]> git.proxmox.com Git - qemu.git/blob - target-i386/svm_helper.c
sun4m: Add FCode ROM for TCX framebuffer
[qemu.git] / target-i386 / svm_helper.c
1 /*
2 * x86 SVM helpers
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "cpu.h"
21 #include "exec/cpu-all.h"
22 #include "helper.h"
23
24 #if !defined(CONFIG_USER_ONLY)
25 #include "exec/softmmu_exec.h"
26 #endif /* !defined(CONFIG_USER_ONLY) */
27
28 /* Secure Virtual Machine helpers */
29
30 #if defined(CONFIG_USER_ONLY)
31
32 void helper_vmrun(CPUX86State *env, int aflag, int next_eip_addend)
33 {
34 }
35
36 void helper_vmmcall(CPUX86State *env)
37 {
38 }
39
40 void helper_vmload(CPUX86State *env, int aflag)
41 {
42 }
43
44 void helper_vmsave(CPUX86State *env, int aflag)
45 {
46 }
47
48 void helper_stgi(CPUX86State *env)
49 {
50 }
51
52 void helper_clgi(CPUX86State *env)
53 {
54 }
55
56 void helper_skinit(CPUX86State *env)
57 {
58 }
59
60 void helper_invlpga(CPUX86State *env, int aflag)
61 {
62 }
63
64 void helper_vmexit(CPUX86State *env, uint32_t exit_code, uint64_t exit_info_1)
65 {
66 }
67
68 void cpu_vmexit(CPUX86State *nenv, uint32_t exit_code, uint64_t exit_info_1)
69 {
70 }
71
72 void helper_svm_check_intercept_param(CPUX86State *env, uint32_t type,
73 uint64_t param)
74 {
75 }
76
77 void cpu_svm_check_intercept_param(CPUX86State *env, uint32_t type,
78 uint64_t param)
79 {
80 }
81
82 void helper_svm_check_io(CPUX86State *env, uint32_t port, uint32_t param,
83 uint32_t next_eip_addend)
84 {
85 }
86 #else
87
88 static inline void svm_save_seg(CPUX86State *env, hwaddr addr,
89 const SegmentCache *sc)
90 {
91 stw_phys(addr + offsetof(struct vmcb_seg, selector),
92 sc->selector);
93 stq_phys(addr + offsetof(struct vmcb_seg, base),
94 sc->base);
95 stl_phys(addr + offsetof(struct vmcb_seg, limit),
96 sc->limit);
97 stw_phys(addr + offsetof(struct vmcb_seg, attrib),
98 ((sc->flags >> 8) & 0xff) | ((sc->flags >> 12) & 0x0f00));
99 }
100
101 static inline void svm_load_seg(CPUX86State *env, hwaddr addr,
102 SegmentCache *sc)
103 {
104 unsigned int flags;
105
106 sc->selector = lduw_phys(addr + offsetof(struct vmcb_seg, selector));
107 sc->base = ldq_phys(addr + offsetof(struct vmcb_seg, base));
108 sc->limit = ldl_phys(addr + offsetof(struct vmcb_seg, limit));
109 flags = lduw_phys(addr + offsetof(struct vmcb_seg, attrib));
110 sc->flags = ((flags & 0xff) << 8) | ((flags & 0x0f00) << 12);
111 }
112
113 static inline void svm_load_seg_cache(CPUX86State *env, hwaddr addr,
114 int seg_reg)
115 {
116 SegmentCache sc1, *sc = &sc1;
117
118 svm_load_seg(env, addr, sc);
119 cpu_x86_load_seg_cache(env, seg_reg, sc->selector,
120 sc->base, sc->limit, sc->flags);
121 }
122
123 void helper_vmrun(CPUX86State *env, int aflag, int next_eip_addend)
124 {
125 target_ulong addr;
126 uint32_t event_inj;
127 uint32_t int_ctl;
128
129 cpu_svm_check_intercept_param(env, SVM_EXIT_VMRUN, 0);
130
131 if (aflag == 2) {
132 addr = env->regs[R_EAX];
133 } else {
134 addr = (uint32_t)env->regs[R_EAX];
135 }
136
137 qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmrun! " TARGET_FMT_lx "\n", addr);
138
139 env->vm_vmcb = addr;
140
141 /* save the current CPU state in the hsave page */
142 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.gdtr.base),
143 env->gdt.base);
144 stl_phys(env->vm_hsave + offsetof(struct vmcb, save.gdtr.limit),
145 env->gdt.limit);
146
147 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.idtr.base),
148 env->idt.base);
149 stl_phys(env->vm_hsave + offsetof(struct vmcb, save.idtr.limit),
150 env->idt.limit);
151
152 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr0), env->cr[0]);
153 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr2), env->cr[2]);
154 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr3), env->cr[3]);
155 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr4), env->cr[4]);
156 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.dr6), env->dr[6]);
157 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.dr7), env->dr[7]);
158
159 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.efer), env->efer);
160 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rflags),
161 cpu_compute_eflags(env));
162
163 svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.es),
164 &env->segs[R_ES]);
165 svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.cs),
166 &env->segs[R_CS]);
167 svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.ss),
168 &env->segs[R_SS]);
169 svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.ds),
170 &env->segs[R_DS]);
171
172 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rip),
173 env->eip + next_eip_addend);
174 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rsp), env->regs[R_ESP]);
175 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rax), env->regs[R_EAX]);
176
177 /* load the interception bitmaps so we do not need to access the
178 vmcb in svm mode */
179 env->intercept = ldq_phys(env->vm_vmcb + offsetof(struct vmcb,
180 control.intercept));
181 env->intercept_cr_read = lduw_phys(env->vm_vmcb +
182 offsetof(struct vmcb,
183 control.intercept_cr_read));
184 env->intercept_cr_write = lduw_phys(env->vm_vmcb +
185 offsetof(struct vmcb,
186 control.intercept_cr_write));
187 env->intercept_dr_read = lduw_phys(env->vm_vmcb +
188 offsetof(struct vmcb,
189 control.intercept_dr_read));
190 env->intercept_dr_write = lduw_phys(env->vm_vmcb +
191 offsetof(struct vmcb,
192 control.intercept_dr_write));
193 env->intercept_exceptions = ldl_phys(env->vm_vmcb +
194 offsetof(struct vmcb,
195 control.intercept_exceptions
196 ));
197
198 /* enable intercepts */
199 env->hflags |= HF_SVMI_MASK;
200
201 env->tsc_offset = ldq_phys(env->vm_vmcb +
202 offsetof(struct vmcb, control.tsc_offset));
203
204 env->gdt.base = ldq_phys(env->vm_vmcb + offsetof(struct vmcb,
205 save.gdtr.base));
206 env->gdt.limit = ldl_phys(env->vm_vmcb + offsetof(struct vmcb,
207 save.gdtr.limit));
208
209 env->idt.base = ldq_phys(env->vm_vmcb + offsetof(struct vmcb,
210 save.idtr.base));
211 env->idt.limit = ldl_phys(env->vm_vmcb + offsetof(struct vmcb,
212 save.idtr.limit));
213
214 /* clear exit_info_2 so we behave like the real hardware */
215 stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), 0);
216
217 cpu_x86_update_cr0(env, ldq_phys(env->vm_vmcb + offsetof(struct vmcb,
218 save.cr0)));
219 cpu_x86_update_cr4(env, ldq_phys(env->vm_vmcb + offsetof(struct vmcb,
220 save.cr4)));
221 cpu_x86_update_cr3(env, ldq_phys(env->vm_vmcb + offsetof(struct vmcb,
222 save.cr3)));
223 env->cr[2] = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr2));
224 int_ctl = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl));
225 env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK);
226 if (int_ctl & V_INTR_MASKING_MASK) {
227 env->v_tpr = int_ctl & V_TPR_MASK;
228 env->hflags2 |= HF2_VINTR_MASK;
229 if (env->eflags & IF_MASK) {
230 env->hflags2 |= HF2_HIF_MASK;
231 }
232 }
233
234 cpu_load_efer(env,
235 ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.efer)));
236 env->eflags = 0;
237 cpu_load_eflags(env, ldq_phys(env->vm_vmcb + offsetof(struct vmcb,
238 save.rflags)),
239 ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
240 CC_OP = CC_OP_EFLAGS;
241
242 svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.es),
243 R_ES);
244 svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.cs),
245 R_CS);
246 svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.ss),
247 R_SS);
248 svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.ds),
249 R_DS);
250
251 env->eip = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rip));
252
253 env->regs[R_ESP] = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rsp));
254 env->regs[R_EAX] = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rax));
255 env->dr[7] = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.dr7));
256 env->dr[6] = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.dr6));
257 cpu_x86_set_cpl(env, ldub_phys(env->vm_vmcb + offsetof(struct vmcb,
258 save.cpl)));
259
260 /* FIXME: guest state consistency checks */
261
262 switch (ldub_phys(env->vm_vmcb + offsetof(struct vmcb, control.tlb_ctl))) {
263 case TLB_CONTROL_DO_NOTHING:
264 break;
265 case TLB_CONTROL_FLUSH_ALL_ASID:
266 /* FIXME: this is not 100% correct but should work for now */
267 tlb_flush(env, 1);
268 break;
269 }
270
271 env->hflags2 |= HF2_GIF_MASK;
272
273 if (int_ctl & V_IRQ_MASK) {
274 CPUState *cs = CPU(x86_env_get_cpu(env));
275
276 cs->interrupt_request |= CPU_INTERRUPT_VIRQ;
277 }
278
279 /* maybe we need to inject an event */
280 event_inj = ldl_phys(env->vm_vmcb + offsetof(struct vmcb,
281 control.event_inj));
282 if (event_inj & SVM_EVTINJ_VALID) {
283 uint8_t vector = event_inj & SVM_EVTINJ_VEC_MASK;
284 uint16_t valid_err = event_inj & SVM_EVTINJ_VALID_ERR;
285 uint32_t event_inj_err = ldl_phys(env->vm_vmcb +
286 offsetof(struct vmcb,
287 control.event_inj_err));
288
289 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Injecting(%#hx): ", valid_err);
290 /* FIXME: need to implement valid_err */
291 switch (event_inj & SVM_EVTINJ_TYPE_MASK) {
292 case SVM_EVTINJ_TYPE_INTR:
293 env->exception_index = vector;
294 env->error_code = event_inj_err;
295 env->exception_is_int = 0;
296 env->exception_next_eip = -1;
297 qemu_log_mask(CPU_LOG_TB_IN_ASM, "INTR");
298 /* XXX: is it always correct? */
299 do_interrupt_x86_hardirq(env, vector, 1);
300 break;
301 case SVM_EVTINJ_TYPE_NMI:
302 env->exception_index = EXCP02_NMI;
303 env->error_code = event_inj_err;
304 env->exception_is_int = 0;
305 env->exception_next_eip = env->eip;
306 qemu_log_mask(CPU_LOG_TB_IN_ASM, "NMI");
307 cpu_loop_exit(env);
308 break;
309 case SVM_EVTINJ_TYPE_EXEPT:
310 env->exception_index = vector;
311 env->error_code = event_inj_err;
312 env->exception_is_int = 0;
313 env->exception_next_eip = -1;
314 qemu_log_mask(CPU_LOG_TB_IN_ASM, "EXEPT");
315 cpu_loop_exit(env);
316 break;
317 case SVM_EVTINJ_TYPE_SOFT:
318 env->exception_index = vector;
319 env->error_code = event_inj_err;
320 env->exception_is_int = 1;
321 env->exception_next_eip = env->eip;
322 qemu_log_mask(CPU_LOG_TB_IN_ASM, "SOFT");
323 cpu_loop_exit(env);
324 break;
325 }
326 qemu_log_mask(CPU_LOG_TB_IN_ASM, " %#x %#x\n", env->exception_index,
327 env->error_code);
328 }
329 }
330
331 void helper_vmmcall(CPUX86State *env)
332 {
333 cpu_svm_check_intercept_param(env, SVM_EXIT_VMMCALL, 0);
334 raise_exception(env, EXCP06_ILLOP);
335 }
336
337 void helper_vmload(CPUX86State *env, int aflag)
338 {
339 target_ulong addr;
340
341 cpu_svm_check_intercept_param(env, SVM_EXIT_VMLOAD, 0);
342
343 if (aflag == 2) {
344 addr = env->regs[R_EAX];
345 } else {
346 addr = (uint32_t)env->regs[R_EAX];
347 }
348
349 qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmload! " TARGET_FMT_lx
350 "\nFS: %016" PRIx64 " | " TARGET_FMT_lx "\n",
351 addr, ldq_phys(addr + offsetof(struct vmcb,
352 save.fs.base)),
353 env->segs[R_FS].base);
354
355 svm_load_seg_cache(env, addr + offsetof(struct vmcb, save.fs), R_FS);
356 svm_load_seg_cache(env, addr + offsetof(struct vmcb, save.gs), R_GS);
357 svm_load_seg(env, addr + offsetof(struct vmcb, save.tr), &env->tr);
358 svm_load_seg(env, addr + offsetof(struct vmcb, save.ldtr), &env->ldt);
359
360 #ifdef TARGET_X86_64
361 env->kernelgsbase = ldq_phys(addr + offsetof(struct vmcb,
362 save.kernel_gs_base));
363 env->lstar = ldq_phys(addr + offsetof(struct vmcb, save.lstar));
364 env->cstar = ldq_phys(addr + offsetof(struct vmcb, save.cstar));
365 env->fmask = ldq_phys(addr + offsetof(struct vmcb, save.sfmask));
366 #endif
367 env->star = ldq_phys(addr + offsetof(struct vmcb, save.star));
368 env->sysenter_cs = ldq_phys(addr + offsetof(struct vmcb, save.sysenter_cs));
369 env->sysenter_esp = ldq_phys(addr + offsetof(struct vmcb,
370 save.sysenter_esp));
371 env->sysenter_eip = ldq_phys(addr + offsetof(struct vmcb,
372 save.sysenter_eip));
373 }
374
375 void helper_vmsave(CPUX86State *env, int aflag)
376 {
377 target_ulong addr;
378
379 cpu_svm_check_intercept_param(env, SVM_EXIT_VMSAVE, 0);
380
381 if (aflag == 2) {
382 addr = env->regs[R_EAX];
383 } else {
384 addr = (uint32_t)env->regs[R_EAX];
385 }
386
387 qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmsave! " TARGET_FMT_lx
388 "\nFS: %016" PRIx64 " | " TARGET_FMT_lx "\n",
389 addr, ldq_phys(addr + offsetof(struct vmcb, save.fs.base)),
390 env->segs[R_FS].base);
391
392 svm_save_seg(env, addr + offsetof(struct vmcb, save.fs),
393 &env->segs[R_FS]);
394 svm_save_seg(env, addr + offsetof(struct vmcb, save.gs),
395 &env->segs[R_GS]);
396 svm_save_seg(env, addr + offsetof(struct vmcb, save.tr),
397 &env->tr);
398 svm_save_seg(env, addr + offsetof(struct vmcb, save.ldtr),
399 &env->ldt);
400
401 #ifdef TARGET_X86_64
402 stq_phys(addr + offsetof(struct vmcb, save.kernel_gs_base),
403 env->kernelgsbase);
404 stq_phys(addr + offsetof(struct vmcb, save.lstar), env->lstar);
405 stq_phys(addr + offsetof(struct vmcb, save.cstar), env->cstar);
406 stq_phys(addr + offsetof(struct vmcb, save.sfmask), env->fmask);
407 #endif
408 stq_phys(addr + offsetof(struct vmcb, save.star), env->star);
409 stq_phys(addr + offsetof(struct vmcb, save.sysenter_cs), env->sysenter_cs);
410 stq_phys(addr + offsetof(struct vmcb, save.sysenter_esp),
411 env->sysenter_esp);
412 stq_phys(addr + offsetof(struct vmcb, save.sysenter_eip),
413 env->sysenter_eip);
414 }
415
416 void helper_stgi(CPUX86State *env)
417 {
418 cpu_svm_check_intercept_param(env, SVM_EXIT_STGI, 0);
419 env->hflags2 |= HF2_GIF_MASK;
420 }
421
422 void helper_clgi(CPUX86State *env)
423 {
424 cpu_svm_check_intercept_param(env, SVM_EXIT_CLGI, 0);
425 env->hflags2 &= ~HF2_GIF_MASK;
426 }
427
428 void helper_skinit(CPUX86State *env)
429 {
430 cpu_svm_check_intercept_param(env, SVM_EXIT_SKINIT, 0);
431 /* XXX: not implemented */
432 raise_exception(env, EXCP06_ILLOP);
433 }
434
435 void helper_invlpga(CPUX86State *env, int aflag)
436 {
437 target_ulong addr;
438
439 cpu_svm_check_intercept_param(env, SVM_EXIT_INVLPGA, 0);
440
441 if (aflag == 2) {
442 addr = env->regs[R_EAX];
443 } else {
444 addr = (uint32_t)env->regs[R_EAX];
445 }
446
447 /* XXX: could use the ASID to see if it is needed to do the
448 flush */
449 tlb_flush_page(env, addr);
450 }
451
452 void helper_svm_check_intercept_param(CPUX86State *env, uint32_t type,
453 uint64_t param)
454 {
455 if (likely(!(env->hflags & HF_SVMI_MASK))) {
456 return;
457 }
458 switch (type) {
459 case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR0 + 8:
460 if (env->intercept_cr_read & (1 << (type - SVM_EXIT_READ_CR0))) {
461 helper_vmexit(env, type, param);
462 }
463 break;
464 case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR0 + 8:
465 if (env->intercept_cr_write & (1 << (type - SVM_EXIT_WRITE_CR0))) {
466 helper_vmexit(env, type, param);
467 }
468 break;
469 case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR0 + 7:
470 if (env->intercept_dr_read & (1 << (type - SVM_EXIT_READ_DR0))) {
471 helper_vmexit(env, type, param);
472 }
473 break;
474 case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR0 + 7:
475 if (env->intercept_dr_write & (1 << (type - SVM_EXIT_WRITE_DR0))) {
476 helper_vmexit(env, type, param);
477 }
478 break;
479 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 31:
480 if (env->intercept_exceptions & (1 << (type - SVM_EXIT_EXCP_BASE))) {
481 helper_vmexit(env, type, param);
482 }
483 break;
484 case SVM_EXIT_MSR:
485 if (env->intercept & (1ULL << (SVM_EXIT_MSR - SVM_EXIT_INTR))) {
486 /* FIXME: this should be read in at vmrun (faster this way?) */
487 uint64_t addr = ldq_phys(env->vm_vmcb +
488 offsetof(struct vmcb,
489 control.msrpm_base_pa));
490 uint32_t t0, t1;
491
492 switch ((uint32_t)env->regs[R_ECX]) {
493 case 0 ... 0x1fff:
494 t0 = (env->regs[R_ECX] * 2) % 8;
495 t1 = (env->regs[R_ECX] * 2) / 8;
496 break;
497 case 0xc0000000 ... 0xc0001fff:
498 t0 = (8192 + env->regs[R_ECX] - 0xc0000000) * 2;
499 t1 = (t0 / 8);
500 t0 %= 8;
501 break;
502 case 0xc0010000 ... 0xc0011fff:
503 t0 = (16384 + env->regs[R_ECX] - 0xc0010000) * 2;
504 t1 = (t0 / 8);
505 t0 %= 8;
506 break;
507 default:
508 helper_vmexit(env, type, param);
509 t0 = 0;
510 t1 = 0;
511 break;
512 }
513 if (ldub_phys(addr + t1) & ((1 << param) << t0)) {
514 helper_vmexit(env, type, param);
515 }
516 }
517 break;
518 default:
519 if (env->intercept & (1ULL << (type - SVM_EXIT_INTR))) {
520 helper_vmexit(env, type, param);
521 }
522 break;
523 }
524 }
525
526 void cpu_svm_check_intercept_param(CPUX86State *env, uint32_t type,
527 uint64_t param)
528 {
529 helper_svm_check_intercept_param(env, type, param);
530 }
531
532 void helper_svm_check_io(CPUX86State *env, uint32_t port, uint32_t param,
533 uint32_t next_eip_addend)
534 {
535 if (env->intercept & (1ULL << (SVM_EXIT_IOIO - SVM_EXIT_INTR))) {
536 /* FIXME: this should be read in at vmrun (faster this way?) */
537 uint64_t addr = ldq_phys(env->vm_vmcb +
538 offsetof(struct vmcb, control.iopm_base_pa));
539 uint16_t mask = (1 << ((param >> 4) & 7)) - 1;
540
541 if (lduw_phys(addr + port / 8) & (mask << (port & 7))) {
542 /* next env->eip */
543 stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2),
544 env->eip + next_eip_addend);
545 helper_vmexit(env, SVM_EXIT_IOIO, param | (port << 16));
546 }
547 }
548 }
549
550 /* Note: currently only 32 bits of exit_code are used */
551 void helper_vmexit(CPUX86State *env, uint32_t exit_code, uint64_t exit_info_1)
552 {
553 CPUState *cs = CPU(x86_env_get_cpu(env));
554 uint32_t int_ctl;
555
556 qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmexit(%08x, %016" PRIx64 ", %016"
557 PRIx64 ", " TARGET_FMT_lx ")!\n",
558 exit_code, exit_info_1,
559 ldq_phys(env->vm_vmcb + offsetof(struct vmcb,
560 control.exit_info_2)),
561 env->eip);
562
563 if (env->hflags & HF_INHIBIT_IRQ_MASK) {
564 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_state),
565 SVM_INTERRUPT_SHADOW_MASK);
566 env->hflags &= ~HF_INHIBIT_IRQ_MASK;
567 } else {
568 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_state), 0);
569 }
570
571 /* Save the VM state in the vmcb */
572 svm_save_seg(env, env->vm_vmcb + offsetof(struct vmcb, save.es),
573 &env->segs[R_ES]);
574 svm_save_seg(env, env->vm_vmcb + offsetof(struct vmcb, save.cs),
575 &env->segs[R_CS]);
576 svm_save_seg(env, env->vm_vmcb + offsetof(struct vmcb, save.ss),
577 &env->segs[R_SS]);
578 svm_save_seg(env, env->vm_vmcb + offsetof(struct vmcb, save.ds),
579 &env->segs[R_DS]);
580
581 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.gdtr.base),
582 env->gdt.base);
583 stl_phys(env->vm_vmcb + offsetof(struct vmcb, save.gdtr.limit),
584 env->gdt.limit);
585
586 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.idtr.base),
587 env->idt.base);
588 stl_phys(env->vm_vmcb + offsetof(struct vmcb, save.idtr.limit),
589 env->idt.limit);
590
591 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.efer), env->efer);
592 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr0), env->cr[0]);
593 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr2), env->cr[2]);
594 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr3), env->cr[3]);
595 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr4), env->cr[4]);
596
597 int_ctl = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl));
598 int_ctl &= ~(V_TPR_MASK | V_IRQ_MASK);
599 int_ctl |= env->v_tpr & V_TPR_MASK;
600 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
601 int_ctl |= V_IRQ_MASK;
602 }
603 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl), int_ctl);
604
605 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rflags),
606 cpu_compute_eflags(env));
607 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rip),
608 env->eip);
609 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rsp), env->regs[R_ESP]);
610 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rax), env->regs[R_EAX]);
611 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.dr7), env->dr[7]);
612 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.dr6), env->dr[6]);
613 stb_phys(env->vm_vmcb + offsetof(struct vmcb, save.cpl),
614 env->hflags & HF_CPL_MASK);
615
616 /* Reload the host state from vm_hsave */
617 env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK);
618 env->hflags &= ~HF_SVMI_MASK;
619 env->intercept = 0;
620 env->intercept_exceptions = 0;
621 cs->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
622 env->tsc_offset = 0;
623
624 env->gdt.base = ldq_phys(env->vm_hsave + offsetof(struct vmcb,
625 save.gdtr.base));
626 env->gdt.limit = ldl_phys(env->vm_hsave + offsetof(struct vmcb,
627 save.gdtr.limit));
628
629 env->idt.base = ldq_phys(env->vm_hsave + offsetof(struct vmcb,
630 save.idtr.base));
631 env->idt.limit = ldl_phys(env->vm_hsave + offsetof(struct vmcb,
632 save.idtr.limit));
633
634 cpu_x86_update_cr0(env, ldq_phys(env->vm_hsave + offsetof(struct vmcb,
635 save.cr0)) |
636 CR0_PE_MASK);
637 cpu_x86_update_cr4(env, ldq_phys(env->vm_hsave + offsetof(struct vmcb,
638 save.cr4)));
639 cpu_x86_update_cr3(env, ldq_phys(env->vm_hsave + offsetof(struct vmcb,
640 save.cr3)));
641 /* we need to set the efer after the crs so the hidden flags get
642 set properly */
643 cpu_load_efer(env, ldq_phys(env->vm_hsave + offsetof(struct vmcb,
644 save.efer)));
645 env->eflags = 0;
646 cpu_load_eflags(env, ldq_phys(env->vm_hsave + offsetof(struct vmcb,
647 save.rflags)),
648 ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
649 CC_OP = CC_OP_EFLAGS;
650
651 svm_load_seg_cache(env, env->vm_hsave + offsetof(struct vmcb, save.es),
652 R_ES);
653 svm_load_seg_cache(env, env->vm_hsave + offsetof(struct vmcb, save.cs),
654 R_CS);
655 svm_load_seg_cache(env, env->vm_hsave + offsetof(struct vmcb, save.ss),
656 R_SS);
657 svm_load_seg_cache(env, env->vm_hsave + offsetof(struct vmcb, save.ds),
658 R_DS);
659
660 env->eip = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.rip));
661 env->regs[R_ESP] = ldq_phys(env->vm_hsave +
662 offsetof(struct vmcb, save.rsp));
663 env->regs[R_EAX] = ldq_phys(env->vm_hsave +
664 offsetof(struct vmcb, save.rax));
665
666 env->dr[6] = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.dr6));
667 env->dr[7] = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.dr7));
668
669 /* other setups */
670 cpu_x86_set_cpl(env, 0);
671 stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_code),
672 exit_code);
673 stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_1),
674 exit_info_1);
675
676 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info),
677 ldl_phys(env->vm_vmcb + offsetof(struct vmcb,
678 control.event_inj)));
679 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info_err),
680 ldl_phys(env->vm_vmcb + offsetof(struct vmcb,
681 control.event_inj_err)));
682 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj), 0);
683
684 env->hflags2 &= ~HF2_GIF_MASK;
685 /* FIXME: Resets the current ASID register to zero (host ASID). */
686
687 /* Clears the V_IRQ and V_INTR_MASKING bits inside the processor. */
688
689 /* Clears the TSC_OFFSET inside the processor. */
690
691 /* If the host is in PAE mode, the processor reloads the host's PDPEs
692 from the page table indicated the host's CR3. If the PDPEs contain
693 illegal state, the processor causes a shutdown. */
694
695 /* Forces CR0.PE = 1, RFLAGS.VM = 0. */
696 env->cr[0] |= CR0_PE_MASK;
697 env->eflags &= ~VM_MASK;
698
699 /* Disables all breakpoints in the host DR7 register. */
700
701 /* Checks the reloaded host state for consistency. */
702
703 /* If the host's rIP reloaded by #VMEXIT is outside the limit of the
704 host's code segment or non-canonical (in the case of long mode), a
705 #GP fault is delivered inside the host. */
706
707 /* remove any pending exception */
708 env->exception_index = -1;
709 env->error_code = 0;
710 env->old_exception = -1;
711
712 cpu_loop_exit(env);
713 }
714
715 void cpu_vmexit(CPUX86State *env, uint32_t exit_code, uint64_t exit_info_1)
716 {
717 helper_vmexit(env, exit_code, exit_info_1);
718 }
719
720 #endif