]> git.proxmox.com Git - qemu.git/blob - target-sh4/op_helper.c
hw/i386/Makefile.obj: use $(PYTHON) to run .py scripts consistently
[qemu.git] / target-sh4 / op_helper.c
1 /*
2 * SH4 emulation
3 *
4 * Copyright (c) 2005 Samuel Tardieu
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include <assert.h>
20 #include <stdlib.h>
21 #include "cpu.h"
22 #include "helper.h"
23
24 #ifndef CONFIG_USER_ONLY
25 #include "exec/softmmu_exec.h"
26
27 #define MMUSUFFIX _mmu
28
29 #define SHIFT 0
30 #include "exec/softmmu_template.h"
31
32 #define SHIFT 1
33 #include "exec/softmmu_template.h"
34
35 #define SHIFT 2
36 #include "exec/softmmu_template.h"
37
38 #define SHIFT 3
39 #include "exec/softmmu_template.h"
40
41 void tlb_fill(CPUSH4State *env, target_ulong addr, int is_write, int mmu_idx,
42 uintptr_t retaddr)
43 {
44 int ret;
45
46 ret = cpu_sh4_handle_mmu_fault(env, addr, is_write, mmu_idx);
47 if (ret) {
48 /* now we have a real cpu fault */
49 if (retaddr) {
50 cpu_restore_state(env, retaddr);
51 }
52 cpu_loop_exit(env);
53 }
54 }
55
56 #endif
57
58 void helper_ldtlb(CPUSH4State *env)
59 {
60 #ifdef CONFIG_USER_ONLY
61 /* XXXXX */
62 cpu_abort(env, "Unhandled ldtlb");
63 #else
64 cpu_load_tlb(env);
65 #endif
66 }
67
68 static inline void QEMU_NORETURN raise_exception(CPUSH4State *env, int index,
69 uintptr_t retaddr)
70 {
71 env->exception_index = index;
72 if (retaddr) {
73 cpu_restore_state(env, retaddr);
74 }
75 cpu_loop_exit(env);
76 }
77
78 void helper_raise_illegal_instruction(CPUSH4State *env)
79 {
80 raise_exception(env, 0x180, 0);
81 }
82
83 void helper_raise_slot_illegal_instruction(CPUSH4State *env)
84 {
85 raise_exception(env, 0x1a0, 0);
86 }
87
88 void helper_raise_fpu_disable(CPUSH4State *env)
89 {
90 raise_exception(env, 0x800, 0);
91 }
92
93 void helper_raise_slot_fpu_disable(CPUSH4State *env)
94 {
95 raise_exception(env, 0x820, 0);
96 }
97
98 void helper_debug(CPUSH4State *env)
99 {
100 raise_exception(env, EXCP_DEBUG, 0);
101 }
102
103 void helper_sleep(CPUSH4State *env)
104 {
105 CPUState *cs = CPU(sh_env_get_cpu(env));
106
107 cs->halted = 1;
108 env->in_sleep = 1;
109 raise_exception(env, EXCP_HLT, 0);
110 }
111
112 void helper_trapa(CPUSH4State *env, uint32_t tra)
113 {
114 env->tra = tra << 2;
115 raise_exception(env, 0x160, 0);
116 }
117
118 void helper_movcal(CPUSH4State *env, uint32_t address, uint32_t value)
119 {
120 if (cpu_sh4_is_cached (env, address))
121 {
122 memory_content *r = malloc (sizeof(memory_content));
123 r->address = address;
124 r->value = value;
125 r->next = NULL;
126
127 *(env->movcal_backup_tail) = r;
128 env->movcal_backup_tail = &(r->next);
129 }
130 }
131
132 void helper_discard_movcal_backup(CPUSH4State *env)
133 {
134 memory_content *current = env->movcal_backup;
135
136 while(current)
137 {
138 memory_content *next = current->next;
139 free (current);
140 env->movcal_backup = current = next;
141 if (current == NULL)
142 env->movcal_backup_tail = &(env->movcal_backup);
143 }
144 }
145
146 void helper_ocbi(CPUSH4State *env, uint32_t address)
147 {
148 memory_content **current = &(env->movcal_backup);
149 while (*current)
150 {
151 uint32_t a = (*current)->address;
152 if ((a & ~0x1F) == (address & ~0x1F))
153 {
154 memory_content *next = (*current)->next;
155 cpu_stl_data(env, a, (*current)->value);
156
157 if (next == NULL)
158 {
159 env->movcal_backup_tail = current;
160 }
161
162 free (*current);
163 *current = next;
164 break;
165 }
166 }
167 }
168
169 #define T (env->sr & SR_T)
170 #define Q (env->sr & SR_Q ? 1 : 0)
171 #define M (env->sr & SR_M ? 1 : 0)
172 #define SETT env->sr |= SR_T
173 #define CLRT env->sr &= ~SR_T
174 #define SETQ env->sr |= SR_Q
175 #define CLRQ env->sr &= ~SR_Q
176 #define SETM env->sr |= SR_M
177 #define CLRM env->sr &= ~SR_M
178
179 uint32_t helper_div1(CPUSH4State *env, uint32_t arg0, uint32_t arg1)
180 {
181 uint32_t tmp0, tmp2;
182 uint8_t old_q, tmp1 = 0xff;
183
184 //printf("div1 arg0=0x%08x arg1=0x%08x M=%d Q=%d T=%d\n", arg0, arg1, M, Q, T);
185 old_q = Q;
186 if ((0x80000000 & arg1) != 0)
187 SETQ;
188 else
189 CLRQ;
190 tmp2 = arg0;
191 arg1 <<= 1;
192 arg1 |= T;
193 switch (old_q) {
194 case 0:
195 switch (M) {
196 case 0:
197 tmp0 = arg1;
198 arg1 -= tmp2;
199 tmp1 = arg1 > tmp0;
200 switch (Q) {
201 case 0:
202 if (tmp1)
203 SETQ;
204 else
205 CLRQ;
206 break;
207 case 1:
208 if (tmp1 == 0)
209 SETQ;
210 else
211 CLRQ;
212 break;
213 }
214 break;
215 case 1:
216 tmp0 = arg1;
217 arg1 += tmp2;
218 tmp1 = arg1 < tmp0;
219 switch (Q) {
220 case 0:
221 if (tmp1 == 0)
222 SETQ;
223 else
224 CLRQ;
225 break;
226 case 1:
227 if (tmp1)
228 SETQ;
229 else
230 CLRQ;
231 break;
232 }
233 break;
234 }
235 break;
236 case 1:
237 switch (M) {
238 case 0:
239 tmp0 = arg1;
240 arg1 += tmp2;
241 tmp1 = arg1 < tmp0;
242 switch (Q) {
243 case 0:
244 if (tmp1)
245 SETQ;
246 else
247 CLRQ;
248 break;
249 case 1:
250 if (tmp1 == 0)
251 SETQ;
252 else
253 CLRQ;
254 break;
255 }
256 break;
257 case 1:
258 tmp0 = arg1;
259 arg1 -= tmp2;
260 tmp1 = arg1 > tmp0;
261 switch (Q) {
262 case 0:
263 if (tmp1 == 0)
264 SETQ;
265 else
266 CLRQ;
267 break;
268 case 1:
269 if (tmp1)
270 SETQ;
271 else
272 CLRQ;
273 break;
274 }
275 break;
276 }
277 break;
278 }
279 if (Q == M)
280 SETT;
281 else
282 CLRT;
283 //printf("Output: arg1=0x%08x M=%d Q=%d T=%d\n", arg1, M, Q, T);
284 return arg1;
285 }
286
287 void helper_macl(CPUSH4State *env, uint32_t arg0, uint32_t arg1)
288 {
289 int64_t res;
290
291 res = ((uint64_t) env->mach << 32) | env->macl;
292 res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1;
293 env->mach = (res >> 32) & 0xffffffff;
294 env->macl = res & 0xffffffff;
295 if (env->sr & SR_S) {
296 if (res < 0)
297 env->mach |= 0xffff0000;
298 else
299 env->mach &= 0x00007fff;
300 }
301 }
302
303 void helper_macw(CPUSH4State *env, uint32_t arg0, uint32_t arg1)
304 {
305 int64_t res;
306
307 res = ((uint64_t) env->mach << 32) | env->macl;
308 res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1;
309 env->mach = (res >> 32) & 0xffffffff;
310 env->macl = res & 0xffffffff;
311 if (env->sr & SR_S) {
312 if (res < -0x80000000) {
313 env->mach = 1;
314 env->macl = 0x80000000;
315 } else if (res > 0x000000007fffffff) {
316 env->mach = 1;
317 env->macl = 0x7fffffff;
318 }
319 }
320 }
321
322 static inline void set_t(CPUSH4State *env)
323 {
324 env->sr |= SR_T;
325 }
326
327 static inline void clr_t(CPUSH4State *env)
328 {
329 env->sr &= ~SR_T;
330 }
331
332 void helper_ld_fpscr(CPUSH4State *env, uint32_t val)
333 {
334 env->fpscr = val & FPSCR_MASK;
335 if ((val & FPSCR_RM_MASK) == FPSCR_RM_ZERO) {
336 set_float_rounding_mode(float_round_to_zero, &env->fp_status);
337 } else {
338 set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
339 }
340 set_flush_to_zero((val & FPSCR_DN) != 0, &env->fp_status);
341 }
342
343 static void update_fpscr(CPUSH4State *env, uintptr_t retaddr)
344 {
345 int xcpt, cause, enable;
346
347 xcpt = get_float_exception_flags(&env->fp_status);
348
349 /* Clear the flag entries */
350 env->fpscr &= ~FPSCR_FLAG_MASK;
351
352 if (unlikely(xcpt)) {
353 if (xcpt & float_flag_invalid) {
354 env->fpscr |= FPSCR_FLAG_V;
355 }
356 if (xcpt & float_flag_divbyzero) {
357 env->fpscr |= FPSCR_FLAG_Z;
358 }
359 if (xcpt & float_flag_overflow) {
360 env->fpscr |= FPSCR_FLAG_O;
361 }
362 if (xcpt & float_flag_underflow) {
363 env->fpscr |= FPSCR_FLAG_U;
364 }
365 if (xcpt & float_flag_inexact) {
366 env->fpscr |= FPSCR_FLAG_I;
367 }
368
369 /* Accumulate in cause entries */
370 env->fpscr |= (env->fpscr & FPSCR_FLAG_MASK)
371 << (FPSCR_CAUSE_SHIFT - FPSCR_FLAG_SHIFT);
372
373 /* Generate an exception if enabled */
374 cause = (env->fpscr & FPSCR_CAUSE_MASK) >> FPSCR_CAUSE_SHIFT;
375 enable = (env->fpscr & FPSCR_ENABLE_MASK) >> FPSCR_ENABLE_SHIFT;
376 if (cause & enable) {
377 raise_exception(env, 0x120, retaddr);
378 }
379 }
380 }
381
382 float32 helper_fabs_FT(float32 t0)
383 {
384 return float32_abs(t0);
385 }
386
387 float64 helper_fabs_DT(float64 t0)
388 {
389 return float64_abs(t0);
390 }
391
392 float32 helper_fadd_FT(CPUSH4State *env, float32 t0, float32 t1)
393 {
394 set_float_exception_flags(0, &env->fp_status);
395 t0 = float32_add(t0, t1, &env->fp_status);
396 update_fpscr(env, GETPC());
397 return t0;
398 }
399
400 float64 helper_fadd_DT(CPUSH4State *env, float64 t0, float64 t1)
401 {
402 set_float_exception_flags(0, &env->fp_status);
403 t0 = float64_add(t0, t1, &env->fp_status);
404 update_fpscr(env, GETPC());
405 return t0;
406 }
407
408 void helper_fcmp_eq_FT(CPUSH4State *env, float32 t0, float32 t1)
409 {
410 int relation;
411
412 set_float_exception_flags(0, &env->fp_status);
413 relation = float32_compare(t0, t1, &env->fp_status);
414 if (unlikely(relation == float_relation_unordered)) {
415 update_fpscr(env, GETPC());
416 } else if (relation == float_relation_equal) {
417 set_t(env);
418 } else {
419 clr_t(env);
420 }
421 }
422
423 void helper_fcmp_eq_DT(CPUSH4State *env, float64 t0, float64 t1)
424 {
425 int relation;
426
427 set_float_exception_flags(0, &env->fp_status);
428 relation = float64_compare(t0, t1, &env->fp_status);
429 if (unlikely(relation == float_relation_unordered)) {
430 update_fpscr(env, GETPC());
431 } else if (relation == float_relation_equal) {
432 set_t(env);
433 } else {
434 clr_t(env);
435 }
436 }
437
438 void helper_fcmp_gt_FT(CPUSH4State *env, float32 t0, float32 t1)
439 {
440 int relation;
441
442 set_float_exception_flags(0, &env->fp_status);
443 relation = float32_compare(t0, t1, &env->fp_status);
444 if (unlikely(relation == float_relation_unordered)) {
445 update_fpscr(env, GETPC());
446 } else if (relation == float_relation_greater) {
447 set_t(env);
448 } else {
449 clr_t(env);
450 }
451 }
452
453 void helper_fcmp_gt_DT(CPUSH4State *env, float64 t0, float64 t1)
454 {
455 int relation;
456
457 set_float_exception_flags(0, &env->fp_status);
458 relation = float64_compare(t0, t1, &env->fp_status);
459 if (unlikely(relation == float_relation_unordered)) {
460 update_fpscr(env, GETPC());
461 } else if (relation == float_relation_greater) {
462 set_t(env);
463 } else {
464 clr_t(env);
465 }
466 }
467
468 float64 helper_fcnvsd_FT_DT(CPUSH4State *env, float32 t0)
469 {
470 float64 ret;
471 set_float_exception_flags(0, &env->fp_status);
472 ret = float32_to_float64(t0, &env->fp_status);
473 update_fpscr(env, GETPC());
474 return ret;
475 }
476
477 float32 helper_fcnvds_DT_FT(CPUSH4State *env, float64 t0)
478 {
479 float32 ret;
480 set_float_exception_flags(0, &env->fp_status);
481 ret = float64_to_float32(t0, &env->fp_status);
482 update_fpscr(env, GETPC());
483 return ret;
484 }
485
486 float32 helper_fdiv_FT(CPUSH4State *env, float32 t0, float32 t1)
487 {
488 set_float_exception_flags(0, &env->fp_status);
489 t0 = float32_div(t0, t1, &env->fp_status);
490 update_fpscr(env, GETPC());
491 return t0;
492 }
493
494 float64 helper_fdiv_DT(CPUSH4State *env, float64 t0, float64 t1)
495 {
496 set_float_exception_flags(0, &env->fp_status);
497 t0 = float64_div(t0, t1, &env->fp_status);
498 update_fpscr(env, GETPC());
499 return t0;
500 }
501
502 float32 helper_float_FT(CPUSH4State *env, uint32_t t0)
503 {
504 float32 ret;
505 set_float_exception_flags(0, &env->fp_status);
506 ret = int32_to_float32(t0, &env->fp_status);
507 update_fpscr(env, GETPC());
508 return ret;
509 }
510
511 float64 helper_float_DT(CPUSH4State *env, uint32_t t0)
512 {
513 float64 ret;
514 set_float_exception_flags(0, &env->fp_status);
515 ret = int32_to_float64(t0, &env->fp_status);
516 update_fpscr(env, GETPC());
517 return ret;
518 }
519
520 float32 helper_fmac_FT(CPUSH4State *env, float32 t0, float32 t1, float32 t2)
521 {
522 set_float_exception_flags(0, &env->fp_status);
523 t0 = float32_muladd(t0, t1, t2, 0, &env->fp_status);
524 update_fpscr(env, GETPC());
525 return t0;
526 }
527
528 float32 helper_fmul_FT(CPUSH4State *env, float32 t0, float32 t1)
529 {
530 set_float_exception_flags(0, &env->fp_status);
531 t0 = float32_mul(t0, t1, &env->fp_status);
532 update_fpscr(env, GETPC());
533 return t0;
534 }
535
536 float64 helper_fmul_DT(CPUSH4State *env, float64 t0, float64 t1)
537 {
538 set_float_exception_flags(0, &env->fp_status);
539 t0 = float64_mul(t0, t1, &env->fp_status);
540 update_fpscr(env, GETPC());
541 return t0;
542 }
543
544 float32 helper_fneg_T(float32 t0)
545 {
546 return float32_chs(t0);
547 }
548
549 float32 helper_fsqrt_FT(CPUSH4State *env, float32 t0)
550 {
551 set_float_exception_flags(0, &env->fp_status);
552 t0 = float32_sqrt(t0, &env->fp_status);
553 update_fpscr(env, GETPC());
554 return t0;
555 }
556
557 float64 helper_fsqrt_DT(CPUSH4State *env, float64 t0)
558 {
559 set_float_exception_flags(0, &env->fp_status);
560 t0 = float64_sqrt(t0, &env->fp_status);
561 update_fpscr(env, GETPC());
562 return t0;
563 }
564
565 float32 helper_fsub_FT(CPUSH4State *env, float32 t0, float32 t1)
566 {
567 set_float_exception_flags(0, &env->fp_status);
568 t0 = float32_sub(t0, t1, &env->fp_status);
569 update_fpscr(env, GETPC());
570 return t0;
571 }
572
573 float64 helper_fsub_DT(CPUSH4State *env, float64 t0, float64 t1)
574 {
575 set_float_exception_flags(0, &env->fp_status);
576 t0 = float64_sub(t0, t1, &env->fp_status);
577 update_fpscr(env, GETPC());
578 return t0;
579 }
580
581 uint32_t helper_ftrc_FT(CPUSH4State *env, float32 t0)
582 {
583 uint32_t ret;
584 set_float_exception_flags(0, &env->fp_status);
585 ret = float32_to_int32_round_to_zero(t0, &env->fp_status);
586 update_fpscr(env, GETPC());
587 return ret;
588 }
589
590 uint32_t helper_ftrc_DT(CPUSH4State *env, float64 t0)
591 {
592 uint32_t ret;
593 set_float_exception_flags(0, &env->fp_status);
594 ret = float64_to_int32_round_to_zero(t0, &env->fp_status);
595 update_fpscr(env, GETPC());
596 return ret;
597 }
598
599 void helper_fipr(CPUSH4State *env, uint32_t m, uint32_t n)
600 {
601 int bank, i;
602 float32 r, p;
603
604 bank = (env->sr & FPSCR_FR) ? 16 : 0;
605 r = float32_zero;
606 set_float_exception_flags(0, &env->fp_status);
607
608 for (i = 0 ; i < 4 ; i++) {
609 p = float32_mul(env->fregs[bank + m + i],
610 env->fregs[bank + n + i],
611 &env->fp_status);
612 r = float32_add(r, p, &env->fp_status);
613 }
614 update_fpscr(env, GETPC());
615
616 env->fregs[bank + n + 3] = r;
617 }
618
619 void helper_ftrv(CPUSH4State *env, uint32_t n)
620 {
621 int bank_matrix, bank_vector;
622 int i, j;
623 float32 r[4];
624 float32 p;
625
626 bank_matrix = (env->sr & FPSCR_FR) ? 0 : 16;
627 bank_vector = (env->sr & FPSCR_FR) ? 16 : 0;
628 set_float_exception_flags(0, &env->fp_status);
629 for (i = 0 ; i < 4 ; i++) {
630 r[i] = float32_zero;
631 for (j = 0 ; j < 4 ; j++) {
632 p = float32_mul(env->fregs[bank_matrix + 4 * j + i],
633 env->fregs[bank_vector + j],
634 &env->fp_status);
635 r[i] = float32_add(r[i], p, &env->fp_status);
636 }
637 }
638 update_fpscr(env, GETPC());
639
640 for (i = 0 ; i < 4 ; i++) {
641 env->fregs[bank_vector + i] = r[i];
642 }
643 }