]> git.proxmox.com Git - qemu.git/blob - target-microblaze/op_helper.c
Merge qemu-iotests into for-anthony
[qemu.git] / target-microblaze / op_helper.c
1 /*
2 * Microblaze helper routines.
3 *
4 * Copyright (c) 2009 Edgar E. Iglesias <edgar.iglesias@gmail.com>.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <assert.h>
21 #include "cpu.h"
22 #include "dyngen-exec.h"
23 #include "helper.h"
24 #include "host-utils.h"
25
26 #define D(x)
27
28 #if !defined(CONFIG_USER_ONLY)
29 #include "softmmu_exec.h"
30
31 #define MMUSUFFIX _mmu
32 #define SHIFT 0
33 #include "softmmu_template.h"
34 #define SHIFT 1
35 #include "softmmu_template.h"
36 #define SHIFT 2
37 #include "softmmu_template.h"
38 #define SHIFT 3
39 #include "softmmu_template.h"
40
41 /* Try to fill the TLB and return an exception if error. If retaddr is
42 NULL, it means that the function was called in C code (i.e. not
43 from generated code or from helper.c) */
44 /* XXX: fix it to restore all registers */
45 void tlb_fill(CPUState *env1, target_ulong addr, int is_write, int mmu_idx,
46 void *retaddr)
47 {
48 TranslationBlock *tb;
49 CPUState *saved_env;
50 unsigned long pc;
51 int ret;
52
53 saved_env = env;
54 env = env1;
55
56 ret = cpu_mb_handle_mmu_fault(env, addr, is_write, mmu_idx);
57 if (unlikely(ret)) {
58 if (retaddr) {
59 /* now we have a real cpu fault */
60 pc = (unsigned long)retaddr;
61 tb = tb_find_pc(pc);
62 if (tb) {
63 /* the PC is inside the translated code. It means that we have
64 a virtual CPU fault */
65 cpu_restore_state(tb, env, pc);
66 }
67 }
68 cpu_loop_exit(env);
69 }
70 env = saved_env;
71 }
72 #endif
73
74 void helper_put(uint32_t id, uint32_t ctrl, uint32_t data)
75 {
76 int test = ctrl & STREAM_TEST;
77 int atomic = ctrl & STREAM_ATOMIC;
78 int control = ctrl & STREAM_CONTROL;
79 int nonblock = ctrl & STREAM_NONBLOCK;
80 int exception = ctrl & STREAM_EXCEPTION;
81
82 qemu_log("Unhandled stream put to stream-id=%d data=%x %s%s%s%s%s\n",
83 id, data,
84 test ? "t" : "",
85 nonblock ? "n" : "",
86 exception ? "e" : "",
87 control ? "c" : "",
88 atomic ? "a" : "");
89 }
90
91 uint32_t helper_get(uint32_t id, uint32_t ctrl)
92 {
93 int test = ctrl & STREAM_TEST;
94 int atomic = ctrl & STREAM_ATOMIC;
95 int control = ctrl & STREAM_CONTROL;
96 int nonblock = ctrl & STREAM_NONBLOCK;
97 int exception = ctrl & STREAM_EXCEPTION;
98
99 qemu_log("Unhandled stream get from stream-id=%d %s%s%s%s%s\n",
100 id,
101 test ? "t" : "",
102 nonblock ? "n" : "",
103 exception ? "e" : "",
104 control ? "c" : "",
105 atomic ? "a" : "");
106 return 0xdead0000 | id;
107 }
108
109 void helper_raise_exception(uint32_t index)
110 {
111 env->exception_index = index;
112 cpu_loop_exit(env);
113 }
114
115 void helper_debug(void)
116 {
117 int i;
118
119 qemu_log("PC=%8.8x\n", env->sregs[SR_PC]);
120 qemu_log("rmsr=%x resr=%x rear=%x debug[%x] imm=%x iflags=%x\n",
121 env->sregs[SR_MSR], env->sregs[SR_ESR], env->sregs[SR_EAR],
122 env->debug, env->imm, env->iflags);
123 qemu_log("btaken=%d btarget=%x mode=%s(saved=%s) eip=%d ie=%d\n",
124 env->btaken, env->btarget,
125 (env->sregs[SR_MSR] & MSR_UM) ? "user" : "kernel",
126 (env->sregs[SR_MSR] & MSR_UMS) ? "user" : "kernel",
127 (env->sregs[SR_MSR] & MSR_EIP),
128 (env->sregs[SR_MSR] & MSR_IE));
129 for (i = 0; i < 32; i++) {
130 qemu_log("r%2.2d=%8.8x ", i, env->regs[i]);
131 if ((i + 1) % 4 == 0)
132 qemu_log("\n");
133 }
134 qemu_log("\n\n");
135 }
136
137 static inline uint32_t compute_carry(uint32_t a, uint32_t b, uint32_t cin)
138 {
139 uint32_t cout = 0;
140
141 if ((b == ~0) && cin)
142 cout = 1;
143 else if ((~0 - a) < (b + cin))
144 cout = 1;
145 return cout;
146 }
147
148 uint32_t helper_cmp(uint32_t a, uint32_t b)
149 {
150 uint32_t t;
151
152 t = b + ~a + 1;
153 if ((b & 0x80000000) ^ (a & 0x80000000))
154 t = (t & 0x7fffffff) | (b & 0x80000000);
155 return t;
156 }
157
158 uint32_t helper_cmpu(uint32_t a, uint32_t b)
159 {
160 uint32_t t;
161
162 t = b + ~a + 1;
163 if ((b & 0x80000000) ^ (a & 0x80000000))
164 t = (t & 0x7fffffff) | (a & 0x80000000);
165 return t;
166 }
167
168 uint32_t helper_clz(uint32_t t0)
169 {
170 return clz32(t0);
171 }
172
173 uint32_t helper_carry(uint32_t a, uint32_t b, uint32_t cf)
174 {
175 uint32_t ncf;
176 ncf = compute_carry(a, b, cf);
177 return ncf;
178 }
179
180 static inline int div_prepare(uint32_t a, uint32_t b)
181 {
182 if (b == 0) {
183 env->sregs[SR_MSR] |= MSR_DZ;
184
185 if ((env->sregs[SR_MSR] & MSR_EE)
186 && !(env->pvr.regs[2] & PVR2_DIV_ZERO_EXC_MASK)) {
187 env->sregs[SR_ESR] = ESR_EC_DIVZERO;
188 helper_raise_exception(EXCP_HW_EXCP);
189 }
190 return 0;
191 }
192 env->sregs[SR_MSR] &= ~MSR_DZ;
193 return 1;
194 }
195
196 uint32_t helper_divs(uint32_t a, uint32_t b)
197 {
198 if (!div_prepare(a, b))
199 return 0;
200 return (int32_t)a / (int32_t)b;
201 }
202
203 uint32_t helper_divu(uint32_t a, uint32_t b)
204 {
205 if (!div_prepare(a, b))
206 return 0;
207 return a / b;
208 }
209
210 /* raise FPU exception. */
211 static void raise_fpu_exception(void)
212 {
213 env->sregs[SR_ESR] = ESR_EC_FPU;
214 helper_raise_exception(EXCP_HW_EXCP);
215 }
216
217 static void update_fpu_flags(int flags)
218 {
219 int raise = 0;
220
221 if (flags & float_flag_invalid) {
222 env->sregs[SR_FSR] |= FSR_IO;
223 raise = 1;
224 }
225 if (flags & float_flag_divbyzero) {
226 env->sregs[SR_FSR] |= FSR_DZ;
227 raise = 1;
228 }
229 if (flags & float_flag_overflow) {
230 env->sregs[SR_FSR] |= FSR_OF;
231 raise = 1;
232 }
233 if (flags & float_flag_underflow) {
234 env->sregs[SR_FSR] |= FSR_UF;
235 raise = 1;
236 }
237 if (raise
238 && (env->pvr.regs[2] & PVR2_FPU_EXC_MASK)
239 && (env->sregs[SR_MSR] & MSR_EE)) {
240 raise_fpu_exception();
241 }
242 }
243
244 uint32_t helper_fadd(uint32_t a, uint32_t b)
245 {
246 CPU_FloatU fd, fa, fb;
247 int flags;
248
249 set_float_exception_flags(0, &env->fp_status);
250 fa.l = a;
251 fb.l = b;
252 fd.f = float32_add(fa.f, fb.f, &env->fp_status);
253
254 flags = get_float_exception_flags(&env->fp_status);
255 update_fpu_flags(flags);
256 return fd.l;
257 }
258
259 uint32_t helper_frsub(uint32_t a, uint32_t b)
260 {
261 CPU_FloatU fd, fa, fb;
262 int flags;
263
264 set_float_exception_flags(0, &env->fp_status);
265 fa.l = a;
266 fb.l = b;
267 fd.f = float32_sub(fb.f, fa.f, &env->fp_status);
268 flags = get_float_exception_flags(&env->fp_status);
269 update_fpu_flags(flags);
270 return fd.l;
271 }
272
273 uint32_t helper_fmul(uint32_t a, uint32_t b)
274 {
275 CPU_FloatU fd, fa, fb;
276 int flags;
277
278 set_float_exception_flags(0, &env->fp_status);
279 fa.l = a;
280 fb.l = b;
281 fd.f = float32_mul(fa.f, fb.f, &env->fp_status);
282 flags = get_float_exception_flags(&env->fp_status);
283 update_fpu_flags(flags);
284
285 return fd.l;
286 }
287
288 uint32_t helper_fdiv(uint32_t a, uint32_t b)
289 {
290 CPU_FloatU fd, fa, fb;
291 int flags;
292
293 set_float_exception_flags(0, &env->fp_status);
294 fa.l = a;
295 fb.l = b;
296 fd.f = float32_div(fb.f, fa.f, &env->fp_status);
297 flags = get_float_exception_flags(&env->fp_status);
298 update_fpu_flags(flags);
299
300 return fd.l;
301 }
302
303 uint32_t helper_fcmp_un(uint32_t a, uint32_t b)
304 {
305 CPU_FloatU fa, fb;
306 uint32_t r = 0;
307
308 fa.l = a;
309 fb.l = b;
310
311 if (float32_is_signaling_nan(fa.f) || float32_is_signaling_nan(fb.f)) {
312 update_fpu_flags(float_flag_invalid);
313 r = 1;
314 }
315
316 if (float32_is_quiet_nan(fa.f) || float32_is_quiet_nan(fb.f)) {
317 r = 1;
318 }
319
320 return r;
321 }
322
323 uint32_t helper_fcmp_lt(uint32_t a, uint32_t b)
324 {
325 CPU_FloatU fa, fb;
326 int r;
327 int flags;
328
329 set_float_exception_flags(0, &env->fp_status);
330 fa.l = a;
331 fb.l = b;
332 r = float32_lt(fb.f, fa.f, &env->fp_status);
333 flags = get_float_exception_flags(&env->fp_status);
334 update_fpu_flags(flags & float_flag_invalid);
335
336 return r;
337 }
338
339 uint32_t helper_fcmp_eq(uint32_t a, uint32_t b)
340 {
341 CPU_FloatU fa, fb;
342 int flags;
343 int r;
344
345 set_float_exception_flags(0, &env->fp_status);
346 fa.l = a;
347 fb.l = b;
348 r = float32_eq_quiet(fa.f, fb.f, &env->fp_status);
349 flags = get_float_exception_flags(&env->fp_status);
350 update_fpu_flags(flags & float_flag_invalid);
351
352 return r;
353 }
354
355 uint32_t helper_fcmp_le(uint32_t a, uint32_t b)
356 {
357 CPU_FloatU fa, fb;
358 int flags;
359 int r;
360
361 fa.l = a;
362 fb.l = b;
363 set_float_exception_flags(0, &env->fp_status);
364 r = float32_le(fa.f, fb.f, &env->fp_status);
365 flags = get_float_exception_flags(&env->fp_status);
366 update_fpu_flags(flags & float_flag_invalid);
367
368
369 return r;
370 }
371
372 uint32_t helper_fcmp_gt(uint32_t a, uint32_t b)
373 {
374 CPU_FloatU fa, fb;
375 int flags, r;
376
377 fa.l = a;
378 fb.l = b;
379 set_float_exception_flags(0, &env->fp_status);
380 r = float32_lt(fa.f, fb.f, &env->fp_status);
381 flags = get_float_exception_flags(&env->fp_status);
382 update_fpu_flags(flags & float_flag_invalid);
383 return r;
384 }
385
386 uint32_t helper_fcmp_ne(uint32_t a, uint32_t b)
387 {
388 CPU_FloatU fa, fb;
389 int flags, r;
390
391 fa.l = a;
392 fb.l = b;
393 set_float_exception_flags(0, &env->fp_status);
394 r = !float32_eq_quiet(fa.f, fb.f, &env->fp_status);
395 flags = get_float_exception_flags(&env->fp_status);
396 update_fpu_flags(flags & float_flag_invalid);
397
398 return r;
399 }
400
401 uint32_t helper_fcmp_ge(uint32_t a, uint32_t b)
402 {
403 CPU_FloatU fa, fb;
404 int flags, r;
405
406 fa.l = a;
407 fb.l = b;
408 set_float_exception_flags(0, &env->fp_status);
409 r = !float32_lt(fa.f, fb.f, &env->fp_status);
410 flags = get_float_exception_flags(&env->fp_status);
411 update_fpu_flags(flags & float_flag_invalid);
412
413 return r;
414 }
415
416 uint32_t helper_flt(uint32_t a)
417 {
418 CPU_FloatU fd, fa;
419
420 fa.l = a;
421 fd.f = int32_to_float32(fa.l, &env->fp_status);
422 return fd.l;
423 }
424
425 uint32_t helper_fint(uint32_t a)
426 {
427 CPU_FloatU fa;
428 uint32_t r;
429 int flags;
430
431 set_float_exception_flags(0, &env->fp_status);
432 fa.l = a;
433 r = float32_to_int32(fa.f, &env->fp_status);
434 flags = get_float_exception_flags(&env->fp_status);
435 update_fpu_flags(flags);
436
437 return r;
438 }
439
440 uint32_t helper_fsqrt(uint32_t a)
441 {
442 CPU_FloatU fd, fa;
443 int flags;
444
445 set_float_exception_flags(0, &env->fp_status);
446 fa.l = a;
447 fd.l = float32_sqrt(fa.f, &env->fp_status);
448 flags = get_float_exception_flags(&env->fp_status);
449 update_fpu_flags(flags);
450
451 return fd.l;
452 }
453
454 uint32_t helper_pcmpbf(uint32_t a, uint32_t b)
455 {
456 unsigned int i;
457 uint32_t mask = 0xff000000;
458
459 for (i = 0; i < 4; i++) {
460 if ((a & mask) == (b & mask))
461 return i + 1;
462 mask >>= 8;
463 }
464 return 0;
465 }
466
467 void helper_memalign(uint32_t addr, uint32_t dr, uint32_t wr, uint32_t mask)
468 {
469 if (addr & mask) {
470 qemu_log_mask(CPU_LOG_INT,
471 "unaligned access addr=%x mask=%x, wr=%d dr=r%d\n",
472 addr, mask, wr, dr);
473 env->sregs[SR_EAR] = addr;
474 env->sregs[SR_ESR] = ESR_EC_UNALIGNED_DATA | (wr << 10) \
475 | (dr & 31) << 5;
476 if (mask == 3) {
477 env->sregs[SR_ESR] |= 1 << 11;
478 }
479 if (!(env->sregs[SR_MSR] & MSR_EE)) {
480 return;
481 }
482 helper_raise_exception(EXCP_HW_EXCP);
483 }
484 }
485
486 void helper_stackprot(uint32_t addr)
487 {
488 if (addr < env->slr || addr > env->shr) {
489 qemu_log("Stack protector violation at %x %x %x\n",
490 addr, env->slr, env->shr);
491 env->sregs[SR_EAR] = addr;
492 env->sregs[SR_ESR] = ESR_EC_STACKPROT;
493 helper_raise_exception(EXCP_HW_EXCP);
494 }
495 }
496
497 #if !defined(CONFIG_USER_ONLY)
498 /* Writes/reads to the MMU's special regs end up here. */
499 uint32_t helper_mmu_read(uint32_t rn)
500 {
501 return mmu_read(env, rn);
502 }
503
504 void helper_mmu_write(uint32_t rn, uint32_t v)
505 {
506 mmu_write(env, rn, v);
507 }
508
509 void cpu_unassigned_access(CPUState *env1, target_phys_addr_t addr,
510 int is_write, int is_exec, int is_asi, int size)
511 {
512 CPUState *saved_env;
513
514 saved_env = env;
515 env = env1;
516
517 qemu_log_mask(CPU_LOG_INT, "Unassigned " TARGET_FMT_plx " wr=%d exe=%d\n",
518 addr, is_write, is_exec);
519 if (!(env->sregs[SR_MSR] & MSR_EE)) {
520 env = saved_env;
521 return;
522 }
523
524 env->sregs[SR_EAR] = addr;
525 if (is_exec) {
526 if ((env->pvr.regs[2] & PVR2_IOPB_BUS_EXC_MASK)) {
527 env->sregs[SR_ESR] = ESR_EC_INSN_BUS;
528 helper_raise_exception(EXCP_HW_EXCP);
529 }
530 } else {
531 if ((env->pvr.regs[2] & PVR2_DOPB_BUS_EXC_MASK)) {
532 env->sregs[SR_ESR] = ESR_EC_DATA_BUS;
533 helper_raise_exception(EXCP_HW_EXCP);
534 }
535 }
536 env = saved_env;
537 }
538 #endif