cc_op)
104
105 /* float macros */
106 #define FT0 (env->ft0)
107 #define ST0 (env->fpregs[env->fpstt])
108 #define ST(n) (env->fpregs[(env->fpstt + (n)) & 7])
109 #define ST1 ST(1)
110
111 #ifdef USE_FP_CONVERT
112 #define FP_CONVERT (env->fp_convert)
113 #endif
114
115 #include "cpu.h"
116 #include "exec-all.h"
117
118 typedef struct CCTable {
119 int (*compute_all)(void); /* return all the flags */
120 int (*compute_c)(void); /* return the C flag */
121 } CCTable;
122
123 extern CCTable cc_table[];
124
125 void load_seg(int seg_reg, int selector, unsigned cur_eip);
126 void helper_ljmp_protected_T0_T1(void);
127 void helper_lcall_real_T0_T1(int shift, int next_eip);
128 void helper_lcall_protected_T0_T1(int shift, int next_eip);
129 void helper_iret_real(int shift);
130 void helper_iret_protected(int shift);
131 void helper_lret_protected(int shift, int addend);
132 void helper_lldt_T0(void);
133 void helper_ltr_T0(void);
134 void helper_movl_crN_T0(int reg);
135 void helper_movl_drN_T0(int reg);
136 void helper_invlpg(unsigned int addr);
137 void cpu_x86_update_cr0(CPUX86State *env);
138 void cpu_x86_update_cr3(CPUX86State *env);
139 void cpu_x86_flush_tlb(CPUX86State *env, uint32_t addr);
140 int cpu_x86_handle_mmu_fault(CPUX86State *env, uint32_t addr,
141 int is_write, int is_user, int is_softmmu);
142 void tlb_fill(unsigned long addr, int is_write, int is_user,
143 void *retaddr);
144 void __hidden cpu_lock(void);
145 void __hidden cpu_unlock(void);
146 void do_interrupt(int intno, int is_int, int error_code,
147 unsigned int next_eip, int is_hw);
148 void do_interrupt_user(int intno, int is_int, int error_code,
149 unsigned int next_eip);
150 void raise_interrupt(int intno, int is_int, int error_code,
151 unsigned int next_eip);
152 void raise_exception_err(int exception_index, int error_code);
153 void raise_exception(int exception_index);
154 void __hidden cpu_loop_exit(void);
155 void helper_fsave(uint8_t *ptr, int data32);
156 void helper_frstor(uint8_t *ptr, int data32);
157
158 void OPPROTO op_movl_eflags_T0(void);
159 void OPPROTO op_movl_T0_eflags(void);
160 void raise_interrupt(int intno, int is_int, int error_code,
161 unsigned int next_eip);
162 void raise_exception_err(int exception_index, int error_code);
163 void raise_exception(int exception_index);
164 void helper_divl_EAX_T0(uint32_t eip);
165 void helper_idivl_EAX_T0(uint32_t eip);
166 void helper_cmpxchg8b(void);
167 void helper_cpuid(void);
168 void helper_rdtsc(void);
169 void helper_rdmsr(void);
170 void helper_wrmsr(void);
171 void helper_lsl(void);
172 void helper_lar(void);
173
174 void check_iob_T0(void);
175 void check_iow_T0(void);
176 void check_iol_T0(void);
177 void check_iob_DX(void);
178 void check_iow_DX(void);
179 void check_iol_DX(void);
180
181 /* XXX: move that to a generic header */
182 #if !defined(CONFIG_USER_ONLY)
183
184 #define ldul_user ldl_user
185 #define ldul_kernel ldl_kernel
186
187 #define ACCESS_TYPE 0
188 #define MEMSUFFIX _kernel
189 #define DATA_SIZE 1
190 #include "softmmu_header.h"
191
192 #define DATA_SIZE 2
193 #include "softmmu_header.h"
194
195 #define DATA_SIZE 4
196 #include "softmmu_header.h"
197
198 #define DATA_SIZE 8
199 #include "softmmu_header.h"
200 #undef ACCESS_TYPE
201 #undef MEMSUFFIX
202
203 #define ACCESS_TYPE 1
204 #define MEMSUFFIX _user
205 #define DATA_SIZE 1
206 #include "softmmu_header.h"
207
208 #define DATA_SIZE 2
209 #include "softmmu_header.h"
210
211 #define DATA_SIZE 4
212 #include "softmmu_header.h"
213
214 #define DATA_SIZE 8
215 #include "softmmu_header.h"
216 #undef ACCESS_TYPE
217 #undef MEMSUFFIX
218
219 /* these access are slower, they must be as rare as possible */
220 #define ACCESS_TYPE 2
221 #define MEMSUFFIX _data
222 #define DATA_SIZE 1
223 #include "softmmu_header.h"
224
225 #define DATA_SIZE 2
226 #include "softmmu_header.h"
227
228 #define DATA_SIZE 4
229 #include "softmmu_header.h"
230
231 #define DATA_SIZE 8
232 #include "softmmu_header.h"
233 #undef ACCESS_TYPE
234 #undef MEMSUFFIX
235
236 #define ldub(p) ldub_data(p)
237 #define ldsb(p) ldsb_data(p)
238 #define lduw(p) lduw_data(p)
239 #define ldsw(p) ldsw_data(p)
240 #define ldl(p) ldl_data(p)
241 #define ldq(p) ldq_data(p)
242
243 #define stb(p, v) stb_data(p, v)
244 #define stw(p, v) stw_data(p, v)
245 #define stl(p, v) stl_data(p, v)
246 #define stq(p, v) stq_data(p, v)
247
248 static inline double ldfq(void *ptr)
249 {
250 union {
251 double d;
252 uint64_t i;
253 } u;
254 u.i = ldq(ptr);
255 return u.d;
256 }
257
258 static inline void stfq(void *ptr, double v)
259 {
260 union {
261 double d;
262 uint64_t i;
263 } u;
264 u.d = v;
265 stq(ptr, u.i);
266 }
267
268 static inline float ldfl(void *ptr)
269 {
270 union {
271 float f;
272 uint32_t i;
273 } u;
274 u.i = ldl(ptr);
275 return u.f;
276 }
277
278 static inline void stfl(void *ptr, float v)
279 {
280 union {
281 float f;
282 uint32_t i;
283 } u;
284 u.f = v;
285 stl(ptr, u.i);
286 }
287
288 #endif /* !defined(CONFIG_USER_ONLY) */
289
290 #ifdef USE_X86LDOUBLE
291 /* use long double functions */
292 #define lrint lrintl
293 #define llrint llrintl
294 #define fabs fabsl
295 #define sin sinl
296 #define cos cosl
297 #define sqrt sqrtl
298 #define pow powl
299 #define log logl
300 #define tan tanl
301 #define atan2 atan2l
302 #define floor floorl
303 #define ceil ceill
304 #define rint rintl
305 #endif
306
307 extern int lrint(CPU86_LDouble x);
308 extern int64_t llrint(CPU86_LDouble x);
309 extern CPU86_LDouble fabs(CPU86_LDouble x);
310 extern CPU86_LDouble sin(CPU86_LDouble x);
311 extern CPU86_LDouble cos(CPU86_LDouble x);
312 extern CPU86_LDouble sqrt(CPU86_LDouble x);
313 extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
314 extern CPU86_LDouble log(CPU86_LDouble x);
315 extern CPU86_LDouble tan(CPU86_LDouble x);
316 extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
317 extern CPU86_LDouble floor(CPU86_LDouble x);
318 extern CPU86_LDouble ceil(CPU86_LDouble x);
319 extern CPU86_LDouble rint(CPU86_LDouble x);
320
321 #define RC_MASK 0xc00
322 #define RC_NEAR 0x000
323 #define RC_DOWN 0x400
324 #define RC_UP 0x800
325 #define RC_CHOP 0xc00
326
327 #define MAXTAN 9223372036854775808.0
328
329 #ifdef __arm__
330 /* we have no way to do correct rounding - a FPU emulator is needed */
331 #define FE_DOWNWARD FE_TONEAREST
332 #define FE_UPWARD FE_TONEAREST
333 #define FE_TOWARDZERO FE_TONEAREST
334 #endif
335
336 #ifdef USE_X86LDOUBLE
337
338 /* only for x86 */
339 typedef union {
340 long double d;
341 struct {
342 unsigned long long lower;
343 unsigned short upper;
344 } l;
345 } CPU86_LDoubleU;
346
347 /* the following deal with x86 long double-precision numbers */
348 #define MAXEXPD 0x7fff
349 #define EXPBIAS 16383
350 #define EXPD(fp) (fp.l.upper & 0x7fff)
351 #define SIGND(fp) ((fp.l.upper) & 0x8000)
352 #define MANTD(fp) (fp.l.lower)
353 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
354
355 #else
356
357 /* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
358 typedef union {
359 double d;
360 #if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
361 struct {
362 uint32_t lower;
363 int32_t upper;
364 } l;
365 #else
366 struct {
367 int32_t upper;
368 uint32_t lower;
369 } l;
370 #endif
371 #ifndef __arm__
372 int64_t ll;
373 #endif
374 } CPU86_LDoubleU;
375
376 /* the following deal with IEEE double-precision numbers */
377 #define MAXEXPD 0x7ff
378 #define EXPBIAS 1023
379 #define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
380 #define SIGND(fp) ((fp.l.upper) & 0x80000000)
381 #ifdef __arm__
382 #define MANTD(fp) (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
383 #else
384 #define MANTD(fp) (fp.ll & ((1LL << 52) - 1))
385 #endif
386 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
387 #endif
388
389 static inline void fpush(void)
390 {
391 env->fpstt = (env->fpstt - 1) & 7;
392 env->fptags[env->fpstt] = 0; /* validate stack entry */
393 }
394
395 static inline void fpop(void)
396 {
397 env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
398 env->fpstt = (env->fpstt + 1) & 7;
399 }
400
401 #ifndef USE_X86LDOUBLE
402 static inline CPU86_LDouble helper_fldt(uint8_t *ptr)
403 {
404 CPU86_LDoubleU temp;
405 int upper, e;
406 uint64_t ll;
407
408 /* mantissa */
409 upper = lduw(ptr + 8);
410 /* XXX: handle overflow ? */
411 e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
412 e |= (upper >> 4) & 0x800; /* sign */
413 ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
414 #ifdef __arm__
415 temp.l.upper = (e << 20) | (ll >> 32);
416 temp.l.lower = ll;
417 #else
418 temp.ll = ll | ((uint64_t)e << 52);
419 #endif
420 return temp.d;
421 }
422
423 static inline void helper_fstt(CPU86_LDouble f, uint8_t *ptr)
424 {
425 CPU86_LDoubleU temp;
426 int e;
427
428 temp.d = f;
429 /* mantissa */
430 stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
431 /* exponent + sign */
432 e = EXPD(temp) - EXPBIAS + 16383;
433 e |= SIGND(temp) >> 16;
434 stw(ptr + 8, e);
435 }
436 #else
437
438 /* XXX: same endianness assumed */
439
440 #ifdef CONFIG_USER_ONLY
441
442 static inline CPU86_LDouble helper_fldt(uint8_t *ptr)
443 {
444 return *(CPU86_LDouble *)ptr;
445 }
446
447 static inline void helper_fstt(CPU86_LDouble f, uint8_t *ptr)
448 {
449 *(CPU86_LDouble *)ptr = f;
450 }
451
452 #else
453
454 /* we use memory access macros */
455
456 static inline CPU86_LDouble helper_fldt(uint8_t *ptr)
457 {
458 CPU86_LDoubleU temp;
459
460 temp.l.lower = ldq(ptr);
461 temp.l.upper = lduw(ptr + 8);
462 return temp.d;
463 }
464
465 static inline void helper_fstt(CPU86_LDouble f, uint8_t *ptr)
466 {
467 CPU86_LDoubleU temp;
468
469 temp.d = f;
470 stq(ptr, temp.l.lower);
471 stw(ptr + 8, temp.l.upper);
472 }
473
474 #endif /* !CONFIG_USER_ONLY */
475
476 #endif /* USE_X86LDOUBLE */
477
478 const CPU86_LDouble f15rk[7];
479
480 void helper_fldt_ST0_A0(void);
481 void helper_fstt_ST0_A0(void);
482 void helper_fbld_ST0_A0(void);
483 void helper_fbst_ST0_A0(void);
484 void helper_f2xm1(void);
485 void helper_fyl2x(void);
486 void helper_fptan(void);
487 void helper_fpatan(void);
488 void helper_fxtract(void);
489 void helper_fprem1(void);
490 void helper_fprem(void);
491 void helper_fyl2xp1(void);
492 void helper_fsqrt(void);
493 void helper_fsincos(void);
494 void helper_frndint(void);
495 void helper_fscale(void);
496 void helper_fsin(void);
497 void helper_fcos(void);
498 void helper_fxam_ST0(void);
499 void helper_fstenv(uint8_t *ptr, int data32);
500 void helper_fldenv(uint8_t *ptr, int data32);
501 void helper_fsave(uint8_t *ptr, int data32);
502 void helper_frstor(uint8_t *ptr, int data32);
503
504 const uint8_t parity_table[256];
505 const uint8_t rclw_table[32];
506 const uint8_t rclb_table[32];
507
508 static inline uint32_t compute_eflags(void)
509 {
510 return env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
511 }
512
513 #define FL_UPDATE_MASK32 (TF_MASK | AC_MASK | ID_MASK)
514
515 #define FL_UPDATE_CPL0_MASK (TF_MASK | IF_MASK | IOPL_MASK | NT_MASK | \
516 RF_MASK | AC_MASK | ID_MASK)
517
518 /* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
519 static inline void load_eflags(int eflags, int update_mask)
520 {
521 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
522 DF = 1 - (2 * ((eflags >> 10) & 1));
523 env->eflags = (env->eflags & ~update_mask) |
524 (eflags & update_mask);
525 }
526