]> git.proxmox.com Git - qemu.git/blob - vl.c
Fix error handling in net_client_init() (Mark McLoughlin)
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/boards.h"
26 #include "hw/usb.h"
27 #include "hw/pcmcia.h"
28 #include "hw/pc.h"
29 #include "hw/audiodev.h"
30 #include "hw/isa.h"
31 #include "hw/baum.h"
32 #include "hw/bt.h"
33 #include "net.h"
34 #include "console.h"
35 #include "sysemu.h"
36 #include "gdbstub.h"
37 #include "qemu-timer.h"
38 #include "qemu-char.h"
39 #include "cache-utils.h"
40 #include "block.h"
41 #include "audio/audio.h"
42 #include "migration.h"
43 #include "kvm.h"
44 #include "balloon.h"
45
46 #include <unistd.h>
47 #include <fcntl.h>
48 #include <signal.h>
49 #include <time.h>
50 #include <errno.h>
51 #include <sys/time.h>
52 #include <zlib.h>
53
54 #ifndef _WIN32
55 #include <pwd.h>
56 #include <sys/times.h>
57 #include <sys/wait.h>
58 #include <termios.h>
59 #include <sys/mman.h>
60 #include <sys/ioctl.h>
61 #include <sys/resource.h>
62 #include <sys/socket.h>
63 #include <netinet/in.h>
64 #include <net/if.h>
65 #if defined(__NetBSD__)
66 #include <net/if_tap.h>
67 #endif
68 #ifdef __linux__
69 #include <linux/if_tun.h>
70 #endif
71 #include <arpa/inet.h>
72 #include <dirent.h>
73 #include <netdb.h>
74 #include <sys/select.h>
75 #ifdef _BSD
76 #include <sys/stat.h>
77 #ifdef __FreeBSD__
78 #include <libutil.h>
79 #else
80 #include <util.h>
81 #endif
82 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
83 #include <freebsd/stdlib.h>
84 #else
85 #ifdef __linux__
86 #include <pty.h>
87 #include <malloc.h>
88 #include <linux/rtc.h>
89
90 /* For the benefit of older linux systems which don't supply it,
91 we use a local copy of hpet.h. */
92 /* #include <linux/hpet.h> */
93 #include "hpet.h"
94
95 #include <linux/ppdev.h>
96 #include <linux/parport.h>
97 #endif
98 #ifdef __sun__
99 #include <sys/stat.h>
100 #include <sys/ethernet.h>
101 #include <sys/sockio.h>
102 #include <netinet/arp.h>
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/ip.h>
106 #include <netinet/ip_icmp.h> // must come after ip.h
107 #include <netinet/udp.h>
108 #include <netinet/tcp.h>
109 #include <net/if.h>
110 #include <syslog.h>
111 #include <stropts.h>
112 #endif
113 #endif
114 #endif
115
116 #include "qemu_socket.h"
117
118 #if defined(CONFIG_SLIRP)
119 #include "libslirp.h"
120 #endif
121
122 #if defined(__OpenBSD__)
123 #include <util.h>
124 #endif
125
126 #if defined(CONFIG_VDE)
127 #include <libvdeplug.h>
128 #endif
129
130 #ifdef _WIN32
131 #include <malloc.h>
132 #include <sys/timeb.h>
133 #include <mmsystem.h>
134 #define getopt_long_only getopt_long
135 #define memalign(align, size) malloc(size)
136 #endif
137
138 #ifdef CONFIG_SDL
139 #ifdef __APPLE__
140 #include <SDL/SDL.h>
141 int qemu_main(int argc, char **argv, char **envp);
142 int main(int argc, char **argv)
143 {
144 qemu_main(argc, argv, NULL);
145 }
146 #undef main
147 #define main qemu_main
148 #endif
149 #endif /* CONFIG_SDL */
150
151 #ifdef CONFIG_COCOA
152 #undef main
153 #define main qemu_main
154 #endif /* CONFIG_COCOA */
155
156 #include "disas.h"
157
158 #include "exec-all.h"
159
160 //#define DEBUG_UNUSED_IOPORT
161 //#define DEBUG_IOPORT
162 //#define DEBUG_NET
163 //#define DEBUG_SLIRP
164
165
166 #ifdef DEBUG_IOPORT
167 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
168 #else
169 # define LOG_IOPORT(...) do { } while (0)
170 #endif
171
172 #define DEFAULT_RAM_SIZE 128
173
174 /* Max number of USB devices that can be specified on the commandline. */
175 #define MAX_USB_CMDLINE 8
176
177 /* Max number of bluetooth switches on the commandline. */
178 #define MAX_BT_CMDLINE 10
179
180 /* XXX: use a two level table to limit memory usage */
181 #define MAX_IOPORTS 65536
182
183 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
184 const char *bios_name = NULL;
185 static void *ioport_opaque[MAX_IOPORTS];
186 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
187 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
188 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
189 to store the VM snapshots */
190 DriveInfo drives_table[MAX_DRIVES+1];
191 int nb_drives;
192 static int vga_ram_size;
193 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
194 static DisplayState *display_state;
195 int nographic;
196 static int curses;
197 static int sdl;
198 const char* keyboard_layout = NULL;
199 int64_t ticks_per_sec;
200 ram_addr_t ram_size;
201 int nb_nics;
202 NICInfo nd_table[MAX_NICS];
203 int vm_running;
204 static int autostart;
205 static int rtc_utc = 1;
206 static int rtc_date_offset = -1; /* -1 means no change */
207 int cirrus_vga_enabled = 1;
208 int std_vga_enabled = 0;
209 int vmsvga_enabled = 0;
210 #ifdef TARGET_SPARC
211 int graphic_width = 1024;
212 int graphic_height = 768;
213 int graphic_depth = 8;
214 #else
215 int graphic_width = 800;
216 int graphic_height = 600;
217 int graphic_depth = 15;
218 #endif
219 static int full_screen = 0;
220 #ifdef CONFIG_SDL
221 static int no_frame = 0;
222 #endif
223 int no_quit = 0;
224 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
225 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
226 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
227 #ifdef TARGET_I386
228 int win2k_install_hack = 0;
229 int rtc_td_hack = 0;
230 #endif
231 int usb_enabled = 0;
232 int smp_cpus = 1;
233 const char *vnc_display;
234 int acpi_enabled = 1;
235 int no_hpet = 0;
236 int fd_bootchk = 1;
237 int no_reboot = 0;
238 int no_shutdown = 0;
239 int cursor_hide = 1;
240 int graphic_rotate = 0;
241 int daemonize = 0;
242 const char *option_rom[MAX_OPTION_ROMS];
243 int nb_option_roms;
244 int semihosting_enabled = 0;
245 #ifdef TARGET_ARM
246 int old_param = 0;
247 #endif
248 const char *qemu_name;
249 int alt_grab = 0;
250 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
251 unsigned int nb_prom_envs = 0;
252 const char *prom_envs[MAX_PROM_ENVS];
253 #endif
254 int nb_drives_opt;
255 struct drive_opt drives_opt[MAX_DRIVES];
256
257 static CPUState *cur_cpu;
258 static CPUState *next_cpu;
259 static int event_pending = 1;
260 /* Conversion factor from emulated instructions to virtual clock ticks. */
261 static int icount_time_shift;
262 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
263 #define MAX_ICOUNT_SHIFT 10
264 /* Compensate for varying guest execution speed. */
265 static int64_t qemu_icount_bias;
266 static QEMUTimer *icount_rt_timer;
267 static QEMUTimer *icount_vm_timer;
268 static QEMUTimer *nographic_timer;
269
270 uint8_t qemu_uuid[16];
271
272 /***********************************************************/
273 /* x86 ISA bus support */
274
275 target_phys_addr_t isa_mem_base = 0;
276 PicState2 *isa_pic;
277
278 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
279 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
280
281 static uint32_t ioport_read(int index, uint32_t address)
282 {
283 static IOPortReadFunc *default_func[3] = {
284 default_ioport_readb,
285 default_ioport_readw,
286 default_ioport_readl
287 };
288 IOPortReadFunc *func = ioport_read_table[index][address];
289 if (!func)
290 func = default_func[index];
291 return func(ioport_opaque[address], address);
292 }
293
294 static void ioport_write(int index, uint32_t address, uint32_t data)
295 {
296 static IOPortWriteFunc *default_func[3] = {
297 default_ioport_writeb,
298 default_ioport_writew,
299 default_ioport_writel
300 };
301 IOPortWriteFunc *func = ioport_write_table[index][address];
302 if (!func)
303 func = default_func[index];
304 func(ioport_opaque[address], address, data);
305 }
306
307 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
308 {
309 #ifdef DEBUG_UNUSED_IOPORT
310 fprintf(stderr, "unused inb: port=0x%04x\n", address);
311 #endif
312 return 0xff;
313 }
314
315 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
316 {
317 #ifdef DEBUG_UNUSED_IOPORT
318 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
319 #endif
320 }
321
322 /* default is to make two byte accesses */
323 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
324 {
325 uint32_t data;
326 data = ioport_read(0, address);
327 address = (address + 1) & (MAX_IOPORTS - 1);
328 data |= ioport_read(0, address) << 8;
329 return data;
330 }
331
332 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
333 {
334 ioport_write(0, address, data & 0xff);
335 address = (address + 1) & (MAX_IOPORTS - 1);
336 ioport_write(0, address, (data >> 8) & 0xff);
337 }
338
339 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
340 {
341 #ifdef DEBUG_UNUSED_IOPORT
342 fprintf(stderr, "unused inl: port=0x%04x\n", address);
343 #endif
344 return 0xffffffff;
345 }
346
347 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
348 {
349 #ifdef DEBUG_UNUSED_IOPORT
350 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
351 #endif
352 }
353
354 /* size is the word size in byte */
355 int register_ioport_read(int start, int length, int size,
356 IOPortReadFunc *func, void *opaque)
357 {
358 int i, bsize;
359
360 if (size == 1) {
361 bsize = 0;
362 } else if (size == 2) {
363 bsize = 1;
364 } else if (size == 4) {
365 bsize = 2;
366 } else {
367 hw_error("register_ioport_read: invalid size");
368 return -1;
369 }
370 for(i = start; i < start + length; i += size) {
371 ioport_read_table[bsize][i] = func;
372 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
373 hw_error("register_ioport_read: invalid opaque");
374 ioport_opaque[i] = opaque;
375 }
376 return 0;
377 }
378
379 /* size is the word size in byte */
380 int register_ioport_write(int start, int length, int size,
381 IOPortWriteFunc *func, void *opaque)
382 {
383 int i, bsize;
384
385 if (size == 1) {
386 bsize = 0;
387 } else if (size == 2) {
388 bsize = 1;
389 } else if (size == 4) {
390 bsize = 2;
391 } else {
392 hw_error("register_ioport_write: invalid size");
393 return -1;
394 }
395 for(i = start; i < start + length; i += size) {
396 ioport_write_table[bsize][i] = func;
397 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
398 hw_error("register_ioport_write: invalid opaque");
399 ioport_opaque[i] = opaque;
400 }
401 return 0;
402 }
403
404 void isa_unassign_ioport(int start, int length)
405 {
406 int i;
407
408 for(i = start; i < start + length; i++) {
409 ioport_read_table[0][i] = default_ioport_readb;
410 ioport_read_table[1][i] = default_ioport_readw;
411 ioport_read_table[2][i] = default_ioport_readl;
412
413 ioport_write_table[0][i] = default_ioport_writeb;
414 ioport_write_table[1][i] = default_ioport_writew;
415 ioport_write_table[2][i] = default_ioport_writel;
416
417 ioport_opaque[i] = NULL;
418 }
419 }
420
421 /***********************************************************/
422
423 void cpu_outb(CPUState *env, int addr, int val)
424 {
425 LOG_IOPORT("outb: %04x %02x\n", addr, val);
426 ioport_write(0, addr, val);
427 #ifdef USE_KQEMU
428 if (env)
429 env->last_io_time = cpu_get_time_fast();
430 #endif
431 }
432
433 void cpu_outw(CPUState *env, int addr, int val)
434 {
435 LOG_IOPORT("outw: %04x %04x\n", addr, val);
436 ioport_write(1, addr, val);
437 #ifdef USE_KQEMU
438 if (env)
439 env->last_io_time = cpu_get_time_fast();
440 #endif
441 }
442
443 void cpu_outl(CPUState *env, int addr, int val)
444 {
445 LOG_IOPORT("outl: %04x %08x\n", addr, val);
446 ioport_write(2, addr, val);
447 #ifdef USE_KQEMU
448 if (env)
449 env->last_io_time = cpu_get_time_fast();
450 #endif
451 }
452
453 int cpu_inb(CPUState *env, int addr)
454 {
455 int val;
456 val = ioport_read(0, addr);
457 LOG_IOPORT("inb : %04x %02x\n", addr, val);
458 #ifdef USE_KQEMU
459 if (env)
460 env->last_io_time = cpu_get_time_fast();
461 #endif
462 return val;
463 }
464
465 int cpu_inw(CPUState *env, int addr)
466 {
467 int val;
468 val = ioport_read(1, addr);
469 LOG_IOPORT("inw : %04x %04x\n", addr, val);
470 #ifdef USE_KQEMU
471 if (env)
472 env->last_io_time = cpu_get_time_fast();
473 #endif
474 return val;
475 }
476
477 int cpu_inl(CPUState *env, int addr)
478 {
479 int val;
480 val = ioport_read(2, addr);
481 LOG_IOPORT("inl : %04x %08x\n", addr, val);
482 #ifdef USE_KQEMU
483 if (env)
484 env->last_io_time = cpu_get_time_fast();
485 #endif
486 return val;
487 }
488
489 /***********************************************************/
490 void hw_error(const char *fmt, ...)
491 {
492 va_list ap;
493 CPUState *env;
494
495 va_start(ap, fmt);
496 fprintf(stderr, "qemu: hardware error: ");
497 vfprintf(stderr, fmt, ap);
498 fprintf(stderr, "\n");
499 for(env = first_cpu; env != NULL; env = env->next_cpu) {
500 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
501 #ifdef TARGET_I386
502 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
503 #else
504 cpu_dump_state(env, stderr, fprintf, 0);
505 #endif
506 }
507 va_end(ap);
508 abort();
509 }
510
511 /***************/
512 /* ballooning */
513
514 static QEMUBalloonEvent *qemu_balloon_event;
515 void *qemu_balloon_event_opaque;
516
517 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
518 {
519 qemu_balloon_event = func;
520 qemu_balloon_event_opaque = opaque;
521 }
522
523 void qemu_balloon(ram_addr_t target)
524 {
525 if (qemu_balloon_event)
526 qemu_balloon_event(qemu_balloon_event_opaque, target);
527 }
528
529 ram_addr_t qemu_balloon_status(void)
530 {
531 if (qemu_balloon_event)
532 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
533 return 0;
534 }
535
536 /***********************************************************/
537 /* keyboard/mouse */
538
539 static QEMUPutKBDEvent *qemu_put_kbd_event;
540 static void *qemu_put_kbd_event_opaque;
541 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
542 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
543
544 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
545 {
546 qemu_put_kbd_event_opaque = opaque;
547 qemu_put_kbd_event = func;
548 }
549
550 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
551 void *opaque, int absolute,
552 const char *name)
553 {
554 QEMUPutMouseEntry *s, *cursor;
555
556 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
557
558 s->qemu_put_mouse_event = func;
559 s->qemu_put_mouse_event_opaque = opaque;
560 s->qemu_put_mouse_event_absolute = absolute;
561 s->qemu_put_mouse_event_name = qemu_strdup(name);
562 s->next = NULL;
563
564 if (!qemu_put_mouse_event_head) {
565 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
566 return s;
567 }
568
569 cursor = qemu_put_mouse_event_head;
570 while (cursor->next != NULL)
571 cursor = cursor->next;
572
573 cursor->next = s;
574 qemu_put_mouse_event_current = s;
575
576 return s;
577 }
578
579 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
580 {
581 QEMUPutMouseEntry *prev = NULL, *cursor;
582
583 if (!qemu_put_mouse_event_head || entry == NULL)
584 return;
585
586 cursor = qemu_put_mouse_event_head;
587 while (cursor != NULL && cursor != entry) {
588 prev = cursor;
589 cursor = cursor->next;
590 }
591
592 if (cursor == NULL) // does not exist or list empty
593 return;
594 else if (prev == NULL) { // entry is head
595 qemu_put_mouse_event_head = cursor->next;
596 if (qemu_put_mouse_event_current == entry)
597 qemu_put_mouse_event_current = cursor->next;
598 qemu_free(entry->qemu_put_mouse_event_name);
599 qemu_free(entry);
600 return;
601 }
602
603 prev->next = entry->next;
604
605 if (qemu_put_mouse_event_current == entry)
606 qemu_put_mouse_event_current = prev;
607
608 qemu_free(entry->qemu_put_mouse_event_name);
609 qemu_free(entry);
610 }
611
612 void kbd_put_keycode(int keycode)
613 {
614 if (qemu_put_kbd_event) {
615 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
616 }
617 }
618
619 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
620 {
621 QEMUPutMouseEvent *mouse_event;
622 void *mouse_event_opaque;
623 int width;
624
625 if (!qemu_put_mouse_event_current) {
626 return;
627 }
628
629 mouse_event =
630 qemu_put_mouse_event_current->qemu_put_mouse_event;
631 mouse_event_opaque =
632 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
633
634 if (mouse_event) {
635 if (graphic_rotate) {
636 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
637 width = 0x7fff;
638 else
639 width = graphic_width - 1;
640 mouse_event(mouse_event_opaque,
641 width - dy, dx, dz, buttons_state);
642 } else
643 mouse_event(mouse_event_opaque,
644 dx, dy, dz, buttons_state);
645 }
646 }
647
648 int kbd_mouse_is_absolute(void)
649 {
650 if (!qemu_put_mouse_event_current)
651 return 0;
652
653 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
654 }
655
656 void do_info_mice(void)
657 {
658 QEMUPutMouseEntry *cursor;
659 int index = 0;
660
661 if (!qemu_put_mouse_event_head) {
662 term_printf("No mouse devices connected\n");
663 return;
664 }
665
666 term_printf("Mouse devices available:\n");
667 cursor = qemu_put_mouse_event_head;
668 while (cursor != NULL) {
669 term_printf("%c Mouse #%d: %s\n",
670 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
671 index, cursor->qemu_put_mouse_event_name);
672 index++;
673 cursor = cursor->next;
674 }
675 }
676
677 void do_mouse_set(int index)
678 {
679 QEMUPutMouseEntry *cursor;
680 int i = 0;
681
682 if (!qemu_put_mouse_event_head) {
683 term_printf("No mouse devices connected\n");
684 return;
685 }
686
687 cursor = qemu_put_mouse_event_head;
688 while (cursor != NULL && index != i) {
689 i++;
690 cursor = cursor->next;
691 }
692
693 if (cursor != NULL)
694 qemu_put_mouse_event_current = cursor;
695 else
696 term_printf("Mouse at given index not found\n");
697 }
698
699 /* compute with 96 bit intermediate result: (a*b)/c */
700 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
701 {
702 union {
703 uint64_t ll;
704 struct {
705 #ifdef WORDS_BIGENDIAN
706 uint32_t high, low;
707 #else
708 uint32_t low, high;
709 #endif
710 } l;
711 } u, res;
712 uint64_t rl, rh;
713
714 u.ll = a;
715 rl = (uint64_t)u.l.low * (uint64_t)b;
716 rh = (uint64_t)u.l.high * (uint64_t)b;
717 rh += (rl >> 32);
718 res.l.high = rh / c;
719 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
720 return res.ll;
721 }
722
723 /***********************************************************/
724 /* real time host monotonic timer */
725
726 #define QEMU_TIMER_BASE 1000000000LL
727
728 #ifdef WIN32
729
730 static int64_t clock_freq;
731
732 static void init_get_clock(void)
733 {
734 LARGE_INTEGER freq;
735 int ret;
736 ret = QueryPerformanceFrequency(&freq);
737 if (ret == 0) {
738 fprintf(stderr, "Could not calibrate ticks\n");
739 exit(1);
740 }
741 clock_freq = freq.QuadPart;
742 }
743
744 static int64_t get_clock(void)
745 {
746 LARGE_INTEGER ti;
747 QueryPerformanceCounter(&ti);
748 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
749 }
750
751 #else
752
753 static int use_rt_clock;
754
755 static void init_get_clock(void)
756 {
757 use_rt_clock = 0;
758 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
759 {
760 struct timespec ts;
761 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
762 use_rt_clock = 1;
763 }
764 }
765 #endif
766 }
767
768 static int64_t get_clock(void)
769 {
770 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
771 if (use_rt_clock) {
772 struct timespec ts;
773 clock_gettime(CLOCK_MONOTONIC, &ts);
774 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
775 } else
776 #endif
777 {
778 /* XXX: using gettimeofday leads to problems if the date
779 changes, so it should be avoided. */
780 struct timeval tv;
781 gettimeofday(&tv, NULL);
782 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
783 }
784 }
785 #endif
786
787 /* Return the virtual CPU time, based on the instruction counter. */
788 static int64_t cpu_get_icount(void)
789 {
790 int64_t icount;
791 CPUState *env = cpu_single_env;;
792 icount = qemu_icount;
793 if (env) {
794 if (!can_do_io(env))
795 fprintf(stderr, "Bad clock read\n");
796 icount -= (env->icount_decr.u16.low + env->icount_extra);
797 }
798 return qemu_icount_bias + (icount << icount_time_shift);
799 }
800
801 /***********************************************************/
802 /* guest cycle counter */
803
804 static int64_t cpu_ticks_prev;
805 static int64_t cpu_ticks_offset;
806 static int64_t cpu_clock_offset;
807 static int cpu_ticks_enabled;
808
809 /* return the host CPU cycle counter and handle stop/restart */
810 int64_t cpu_get_ticks(void)
811 {
812 if (use_icount) {
813 return cpu_get_icount();
814 }
815 if (!cpu_ticks_enabled) {
816 return cpu_ticks_offset;
817 } else {
818 int64_t ticks;
819 ticks = cpu_get_real_ticks();
820 if (cpu_ticks_prev > ticks) {
821 /* Note: non increasing ticks may happen if the host uses
822 software suspend */
823 cpu_ticks_offset += cpu_ticks_prev - ticks;
824 }
825 cpu_ticks_prev = ticks;
826 return ticks + cpu_ticks_offset;
827 }
828 }
829
830 /* return the host CPU monotonic timer and handle stop/restart */
831 static int64_t cpu_get_clock(void)
832 {
833 int64_t ti;
834 if (!cpu_ticks_enabled) {
835 return cpu_clock_offset;
836 } else {
837 ti = get_clock();
838 return ti + cpu_clock_offset;
839 }
840 }
841
842 /* enable cpu_get_ticks() */
843 void cpu_enable_ticks(void)
844 {
845 if (!cpu_ticks_enabled) {
846 cpu_ticks_offset -= cpu_get_real_ticks();
847 cpu_clock_offset -= get_clock();
848 cpu_ticks_enabled = 1;
849 }
850 }
851
852 /* disable cpu_get_ticks() : the clock is stopped. You must not call
853 cpu_get_ticks() after that. */
854 void cpu_disable_ticks(void)
855 {
856 if (cpu_ticks_enabled) {
857 cpu_ticks_offset = cpu_get_ticks();
858 cpu_clock_offset = cpu_get_clock();
859 cpu_ticks_enabled = 0;
860 }
861 }
862
863 /***********************************************************/
864 /* timers */
865
866 #define QEMU_TIMER_REALTIME 0
867 #define QEMU_TIMER_VIRTUAL 1
868
869 struct QEMUClock {
870 int type;
871 /* XXX: add frequency */
872 };
873
874 struct QEMUTimer {
875 QEMUClock *clock;
876 int64_t expire_time;
877 QEMUTimerCB *cb;
878 void *opaque;
879 struct QEMUTimer *next;
880 };
881
882 struct qemu_alarm_timer {
883 char const *name;
884 unsigned int flags;
885
886 int (*start)(struct qemu_alarm_timer *t);
887 void (*stop)(struct qemu_alarm_timer *t);
888 void (*rearm)(struct qemu_alarm_timer *t);
889 void *priv;
890 };
891
892 #define ALARM_FLAG_DYNTICKS 0x1
893 #define ALARM_FLAG_EXPIRED 0x2
894
895 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
896 {
897 return t->flags & ALARM_FLAG_DYNTICKS;
898 }
899
900 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
901 {
902 if (!alarm_has_dynticks(t))
903 return;
904
905 t->rearm(t);
906 }
907
908 /* TODO: MIN_TIMER_REARM_US should be optimized */
909 #define MIN_TIMER_REARM_US 250
910
911 static struct qemu_alarm_timer *alarm_timer;
912 #ifndef _WIN32
913 static int alarm_timer_rfd, alarm_timer_wfd;
914 #endif
915
916 #ifdef _WIN32
917
918 struct qemu_alarm_win32 {
919 MMRESULT timerId;
920 HANDLE host_alarm;
921 unsigned int period;
922 } alarm_win32_data = {0, NULL, -1};
923
924 static int win32_start_timer(struct qemu_alarm_timer *t);
925 static void win32_stop_timer(struct qemu_alarm_timer *t);
926 static void win32_rearm_timer(struct qemu_alarm_timer *t);
927
928 #else
929
930 static int unix_start_timer(struct qemu_alarm_timer *t);
931 static void unix_stop_timer(struct qemu_alarm_timer *t);
932
933 #ifdef __linux__
934
935 static int dynticks_start_timer(struct qemu_alarm_timer *t);
936 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
937 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
938
939 static int hpet_start_timer(struct qemu_alarm_timer *t);
940 static void hpet_stop_timer(struct qemu_alarm_timer *t);
941
942 static int rtc_start_timer(struct qemu_alarm_timer *t);
943 static void rtc_stop_timer(struct qemu_alarm_timer *t);
944
945 #endif /* __linux__ */
946
947 #endif /* _WIN32 */
948
949 /* Correlation between real and virtual time is always going to be
950 fairly approximate, so ignore small variation.
951 When the guest is idle real and virtual time will be aligned in
952 the IO wait loop. */
953 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
954
955 static void icount_adjust(void)
956 {
957 int64_t cur_time;
958 int64_t cur_icount;
959 int64_t delta;
960 static int64_t last_delta;
961 /* If the VM is not running, then do nothing. */
962 if (!vm_running)
963 return;
964
965 cur_time = cpu_get_clock();
966 cur_icount = qemu_get_clock(vm_clock);
967 delta = cur_icount - cur_time;
968 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
969 if (delta > 0
970 && last_delta + ICOUNT_WOBBLE < delta * 2
971 && icount_time_shift > 0) {
972 /* The guest is getting too far ahead. Slow time down. */
973 icount_time_shift--;
974 }
975 if (delta < 0
976 && last_delta - ICOUNT_WOBBLE > delta * 2
977 && icount_time_shift < MAX_ICOUNT_SHIFT) {
978 /* The guest is getting too far behind. Speed time up. */
979 icount_time_shift++;
980 }
981 last_delta = delta;
982 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
983 }
984
985 static void icount_adjust_rt(void * opaque)
986 {
987 qemu_mod_timer(icount_rt_timer,
988 qemu_get_clock(rt_clock) + 1000);
989 icount_adjust();
990 }
991
992 static void icount_adjust_vm(void * opaque)
993 {
994 qemu_mod_timer(icount_vm_timer,
995 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
996 icount_adjust();
997 }
998
999 static void init_icount_adjust(void)
1000 {
1001 /* Have both realtime and virtual time triggers for speed adjustment.
1002 The realtime trigger catches emulated time passing too slowly,
1003 the virtual time trigger catches emulated time passing too fast.
1004 Realtime triggers occur even when idle, so use them less frequently
1005 than VM triggers. */
1006 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1007 qemu_mod_timer(icount_rt_timer,
1008 qemu_get_clock(rt_clock) + 1000);
1009 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1010 qemu_mod_timer(icount_vm_timer,
1011 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1012 }
1013
1014 static struct qemu_alarm_timer alarm_timers[] = {
1015 #ifndef _WIN32
1016 #ifdef __linux__
1017 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1018 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1019 /* HPET - if available - is preferred */
1020 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1021 /* ...otherwise try RTC */
1022 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1023 #endif
1024 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1025 #else
1026 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1027 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1028 {"win32", 0, win32_start_timer,
1029 win32_stop_timer, NULL, &alarm_win32_data},
1030 #endif
1031 {NULL, }
1032 };
1033
1034 static void show_available_alarms(void)
1035 {
1036 int i;
1037
1038 printf("Available alarm timers, in order of precedence:\n");
1039 for (i = 0; alarm_timers[i].name; i++)
1040 printf("%s\n", alarm_timers[i].name);
1041 }
1042
1043 static void configure_alarms(char const *opt)
1044 {
1045 int i;
1046 int cur = 0;
1047 int count = ARRAY_SIZE(alarm_timers) - 1;
1048 char *arg;
1049 char *name;
1050 struct qemu_alarm_timer tmp;
1051
1052 if (!strcmp(opt, "?")) {
1053 show_available_alarms();
1054 exit(0);
1055 }
1056
1057 arg = strdup(opt);
1058
1059 /* Reorder the array */
1060 name = strtok(arg, ",");
1061 while (name) {
1062 for (i = 0; i < count && alarm_timers[i].name; i++) {
1063 if (!strcmp(alarm_timers[i].name, name))
1064 break;
1065 }
1066
1067 if (i == count) {
1068 fprintf(stderr, "Unknown clock %s\n", name);
1069 goto next;
1070 }
1071
1072 if (i < cur)
1073 /* Ignore */
1074 goto next;
1075
1076 /* Swap */
1077 tmp = alarm_timers[i];
1078 alarm_timers[i] = alarm_timers[cur];
1079 alarm_timers[cur] = tmp;
1080
1081 cur++;
1082 next:
1083 name = strtok(NULL, ",");
1084 }
1085
1086 free(arg);
1087
1088 if (cur) {
1089 /* Disable remaining timers */
1090 for (i = cur; i < count; i++)
1091 alarm_timers[i].name = NULL;
1092 } else {
1093 show_available_alarms();
1094 exit(1);
1095 }
1096 }
1097
1098 QEMUClock *rt_clock;
1099 QEMUClock *vm_clock;
1100
1101 static QEMUTimer *active_timers[2];
1102
1103 static QEMUClock *qemu_new_clock(int type)
1104 {
1105 QEMUClock *clock;
1106 clock = qemu_mallocz(sizeof(QEMUClock));
1107 clock->type = type;
1108 return clock;
1109 }
1110
1111 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1112 {
1113 QEMUTimer *ts;
1114
1115 ts = qemu_mallocz(sizeof(QEMUTimer));
1116 ts->clock = clock;
1117 ts->cb = cb;
1118 ts->opaque = opaque;
1119 return ts;
1120 }
1121
1122 void qemu_free_timer(QEMUTimer *ts)
1123 {
1124 qemu_free(ts);
1125 }
1126
1127 /* stop a timer, but do not dealloc it */
1128 void qemu_del_timer(QEMUTimer *ts)
1129 {
1130 QEMUTimer **pt, *t;
1131
1132 /* NOTE: this code must be signal safe because
1133 qemu_timer_expired() can be called from a signal. */
1134 pt = &active_timers[ts->clock->type];
1135 for(;;) {
1136 t = *pt;
1137 if (!t)
1138 break;
1139 if (t == ts) {
1140 *pt = t->next;
1141 break;
1142 }
1143 pt = &t->next;
1144 }
1145 }
1146
1147 /* modify the current timer so that it will be fired when current_time
1148 >= expire_time. The corresponding callback will be called. */
1149 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1150 {
1151 QEMUTimer **pt, *t;
1152
1153 qemu_del_timer(ts);
1154
1155 /* add the timer in the sorted list */
1156 /* NOTE: this code must be signal safe because
1157 qemu_timer_expired() can be called from a signal. */
1158 pt = &active_timers[ts->clock->type];
1159 for(;;) {
1160 t = *pt;
1161 if (!t)
1162 break;
1163 if (t->expire_time > expire_time)
1164 break;
1165 pt = &t->next;
1166 }
1167 ts->expire_time = expire_time;
1168 ts->next = *pt;
1169 *pt = ts;
1170
1171 /* Rearm if necessary */
1172 if (pt == &active_timers[ts->clock->type]) {
1173 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1174 qemu_rearm_alarm_timer(alarm_timer);
1175 }
1176 /* Interrupt execution to force deadline recalculation. */
1177 if (use_icount && cpu_single_env) {
1178 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
1179 }
1180 }
1181 }
1182
1183 int qemu_timer_pending(QEMUTimer *ts)
1184 {
1185 QEMUTimer *t;
1186 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1187 if (t == ts)
1188 return 1;
1189 }
1190 return 0;
1191 }
1192
1193 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1194 {
1195 if (!timer_head)
1196 return 0;
1197 return (timer_head->expire_time <= current_time);
1198 }
1199
1200 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1201 {
1202 QEMUTimer *ts;
1203
1204 for(;;) {
1205 ts = *ptimer_head;
1206 if (!ts || ts->expire_time > current_time)
1207 break;
1208 /* remove timer from the list before calling the callback */
1209 *ptimer_head = ts->next;
1210 ts->next = NULL;
1211
1212 /* run the callback (the timer list can be modified) */
1213 ts->cb(ts->opaque);
1214 }
1215 }
1216
1217 int64_t qemu_get_clock(QEMUClock *clock)
1218 {
1219 switch(clock->type) {
1220 case QEMU_TIMER_REALTIME:
1221 return get_clock() / 1000000;
1222 default:
1223 case QEMU_TIMER_VIRTUAL:
1224 if (use_icount) {
1225 return cpu_get_icount();
1226 } else {
1227 return cpu_get_clock();
1228 }
1229 }
1230 }
1231
1232 static void init_timers(void)
1233 {
1234 init_get_clock();
1235 ticks_per_sec = QEMU_TIMER_BASE;
1236 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1237 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1238 }
1239
1240 /* save a timer */
1241 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1242 {
1243 uint64_t expire_time;
1244
1245 if (qemu_timer_pending(ts)) {
1246 expire_time = ts->expire_time;
1247 } else {
1248 expire_time = -1;
1249 }
1250 qemu_put_be64(f, expire_time);
1251 }
1252
1253 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1254 {
1255 uint64_t expire_time;
1256
1257 expire_time = qemu_get_be64(f);
1258 if (expire_time != -1) {
1259 qemu_mod_timer(ts, expire_time);
1260 } else {
1261 qemu_del_timer(ts);
1262 }
1263 }
1264
1265 static void timer_save(QEMUFile *f, void *opaque)
1266 {
1267 if (cpu_ticks_enabled) {
1268 hw_error("cannot save state if virtual timers are running");
1269 }
1270 qemu_put_be64(f, cpu_ticks_offset);
1271 qemu_put_be64(f, ticks_per_sec);
1272 qemu_put_be64(f, cpu_clock_offset);
1273 }
1274
1275 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1276 {
1277 if (version_id != 1 && version_id != 2)
1278 return -EINVAL;
1279 if (cpu_ticks_enabled) {
1280 return -EINVAL;
1281 }
1282 cpu_ticks_offset=qemu_get_be64(f);
1283 ticks_per_sec=qemu_get_be64(f);
1284 if (version_id == 2) {
1285 cpu_clock_offset=qemu_get_be64(f);
1286 }
1287 return 0;
1288 }
1289
1290 #ifdef _WIN32
1291 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1292 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1293 #else
1294 static void host_alarm_handler(int host_signum)
1295 #endif
1296 {
1297 #if 0
1298 #define DISP_FREQ 1000
1299 {
1300 static int64_t delta_min = INT64_MAX;
1301 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1302 static int count;
1303 ti = qemu_get_clock(vm_clock);
1304 if (last_clock != 0) {
1305 delta = ti - last_clock;
1306 if (delta < delta_min)
1307 delta_min = delta;
1308 if (delta > delta_max)
1309 delta_max = delta;
1310 delta_cum += delta;
1311 if (++count == DISP_FREQ) {
1312 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1313 muldiv64(delta_min, 1000000, ticks_per_sec),
1314 muldiv64(delta_max, 1000000, ticks_per_sec),
1315 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1316 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1317 count = 0;
1318 delta_min = INT64_MAX;
1319 delta_max = 0;
1320 delta_cum = 0;
1321 }
1322 }
1323 last_clock = ti;
1324 }
1325 #endif
1326 if (alarm_has_dynticks(alarm_timer) ||
1327 (!use_icount &&
1328 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1329 qemu_get_clock(vm_clock))) ||
1330 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1331 qemu_get_clock(rt_clock))) {
1332 CPUState *env = next_cpu;
1333
1334 #ifdef _WIN32
1335 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1336 SetEvent(data->host_alarm);
1337 #else
1338 static const char byte = 0;
1339 write(alarm_timer_wfd, &byte, sizeof(byte));
1340 #endif
1341 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1342
1343 if (env) {
1344 /* stop the currently executing cpu because a timer occured */
1345 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1346 #ifdef USE_KQEMU
1347 if (env->kqemu_enabled) {
1348 kqemu_cpu_interrupt(env);
1349 }
1350 #endif
1351 }
1352 event_pending = 1;
1353 }
1354 }
1355
1356 static int64_t qemu_next_deadline(void)
1357 {
1358 int64_t delta;
1359
1360 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1361 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1362 qemu_get_clock(vm_clock);
1363 } else {
1364 /* To avoid problems with overflow limit this to 2^32. */
1365 delta = INT32_MAX;
1366 }
1367
1368 if (delta < 0)
1369 delta = 0;
1370
1371 return delta;
1372 }
1373
1374 #if defined(__linux__) || defined(_WIN32)
1375 static uint64_t qemu_next_deadline_dyntick(void)
1376 {
1377 int64_t delta;
1378 int64_t rtdelta;
1379
1380 if (use_icount)
1381 delta = INT32_MAX;
1382 else
1383 delta = (qemu_next_deadline() + 999) / 1000;
1384
1385 if (active_timers[QEMU_TIMER_REALTIME]) {
1386 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1387 qemu_get_clock(rt_clock))*1000;
1388 if (rtdelta < delta)
1389 delta = rtdelta;
1390 }
1391
1392 if (delta < MIN_TIMER_REARM_US)
1393 delta = MIN_TIMER_REARM_US;
1394
1395 return delta;
1396 }
1397 #endif
1398
1399 #ifndef _WIN32
1400
1401 /* Sets a specific flag */
1402 static int fcntl_setfl(int fd, int flag)
1403 {
1404 int flags;
1405
1406 flags = fcntl(fd, F_GETFL);
1407 if (flags == -1)
1408 return -errno;
1409
1410 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1411 return -errno;
1412
1413 return 0;
1414 }
1415
1416 #if defined(__linux__)
1417
1418 #define RTC_FREQ 1024
1419
1420 static void enable_sigio_timer(int fd)
1421 {
1422 struct sigaction act;
1423
1424 /* timer signal */
1425 sigfillset(&act.sa_mask);
1426 act.sa_flags = 0;
1427 act.sa_handler = host_alarm_handler;
1428
1429 sigaction(SIGIO, &act, NULL);
1430 fcntl_setfl(fd, O_ASYNC);
1431 fcntl(fd, F_SETOWN, getpid());
1432 }
1433
1434 static int hpet_start_timer(struct qemu_alarm_timer *t)
1435 {
1436 struct hpet_info info;
1437 int r, fd;
1438
1439 fd = open("/dev/hpet", O_RDONLY);
1440 if (fd < 0)
1441 return -1;
1442
1443 /* Set frequency */
1444 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1445 if (r < 0) {
1446 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1447 "error, but for better emulation accuracy type:\n"
1448 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1449 goto fail;
1450 }
1451
1452 /* Check capabilities */
1453 r = ioctl(fd, HPET_INFO, &info);
1454 if (r < 0)
1455 goto fail;
1456
1457 /* Enable periodic mode */
1458 r = ioctl(fd, HPET_EPI, 0);
1459 if (info.hi_flags && (r < 0))
1460 goto fail;
1461
1462 /* Enable interrupt */
1463 r = ioctl(fd, HPET_IE_ON, 0);
1464 if (r < 0)
1465 goto fail;
1466
1467 enable_sigio_timer(fd);
1468 t->priv = (void *)(long)fd;
1469
1470 return 0;
1471 fail:
1472 close(fd);
1473 return -1;
1474 }
1475
1476 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1477 {
1478 int fd = (long)t->priv;
1479
1480 close(fd);
1481 }
1482
1483 static int rtc_start_timer(struct qemu_alarm_timer *t)
1484 {
1485 int rtc_fd;
1486 unsigned long current_rtc_freq = 0;
1487
1488 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1489 if (rtc_fd < 0)
1490 return -1;
1491 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1492 if (current_rtc_freq != RTC_FREQ &&
1493 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1494 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1495 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1496 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1497 goto fail;
1498 }
1499 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1500 fail:
1501 close(rtc_fd);
1502 return -1;
1503 }
1504
1505 enable_sigio_timer(rtc_fd);
1506
1507 t->priv = (void *)(long)rtc_fd;
1508
1509 return 0;
1510 }
1511
1512 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1513 {
1514 int rtc_fd = (long)t->priv;
1515
1516 close(rtc_fd);
1517 }
1518
1519 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1520 {
1521 struct sigevent ev;
1522 timer_t host_timer;
1523 struct sigaction act;
1524
1525 sigfillset(&act.sa_mask);
1526 act.sa_flags = 0;
1527 act.sa_handler = host_alarm_handler;
1528
1529 sigaction(SIGALRM, &act, NULL);
1530
1531 ev.sigev_value.sival_int = 0;
1532 ev.sigev_notify = SIGEV_SIGNAL;
1533 ev.sigev_signo = SIGALRM;
1534
1535 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1536 perror("timer_create");
1537
1538 /* disable dynticks */
1539 fprintf(stderr, "Dynamic Ticks disabled\n");
1540
1541 return -1;
1542 }
1543
1544 t->priv = (void *)(long)host_timer;
1545
1546 return 0;
1547 }
1548
1549 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1550 {
1551 timer_t host_timer = (timer_t)(long)t->priv;
1552
1553 timer_delete(host_timer);
1554 }
1555
1556 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1557 {
1558 timer_t host_timer = (timer_t)(long)t->priv;
1559 struct itimerspec timeout;
1560 int64_t nearest_delta_us = INT64_MAX;
1561 int64_t current_us;
1562
1563 if (!active_timers[QEMU_TIMER_REALTIME] &&
1564 !active_timers[QEMU_TIMER_VIRTUAL])
1565 return;
1566
1567 nearest_delta_us = qemu_next_deadline_dyntick();
1568
1569 /* check whether a timer is already running */
1570 if (timer_gettime(host_timer, &timeout)) {
1571 perror("gettime");
1572 fprintf(stderr, "Internal timer error: aborting\n");
1573 exit(1);
1574 }
1575 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1576 if (current_us && current_us <= nearest_delta_us)
1577 return;
1578
1579 timeout.it_interval.tv_sec = 0;
1580 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1581 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1582 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1583 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1584 perror("settime");
1585 fprintf(stderr, "Internal timer error: aborting\n");
1586 exit(1);
1587 }
1588 }
1589
1590 #endif /* defined(__linux__) */
1591
1592 static int unix_start_timer(struct qemu_alarm_timer *t)
1593 {
1594 struct sigaction act;
1595 struct itimerval itv;
1596 int err;
1597
1598 /* timer signal */
1599 sigfillset(&act.sa_mask);
1600 act.sa_flags = 0;
1601 act.sa_handler = host_alarm_handler;
1602
1603 sigaction(SIGALRM, &act, NULL);
1604
1605 itv.it_interval.tv_sec = 0;
1606 /* for i386 kernel 2.6 to get 1 ms */
1607 itv.it_interval.tv_usec = 999;
1608 itv.it_value.tv_sec = 0;
1609 itv.it_value.tv_usec = 10 * 1000;
1610
1611 err = setitimer(ITIMER_REAL, &itv, NULL);
1612 if (err)
1613 return -1;
1614
1615 return 0;
1616 }
1617
1618 static void unix_stop_timer(struct qemu_alarm_timer *t)
1619 {
1620 struct itimerval itv;
1621
1622 memset(&itv, 0, sizeof(itv));
1623 setitimer(ITIMER_REAL, &itv, NULL);
1624 }
1625
1626 #endif /* !defined(_WIN32) */
1627
1628 static void try_to_rearm_timer(void *opaque)
1629 {
1630 struct qemu_alarm_timer *t = opaque;
1631 #ifndef _WIN32
1632 ssize_t len;
1633
1634 /* Drain the notify pipe */
1635 do {
1636 char buffer[512];
1637 len = read(alarm_timer_rfd, buffer, sizeof(buffer));
1638 } while ((len == -1 && errno == EINTR) || len > 0);
1639 #endif
1640
1641 if (t->flags & ALARM_FLAG_EXPIRED) {
1642 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
1643 qemu_rearm_alarm_timer(alarm_timer);
1644 }
1645 }
1646
1647 #ifdef _WIN32
1648
1649 static int win32_start_timer(struct qemu_alarm_timer *t)
1650 {
1651 TIMECAPS tc;
1652 struct qemu_alarm_win32 *data = t->priv;
1653 UINT flags;
1654
1655 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1656 if (!data->host_alarm) {
1657 perror("Failed CreateEvent");
1658 return -1;
1659 }
1660
1661 memset(&tc, 0, sizeof(tc));
1662 timeGetDevCaps(&tc, sizeof(tc));
1663
1664 if (data->period < tc.wPeriodMin)
1665 data->period = tc.wPeriodMin;
1666
1667 timeBeginPeriod(data->period);
1668
1669 flags = TIME_CALLBACK_FUNCTION;
1670 if (alarm_has_dynticks(t))
1671 flags |= TIME_ONESHOT;
1672 else
1673 flags |= TIME_PERIODIC;
1674
1675 data->timerId = timeSetEvent(1, // interval (ms)
1676 data->period, // resolution
1677 host_alarm_handler, // function
1678 (DWORD)t, // parameter
1679 flags);
1680
1681 if (!data->timerId) {
1682 perror("Failed to initialize win32 alarm timer");
1683
1684 timeEndPeriod(data->period);
1685 CloseHandle(data->host_alarm);
1686 return -1;
1687 }
1688
1689 qemu_add_wait_object(data->host_alarm, try_to_rearm_timer, t);
1690
1691 return 0;
1692 }
1693
1694 static void win32_stop_timer(struct qemu_alarm_timer *t)
1695 {
1696 struct qemu_alarm_win32 *data = t->priv;
1697
1698 timeKillEvent(data->timerId);
1699 timeEndPeriod(data->period);
1700
1701 CloseHandle(data->host_alarm);
1702 }
1703
1704 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1705 {
1706 struct qemu_alarm_win32 *data = t->priv;
1707 uint64_t nearest_delta_us;
1708
1709 if (!active_timers[QEMU_TIMER_REALTIME] &&
1710 !active_timers[QEMU_TIMER_VIRTUAL])
1711 return;
1712
1713 nearest_delta_us = qemu_next_deadline_dyntick();
1714 nearest_delta_us /= 1000;
1715
1716 timeKillEvent(data->timerId);
1717
1718 data->timerId = timeSetEvent(1,
1719 data->period,
1720 host_alarm_handler,
1721 (DWORD)t,
1722 TIME_ONESHOT | TIME_PERIODIC);
1723
1724 if (!data->timerId) {
1725 perror("Failed to re-arm win32 alarm timer");
1726
1727 timeEndPeriod(data->period);
1728 CloseHandle(data->host_alarm);
1729 exit(1);
1730 }
1731 }
1732
1733 #endif /* _WIN32 */
1734
1735 static int init_timer_alarm(void)
1736 {
1737 struct qemu_alarm_timer *t = NULL;
1738 int i, err = -1;
1739
1740 #ifndef _WIN32
1741 int fds[2];
1742
1743 err = pipe(fds);
1744 if (err == -1)
1745 return -errno;
1746
1747 err = fcntl_setfl(fds[0], O_NONBLOCK);
1748 if (err < 0)
1749 goto fail;
1750
1751 err = fcntl_setfl(fds[1], O_NONBLOCK);
1752 if (err < 0)
1753 goto fail;
1754
1755 alarm_timer_rfd = fds[0];
1756 alarm_timer_wfd = fds[1];
1757 #endif
1758
1759 for (i = 0; alarm_timers[i].name; i++) {
1760 t = &alarm_timers[i];
1761
1762 err = t->start(t);
1763 if (!err)
1764 break;
1765 }
1766
1767 if (err) {
1768 err = -ENOENT;
1769 goto fail;
1770 }
1771
1772 #ifndef _WIN32
1773 qemu_set_fd_handler2(alarm_timer_rfd, NULL,
1774 try_to_rearm_timer, NULL, t);
1775 #endif
1776
1777 alarm_timer = t;
1778
1779 return 0;
1780
1781 fail:
1782 #ifndef _WIN32
1783 close(fds[0]);
1784 close(fds[1]);
1785 #endif
1786 return err;
1787 }
1788
1789 static void quit_timers(void)
1790 {
1791 alarm_timer->stop(alarm_timer);
1792 alarm_timer = NULL;
1793 }
1794
1795 /***********************************************************/
1796 /* host time/date access */
1797 void qemu_get_timedate(struct tm *tm, int offset)
1798 {
1799 time_t ti;
1800 struct tm *ret;
1801
1802 time(&ti);
1803 ti += offset;
1804 if (rtc_date_offset == -1) {
1805 if (rtc_utc)
1806 ret = gmtime(&ti);
1807 else
1808 ret = localtime(&ti);
1809 } else {
1810 ti -= rtc_date_offset;
1811 ret = gmtime(&ti);
1812 }
1813
1814 memcpy(tm, ret, sizeof(struct tm));
1815 }
1816
1817 int qemu_timedate_diff(struct tm *tm)
1818 {
1819 time_t seconds;
1820
1821 if (rtc_date_offset == -1)
1822 if (rtc_utc)
1823 seconds = mktimegm(tm);
1824 else
1825 seconds = mktime(tm);
1826 else
1827 seconds = mktimegm(tm) + rtc_date_offset;
1828
1829 return seconds - time(NULL);
1830 }
1831
1832 #ifdef _WIN32
1833 static void socket_cleanup(void)
1834 {
1835 WSACleanup();
1836 }
1837
1838 static int socket_init(void)
1839 {
1840 WSADATA Data;
1841 int ret, err;
1842
1843 ret = WSAStartup(MAKEWORD(2,2), &Data);
1844 if (ret != 0) {
1845 err = WSAGetLastError();
1846 fprintf(stderr, "WSAStartup: %d\n", err);
1847 return -1;
1848 }
1849 atexit(socket_cleanup);
1850 return 0;
1851 }
1852 #endif
1853
1854 const char *get_opt_name(char *buf, int buf_size, const char *p)
1855 {
1856 char *q;
1857
1858 q = buf;
1859 while (*p != '\0' && *p != '=') {
1860 if (q && (q - buf) < buf_size - 1)
1861 *q++ = *p;
1862 p++;
1863 }
1864 if (q)
1865 *q = '\0';
1866
1867 return p;
1868 }
1869
1870 const char *get_opt_value(char *buf, int buf_size, const char *p)
1871 {
1872 char *q;
1873
1874 q = buf;
1875 while (*p != '\0') {
1876 if (*p == ',') {
1877 if (*(p + 1) != ',')
1878 break;
1879 p++;
1880 }
1881 if (q && (q - buf) < buf_size - 1)
1882 *q++ = *p;
1883 p++;
1884 }
1885 if (q)
1886 *q = '\0';
1887
1888 return p;
1889 }
1890
1891 int get_param_value(char *buf, int buf_size,
1892 const char *tag, const char *str)
1893 {
1894 const char *p;
1895 char option[128];
1896
1897 p = str;
1898 for(;;) {
1899 p = get_opt_name(option, sizeof(option), p);
1900 if (*p != '=')
1901 break;
1902 p++;
1903 if (!strcmp(tag, option)) {
1904 (void)get_opt_value(buf, buf_size, p);
1905 return strlen(buf);
1906 } else {
1907 p = get_opt_value(NULL, 0, p);
1908 }
1909 if (*p != ',')
1910 break;
1911 p++;
1912 }
1913 return 0;
1914 }
1915
1916 int check_params(char *buf, int buf_size,
1917 const char * const *params, const char *str)
1918 {
1919 const char *p;
1920 int i;
1921
1922 p = str;
1923 for(;;) {
1924 p = get_opt_name(buf, buf_size, p);
1925 if (*p != '=')
1926 return -1;
1927 p++;
1928 for(i = 0; params[i] != NULL; i++)
1929 if (!strcmp(params[i], buf))
1930 break;
1931 if (params[i] == NULL)
1932 return -1;
1933 p = get_opt_value(NULL, 0, p);
1934 if (*p != ',')
1935 break;
1936 p++;
1937 }
1938 return 0;
1939 }
1940
1941 /***********************************************************/
1942 /* Bluetooth support */
1943 static int nb_hcis;
1944 static int cur_hci;
1945 static struct HCIInfo *hci_table[MAX_NICS];
1946
1947 static struct bt_vlan_s {
1948 struct bt_scatternet_s net;
1949 int id;
1950 struct bt_vlan_s *next;
1951 } *first_bt_vlan;
1952
1953 /* find or alloc a new bluetooth "VLAN" */
1954 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1955 {
1956 struct bt_vlan_s **pvlan, *vlan;
1957 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1958 if (vlan->id == id)
1959 return &vlan->net;
1960 }
1961 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1962 vlan->id = id;
1963 pvlan = &first_bt_vlan;
1964 while (*pvlan != NULL)
1965 pvlan = &(*pvlan)->next;
1966 *pvlan = vlan;
1967 return &vlan->net;
1968 }
1969
1970 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1971 {
1972 }
1973
1974 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1975 {
1976 return -ENOTSUP;
1977 }
1978
1979 static struct HCIInfo null_hci = {
1980 .cmd_send = null_hci_send,
1981 .sco_send = null_hci_send,
1982 .acl_send = null_hci_send,
1983 .bdaddr_set = null_hci_addr_set,
1984 };
1985
1986 struct HCIInfo *qemu_next_hci(void)
1987 {
1988 if (cur_hci == nb_hcis)
1989 return &null_hci;
1990
1991 return hci_table[cur_hci++];
1992 }
1993
1994 static struct HCIInfo *hci_init(const char *str)
1995 {
1996 char *endp;
1997 struct bt_scatternet_s *vlan = 0;
1998
1999 if (!strcmp(str, "null"))
2000 /* null */
2001 return &null_hci;
2002 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
2003 /* host[:hciN] */
2004 return bt_host_hci(str[4] ? str + 5 : "hci0");
2005 else if (!strncmp(str, "hci", 3)) {
2006 /* hci[,vlan=n] */
2007 if (str[3]) {
2008 if (!strncmp(str + 3, ",vlan=", 6)) {
2009 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
2010 if (*endp)
2011 vlan = 0;
2012 }
2013 } else
2014 vlan = qemu_find_bt_vlan(0);
2015 if (vlan)
2016 return bt_new_hci(vlan);
2017 }
2018
2019 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
2020
2021 return 0;
2022 }
2023
2024 static int bt_hci_parse(const char *str)
2025 {
2026 struct HCIInfo *hci;
2027 bdaddr_t bdaddr;
2028
2029 if (nb_hcis >= MAX_NICS) {
2030 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2031 return -1;
2032 }
2033
2034 hci = hci_init(str);
2035 if (!hci)
2036 return -1;
2037
2038 bdaddr.b[0] = 0x52;
2039 bdaddr.b[1] = 0x54;
2040 bdaddr.b[2] = 0x00;
2041 bdaddr.b[3] = 0x12;
2042 bdaddr.b[4] = 0x34;
2043 bdaddr.b[5] = 0x56 + nb_hcis;
2044 hci->bdaddr_set(hci, bdaddr.b);
2045
2046 hci_table[nb_hcis++] = hci;
2047
2048 return 0;
2049 }
2050
2051 static void bt_vhci_add(int vlan_id)
2052 {
2053 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2054
2055 if (!vlan->slave)
2056 fprintf(stderr, "qemu: warning: adding a VHCI to "
2057 "an empty scatternet %i\n", vlan_id);
2058
2059 bt_vhci_init(bt_new_hci(vlan));
2060 }
2061
2062 static struct bt_device_s *bt_device_add(const char *opt)
2063 {
2064 struct bt_scatternet_s *vlan;
2065 int vlan_id = 0;
2066 char *endp = strstr(opt, ",vlan=");
2067 int len = (endp ? endp - opt : strlen(opt)) + 1;
2068 char devname[10];
2069
2070 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2071
2072 if (endp) {
2073 vlan_id = strtol(endp + 6, &endp, 0);
2074 if (*endp) {
2075 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2076 return 0;
2077 }
2078 }
2079
2080 vlan = qemu_find_bt_vlan(vlan_id);
2081
2082 if (!vlan->slave)
2083 fprintf(stderr, "qemu: warning: adding a slave device to "
2084 "an empty scatternet %i\n", vlan_id);
2085
2086 if (!strcmp(devname, "keyboard"))
2087 return bt_keyboard_init(vlan);
2088
2089 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2090 return 0;
2091 }
2092
2093 static int bt_parse(const char *opt)
2094 {
2095 const char *endp, *p;
2096 int vlan;
2097
2098 if (strstart(opt, "hci", &endp)) {
2099 if (!*endp || *endp == ',') {
2100 if (*endp)
2101 if (!strstart(endp, ",vlan=", 0))
2102 opt = endp + 1;
2103
2104 return bt_hci_parse(opt);
2105 }
2106 } else if (strstart(opt, "vhci", &endp)) {
2107 if (!*endp || *endp == ',') {
2108 if (*endp) {
2109 if (strstart(endp, ",vlan=", &p)) {
2110 vlan = strtol(p, (char **) &endp, 0);
2111 if (*endp) {
2112 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2113 return 1;
2114 }
2115 } else {
2116 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2117 return 1;
2118 }
2119 } else
2120 vlan = 0;
2121
2122 bt_vhci_add(vlan);
2123 return 0;
2124 }
2125 } else if (strstart(opt, "device:", &endp))
2126 return !bt_device_add(endp);
2127
2128 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2129 return 1;
2130 }
2131
2132 /***********************************************************/
2133 /* QEMU Block devices */
2134
2135 #define HD_ALIAS "index=%d,media=disk"
2136 #ifdef TARGET_PPC
2137 #define CDROM_ALIAS "index=1,media=cdrom"
2138 #else
2139 #define CDROM_ALIAS "index=2,media=cdrom"
2140 #endif
2141 #define FD_ALIAS "index=%d,if=floppy"
2142 #define PFLASH_ALIAS "if=pflash"
2143 #define MTD_ALIAS "if=mtd"
2144 #define SD_ALIAS "index=0,if=sd"
2145
2146 static int drive_opt_get_free_idx(void)
2147 {
2148 int index;
2149
2150 for (index = 0; index < MAX_DRIVES; index++)
2151 if (!drives_opt[index].used) {
2152 drives_opt[index].used = 1;
2153 return index;
2154 }
2155
2156 return -1;
2157 }
2158
2159 static int drive_get_free_idx(void)
2160 {
2161 int index;
2162
2163 for (index = 0; index < MAX_DRIVES; index++)
2164 if (!drives_table[index].used) {
2165 drives_table[index].used = 1;
2166 return index;
2167 }
2168
2169 return -1;
2170 }
2171
2172 int drive_add(const char *file, const char *fmt, ...)
2173 {
2174 va_list ap;
2175 int index = drive_opt_get_free_idx();
2176
2177 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2178 fprintf(stderr, "qemu: too many drives\n");
2179 return -1;
2180 }
2181
2182 drives_opt[index].file = file;
2183 va_start(ap, fmt);
2184 vsnprintf(drives_opt[index].opt,
2185 sizeof(drives_opt[0].opt), fmt, ap);
2186 va_end(ap);
2187
2188 nb_drives_opt++;
2189 return index;
2190 }
2191
2192 void drive_remove(int index)
2193 {
2194 drives_opt[index].used = 0;
2195 nb_drives_opt--;
2196 }
2197
2198 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2199 {
2200 int index;
2201
2202 /* seek interface, bus and unit */
2203
2204 for (index = 0; index < MAX_DRIVES; index++)
2205 if (drives_table[index].type == type &&
2206 drives_table[index].bus == bus &&
2207 drives_table[index].unit == unit &&
2208 drives_table[index].used)
2209 return index;
2210
2211 return -1;
2212 }
2213
2214 int drive_get_max_bus(BlockInterfaceType type)
2215 {
2216 int max_bus;
2217 int index;
2218
2219 max_bus = -1;
2220 for (index = 0; index < nb_drives; index++) {
2221 if(drives_table[index].type == type &&
2222 drives_table[index].bus > max_bus)
2223 max_bus = drives_table[index].bus;
2224 }
2225 return max_bus;
2226 }
2227
2228 const char *drive_get_serial(BlockDriverState *bdrv)
2229 {
2230 int index;
2231
2232 for (index = 0; index < nb_drives; index++)
2233 if (drives_table[index].bdrv == bdrv)
2234 return drives_table[index].serial;
2235
2236 return "\0";
2237 }
2238
2239 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2240 {
2241 int index;
2242
2243 for (index = 0; index < nb_drives; index++)
2244 if (drives_table[index].bdrv == bdrv)
2245 return drives_table[index].onerror;
2246
2247 return BLOCK_ERR_STOP_ENOSPC;
2248 }
2249
2250 static void bdrv_format_print(void *opaque, const char *name)
2251 {
2252 fprintf(stderr, " %s", name);
2253 }
2254
2255 void drive_uninit(BlockDriverState *bdrv)
2256 {
2257 int i;
2258
2259 for (i = 0; i < MAX_DRIVES; i++)
2260 if (drives_table[i].bdrv == bdrv) {
2261 drives_table[i].bdrv = NULL;
2262 drives_table[i].used = 0;
2263 drive_remove(drives_table[i].drive_opt_idx);
2264 nb_drives--;
2265 break;
2266 }
2267 }
2268
2269 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2270 {
2271 char buf[128];
2272 char file[1024];
2273 char devname[128];
2274 char serial[21];
2275 const char *mediastr = "";
2276 BlockInterfaceType type;
2277 enum { MEDIA_DISK, MEDIA_CDROM } media;
2278 int bus_id, unit_id;
2279 int cyls, heads, secs, translation;
2280 BlockDriverState *bdrv;
2281 BlockDriver *drv = NULL;
2282 QEMUMachine *machine = opaque;
2283 int max_devs;
2284 int index;
2285 int cache;
2286 int bdrv_flags, onerror;
2287 int drives_table_idx;
2288 char *str = arg->opt;
2289 static const char * const params[] = { "bus", "unit", "if", "index",
2290 "cyls", "heads", "secs", "trans",
2291 "media", "snapshot", "file",
2292 "cache", "format", "serial", "werror",
2293 NULL };
2294
2295 if (check_params(buf, sizeof(buf), params, str) < 0) {
2296 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2297 buf, str);
2298 return -1;
2299 }
2300
2301 file[0] = 0;
2302 cyls = heads = secs = 0;
2303 bus_id = 0;
2304 unit_id = -1;
2305 translation = BIOS_ATA_TRANSLATION_AUTO;
2306 index = -1;
2307 cache = 3;
2308
2309 if (machine->use_scsi) {
2310 type = IF_SCSI;
2311 max_devs = MAX_SCSI_DEVS;
2312 pstrcpy(devname, sizeof(devname), "scsi");
2313 } else {
2314 type = IF_IDE;
2315 max_devs = MAX_IDE_DEVS;
2316 pstrcpy(devname, sizeof(devname), "ide");
2317 }
2318 media = MEDIA_DISK;
2319
2320 /* extract parameters */
2321
2322 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2323 bus_id = strtol(buf, NULL, 0);
2324 if (bus_id < 0) {
2325 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2326 return -1;
2327 }
2328 }
2329
2330 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2331 unit_id = strtol(buf, NULL, 0);
2332 if (unit_id < 0) {
2333 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2334 return -1;
2335 }
2336 }
2337
2338 if (get_param_value(buf, sizeof(buf), "if", str)) {
2339 pstrcpy(devname, sizeof(devname), buf);
2340 if (!strcmp(buf, "ide")) {
2341 type = IF_IDE;
2342 max_devs = MAX_IDE_DEVS;
2343 } else if (!strcmp(buf, "scsi")) {
2344 type = IF_SCSI;
2345 max_devs = MAX_SCSI_DEVS;
2346 } else if (!strcmp(buf, "floppy")) {
2347 type = IF_FLOPPY;
2348 max_devs = 0;
2349 } else if (!strcmp(buf, "pflash")) {
2350 type = IF_PFLASH;
2351 max_devs = 0;
2352 } else if (!strcmp(buf, "mtd")) {
2353 type = IF_MTD;
2354 max_devs = 0;
2355 } else if (!strcmp(buf, "sd")) {
2356 type = IF_SD;
2357 max_devs = 0;
2358 } else if (!strcmp(buf, "virtio")) {
2359 type = IF_VIRTIO;
2360 max_devs = 0;
2361 } else {
2362 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2363 return -1;
2364 }
2365 }
2366
2367 if (get_param_value(buf, sizeof(buf), "index", str)) {
2368 index = strtol(buf, NULL, 0);
2369 if (index < 0) {
2370 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2371 return -1;
2372 }
2373 }
2374
2375 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2376 cyls = strtol(buf, NULL, 0);
2377 }
2378
2379 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2380 heads = strtol(buf, NULL, 0);
2381 }
2382
2383 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2384 secs = strtol(buf, NULL, 0);
2385 }
2386
2387 if (cyls || heads || secs) {
2388 if (cyls < 1 || cyls > 16383) {
2389 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2390 return -1;
2391 }
2392 if (heads < 1 || heads > 16) {
2393 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2394 return -1;
2395 }
2396 if (secs < 1 || secs > 63) {
2397 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2398 return -1;
2399 }
2400 }
2401
2402 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2403 if (!cyls) {
2404 fprintf(stderr,
2405 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2406 str);
2407 return -1;
2408 }
2409 if (!strcmp(buf, "none"))
2410 translation = BIOS_ATA_TRANSLATION_NONE;
2411 else if (!strcmp(buf, "lba"))
2412 translation = BIOS_ATA_TRANSLATION_LBA;
2413 else if (!strcmp(buf, "auto"))
2414 translation = BIOS_ATA_TRANSLATION_AUTO;
2415 else {
2416 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2417 return -1;
2418 }
2419 }
2420
2421 if (get_param_value(buf, sizeof(buf), "media", str)) {
2422 if (!strcmp(buf, "disk")) {
2423 media = MEDIA_DISK;
2424 } else if (!strcmp(buf, "cdrom")) {
2425 if (cyls || secs || heads) {
2426 fprintf(stderr,
2427 "qemu: '%s' invalid physical CHS format\n", str);
2428 return -1;
2429 }
2430 media = MEDIA_CDROM;
2431 } else {
2432 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2433 return -1;
2434 }
2435 }
2436
2437 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2438 if (!strcmp(buf, "on"))
2439 snapshot = 1;
2440 else if (!strcmp(buf, "off"))
2441 snapshot = 0;
2442 else {
2443 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2444 return -1;
2445 }
2446 }
2447
2448 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2449 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2450 cache = 0;
2451 else if (!strcmp(buf, "writethrough"))
2452 cache = 1;
2453 else if (!strcmp(buf, "writeback"))
2454 cache = 2;
2455 else {
2456 fprintf(stderr, "qemu: invalid cache option\n");
2457 return -1;
2458 }
2459 }
2460
2461 if (get_param_value(buf, sizeof(buf), "format", str)) {
2462 if (strcmp(buf, "?") == 0) {
2463 fprintf(stderr, "qemu: Supported formats:");
2464 bdrv_iterate_format(bdrv_format_print, NULL);
2465 fprintf(stderr, "\n");
2466 return -1;
2467 }
2468 drv = bdrv_find_format(buf);
2469 if (!drv) {
2470 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2471 return -1;
2472 }
2473 }
2474
2475 if (arg->file == NULL)
2476 get_param_value(file, sizeof(file), "file", str);
2477 else
2478 pstrcpy(file, sizeof(file), arg->file);
2479
2480 if (!get_param_value(serial, sizeof(serial), "serial", str))
2481 memset(serial, 0, sizeof(serial));
2482
2483 onerror = BLOCK_ERR_STOP_ENOSPC;
2484 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2485 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2486 fprintf(stderr, "werror is no supported by this format\n");
2487 return -1;
2488 }
2489 if (!strcmp(buf, "ignore"))
2490 onerror = BLOCK_ERR_IGNORE;
2491 else if (!strcmp(buf, "enospc"))
2492 onerror = BLOCK_ERR_STOP_ENOSPC;
2493 else if (!strcmp(buf, "stop"))
2494 onerror = BLOCK_ERR_STOP_ANY;
2495 else if (!strcmp(buf, "report"))
2496 onerror = BLOCK_ERR_REPORT;
2497 else {
2498 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2499 return -1;
2500 }
2501 }
2502
2503 /* compute bus and unit according index */
2504
2505 if (index != -1) {
2506 if (bus_id != 0 || unit_id != -1) {
2507 fprintf(stderr,
2508 "qemu: '%s' index cannot be used with bus and unit\n", str);
2509 return -1;
2510 }
2511 if (max_devs == 0)
2512 {
2513 unit_id = index;
2514 bus_id = 0;
2515 } else {
2516 unit_id = index % max_devs;
2517 bus_id = index / max_devs;
2518 }
2519 }
2520
2521 /* if user doesn't specify a unit_id,
2522 * try to find the first free
2523 */
2524
2525 if (unit_id == -1) {
2526 unit_id = 0;
2527 while (drive_get_index(type, bus_id, unit_id) != -1) {
2528 unit_id++;
2529 if (max_devs && unit_id >= max_devs) {
2530 unit_id -= max_devs;
2531 bus_id++;
2532 }
2533 }
2534 }
2535
2536 /* check unit id */
2537
2538 if (max_devs && unit_id >= max_devs) {
2539 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2540 str, unit_id, max_devs - 1);
2541 return -1;
2542 }
2543
2544 /*
2545 * ignore multiple definitions
2546 */
2547
2548 if (drive_get_index(type, bus_id, unit_id) != -1)
2549 return -2;
2550
2551 /* init */
2552
2553 if (type == IF_IDE || type == IF_SCSI)
2554 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2555 if (max_devs)
2556 snprintf(buf, sizeof(buf), "%s%i%s%i",
2557 devname, bus_id, mediastr, unit_id);
2558 else
2559 snprintf(buf, sizeof(buf), "%s%s%i",
2560 devname, mediastr, unit_id);
2561 bdrv = bdrv_new(buf);
2562 drives_table_idx = drive_get_free_idx();
2563 drives_table[drives_table_idx].bdrv = bdrv;
2564 drives_table[drives_table_idx].type = type;
2565 drives_table[drives_table_idx].bus = bus_id;
2566 drives_table[drives_table_idx].unit = unit_id;
2567 drives_table[drives_table_idx].onerror = onerror;
2568 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2569 strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2570 nb_drives++;
2571
2572 switch(type) {
2573 case IF_IDE:
2574 case IF_SCSI:
2575 switch(media) {
2576 case MEDIA_DISK:
2577 if (cyls != 0) {
2578 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2579 bdrv_set_translation_hint(bdrv, translation);
2580 }
2581 break;
2582 case MEDIA_CDROM:
2583 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2584 break;
2585 }
2586 break;
2587 case IF_SD:
2588 /* FIXME: This isn't really a floppy, but it's a reasonable
2589 approximation. */
2590 case IF_FLOPPY:
2591 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2592 break;
2593 case IF_PFLASH:
2594 case IF_MTD:
2595 case IF_VIRTIO:
2596 break;
2597 }
2598 if (!file[0])
2599 return -2;
2600 bdrv_flags = 0;
2601 if (snapshot) {
2602 bdrv_flags |= BDRV_O_SNAPSHOT;
2603 cache = 2; /* always use write-back with snapshot */
2604 }
2605 if (cache == 0) /* no caching */
2606 bdrv_flags |= BDRV_O_NOCACHE;
2607 else if (cache == 2) /* write-back */
2608 bdrv_flags |= BDRV_O_CACHE_WB;
2609 else if (cache == 3) /* not specified */
2610 bdrv_flags |= BDRV_O_CACHE_DEF;
2611 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2612 fprintf(stderr, "qemu: could not open disk image %s\n",
2613 file);
2614 return -1;
2615 }
2616 if (bdrv_key_required(bdrv))
2617 autostart = 0;
2618 return drives_table_idx;
2619 }
2620
2621 /***********************************************************/
2622 /* USB devices */
2623
2624 static USBPort *used_usb_ports;
2625 static USBPort *free_usb_ports;
2626
2627 /* ??? Maybe change this to register a hub to keep track of the topology. */
2628 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2629 usb_attachfn attach)
2630 {
2631 port->opaque = opaque;
2632 port->index = index;
2633 port->attach = attach;
2634 port->next = free_usb_ports;
2635 free_usb_ports = port;
2636 }
2637
2638 int usb_device_add_dev(USBDevice *dev)
2639 {
2640 USBPort *port;
2641
2642 /* Find a USB port to add the device to. */
2643 port = free_usb_ports;
2644 if (!port->next) {
2645 USBDevice *hub;
2646
2647 /* Create a new hub and chain it on. */
2648 free_usb_ports = NULL;
2649 port->next = used_usb_ports;
2650 used_usb_ports = port;
2651
2652 hub = usb_hub_init(VM_USB_HUB_SIZE);
2653 usb_attach(port, hub);
2654 port = free_usb_ports;
2655 }
2656
2657 free_usb_ports = port->next;
2658 port->next = used_usb_ports;
2659 used_usb_ports = port;
2660 usb_attach(port, dev);
2661 return 0;
2662 }
2663
2664 static int usb_device_add(const char *devname, int is_hotplug)
2665 {
2666 const char *p;
2667 USBDevice *dev;
2668
2669 if (!free_usb_ports)
2670 return -1;
2671
2672 if (strstart(devname, "host:", &p)) {
2673 dev = usb_host_device_open(p);
2674 } else if (!strcmp(devname, "mouse")) {
2675 dev = usb_mouse_init();
2676 } else if (!strcmp(devname, "tablet")) {
2677 dev = usb_tablet_init();
2678 } else if (!strcmp(devname, "keyboard")) {
2679 dev = usb_keyboard_init();
2680 } else if (strstart(devname, "disk:", &p)) {
2681 BlockDriverState *bs;
2682
2683 dev = usb_msd_init(p, &bs);
2684 if (!dev)
2685 return -1;
2686 if (bdrv_key_required(bs)) {
2687 autostart = 0;
2688 if (is_hotplug && monitor_read_bdrv_key(bs) < 0) {
2689 dev->handle_destroy(dev);
2690 return -1;
2691 }
2692 }
2693 } else if (!strcmp(devname, "wacom-tablet")) {
2694 dev = usb_wacom_init();
2695 } else if (strstart(devname, "serial:", &p)) {
2696 dev = usb_serial_init(p);
2697 #ifdef CONFIG_BRLAPI
2698 } else if (!strcmp(devname, "braille")) {
2699 dev = usb_baum_init();
2700 #endif
2701 } else if (strstart(devname, "net:", &p)) {
2702 int nic = nb_nics;
2703
2704 if (net_client_init("nic", p) < 0)
2705 return -1;
2706 nd_table[nic].model = "usb";
2707 dev = usb_net_init(&nd_table[nic]);
2708 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2709 dev = usb_bt_init(devname[2] ? hci_init(p) :
2710 bt_new_hci(qemu_find_bt_vlan(0)));
2711 } else {
2712 return -1;
2713 }
2714 if (!dev)
2715 return -1;
2716
2717 return usb_device_add_dev(dev);
2718 }
2719
2720 int usb_device_del_addr(int bus_num, int addr)
2721 {
2722 USBPort *port;
2723 USBPort **lastp;
2724 USBDevice *dev;
2725
2726 if (!used_usb_ports)
2727 return -1;
2728
2729 if (bus_num != 0)
2730 return -1;
2731
2732 lastp = &used_usb_ports;
2733 port = used_usb_ports;
2734 while (port && port->dev->addr != addr) {
2735 lastp = &port->next;
2736 port = port->next;
2737 }
2738
2739 if (!port)
2740 return -1;
2741
2742 dev = port->dev;
2743 *lastp = port->next;
2744 usb_attach(port, NULL);
2745 dev->handle_destroy(dev);
2746 port->next = free_usb_ports;
2747 free_usb_ports = port;
2748 return 0;
2749 }
2750
2751 static int usb_device_del(const char *devname)
2752 {
2753 int bus_num, addr;
2754 const char *p;
2755
2756 if (strstart(devname, "host:", &p))
2757 return usb_host_device_close(p);
2758
2759 if (!used_usb_ports)
2760 return -1;
2761
2762 p = strchr(devname, '.');
2763 if (!p)
2764 return -1;
2765 bus_num = strtoul(devname, NULL, 0);
2766 addr = strtoul(p + 1, NULL, 0);
2767
2768 return usb_device_del_addr(bus_num, addr);
2769 }
2770
2771 void do_usb_add(const char *devname)
2772 {
2773 usb_device_add(devname, 1);
2774 }
2775
2776 void do_usb_del(const char *devname)
2777 {
2778 usb_device_del(devname);
2779 }
2780
2781 void usb_info(void)
2782 {
2783 USBDevice *dev;
2784 USBPort *port;
2785 const char *speed_str;
2786
2787 if (!usb_enabled) {
2788 term_printf("USB support not enabled\n");
2789 return;
2790 }
2791
2792 for (port = used_usb_ports; port; port = port->next) {
2793 dev = port->dev;
2794 if (!dev)
2795 continue;
2796 switch(dev->speed) {
2797 case USB_SPEED_LOW:
2798 speed_str = "1.5";
2799 break;
2800 case USB_SPEED_FULL:
2801 speed_str = "12";
2802 break;
2803 case USB_SPEED_HIGH:
2804 speed_str = "480";
2805 break;
2806 default:
2807 speed_str = "?";
2808 break;
2809 }
2810 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
2811 0, dev->addr, speed_str, dev->devname);
2812 }
2813 }
2814
2815 /***********************************************************/
2816 /* PCMCIA/Cardbus */
2817
2818 static struct pcmcia_socket_entry_s {
2819 struct pcmcia_socket_s *socket;
2820 struct pcmcia_socket_entry_s *next;
2821 } *pcmcia_sockets = 0;
2822
2823 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2824 {
2825 struct pcmcia_socket_entry_s *entry;
2826
2827 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2828 entry->socket = socket;
2829 entry->next = pcmcia_sockets;
2830 pcmcia_sockets = entry;
2831 }
2832
2833 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2834 {
2835 struct pcmcia_socket_entry_s *entry, **ptr;
2836
2837 ptr = &pcmcia_sockets;
2838 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2839 if (entry->socket == socket) {
2840 *ptr = entry->next;
2841 qemu_free(entry);
2842 }
2843 }
2844
2845 void pcmcia_info(void)
2846 {
2847 struct pcmcia_socket_entry_s *iter;
2848 if (!pcmcia_sockets)
2849 term_printf("No PCMCIA sockets\n");
2850
2851 for (iter = pcmcia_sockets; iter; iter = iter->next)
2852 term_printf("%s: %s\n", iter->socket->slot_string,
2853 iter->socket->attached ? iter->socket->card_string :
2854 "Empty");
2855 }
2856
2857 /***********************************************************/
2858 /* register display */
2859
2860 void register_displaystate(DisplayState *ds)
2861 {
2862 DisplayState **s;
2863 s = &display_state;
2864 while (*s != NULL)
2865 s = &(*s)->next;
2866 ds->next = NULL;
2867 *s = ds;
2868 }
2869
2870 DisplayState *get_displaystate(void)
2871 {
2872 return display_state;
2873 }
2874
2875 /* dumb display */
2876
2877 static void dumb_display_init(void)
2878 {
2879 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2880 ds->surface = qemu_create_displaysurface(640, 480, 32, 640 * 4);
2881 register_displaystate(ds);
2882 }
2883
2884 /***********************************************************/
2885 /* I/O handling */
2886
2887 #define MAX_IO_HANDLERS 64
2888
2889 typedef struct IOHandlerRecord {
2890 int fd;
2891 IOCanRWHandler *fd_read_poll;
2892 IOHandler *fd_read;
2893 IOHandler *fd_write;
2894 int deleted;
2895 void *opaque;
2896 /* temporary data */
2897 struct pollfd *ufd;
2898 struct IOHandlerRecord *next;
2899 } IOHandlerRecord;
2900
2901 static IOHandlerRecord *first_io_handler;
2902
2903 /* XXX: fd_read_poll should be suppressed, but an API change is
2904 necessary in the character devices to suppress fd_can_read(). */
2905 int qemu_set_fd_handler2(int fd,
2906 IOCanRWHandler *fd_read_poll,
2907 IOHandler *fd_read,
2908 IOHandler *fd_write,
2909 void *opaque)
2910 {
2911 IOHandlerRecord **pioh, *ioh;
2912
2913 if (!fd_read && !fd_write) {
2914 pioh = &first_io_handler;
2915 for(;;) {
2916 ioh = *pioh;
2917 if (ioh == NULL)
2918 break;
2919 if (ioh->fd == fd) {
2920 ioh->deleted = 1;
2921 break;
2922 }
2923 pioh = &ioh->next;
2924 }
2925 } else {
2926 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2927 if (ioh->fd == fd)
2928 goto found;
2929 }
2930 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2931 ioh->next = first_io_handler;
2932 first_io_handler = ioh;
2933 found:
2934 ioh->fd = fd;
2935 ioh->fd_read_poll = fd_read_poll;
2936 ioh->fd_read = fd_read;
2937 ioh->fd_write = fd_write;
2938 ioh->opaque = opaque;
2939 ioh->deleted = 0;
2940 }
2941 return 0;
2942 }
2943
2944 int qemu_set_fd_handler(int fd,
2945 IOHandler *fd_read,
2946 IOHandler *fd_write,
2947 void *opaque)
2948 {
2949 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2950 }
2951
2952 #ifdef _WIN32
2953 /***********************************************************/
2954 /* Polling handling */
2955
2956 typedef struct PollingEntry {
2957 PollingFunc *func;
2958 void *opaque;
2959 struct PollingEntry *next;
2960 } PollingEntry;
2961
2962 static PollingEntry *first_polling_entry;
2963
2964 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2965 {
2966 PollingEntry **ppe, *pe;
2967 pe = qemu_mallocz(sizeof(PollingEntry));
2968 pe->func = func;
2969 pe->opaque = opaque;
2970 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2971 *ppe = pe;
2972 return 0;
2973 }
2974
2975 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2976 {
2977 PollingEntry **ppe, *pe;
2978 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2979 pe = *ppe;
2980 if (pe->func == func && pe->opaque == opaque) {
2981 *ppe = pe->next;
2982 qemu_free(pe);
2983 break;
2984 }
2985 }
2986 }
2987
2988 /***********************************************************/
2989 /* Wait objects support */
2990 typedef struct WaitObjects {
2991 int num;
2992 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2993 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2994 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2995 } WaitObjects;
2996
2997 static WaitObjects wait_objects = {0};
2998
2999 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3000 {
3001 WaitObjects *w = &wait_objects;
3002
3003 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3004 return -1;
3005 w->events[w->num] = handle;
3006 w->func[w->num] = func;
3007 w->opaque[w->num] = opaque;
3008 w->num++;
3009 return 0;
3010 }
3011
3012 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3013 {
3014 int i, found;
3015 WaitObjects *w = &wait_objects;
3016
3017 found = 0;
3018 for (i = 0; i < w->num; i++) {
3019 if (w->events[i] == handle)
3020 found = 1;
3021 if (found) {
3022 w->events[i] = w->events[i + 1];
3023 w->func[i] = w->func[i + 1];
3024 w->opaque[i] = w->opaque[i + 1];
3025 }
3026 }
3027 if (found)
3028 w->num--;
3029 }
3030 #endif
3031
3032 /***********************************************************/
3033 /* ram save/restore */
3034
3035 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3036 {
3037 int v;
3038
3039 v = qemu_get_byte(f);
3040 switch(v) {
3041 case 0:
3042 if (qemu_get_buffer(f, buf, len) != len)
3043 return -EIO;
3044 break;
3045 case 1:
3046 v = qemu_get_byte(f);
3047 memset(buf, v, len);
3048 break;
3049 default:
3050 return -EINVAL;
3051 }
3052
3053 if (qemu_file_has_error(f))
3054 return -EIO;
3055
3056 return 0;
3057 }
3058
3059 static int ram_load_v1(QEMUFile *f, void *opaque)
3060 {
3061 int ret;
3062 ram_addr_t i;
3063
3064 if (qemu_get_be32(f) != phys_ram_size)
3065 return -EINVAL;
3066 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
3067 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
3068 if (ret)
3069 return ret;
3070 }
3071 return 0;
3072 }
3073
3074 #define BDRV_HASH_BLOCK_SIZE 1024
3075 #define IOBUF_SIZE 4096
3076 #define RAM_CBLOCK_MAGIC 0xfabe
3077
3078 typedef struct RamDecompressState {
3079 z_stream zstream;
3080 QEMUFile *f;
3081 uint8_t buf[IOBUF_SIZE];
3082 } RamDecompressState;
3083
3084 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3085 {
3086 int ret;
3087 memset(s, 0, sizeof(*s));
3088 s->f = f;
3089 ret = inflateInit(&s->zstream);
3090 if (ret != Z_OK)
3091 return -1;
3092 return 0;
3093 }
3094
3095 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3096 {
3097 int ret, clen;
3098
3099 s->zstream.avail_out = len;
3100 s->zstream.next_out = buf;
3101 while (s->zstream.avail_out > 0) {
3102 if (s->zstream.avail_in == 0) {
3103 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3104 return -1;
3105 clen = qemu_get_be16(s->f);
3106 if (clen > IOBUF_SIZE)
3107 return -1;
3108 qemu_get_buffer(s->f, s->buf, clen);
3109 s->zstream.avail_in = clen;
3110 s->zstream.next_in = s->buf;
3111 }
3112 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3113 if (ret != Z_OK && ret != Z_STREAM_END) {
3114 return -1;
3115 }
3116 }
3117 return 0;
3118 }
3119
3120 static void ram_decompress_close(RamDecompressState *s)
3121 {
3122 inflateEnd(&s->zstream);
3123 }
3124
3125 #define RAM_SAVE_FLAG_FULL 0x01
3126 #define RAM_SAVE_FLAG_COMPRESS 0x02
3127 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3128 #define RAM_SAVE_FLAG_PAGE 0x08
3129 #define RAM_SAVE_FLAG_EOS 0x10
3130
3131 static int is_dup_page(uint8_t *page, uint8_t ch)
3132 {
3133 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3134 uint32_t *array = (uint32_t *)page;
3135 int i;
3136
3137 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3138 if (array[i] != val)
3139 return 0;
3140 }
3141
3142 return 1;
3143 }
3144
3145 static int ram_save_block(QEMUFile *f)
3146 {
3147 static ram_addr_t current_addr = 0;
3148 ram_addr_t saved_addr = current_addr;
3149 ram_addr_t addr = 0;
3150 int found = 0;
3151
3152 while (addr < phys_ram_size) {
3153 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3154 uint8_t ch;
3155
3156 cpu_physical_memory_reset_dirty(current_addr,
3157 current_addr + TARGET_PAGE_SIZE,
3158 MIGRATION_DIRTY_FLAG);
3159
3160 ch = *(phys_ram_base + current_addr);
3161
3162 if (is_dup_page(phys_ram_base + current_addr, ch)) {
3163 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3164 qemu_put_byte(f, ch);
3165 } else {
3166 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3167 qemu_put_buffer(f, phys_ram_base + current_addr, TARGET_PAGE_SIZE);
3168 }
3169
3170 found = 1;
3171 break;
3172 }
3173 addr += TARGET_PAGE_SIZE;
3174 current_addr = (saved_addr + addr) % phys_ram_size;
3175 }
3176
3177 return found;
3178 }
3179
3180 static ram_addr_t ram_save_threshold = 10;
3181
3182 static ram_addr_t ram_save_remaining(void)
3183 {
3184 ram_addr_t addr;
3185 ram_addr_t count = 0;
3186
3187 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3188 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3189 count++;
3190 }
3191
3192 return count;
3193 }
3194
3195 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3196 {
3197 ram_addr_t addr;
3198
3199 if (stage == 1) {
3200 /* Make sure all dirty bits are set */
3201 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3202 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3203 cpu_physical_memory_set_dirty(addr);
3204 }
3205
3206 /* Enable dirty memory tracking */
3207 cpu_physical_memory_set_dirty_tracking(1);
3208
3209 qemu_put_be64(f, phys_ram_size | RAM_SAVE_FLAG_MEM_SIZE);
3210 }
3211
3212 while (!qemu_file_rate_limit(f)) {
3213 int ret;
3214
3215 ret = ram_save_block(f);
3216 if (ret == 0) /* no more blocks */
3217 break;
3218 }
3219
3220 /* try transferring iterative blocks of memory */
3221
3222 if (stage == 3) {
3223
3224 /* flush all remaining blocks regardless of rate limiting */
3225 while (ram_save_block(f) != 0);
3226 cpu_physical_memory_set_dirty_tracking(0);
3227 }
3228
3229 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3230
3231 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3232 }
3233
3234 static int ram_load_dead(QEMUFile *f, void *opaque)
3235 {
3236 RamDecompressState s1, *s = &s1;
3237 uint8_t buf[10];
3238 ram_addr_t i;
3239
3240 if (ram_decompress_open(s, f) < 0)
3241 return -EINVAL;
3242 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
3243 if (ram_decompress_buf(s, buf, 1) < 0) {
3244 fprintf(stderr, "Error while reading ram block header\n");
3245 goto error;
3246 }
3247 if (buf[0] == 0) {
3248 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
3249 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3250 goto error;
3251 }
3252 } else {
3253 error:
3254 printf("Error block header\n");
3255 return -EINVAL;
3256 }
3257 }
3258 ram_decompress_close(s);
3259
3260 return 0;
3261 }
3262
3263 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3264 {
3265 ram_addr_t addr;
3266 int flags;
3267
3268 if (version_id == 1)
3269 return ram_load_v1(f, opaque);
3270
3271 if (version_id == 2) {
3272 if (qemu_get_be32(f) != phys_ram_size)
3273 return -EINVAL;
3274 return ram_load_dead(f, opaque);
3275 }
3276
3277 if (version_id != 3)
3278 return -EINVAL;
3279
3280 do {
3281 addr = qemu_get_be64(f);
3282
3283 flags = addr & ~TARGET_PAGE_MASK;
3284 addr &= TARGET_PAGE_MASK;
3285
3286 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3287 if (addr != phys_ram_size)
3288 return -EINVAL;
3289 }
3290
3291 if (flags & RAM_SAVE_FLAG_FULL) {
3292 if (ram_load_dead(f, opaque) < 0)
3293 return -EINVAL;
3294 }
3295
3296 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3297 uint8_t ch = qemu_get_byte(f);
3298 memset(phys_ram_base + addr, ch, TARGET_PAGE_SIZE);
3299 } else if (flags & RAM_SAVE_FLAG_PAGE)
3300 qemu_get_buffer(f, phys_ram_base + addr, TARGET_PAGE_SIZE);
3301 } while (!(flags & RAM_SAVE_FLAG_EOS));
3302
3303 return 0;
3304 }
3305
3306 void qemu_service_io(void)
3307 {
3308 CPUState *env = cpu_single_env;
3309 if (env) {
3310 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3311 #ifdef USE_KQEMU
3312 if (env->kqemu_enabled) {
3313 kqemu_cpu_interrupt(env);
3314 }
3315 #endif
3316 }
3317 }
3318
3319 /***********************************************************/
3320 /* bottom halves (can be seen as timers which expire ASAP) */
3321
3322 struct QEMUBH {
3323 QEMUBHFunc *cb;
3324 void *opaque;
3325 int scheduled;
3326 int idle;
3327 int deleted;
3328 QEMUBH *next;
3329 };
3330
3331 static QEMUBH *first_bh = NULL;
3332
3333 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3334 {
3335 QEMUBH *bh;
3336 bh = qemu_mallocz(sizeof(QEMUBH));
3337 bh->cb = cb;
3338 bh->opaque = opaque;
3339 bh->next = first_bh;
3340 first_bh = bh;
3341 return bh;
3342 }
3343
3344 int qemu_bh_poll(void)
3345 {
3346 QEMUBH *bh, **bhp;
3347 int ret;
3348
3349 ret = 0;
3350 for (bh = first_bh; bh; bh = bh->next) {
3351 if (!bh->deleted && bh->scheduled) {
3352 bh->scheduled = 0;
3353 if (!bh->idle)
3354 ret = 1;
3355 bh->idle = 0;
3356 bh->cb(bh->opaque);
3357 }
3358 }
3359
3360 /* remove deleted bhs */
3361 bhp = &first_bh;
3362 while (*bhp) {
3363 bh = *bhp;
3364 if (bh->deleted) {
3365 *bhp = bh->next;
3366 qemu_free(bh);
3367 } else
3368 bhp = &bh->next;
3369 }
3370
3371 return ret;
3372 }
3373
3374 void qemu_bh_schedule_idle(QEMUBH *bh)
3375 {
3376 if (bh->scheduled)
3377 return;
3378 bh->scheduled = 1;
3379 bh->idle = 1;
3380 }
3381
3382 void qemu_bh_schedule(QEMUBH *bh)
3383 {
3384 CPUState *env = cpu_single_env;
3385 if (bh->scheduled)
3386 return;
3387 bh->scheduled = 1;
3388 bh->idle = 0;
3389 /* stop the currently executing CPU to execute the BH ASAP */
3390 if (env) {
3391 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3392 }
3393 }
3394
3395 void qemu_bh_cancel(QEMUBH *bh)
3396 {
3397 bh->scheduled = 0;
3398 }
3399
3400 void qemu_bh_delete(QEMUBH *bh)
3401 {
3402 bh->scheduled = 0;
3403 bh->deleted = 1;
3404 }
3405
3406 static void qemu_bh_update_timeout(int *timeout)
3407 {
3408 QEMUBH *bh;
3409
3410 for (bh = first_bh; bh; bh = bh->next) {
3411 if (!bh->deleted && bh->scheduled) {
3412 if (bh->idle) {
3413 /* idle bottom halves will be polled at least
3414 * every 10ms */
3415 *timeout = MIN(10, *timeout);
3416 } else {
3417 /* non-idle bottom halves will be executed
3418 * immediately */
3419 *timeout = 0;
3420 break;
3421 }
3422 }
3423 }
3424 }
3425
3426 /***********************************************************/
3427 /* machine registration */
3428
3429 static QEMUMachine *first_machine = NULL;
3430 QEMUMachine *current_machine = NULL;
3431
3432 int qemu_register_machine(QEMUMachine *m)
3433 {
3434 QEMUMachine **pm;
3435 pm = &first_machine;
3436 while (*pm != NULL)
3437 pm = &(*pm)->next;
3438 m->next = NULL;
3439 *pm = m;
3440 return 0;
3441 }
3442
3443 static QEMUMachine *find_machine(const char *name)
3444 {
3445 QEMUMachine *m;
3446
3447 for(m = first_machine; m != NULL; m = m->next) {
3448 if (!strcmp(m->name, name))
3449 return m;
3450 }
3451 return NULL;
3452 }
3453
3454 /***********************************************************/
3455 /* main execution loop */
3456
3457 static void gui_update(void *opaque)
3458 {
3459 uint64_t interval = GUI_REFRESH_INTERVAL;
3460 DisplayState *ds = opaque;
3461 DisplayChangeListener *dcl = ds->listeners;
3462
3463 dpy_refresh(ds);
3464
3465 while (dcl != NULL) {
3466 if (dcl->gui_timer_interval &&
3467 dcl->gui_timer_interval < interval)
3468 interval = dcl->gui_timer_interval;
3469 dcl = dcl->next;
3470 }
3471 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3472 }
3473
3474 static void nographic_update(void *opaque)
3475 {
3476 uint64_t interval = GUI_REFRESH_INTERVAL;
3477
3478 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3479 }
3480
3481 struct vm_change_state_entry {
3482 VMChangeStateHandler *cb;
3483 void *opaque;
3484 LIST_ENTRY (vm_change_state_entry) entries;
3485 };
3486
3487 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3488
3489 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3490 void *opaque)
3491 {
3492 VMChangeStateEntry *e;
3493
3494 e = qemu_mallocz(sizeof (*e));
3495
3496 e->cb = cb;
3497 e->opaque = opaque;
3498 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3499 return e;
3500 }
3501
3502 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3503 {
3504 LIST_REMOVE (e, entries);
3505 qemu_free (e);
3506 }
3507
3508 static void vm_state_notify(int running, int reason)
3509 {
3510 VMChangeStateEntry *e;
3511
3512 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3513 e->cb(e->opaque, running, reason);
3514 }
3515 }
3516
3517 void vm_start(void)
3518 {
3519 if (!vm_running) {
3520 cpu_enable_ticks();
3521 vm_running = 1;
3522 vm_state_notify(1, 0);
3523 qemu_rearm_alarm_timer(alarm_timer);
3524 }
3525 }
3526
3527 void vm_stop(int reason)
3528 {
3529 if (vm_running) {
3530 cpu_disable_ticks();
3531 vm_running = 0;
3532 vm_state_notify(0, reason);
3533 }
3534 }
3535
3536 /* reset/shutdown handler */
3537
3538 typedef struct QEMUResetEntry {
3539 QEMUResetHandler *func;
3540 void *opaque;
3541 struct QEMUResetEntry *next;
3542 } QEMUResetEntry;
3543
3544 static QEMUResetEntry *first_reset_entry;
3545 static int reset_requested;
3546 static int shutdown_requested;
3547 static int powerdown_requested;
3548
3549 int qemu_shutdown_requested(void)
3550 {
3551 int r = shutdown_requested;
3552 shutdown_requested = 0;
3553 return r;
3554 }
3555
3556 int qemu_reset_requested(void)
3557 {
3558 int r = reset_requested;
3559 reset_requested = 0;
3560 return r;
3561 }
3562
3563 int qemu_powerdown_requested(void)
3564 {
3565 int r = powerdown_requested;
3566 powerdown_requested = 0;
3567 return r;
3568 }
3569
3570 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3571 {
3572 QEMUResetEntry **pre, *re;
3573
3574 pre = &first_reset_entry;
3575 while (*pre != NULL)
3576 pre = &(*pre)->next;
3577 re = qemu_mallocz(sizeof(QEMUResetEntry));
3578 re->func = func;
3579 re->opaque = opaque;
3580 re->next = NULL;
3581 *pre = re;
3582 }
3583
3584 void qemu_system_reset(void)
3585 {
3586 QEMUResetEntry *re;
3587
3588 /* reset all devices */
3589 for(re = first_reset_entry; re != NULL; re = re->next) {
3590 re->func(re->opaque);
3591 }
3592 }
3593
3594 void qemu_system_reset_request(void)
3595 {
3596 if (no_reboot) {
3597 shutdown_requested = 1;
3598 } else {
3599 reset_requested = 1;
3600 }
3601 if (cpu_single_env)
3602 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3603 }
3604
3605 void qemu_system_shutdown_request(void)
3606 {
3607 shutdown_requested = 1;
3608 if (cpu_single_env)
3609 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3610 }
3611
3612 void qemu_system_powerdown_request(void)
3613 {
3614 powerdown_requested = 1;
3615 if (cpu_single_env)
3616 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3617 }
3618
3619 #ifdef _WIN32
3620 static void host_main_loop_wait(int *timeout)
3621 {
3622 int ret, ret2, i;
3623 PollingEntry *pe;
3624
3625
3626 /* XXX: need to suppress polling by better using win32 events */
3627 ret = 0;
3628 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3629 ret |= pe->func(pe->opaque);
3630 }
3631 if (ret == 0) {
3632 int err;
3633 WaitObjects *w = &wait_objects;
3634
3635 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3636 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3637 if (w->func[ret - WAIT_OBJECT_0])
3638 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3639
3640 /* Check for additional signaled events */
3641 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3642
3643 /* Check if event is signaled */
3644 ret2 = WaitForSingleObject(w->events[i], 0);
3645 if(ret2 == WAIT_OBJECT_0) {
3646 if (w->func[i])
3647 w->func[i](w->opaque[i]);
3648 } else if (ret2 == WAIT_TIMEOUT) {
3649 } else {
3650 err = GetLastError();
3651 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3652 }
3653 }
3654 } else if (ret == WAIT_TIMEOUT) {
3655 } else {
3656 err = GetLastError();
3657 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3658 }
3659 }
3660
3661 *timeout = 0;
3662 }
3663 #else
3664 static void host_main_loop_wait(int *timeout)
3665 {
3666 }
3667 #endif
3668
3669 void main_loop_wait(int timeout)
3670 {
3671 IOHandlerRecord *ioh;
3672 fd_set rfds, wfds, xfds;
3673 int ret, nfds;
3674 struct timeval tv;
3675
3676 qemu_bh_update_timeout(&timeout);
3677
3678 host_main_loop_wait(&timeout);
3679
3680 /* poll any events */
3681 /* XXX: separate device handlers from system ones */
3682 nfds = -1;
3683 FD_ZERO(&rfds);
3684 FD_ZERO(&wfds);
3685 FD_ZERO(&xfds);
3686 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3687 if (ioh->deleted)
3688 continue;
3689 if (ioh->fd_read &&
3690 (!ioh->fd_read_poll ||
3691 ioh->fd_read_poll(ioh->opaque) != 0)) {
3692 FD_SET(ioh->fd, &rfds);
3693 if (ioh->fd > nfds)
3694 nfds = ioh->fd;
3695 }
3696 if (ioh->fd_write) {
3697 FD_SET(ioh->fd, &wfds);
3698 if (ioh->fd > nfds)
3699 nfds = ioh->fd;
3700 }
3701 }
3702
3703 tv.tv_sec = timeout / 1000;
3704 tv.tv_usec = (timeout % 1000) * 1000;
3705
3706 #if defined(CONFIG_SLIRP)
3707 if (slirp_is_inited()) {
3708 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3709 }
3710 #endif
3711 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3712 if (ret > 0) {
3713 IOHandlerRecord **pioh;
3714
3715 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3716 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3717 ioh->fd_read(ioh->opaque);
3718 }
3719 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3720 ioh->fd_write(ioh->opaque);
3721 }
3722 }
3723
3724 /* remove deleted IO handlers */
3725 pioh = &first_io_handler;
3726 while (*pioh) {
3727 ioh = *pioh;
3728 if (ioh->deleted) {
3729 *pioh = ioh->next;
3730 qemu_free(ioh);
3731 } else
3732 pioh = &ioh->next;
3733 }
3734 }
3735 #if defined(CONFIG_SLIRP)
3736 if (slirp_is_inited()) {
3737 if (ret < 0) {
3738 FD_ZERO(&rfds);
3739 FD_ZERO(&wfds);
3740 FD_ZERO(&xfds);
3741 }
3742 slirp_select_poll(&rfds, &wfds, &xfds);
3743 }
3744 #endif
3745
3746 /* vm time timers */
3747 if (vm_running && likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3748 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
3749 qemu_get_clock(vm_clock));
3750
3751 /* real time timers */
3752 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
3753 qemu_get_clock(rt_clock));
3754
3755 /* Check bottom-halves last in case any of the earlier events triggered
3756 them. */
3757 qemu_bh_poll();
3758
3759 }
3760
3761 static int main_loop(void)
3762 {
3763 int ret, timeout;
3764 #ifdef CONFIG_PROFILER
3765 int64_t ti;
3766 #endif
3767 CPUState *env;
3768
3769 cur_cpu = first_cpu;
3770 next_cpu = cur_cpu->next_cpu ?: first_cpu;
3771 for(;;) {
3772 if (vm_running) {
3773
3774 for(;;) {
3775 /* get next cpu */
3776 env = next_cpu;
3777 #ifdef CONFIG_PROFILER
3778 ti = profile_getclock();
3779 #endif
3780 if (use_icount) {
3781 int64_t count;
3782 int decr;
3783 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3784 env->icount_decr.u16.low = 0;
3785 env->icount_extra = 0;
3786 count = qemu_next_deadline();
3787 count = (count + (1 << icount_time_shift) - 1)
3788 >> icount_time_shift;
3789 qemu_icount += count;
3790 decr = (count > 0xffff) ? 0xffff : count;
3791 count -= decr;
3792 env->icount_decr.u16.low = decr;
3793 env->icount_extra = count;
3794 }
3795 ret = cpu_exec(env);
3796 #ifdef CONFIG_PROFILER
3797 qemu_time += profile_getclock() - ti;
3798 #endif
3799 if (use_icount) {
3800 /* Fold pending instructions back into the
3801 instruction counter, and clear the interrupt flag. */
3802 qemu_icount -= (env->icount_decr.u16.low
3803 + env->icount_extra);
3804 env->icount_decr.u32 = 0;
3805 env->icount_extra = 0;
3806 }
3807 next_cpu = env->next_cpu ?: first_cpu;
3808 if (event_pending && likely(ret != EXCP_DEBUG)) {
3809 ret = EXCP_INTERRUPT;
3810 event_pending = 0;
3811 break;
3812 }
3813 if (ret == EXCP_HLT) {
3814 /* Give the next CPU a chance to run. */
3815 cur_cpu = env;
3816 continue;
3817 }
3818 if (ret != EXCP_HALTED)
3819 break;
3820 /* all CPUs are halted ? */
3821 if (env == cur_cpu)
3822 break;
3823 }
3824 cur_cpu = env;
3825
3826 if (shutdown_requested) {
3827 ret = EXCP_INTERRUPT;
3828 if (no_shutdown) {
3829 vm_stop(0);
3830 no_shutdown = 0;
3831 }
3832 else
3833 break;
3834 }
3835 if (reset_requested) {
3836 reset_requested = 0;
3837 qemu_system_reset();
3838 ret = EXCP_INTERRUPT;
3839 }
3840 if (powerdown_requested) {
3841 powerdown_requested = 0;
3842 qemu_system_powerdown();
3843 ret = EXCP_INTERRUPT;
3844 }
3845 if (unlikely(ret == EXCP_DEBUG)) {
3846 gdb_set_stop_cpu(cur_cpu);
3847 vm_stop(EXCP_DEBUG);
3848 }
3849 /* If all cpus are halted then wait until the next IRQ */
3850 /* XXX: use timeout computed from timers */
3851 if (ret == EXCP_HALTED) {
3852 if (use_icount) {
3853 int64_t add;
3854 int64_t delta;
3855 /* Advance virtual time to the next event. */
3856 if (use_icount == 1) {
3857 /* When not using an adaptive execution frequency
3858 we tend to get badly out of sync with real time,
3859 so just delay for a reasonable amount of time. */
3860 delta = 0;
3861 } else {
3862 delta = cpu_get_icount() - cpu_get_clock();
3863 }
3864 if (delta > 0) {
3865 /* If virtual time is ahead of real time then just
3866 wait for IO. */
3867 timeout = (delta / 1000000) + 1;
3868 } else {
3869 /* Wait for either IO to occur or the next
3870 timer event. */
3871 add = qemu_next_deadline();
3872 /* We advance the timer before checking for IO.
3873 Limit the amount we advance so that early IO
3874 activity won't get the guest too far ahead. */
3875 if (add > 10000000)
3876 add = 10000000;
3877 delta += add;
3878 add = (add + (1 << icount_time_shift) - 1)
3879 >> icount_time_shift;
3880 qemu_icount += add;
3881 timeout = delta / 1000000;
3882 if (timeout < 0)
3883 timeout = 0;
3884 }
3885 } else {
3886 timeout = 5000;
3887 }
3888 } else {
3889 timeout = 0;
3890 }
3891 } else {
3892 if (shutdown_requested) {
3893 ret = EXCP_INTERRUPT;
3894 break;
3895 }
3896 timeout = 5000;
3897 }
3898 #ifdef CONFIG_PROFILER
3899 ti = profile_getclock();
3900 #endif
3901 main_loop_wait(timeout);
3902 #ifdef CONFIG_PROFILER
3903 dev_time += profile_getclock() - ti;
3904 #endif
3905 }
3906 cpu_disable_ticks();
3907 return ret;
3908 }
3909
3910 static void help(int exitcode)
3911 {
3912 /* Please keep in synch with QEMU_OPTION_ enums, qemu_options[]
3913 and qemu-doc.texi */
3914 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
3915 "usage: %s [options] [disk_image]\n"
3916 "\n"
3917 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
3918 "\n"
3919 "Standard options:\n"
3920 "-h or -help display this help and exit\n"
3921 "-M machine select emulated machine (-M ? for list)\n"
3922 "-cpu cpu select CPU (-cpu ? for list)\n"
3923 "-smp n set the number of CPUs to 'n' [default=1]\n"
3924 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
3925 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
3926 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
3927 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
3928 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
3929 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
3930 " [,cache=writethrough|writeback|none][,format=f][,serial=s]\n"
3931 " use 'file' as a drive image\n"
3932 "-mtdblock file use 'file' as on-board Flash memory image\n"
3933 "-sd file use 'file' as SecureDigital card image\n"
3934 "-pflash file use 'file' as a parallel flash image\n"
3935 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
3936 "-snapshot write to temporary files instead of disk image files\n"
3937 "-m megs set virtual RAM size to megs MB [default=%d]\n"
3938 #ifndef _WIN32
3939 "-k language use keyboard layout (for example \"fr\" for French)\n"
3940 #endif
3941 #ifdef HAS_AUDIO
3942 "-audio-help print list of audio drivers and their options\n"
3943 "-soundhw c1,... enable audio support\n"
3944 " and only specified sound cards (comma separated list)\n"
3945 " use -soundhw ? to get the list of supported cards\n"
3946 " use -soundhw all to enable all of them\n"
3947 #endif
3948 "-usb enable the USB driver (will be the default soon)\n"
3949 "-usbdevice name add the host or guest USB device 'name'\n"
3950 "-name string set the name of the guest\n"
3951 "-uuid %%08x-%%04x-%%04x-%%04x-%%012x\n"
3952 " specify machine UUID\n"
3953 "\n"
3954 "Display options:\n"
3955 "-nographic disable graphical output and redirect serial I/Os to console\n"
3956 #ifdef CONFIG_CURSES
3957 "-curses use a curses/ncurses interface instead of SDL\n"
3958 #endif
3959 #ifdef CONFIG_SDL
3960 "-no-frame open SDL window without a frame and window decorations\n"
3961 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
3962 "-no-quit disable SDL window close capability\n"
3963 "-sdl enable SDL\n"
3964 #endif
3965 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
3966 "-vga [std|cirrus|vmware|none]\n"
3967 " select video card type\n"
3968 "-full-screen start in full screen\n"
3969 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
3970 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
3971 #endif
3972 "-vnc display start a VNC server on display\n"
3973 "\n"
3974 "Network options:\n"
3975 "-net nic[,vlan=n][,macaddr=addr][,model=type][,name=str]\n"
3976 " create a new Network Interface Card and connect it to VLAN 'n'\n"
3977 #ifdef CONFIG_SLIRP
3978 "-net user[,vlan=n][,name=str][,hostname=host]\n"
3979 " connect the user mode network stack to VLAN 'n' and send\n"
3980 " hostname 'host' to DHCP clients\n"
3981 #endif
3982 #ifdef _WIN32
3983 "-net tap[,vlan=n][,name=str],ifname=name\n"
3984 " connect the host TAP network interface to VLAN 'n'\n"
3985 #else
3986 "-net tap[,vlan=n][,name=str][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
3987 " connect the host TAP network interface to VLAN 'n' and use the\n"
3988 " network scripts 'file' (default=%s)\n"
3989 " and 'dfile' (default=%s);\n"
3990 " use '[down]script=no' to disable script execution;\n"
3991 " use 'fd=h' to connect to an already opened TAP interface\n"
3992 #endif
3993 "-net socket[,vlan=n][,name=str][,fd=h][,listen=[host]:port][,connect=host:port]\n"
3994 " connect the vlan 'n' to another VLAN using a socket connection\n"
3995 "-net socket[,vlan=n][,name=str][,fd=h][,mcast=maddr:port]\n"
3996 " connect the vlan 'n' to multicast maddr and port\n"
3997 #ifdef CONFIG_VDE
3998 "-net vde[,vlan=n][,name=str][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
3999 " connect the vlan 'n' to port 'n' of a vde switch running\n"
4000 " on host and listening for incoming connections on 'socketpath'.\n"
4001 " Use group 'groupname' and mode 'octalmode' to change default\n"
4002 " ownership and permissions for communication port.\n"
4003 #endif
4004 "-net none use it alone to have zero network devices; if no -net option\n"
4005 " is provided, the default is '-net nic -net user'\n"
4006 #ifdef CONFIG_SLIRP
4007 "-tftp dir allow tftp access to files in dir [-net user]\n"
4008 "-bootp file advertise file in BOOTP replies\n"
4009 #ifndef _WIN32
4010 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
4011 #endif
4012 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
4013 " redirect TCP or UDP connections from host to guest [-net user]\n"
4014 #endif
4015 "\n"
4016 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n"
4017 "-bt hci,host[:id]\n"
4018 " use host's HCI with the given name\n"
4019 "-bt hci[,vlan=n]\n"
4020 " emulate a standard HCI in virtual scatternet 'n'\n"
4021 "-bt vhci[,vlan=n]\n"
4022 " add host computer to virtual scatternet 'n' using VHCI\n"
4023 "-bt device:dev[,vlan=n]\n"
4024 " emulate a bluetooth device 'dev' in scatternet 'n'\n"
4025 "\n"
4026 #ifdef TARGET_I386
4027 "\n"
4028 "i386 target only:\n"
4029 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
4030 "-rtc-td-hack use it to fix time drift in Windows ACPI HAL\n"
4031 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
4032 "-no-acpi disable ACPI\n"
4033 "-no-hpet disable HPET\n"
4034 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,data=file1[:file2]...]\n"
4035 " ACPI table description\n"
4036 #endif
4037 "Linux boot specific:\n"
4038 "-kernel bzImage use 'bzImage' as kernel image\n"
4039 "-append cmdline use 'cmdline' as kernel command line\n"
4040 "-initrd file use 'file' as initial ram disk\n"
4041 "\n"
4042 "Debug/Expert options:\n"
4043 "-serial dev redirect the serial port to char device 'dev'\n"
4044 "-parallel dev redirect the parallel port to char device 'dev'\n"
4045 "-monitor dev redirect the monitor to char device 'dev'\n"
4046 "-pidfile file write PID to 'file'\n"
4047 "-S freeze CPU at startup (use 'c' to start execution)\n"
4048 "-s wait gdb connection to port\n"
4049 "-p port set gdb connection port [default=%s]\n"
4050 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
4051 "-hdachs c,h,s[,t]\n"
4052 " force hard disk 0 physical geometry and the optional BIOS\n"
4053 " translation (t=none or lba) (usually qemu can guess them)\n"
4054 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
4055 "-bios file set the filename for the BIOS\n"
4056 #ifdef USE_KQEMU
4057 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
4058 "-no-kqemu disable KQEMU kernel module usage\n"
4059 #endif
4060 #ifdef CONFIG_KVM
4061 "-enable-kvm enable KVM full virtualization support\n"
4062 #endif
4063 "-no-reboot exit instead of rebooting\n"
4064 "-no-shutdown stop before shutdown\n"
4065 "-loadvm [tag|id]\n"
4066 " start right away with a saved state (loadvm in monitor)\n"
4067 #ifndef _WIN32
4068 "-daemonize daemonize QEMU after initializing\n"
4069 #endif
4070 "-option-rom rom load a file, rom, into the option ROM space\n"
4071 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
4072 "-prom-env variable=value\n"
4073 " set OpenBIOS nvram variables\n"
4074 #endif
4075 "-clock force the use of the given methods for timer alarm.\n"
4076 " To see what timers are available use -clock ?\n"
4077 "-localtime set the real time clock to local time [default=utc]\n"
4078 "-startdate select initial date of the clock\n"
4079 "-icount [N|auto]\n"
4080 " enable virtual instruction counter with 2^N clock ticks per instruction\n"
4081 "-echr chr set terminal escape character instead of ctrl-a\n"
4082 "-virtioconsole c\n"
4083 " set virtio console\n"
4084 "-show-cursor show cursor\n"
4085 #if defined(TARGET_ARM) || defined(TARGET_M68K)
4086 "-semihosting semihosting mode\n"
4087 #endif
4088 #if defined(TARGET_ARM)
4089 "-old-param old param mode\n"
4090 #endif
4091 "-tb-size n set TB size\n"
4092 "-incoming p prepare for incoming migration, listen on port p\n"
4093 #ifndef _WIN32
4094 "-chroot dir Chroot to dir just before starting the VM.\n"
4095 "-runas user Change to user id user just before starting the VM.\n"
4096 #endif
4097 "\n"
4098 "During emulation, the following keys are useful:\n"
4099 "ctrl-alt-f toggle full screen\n"
4100 "ctrl-alt-n switch to virtual console 'n'\n"
4101 "ctrl-alt toggle mouse and keyboard grab\n"
4102 "\n"
4103 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4104 ,
4105 "qemu",
4106 DEFAULT_RAM_SIZE,
4107 #ifndef _WIN32
4108 DEFAULT_NETWORK_SCRIPT,
4109 DEFAULT_NETWORK_DOWN_SCRIPT,
4110 #endif
4111 DEFAULT_GDBSTUB_PORT,
4112 "/tmp/qemu.log");
4113 exit(exitcode);
4114 }
4115
4116 #define HAS_ARG 0x0001
4117
4118 enum {
4119 /* Please keep in synch with help, qemu_options[] and
4120 qemu-doc.texi */
4121 /* Standard options: */
4122 QEMU_OPTION_h,
4123 QEMU_OPTION_M,
4124 QEMU_OPTION_cpu,
4125 QEMU_OPTION_smp,
4126 QEMU_OPTION_fda,
4127 QEMU_OPTION_fdb,
4128 QEMU_OPTION_hda,
4129 QEMU_OPTION_hdb,
4130 QEMU_OPTION_hdc,
4131 QEMU_OPTION_hdd,
4132 QEMU_OPTION_cdrom,
4133 QEMU_OPTION_drive,
4134 QEMU_OPTION_mtdblock,
4135 QEMU_OPTION_sd,
4136 QEMU_OPTION_pflash,
4137 QEMU_OPTION_boot,
4138 QEMU_OPTION_snapshot,
4139 QEMU_OPTION_m,
4140 QEMU_OPTION_k,
4141 QEMU_OPTION_audio_help,
4142 QEMU_OPTION_soundhw,
4143 QEMU_OPTION_usb,
4144 QEMU_OPTION_usbdevice,
4145 QEMU_OPTION_name,
4146 QEMU_OPTION_uuid,
4147
4148 /* Display options: */
4149 QEMU_OPTION_nographic,
4150 QEMU_OPTION_curses,
4151 QEMU_OPTION_no_frame,
4152 QEMU_OPTION_alt_grab,
4153 QEMU_OPTION_no_quit,
4154 QEMU_OPTION_sdl,
4155 QEMU_OPTION_portrait,
4156 QEMU_OPTION_vga,
4157 QEMU_OPTION_full_screen,
4158 QEMU_OPTION_g,
4159 QEMU_OPTION_vnc,
4160
4161 /* Network options: */
4162 QEMU_OPTION_net,
4163 QEMU_OPTION_tftp,
4164 QEMU_OPTION_bootp,
4165 QEMU_OPTION_smb,
4166 QEMU_OPTION_redir,
4167 QEMU_OPTION_bt,
4168
4169 /* i386 target only: */
4170 QEMU_OPTION_win2k_hack,
4171 QEMU_OPTION_rtc_td_hack,
4172 QEMU_OPTION_no_fd_bootchk,
4173 QEMU_OPTION_no_acpi,
4174 QEMU_OPTION_no_hpet,
4175 QEMU_OPTION_acpitable,
4176
4177 /* Linux boot specific: */
4178 QEMU_OPTION_kernel,
4179 QEMU_OPTION_append,
4180 QEMU_OPTION_initrd,
4181
4182 /* Debug/Expert options: */
4183 QEMU_OPTION_serial,
4184 QEMU_OPTION_parallel,
4185 QEMU_OPTION_monitor,
4186 QEMU_OPTION_pidfile,
4187 QEMU_OPTION_S,
4188 QEMU_OPTION_s,
4189 QEMU_OPTION_p,
4190 QEMU_OPTION_d,
4191 QEMU_OPTION_hdachs,
4192 QEMU_OPTION_L,
4193 QEMU_OPTION_bios,
4194 QEMU_OPTION_kernel_kqemu,
4195 QEMU_OPTION_no_kqemu,
4196 QEMU_OPTION_enable_kvm,
4197 QEMU_OPTION_no_reboot,
4198 QEMU_OPTION_no_shutdown,
4199 QEMU_OPTION_loadvm,
4200 QEMU_OPTION_daemonize,
4201 QEMU_OPTION_option_rom,
4202 QEMU_OPTION_prom_env,
4203 QEMU_OPTION_clock,
4204 QEMU_OPTION_localtime,
4205 QEMU_OPTION_startdate,
4206 QEMU_OPTION_icount,
4207 QEMU_OPTION_echr,
4208 QEMU_OPTION_virtiocon,
4209 QEMU_OPTION_show_cursor,
4210 QEMU_OPTION_semihosting,
4211 QEMU_OPTION_old_param,
4212 QEMU_OPTION_tb_size,
4213 QEMU_OPTION_incoming,
4214 QEMU_OPTION_chroot,
4215 QEMU_OPTION_runas,
4216 };
4217
4218 typedef struct QEMUOption {
4219 const char *name;
4220 int flags;
4221 int index;
4222 } QEMUOption;
4223
4224 static const QEMUOption qemu_options[] = {
4225 /* Please keep in synch with help, QEMU_OPTION_ enums, and
4226 qemu-doc.texi */
4227 /* Standard options: */
4228 { "h", 0, QEMU_OPTION_h },
4229 { "help", 0, QEMU_OPTION_h },
4230 { "M", HAS_ARG, QEMU_OPTION_M },
4231 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
4232 { "smp", HAS_ARG, QEMU_OPTION_smp },
4233 { "fda", HAS_ARG, QEMU_OPTION_fda },
4234 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
4235 { "hda", HAS_ARG, QEMU_OPTION_hda },
4236 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
4237 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
4238 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
4239 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
4240 { "drive", HAS_ARG, QEMU_OPTION_drive },
4241 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
4242 { "sd", HAS_ARG, QEMU_OPTION_sd },
4243 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
4244 { "boot", HAS_ARG, QEMU_OPTION_boot },
4245 { "snapshot", 0, QEMU_OPTION_snapshot },
4246 { "m", HAS_ARG, QEMU_OPTION_m },
4247 { "k", HAS_ARG, QEMU_OPTION_k },
4248 #ifdef HAS_AUDIO
4249 { "audio-help", 0, QEMU_OPTION_audio_help },
4250 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
4251 #endif
4252 { "usb", 0, QEMU_OPTION_usb },
4253 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
4254 { "name", HAS_ARG, QEMU_OPTION_name },
4255 { "uuid", HAS_ARG, QEMU_OPTION_uuid },
4256
4257 /* Display options: */
4258 { "nographic", 0, QEMU_OPTION_nographic },
4259 #ifdef CONFIG_CURSES
4260 { "curses", 0, QEMU_OPTION_curses },
4261 #endif
4262 #ifdef CONFIG_SDL
4263 { "no-frame", 0, QEMU_OPTION_no_frame },
4264 { "alt-grab", 0, QEMU_OPTION_alt_grab },
4265 { "no-quit", 0, QEMU_OPTION_no_quit },
4266 { "sdl", 0, QEMU_OPTION_sdl },
4267 #endif
4268 { "portrait", 0, QEMU_OPTION_portrait },
4269 { "vga", HAS_ARG, QEMU_OPTION_vga },
4270 { "full-screen", 0, QEMU_OPTION_full_screen },
4271 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
4272 { "g", 1, QEMU_OPTION_g },
4273 #endif
4274 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
4275
4276 /* Network options: */
4277 { "net", HAS_ARG, QEMU_OPTION_net},
4278 #ifdef CONFIG_SLIRP
4279 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
4280 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
4281 #ifndef _WIN32
4282 { "smb", HAS_ARG, QEMU_OPTION_smb },
4283 #endif
4284 { "redir", HAS_ARG, QEMU_OPTION_redir },
4285 #endif
4286 { "bt", HAS_ARG, QEMU_OPTION_bt },
4287 #ifdef TARGET_I386
4288 /* i386 target only: */
4289 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
4290 { "rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack },
4291 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
4292 { "no-acpi", 0, QEMU_OPTION_no_acpi },
4293 { "no-hpet", 0, QEMU_OPTION_no_hpet },
4294 { "acpitable", HAS_ARG, QEMU_OPTION_acpitable },
4295 #endif
4296
4297 /* Linux boot specific: */
4298 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
4299 { "append", HAS_ARG, QEMU_OPTION_append },
4300 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
4301
4302 /* Debug/Expert options: */
4303 { "serial", HAS_ARG, QEMU_OPTION_serial },
4304 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
4305 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
4306 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
4307 { "S", 0, QEMU_OPTION_S },
4308 { "s", 0, QEMU_OPTION_s },
4309 { "p", HAS_ARG, QEMU_OPTION_p },
4310 { "d", HAS_ARG, QEMU_OPTION_d },
4311 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
4312 { "L", HAS_ARG, QEMU_OPTION_L },
4313 { "bios", HAS_ARG, QEMU_OPTION_bios },
4314 #ifdef USE_KQEMU
4315 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
4316 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
4317 #endif
4318 #ifdef CONFIG_KVM
4319 { "enable-kvm", 0, QEMU_OPTION_enable_kvm },
4320 #endif
4321 { "no-reboot", 0, QEMU_OPTION_no_reboot },
4322 { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
4323 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
4324 { "daemonize", 0, QEMU_OPTION_daemonize },
4325 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
4326 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
4327 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
4328 #endif
4329 { "clock", HAS_ARG, QEMU_OPTION_clock },
4330 { "localtime", 0, QEMU_OPTION_localtime },
4331 { "startdate", HAS_ARG, QEMU_OPTION_startdate },
4332 { "icount", HAS_ARG, QEMU_OPTION_icount },
4333 { "echr", HAS_ARG, QEMU_OPTION_echr },
4334 { "virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon },
4335 { "show-cursor", 0, QEMU_OPTION_show_cursor },
4336 #if defined(TARGET_ARM) || defined(TARGET_M68K)
4337 { "semihosting", 0, QEMU_OPTION_semihosting },
4338 #endif
4339 #if defined(TARGET_ARM)
4340 { "old-param", 0, QEMU_OPTION_old_param },
4341 #endif
4342 { "tb-size", HAS_ARG, QEMU_OPTION_tb_size },
4343 { "incoming", HAS_ARG, QEMU_OPTION_incoming },
4344 { "chroot", HAS_ARG, QEMU_OPTION_chroot },
4345 { "runas", HAS_ARG, QEMU_OPTION_runas },
4346 { NULL },
4347 };
4348
4349 #ifdef HAS_AUDIO
4350 struct soundhw soundhw[] = {
4351 #ifdef HAS_AUDIO_CHOICE
4352 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4353 {
4354 "pcspk",
4355 "PC speaker",
4356 0,
4357 1,
4358 { .init_isa = pcspk_audio_init }
4359 },
4360 #endif
4361
4362 #ifdef CONFIG_SB16
4363 {
4364 "sb16",
4365 "Creative Sound Blaster 16",
4366 0,
4367 1,
4368 { .init_isa = SB16_init }
4369 },
4370 #endif
4371
4372 #ifdef CONFIG_CS4231A
4373 {
4374 "cs4231a",
4375 "CS4231A",
4376 0,
4377 1,
4378 { .init_isa = cs4231a_init }
4379 },
4380 #endif
4381
4382 #ifdef CONFIG_ADLIB
4383 {
4384 "adlib",
4385 #ifdef HAS_YMF262
4386 "Yamaha YMF262 (OPL3)",
4387 #else
4388 "Yamaha YM3812 (OPL2)",
4389 #endif
4390 0,
4391 1,
4392 { .init_isa = Adlib_init }
4393 },
4394 #endif
4395
4396 #ifdef CONFIG_GUS
4397 {
4398 "gus",
4399 "Gravis Ultrasound GF1",
4400 0,
4401 1,
4402 { .init_isa = GUS_init }
4403 },
4404 #endif
4405
4406 #ifdef CONFIG_AC97
4407 {
4408 "ac97",
4409 "Intel 82801AA AC97 Audio",
4410 0,
4411 0,
4412 { .init_pci = ac97_init }
4413 },
4414 #endif
4415
4416 #ifdef CONFIG_ES1370
4417 {
4418 "es1370",
4419 "ENSONIQ AudioPCI ES1370",
4420 0,
4421 0,
4422 { .init_pci = es1370_init }
4423 },
4424 #endif
4425
4426 #endif /* HAS_AUDIO_CHOICE */
4427
4428 { NULL, NULL, 0, 0, { NULL } }
4429 };
4430
4431 static void select_soundhw (const char *optarg)
4432 {
4433 struct soundhw *c;
4434
4435 if (*optarg == '?') {
4436 show_valid_cards:
4437
4438 printf ("Valid sound card names (comma separated):\n");
4439 for (c = soundhw; c->name; ++c) {
4440 printf ("%-11s %s\n", c->name, c->descr);
4441 }
4442 printf ("\n-soundhw all will enable all of the above\n");
4443 exit (*optarg != '?');
4444 }
4445 else {
4446 size_t l;
4447 const char *p;
4448 char *e;
4449 int bad_card = 0;
4450
4451 if (!strcmp (optarg, "all")) {
4452 for (c = soundhw; c->name; ++c) {
4453 c->enabled = 1;
4454 }
4455 return;
4456 }
4457
4458 p = optarg;
4459 while (*p) {
4460 e = strchr (p, ',');
4461 l = !e ? strlen (p) : (size_t) (e - p);
4462
4463 for (c = soundhw; c->name; ++c) {
4464 if (!strncmp (c->name, p, l)) {
4465 c->enabled = 1;
4466 break;
4467 }
4468 }
4469
4470 if (!c->name) {
4471 if (l > 80) {
4472 fprintf (stderr,
4473 "Unknown sound card name (too big to show)\n");
4474 }
4475 else {
4476 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4477 (int) l, p);
4478 }
4479 bad_card = 1;
4480 }
4481 p += l + (e != NULL);
4482 }
4483
4484 if (bad_card)
4485 goto show_valid_cards;
4486 }
4487 }
4488 #endif
4489
4490 static void select_vgahw (const char *p)
4491 {
4492 const char *opts;
4493
4494 if (strstart(p, "std", &opts)) {
4495 std_vga_enabled = 1;
4496 cirrus_vga_enabled = 0;
4497 vmsvga_enabled = 0;
4498 } else if (strstart(p, "cirrus", &opts)) {
4499 cirrus_vga_enabled = 1;
4500 std_vga_enabled = 0;
4501 vmsvga_enabled = 0;
4502 } else if (strstart(p, "vmware", &opts)) {
4503 cirrus_vga_enabled = 0;
4504 std_vga_enabled = 0;
4505 vmsvga_enabled = 1;
4506 } else if (strstart(p, "none", &opts)) {
4507 cirrus_vga_enabled = 0;
4508 std_vga_enabled = 0;
4509 vmsvga_enabled = 0;
4510 } else {
4511 invalid_vga:
4512 fprintf(stderr, "Unknown vga type: %s\n", p);
4513 exit(1);
4514 }
4515 while (*opts) {
4516 const char *nextopt;
4517
4518 if (strstart(opts, ",retrace=", &nextopt)) {
4519 opts = nextopt;
4520 if (strstart(opts, "dumb", &nextopt))
4521 vga_retrace_method = VGA_RETRACE_DUMB;
4522 else if (strstart(opts, "precise", &nextopt))
4523 vga_retrace_method = VGA_RETRACE_PRECISE;
4524 else goto invalid_vga;
4525 } else goto invalid_vga;
4526 opts = nextopt;
4527 }
4528 }
4529
4530 #ifdef _WIN32
4531 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4532 {
4533 exit(STATUS_CONTROL_C_EXIT);
4534 return TRUE;
4535 }
4536 #endif
4537
4538 static int qemu_uuid_parse(const char *str, uint8_t *uuid)
4539 {
4540 int ret;
4541
4542 if(strlen(str) != 36)
4543 return -1;
4544
4545 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4546 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4547 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4548
4549 if(ret != 16)
4550 return -1;
4551
4552 return 0;
4553 }
4554
4555 #define MAX_NET_CLIENTS 32
4556
4557 #ifndef _WIN32
4558
4559 static void termsig_handler(int signal)
4560 {
4561 qemu_system_shutdown_request();
4562 }
4563
4564 static void termsig_setup(void)
4565 {
4566 struct sigaction act;
4567
4568 memset(&act, 0, sizeof(act));
4569 act.sa_handler = termsig_handler;
4570 sigaction(SIGINT, &act, NULL);
4571 sigaction(SIGHUP, &act, NULL);
4572 sigaction(SIGTERM, &act, NULL);
4573 }
4574
4575 #endif
4576
4577 int main(int argc, char **argv, char **envp)
4578 {
4579 #ifdef CONFIG_GDBSTUB
4580 int use_gdbstub;
4581 const char *gdbstub_port;
4582 #endif
4583 uint32_t boot_devices_bitmap = 0;
4584 int i;
4585 int snapshot, linux_boot, net_boot;
4586 const char *initrd_filename;
4587 const char *kernel_filename, *kernel_cmdline;
4588 const char *boot_devices = "";
4589 DisplayState *ds;
4590 DisplayChangeListener *dcl;
4591 int cyls, heads, secs, translation;
4592 const char *net_clients[MAX_NET_CLIENTS];
4593 int nb_net_clients;
4594 const char *bt_opts[MAX_BT_CMDLINE];
4595 int nb_bt_opts;
4596 int hda_index;
4597 int optind;
4598 const char *r, *optarg;
4599 CharDriverState *monitor_hd = NULL;
4600 const char *monitor_device;
4601 const char *serial_devices[MAX_SERIAL_PORTS];
4602 int serial_device_index;
4603 const char *parallel_devices[MAX_PARALLEL_PORTS];
4604 int parallel_device_index;
4605 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4606 int virtio_console_index;
4607 const char *loadvm = NULL;
4608 QEMUMachine *machine;
4609 const char *cpu_model;
4610 const char *usb_devices[MAX_USB_CMDLINE];
4611 int usb_devices_index;
4612 int fds[2];
4613 int tb_size;
4614 const char *pid_file = NULL;
4615 const char *incoming = NULL;
4616 int fd = 0;
4617 struct passwd *pwd = NULL;
4618 const char *chroot_dir = NULL;
4619 const char *run_as = NULL;
4620
4621 qemu_cache_utils_init(envp);
4622
4623 LIST_INIT (&vm_change_state_head);
4624 #ifndef _WIN32
4625 {
4626 struct sigaction act;
4627 sigfillset(&act.sa_mask);
4628 act.sa_flags = 0;
4629 act.sa_handler = SIG_IGN;
4630 sigaction(SIGPIPE, &act, NULL);
4631 }
4632 #else
4633 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4634 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4635 QEMU to run on a single CPU */
4636 {
4637 HANDLE h;
4638 DWORD mask, smask;
4639 int i;
4640 h = GetCurrentProcess();
4641 if (GetProcessAffinityMask(h, &mask, &smask)) {
4642 for(i = 0; i < 32; i++) {
4643 if (mask & (1 << i))
4644 break;
4645 }
4646 if (i != 32) {
4647 mask = 1 << i;
4648 SetProcessAffinityMask(h, mask);
4649 }
4650 }
4651 }
4652 #endif
4653
4654 register_machines();
4655 machine = first_machine;
4656 cpu_model = NULL;
4657 initrd_filename = NULL;
4658 ram_size = 0;
4659 vga_ram_size = VGA_RAM_SIZE;
4660 #ifdef CONFIG_GDBSTUB
4661 use_gdbstub = 0;
4662 gdbstub_port = DEFAULT_GDBSTUB_PORT;
4663 #endif
4664 snapshot = 0;
4665 nographic = 0;
4666 curses = 0;
4667 kernel_filename = NULL;
4668 kernel_cmdline = "";
4669 cyls = heads = secs = 0;
4670 translation = BIOS_ATA_TRANSLATION_AUTO;
4671 monitor_device = "vc:80Cx24C";
4672
4673 serial_devices[0] = "vc:80Cx24C";
4674 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4675 serial_devices[i] = NULL;
4676 serial_device_index = 0;
4677
4678 parallel_devices[0] = "vc:80Cx24C";
4679 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4680 parallel_devices[i] = NULL;
4681 parallel_device_index = 0;
4682
4683 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4684 virtio_consoles[i] = NULL;
4685 virtio_console_index = 0;
4686
4687 usb_devices_index = 0;
4688
4689 nb_net_clients = 0;
4690 nb_bt_opts = 0;
4691 nb_drives = 0;
4692 nb_drives_opt = 0;
4693 hda_index = -1;
4694
4695 nb_nics = 0;
4696
4697 tb_size = 0;
4698 autostart= 1;
4699
4700 optind = 1;
4701 for(;;) {
4702 if (optind >= argc)
4703 break;
4704 r = argv[optind];
4705 if (r[0] != '-') {
4706 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4707 } else {
4708 const QEMUOption *popt;
4709
4710 optind++;
4711 /* Treat --foo the same as -foo. */
4712 if (r[1] == '-')
4713 r++;
4714 popt = qemu_options;
4715 for(;;) {
4716 if (!popt->name) {
4717 fprintf(stderr, "%s: invalid option -- '%s'\n",
4718 argv[0], r);
4719 exit(1);
4720 }
4721 if (!strcmp(popt->name, r + 1))
4722 break;
4723 popt++;
4724 }
4725 if (popt->flags & HAS_ARG) {
4726 if (optind >= argc) {
4727 fprintf(stderr, "%s: option '%s' requires an argument\n",
4728 argv[0], r);
4729 exit(1);
4730 }
4731 optarg = argv[optind++];
4732 } else {
4733 optarg = NULL;
4734 }
4735
4736 switch(popt->index) {
4737 case QEMU_OPTION_M:
4738 machine = find_machine(optarg);
4739 if (!machine) {
4740 QEMUMachine *m;
4741 printf("Supported machines are:\n");
4742 for(m = first_machine; m != NULL; m = m->next) {
4743 printf("%-10s %s%s\n",
4744 m->name, m->desc,
4745 m == first_machine ? " (default)" : "");
4746 }
4747 exit(*optarg != '?');
4748 }
4749 break;
4750 case QEMU_OPTION_cpu:
4751 /* hw initialization will check this */
4752 if (*optarg == '?') {
4753 /* XXX: implement xxx_cpu_list for targets that still miss it */
4754 #if defined(cpu_list)
4755 cpu_list(stdout, &fprintf);
4756 #endif
4757 exit(0);
4758 } else {
4759 cpu_model = optarg;
4760 }
4761 break;
4762 case QEMU_OPTION_initrd:
4763 initrd_filename = optarg;
4764 break;
4765 case QEMU_OPTION_hda:
4766 if (cyls == 0)
4767 hda_index = drive_add(optarg, HD_ALIAS, 0);
4768 else
4769 hda_index = drive_add(optarg, HD_ALIAS
4770 ",cyls=%d,heads=%d,secs=%d%s",
4771 0, cyls, heads, secs,
4772 translation == BIOS_ATA_TRANSLATION_LBA ?
4773 ",trans=lba" :
4774 translation == BIOS_ATA_TRANSLATION_NONE ?
4775 ",trans=none" : "");
4776 break;
4777 case QEMU_OPTION_hdb:
4778 case QEMU_OPTION_hdc:
4779 case QEMU_OPTION_hdd:
4780 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4781 break;
4782 case QEMU_OPTION_drive:
4783 drive_add(NULL, "%s", optarg);
4784 break;
4785 case QEMU_OPTION_mtdblock:
4786 drive_add(optarg, MTD_ALIAS);
4787 break;
4788 case QEMU_OPTION_sd:
4789 drive_add(optarg, SD_ALIAS);
4790 break;
4791 case QEMU_OPTION_pflash:
4792 drive_add(optarg, PFLASH_ALIAS);
4793 break;
4794 case QEMU_OPTION_snapshot:
4795 snapshot = 1;
4796 break;
4797 case QEMU_OPTION_hdachs:
4798 {
4799 const char *p;
4800 p = optarg;
4801 cyls = strtol(p, (char **)&p, 0);
4802 if (cyls < 1 || cyls > 16383)
4803 goto chs_fail;
4804 if (*p != ',')
4805 goto chs_fail;
4806 p++;
4807 heads = strtol(p, (char **)&p, 0);
4808 if (heads < 1 || heads > 16)
4809 goto chs_fail;
4810 if (*p != ',')
4811 goto chs_fail;
4812 p++;
4813 secs = strtol(p, (char **)&p, 0);
4814 if (secs < 1 || secs > 63)
4815 goto chs_fail;
4816 if (*p == ',') {
4817 p++;
4818 if (!strcmp(p, "none"))
4819 translation = BIOS_ATA_TRANSLATION_NONE;
4820 else if (!strcmp(p, "lba"))
4821 translation = BIOS_ATA_TRANSLATION_LBA;
4822 else if (!strcmp(p, "auto"))
4823 translation = BIOS_ATA_TRANSLATION_AUTO;
4824 else
4825 goto chs_fail;
4826 } else if (*p != '\0') {
4827 chs_fail:
4828 fprintf(stderr, "qemu: invalid physical CHS format\n");
4829 exit(1);
4830 }
4831 if (hda_index != -1)
4832 snprintf(drives_opt[hda_index].opt,
4833 sizeof(drives_opt[hda_index].opt),
4834 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
4835 0, cyls, heads, secs,
4836 translation == BIOS_ATA_TRANSLATION_LBA ?
4837 ",trans=lba" :
4838 translation == BIOS_ATA_TRANSLATION_NONE ?
4839 ",trans=none" : "");
4840 }
4841 break;
4842 case QEMU_OPTION_nographic:
4843 nographic = 1;
4844 break;
4845 #ifdef CONFIG_CURSES
4846 case QEMU_OPTION_curses:
4847 curses = 1;
4848 break;
4849 #endif
4850 case QEMU_OPTION_portrait:
4851 graphic_rotate = 1;
4852 break;
4853 case QEMU_OPTION_kernel:
4854 kernel_filename = optarg;
4855 break;
4856 case QEMU_OPTION_append:
4857 kernel_cmdline = optarg;
4858 break;
4859 case QEMU_OPTION_cdrom:
4860 drive_add(optarg, CDROM_ALIAS);
4861 break;
4862 case QEMU_OPTION_boot:
4863 boot_devices = optarg;
4864 /* We just do some generic consistency checks */
4865 {
4866 /* Could easily be extended to 64 devices if needed */
4867 const char *p;
4868
4869 boot_devices_bitmap = 0;
4870 for (p = boot_devices; *p != '\0'; p++) {
4871 /* Allowed boot devices are:
4872 * a b : floppy disk drives
4873 * c ... f : IDE disk drives
4874 * g ... m : machine implementation dependant drives
4875 * n ... p : network devices
4876 * It's up to each machine implementation to check
4877 * if the given boot devices match the actual hardware
4878 * implementation and firmware features.
4879 */
4880 if (*p < 'a' || *p > 'q') {
4881 fprintf(stderr, "Invalid boot device '%c'\n", *p);
4882 exit(1);
4883 }
4884 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
4885 fprintf(stderr,
4886 "Boot device '%c' was given twice\n",*p);
4887 exit(1);
4888 }
4889 boot_devices_bitmap |= 1 << (*p - 'a');
4890 }
4891 }
4892 break;
4893 case QEMU_OPTION_fda:
4894 case QEMU_OPTION_fdb:
4895 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4896 break;
4897 #ifdef TARGET_I386
4898 case QEMU_OPTION_no_fd_bootchk:
4899 fd_bootchk = 0;
4900 break;
4901 #endif
4902 case QEMU_OPTION_net:
4903 if (nb_net_clients >= MAX_NET_CLIENTS) {
4904 fprintf(stderr, "qemu: too many network clients\n");
4905 exit(1);
4906 }
4907 net_clients[nb_net_clients] = optarg;
4908 nb_net_clients++;
4909 break;
4910 #ifdef CONFIG_SLIRP
4911 case QEMU_OPTION_tftp:
4912 tftp_prefix = optarg;
4913 break;
4914 case QEMU_OPTION_bootp:
4915 bootp_filename = optarg;
4916 break;
4917 #ifndef _WIN32
4918 case QEMU_OPTION_smb:
4919 net_slirp_smb(optarg);
4920 break;
4921 #endif
4922 case QEMU_OPTION_redir:
4923 net_slirp_redir(optarg);
4924 break;
4925 #endif
4926 case QEMU_OPTION_bt:
4927 if (nb_bt_opts >= MAX_BT_CMDLINE) {
4928 fprintf(stderr, "qemu: too many bluetooth options\n");
4929 exit(1);
4930 }
4931 bt_opts[nb_bt_opts++] = optarg;
4932 break;
4933 #ifdef HAS_AUDIO
4934 case QEMU_OPTION_audio_help:
4935 AUD_help ();
4936 exit (0);
4937 break;
4938 case QEMU_OPTION_soundhw:
4939 select_soundhw (optarg);
4940 break;
4941 #endif
4942 case QEMU_OPTION_h:
4943 help(0);
4944 break;
4945 case QEMU_OPTION_m: {
4946 uint64_t value;
4947 char *ptr;
4948
4949 value = strtoul(optarg, &ptr, 10);
4950 switch (*ptr) {
4951 case 0: case 'M': case 'm':
4952 value <<= 20;
4953 break;
4954 case 'G': case 'g':
4955 value <<= 30;
4956 break;
4957 default:
4958 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
4959 exit(1);
4960 }
4961
4962 /* On 32-bit hosts, QEMU is limited by virtual address space */
4963 if (value > (2047 << 20)
4964 #ifndef USE_KQEMU
4965 && HOST_LONG_BITS == 32
4966 #endif
4967 ) {
4968 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
4969 exit(1);
4970 }
4971 if (value != (uint64_t)(ram_addr_t)value) {
4972 fprintf(stderr, "qemu: ram size too large\n");
4973 exit(1);
4974 }
4975 ram_size = value;
4976 break;
4977 }
4978 case QEMU_OPTION_d:
4979 {
4980 int mask;
4981 const CPULogItem *item;
4982
4983 mask = cpu_str_to_log_mask(optarg);
4984 if (!mask) {
4985 printf("Log items (comma separated):\n");
4986 for(item = cpu_log_items; item->mask != 0; item++) {
4987 printf("%-10s %s\n", item->name, item->help);
4988 }
4989 exit(1);
4990 }
4991 cpu_set_log(mask);
4992 }
4993 break;
4994 #ifdef CONFIG_GDBSTUB
4995 case QEMU_OPTION_s:
4996 use_gdbstub = 1;
4997 break;
4998 case QEMU_OPTION_p:
4999 gdbstub_port = optarg;
5000 break;
5001 #endif
5002 case QEMU_OPTION_L:
5003 bios_dir = optarg;
5004 break;
5005 case QEMU_OPTION_bios:
5006 bios_name = optarg;
5007 break;
5008 case QEMU_OPTION_S:
5009 autostart = 0;
5010 break;
5011 case QEMU_OPTION_k:
5012 keyboard_layout = optarg;
5013 break;
5014 case QEMU_OPTION_localtime:
5015 rtc_utc = 0;
5016 break;
5017 case QEMU_OPTION_vga:
5018 select_vgahw (optarg);
5019 break;
5020 case QEMU_OPTION_g:
5021 {
5022 const char *p;
5023 int w, h, depth;
5024 p = optarg;
5025 w = strtol(p, (char **)&p, 10);
5026 if (w <= 0) {
5027 graphic_error:
5028 fprintf(stderr, "qemu: invalid resolution or depth\n");
5029 exit(1);
5030 }
5031 if (*p != 'x')
5032 goto graphic_error;
5033 p++;
5034 h = strtol(p, (char **)&p, 10);
5035 if (h <= 0)
5036 goto graphic_error;
5037 if (*p == 'x') {
5038 p++;
5039 depth = strtol(p, (char **)&p, 10);
5040 if (depth != 8 && depth != 15 && depth != 16 &&
5041 depth != 24 && depth != 32)
5042 goto graphic_error;
5043 } else if (*p == '\0') {
5044 depth = graphic_depth;
5045 } else {
5046 goto graphic_error;
5047 }
5048
5049 graphic_width = w;
5050 graphic_height = h;
5051 graphic_depth = depth;
5052 }
5053 break;
5054 case QEMU_OPTION_echr:
5055 {
5056 char *r;
5057 term_escape_char = strtol(optarg, &r, 0);
5058 if (r == optarg)
5059 printf("Bad argument to echr\n");
5060 break;
5061 }
5062 case QEMU_OPTION_monitor:
5063 monitor_device = optarg;
5064 break;
5065 case QEMU_OPTION_serial:
5066 if (serial_device_index >= MAX_SERIAL_PORTS) {
5067 fprintf(stderr, "qemu: too many serial ports\n");
5068 exit(1);
5069 }
5070 serial_devices[serial_device_index] = optarg;
5071 serial_device_index++;
5072 break;
5073 case QEMU_OPTION_virtiocon:
5074 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5075 fprintf(stderr, "qemu: too many virtio consoles\n");
5076 exit(1);
5077 }
5078 virtio_consoles[virtio_console_index] = optarg;
5079 virtio_console_index++;
5080 break;
5081 case QEMU_OPTION_parallel:
5082 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5083 fprintf(stderr, "qemu: too many parallel ports\n");
5084 exit(1);
5085 }
5086 parallel_devices[parallel_device_index] = optarg;
5087 parallel_device_index++;
5088 break;
5089 case QEMU_OPTION_loadvm:
5090 loadvm = optarg;
5091 break;
5092 case QEMU_OPTION_full_screen:
5093 full_screen = 1;
5094 break;
5095 #ifdef CONFIG_SDL
5096 case QEMU_OPTION_no_frame:
5097 no_frame = 1;
5098 break;
5099 case QEMU_OPTION_alt_grab:
5100 alt_grab = 1;
5101 break;
5102 case QEMU_OPTION_no_quit:
5103 no_quit = 1;
5104 break;
5105 case QEMU_OPTION_sdl:
5106 sdl = 1;
5107 break;
5108 #endif
5109 case QEMU_OPTION_pidfile:
5110 pid_file = optarg;
5111 break;
5112 #ifdef TARGET_I386
5113 case QEMU_OPTION_win2k_hack:
5114 win2k_install_hack = 1;
5115 break;
5116 case QEMU_OPTION_rtc_td_hack:
5117 rtc_td_hack = 1;
5118 break;
5119 case QEMU_OPTION_acpitable:
5120 if(acpi_table_add(optarg) < 0) {
5121 fprintf(stderr, "Wrong acpi table provided\n");
5122 exit(1);
5123 }
5124 break;
5125 #endif
5126 #ifdef USE_KQEMU
5127 case QEMU_OPTION_no_kqemu:
5128 kqemu_allowed = 0;
5129 break;
5130 case QEMU_OPTION_kernel_kqemu:
5131 kqemu_allowed = 2;
5132 break;
5133 #endif
5134 #ifdef CONFIG_KVM
5135 case QEMU_OPTION_enable_kvm:
5136 kvm_allowed = 1;
5137 #ifdef USE_KQEMU
5138 kqemu_allowed = 0;
5139 #endif
5140 break;
5141 #endif
5142 case QEMU_OPTION_usb:
5143 usb_enabled = 1;
5144 break;
5145 case QEMU_OPTION_usbdevice:
5146 usb_enabled = 1;
5147 if (usb_devices_index >= MAX_USB_CMDLINE) {
5148 fprintf(stderr, "Too many USB devices\n");
5149 exit(1);
5150 }
5151 usb_devices[usb_devices_index] = optarg;
5152 usb_devices_index++;
5153 break;
5154 case QEMU_OPTION_smp:
5155 smp_cpus = atoi(optarg);
5156 if (smp_cpus < 1) {
5157 fprintf(stderr, "Invalid number of CPUs\n");
5158 exit(1);
5159 }
5160 break;
5161 case QEMU_OPTION_vnc:
5162 vnc_display = optarg;
5163 break;
5164 case QEMU_OPTION_no_acpi:
5165 acpi_enabled = 0;
5166 break;
5167 case QEMU_OPTION_no_hpet:
5168 no_hpet = 1;
5169 break;
5170 case QEMU_OPTION_no_reboot:
5171 no_reboot = 1;
5172 break;
5173 case QEMU_OPTION_no_shutdown:
5174 no_shutdown = 1;
5175 break;
5176 case QEMU_OPTION_show_cursor:
5177 cursor_hide = 0;
5178 break;
5179 case QEMU_OPTION_uuid:
5180 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5181 fprintf(stderr, "Fail to parse UUID string."
5182 " Wrong format.\n");
5183 exit(1);
5184 }
5185 break;
5186 case QEMU_OPTION_daemonize:
5187 daemonize = 1;
5188 break;
5189 case QEMU_OPTION_option_rom:
5190 if (nb_option_roms >= MAX_OPTION_ROMS) {
5191 fprintf(stderr, "Too many option ROMs\n");
5192 exit(1);
5193 }
5194 option_rom[nb_option_roms] = optarg;
5195 nb_option_roms++;
5196 break;
5197 case QEMU_OPTION_semihosting:
5198 semihosting_enabled = 1;
5199 break;
5200 case QEMU_OPTION_name:
5201 qemu_name = optarg;
5202 break;
5203 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5204 case QEMU_OPTION_prom_env:
5205 if (nb_prom_envs >= MAX_PROM_ENVS) {
5206 fprintf(stderr, "Too many prom variables\n");
5207 exit(1);
5208 }
5209 prom_envs[nb_prom_envs] = optarg;
5210 nb_prom_envs++;
5211 break;
5212 #endif
5213 #ifdef TARGET_ARM
5214 case QEMU_OPTION_old_param:
5215 old_param = 1;
5216 break;
5217 #endif
5218 case QEMU_OPTION_clock:
5219 configure_alarms(optarg);
5220 break;
5221 case QEMU_OPTION_startdate:
5222 {
5223 struct tm tm;
5224 time_t rtc_start_date;
5225 if (!strcmp(optarg, "now")) {
5226 rtc_date_offset = -1;
5227 } else {
5228 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5229 &tm.tm_year,
5230 &tm.tm_mon,
5231 &tm.tm_mday,
5232 &tm.tm_hour,
5233 &tm.tm_min,
5234 &tm.tm_sec) == 6) {
5235 /* OK */
5236 } else if (sscanf(optarg, "%d-%d-%d",
5237 &tm.tm_year,
5238 &tm.tm_mon,
5239 &tm.tm_mday) == 3) {
5240 tm.tm_hour = 0;
5241 tm.tm_min = 0;
5242 tm.tm_sec = 0;
5243 } else {
5244 goto date_fail;
5245 }
5246 tm.tm_year -= 1900;
5247 tm.tm_mon--;
5248 rtc_start_date = mktimegm(&tm);
5249 if (rtc_start_date == -1) {
5250 date_fail:
5251 fprintf(stderr, "Invalid date format. Valid format are:\n"
5252 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5253 exit(1);
5254 }
5255 rtc_date_offset = time(NULL) - rtc_start_date;
5256 }
5257 }
5258 break;
5259 case QEMU_OPTION_tb_size:
5260 tb_size = strtol(optarg, NULL, 0);
5261 if (tb_size < 0)
5262 tb_size = 0;
5263 break;
5264 case QEMU_OPTION_icount:
5265 use_icount = 1;
5266 if (strcmp(optarg, "auto") == 0) {
5267 icount_time_shift = -1;
5268 } else {
5269 icount_time_shift = strtol(optarg, NULL, 0);
5270 }
5271 break;
5272 case QEMU_OPTION_incoming:
5273 incoming = optarg;
5274 break;
5275 case QEMU_OPTION_chroot:
5276 chroot_dir = optarg;
5277 break;
5278 case QEMU_OPTION_runas:
5279 run_as = optarg;
5280 break;
5281 }
5282 }
5283 }
5284
5285 #if defined(CONFIG_KVM) && defined(USE_KQEMU)
5286 if (kvm_allowed && kqemu_allowed) {
5287 fprintf(stderr,
5288 "You can not enable both KVM and kqemu at the same time\n");
5289 exit(1);
5290 }
5291 #endif
5292
5293 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5294 if (smp_cpus > machine->max_cpus) {
5295 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5296 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5297 machine->max_cpus);
5298 exit(1);
5299 }
5300
5301 if (nographic) {
5302 if (serial_device_index == 0)
5303 serial_devices[0] = "stdio";
5304 if (parallel_device_index == 0)
5305 parallel_devices[0] = "null";
5306 if (strncmp(monitor_device, "vc", 2) == 0)
5307 monitor_device = "stdio";
5308 }
5309
5310 #ifndef _WIN32
5311 if (daemonize) {
5312 pid_t pid;
5313
5314 if (pipe(fds) == -1)
5315 exit(1);
5316
5317 pid = fork();
5318 if (pid > 0) {
5319 uint8_t status;
5320 ssize_t len;
5321
5322 close(fds[1]);
5323
5324 again:
5325 len = read(fds[0], &status, 1);
5326 if (len == -1 && (errno == EINTR))
5327 goto again;
5328
5329 if (len != 1)
5330 exit(1);
5331 else if (status == 1) {
5332 fprintf(stderr, "Could not acquire pidfile\n");
5333 exit(1);
5334 } else
5335 exit(0);
5336 } else if (pid < 0)
5337 exit(1);
5338
5339 setsid();
5340
5341 pid = fork();
5342 if (pid > 0)
5343 exit(0);
5344 else if (pid < 0)
5345 exit(1);
5346
5347 umask(027);
5348
5349 signal(SIGTSTP, SIG_IGN);
5350 signal(SIGTTOU, SIG_IGN);
5351 signal(SIGTTIN, SIG_IGN);
5352 }
5353 #endif
5354
5355 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5356 if (daemonize) {
5357 uint8_t status = 1;
5358 write(fds[1], &status, 1);
5359 } else
5360 fprintf(stderr, "Could not acquire pid file\n");
5361 exit(1);
5362 }
5363
5364 #ifdef USE_KQEMU
5365 if (smp_cpus > 1)
5366 kqemu_allowed = 0;
5367 #endif
5368 linux_boot = (kernel_filename != NULL);
5369 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5370
5371 if (!linux_boot && net_boot == 0 &&
5372 !machine->nodisk_ok && nb_drives_opt == 0)
5373 help(1);
5374
5375 if (!linux_boot && *kernel_cmdline != '\0') {
5376 fprintf(stderr, "-append only allowed with -kernel option\n");
5377 exit(1);
5378 }
5379
5380 if (!linux_boot && initrd_filename != NULL) {
5381 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5382 exit(1);
5383 }
5384
5385 /* boot to floppy or the default cd if no hard disk defined yet */
5386 if (!boot_devices[0]) {
5387 boot_devices = "cad";
5388 }
5389 setvbuf(stdout, NULL, _IOLBF, 0);
5390
5391 init_timers();
5392 if (init_timer_alarm() < 0) {
5393 fprintf(stderr, "could not initialize alarm timer\n");
5394 exit(1);
5395 }
5396 if (use_icount && icount_time_shift < 0) {
5397 use_icount = 2;
5398 /* 125MIPS seems a reasonable initial guess at the guest speed.
5399 It will be corrected fairly quickly anyway. */
5400 icount_time_shift = 3;
5401 init_icount_adjust();
5402 }
5403
5404 #ifdef _WIN32
5405 socket_init();
5406 #endif
5407
5408 /* init network clients */
5409 if (nb_net_clients == 0) {
5410 /* if no clients, we use a default config */
5411 net_clients[nb_net_clients++] = "nic";
5412 #ifdef CONFIG_SLIRP
5413 net_clients[nb_net_clients++] = "user";
5414 #endif
5415 }
5416
5417 for(i = 0;i < nb_net_clients; i++) {
5418 if (net_client_parse(net_clients[i]) < 0)
5419 exit(1);
5420 }
5421 net_client_check();
5422
5423 #ifdef TARGET_I386
5424 /* XXX: this should be moved in the PC machine instantiation code */
5425 if (net_boot != 0) {
5426 int netroms = 0;
5427 for (i = 0; i < nb_nics && i < 4; i++) {
5428 const char *model = nd_table[i].model;
5429 char buf[1024];
5430 if (net_boot & (1 << i)) {
5431 if (model == NULL)
5432 model = "ne2k_pci";
5433 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5434 if (get_image_size(buf) > 0) {
5435 if (nb_option_roms >= MAX_OPTION_ROMS) {
5436 fprintf(stderr, "Too many option ROMs\n");
5437 exit(1);
5438 }
5439 option_rom[nb_option_roms] = strdup(buf);
5440 nb_option_roms++;
5441 netroms++;
5442 }
5443 }
5444 }
5445 if (netroms == 0) {
5446 fprintf(stderr, "No valid PXE rom found for network device\n");
5447 exit(1);
5448 }
5449 }
5450 #endif
5451
5452 /* init the bluetooth world */
5453 for (i = 0; i < nb_bt_opts; i++)
5454 if (bt_parse(bt_opts[i]))
5455 exit(1);
5456
5457 /* init the memory */
5458 phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
5459
5460 if (machine->ram_require & RAMSIZE_FIXED) {
5461 if (ram_size > 0) {
5462 if (ram_size < phys_ram_size) {
5463 fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
5464 machine->name, (unsigned long long) phys_ram_size);
5465 exit(-1);
5466 }
5467
5468 phys_ram_size = ram_size;
5469 } else
5470 ram_size = phys_ram_size;
5471 } else {
5472 if (ram_size == 0)
5473 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5474
5475 phys_ram_size += ram_size;
5476 }
5477
5478 phys_ram_base = qemu_vmalloc(phys_ram_size);
5479 if (!phys_ram_base) {
5480 fprintf(stderr, "Could not allocate physical memory\n");
5481 exit(1);
5482 }
5483
5484 /* init the dynamic translator */
5485 cpu_exec_init_all(tb_size * 1024 * 1024);
5486
5487 bdrv_init();
5488
5489 /* we always create the cdrom drive, even if no disk is there */
5490
5491 if (nb_drives_opt < MAX_DRIVES)
5492 drive_add(NULL, CDROM_ALIAS);
5493
5494 /* we always create at least one floppy */
5495
5496 if (nb_drives_opt < MAX_DRIVES)
5497 drive_add(NULL, FD_ALIAS, 0);
5498
5499 /* we always create one sd slot, even if no card is in it */
5500
5501 if (nb_drives_opt < MAX_DRIVES)
5502 drive_add(NULL, SD_ALIAS);
5503
5504 /* open the virtual block devices */
5505
5506 for(i = 0; i < nb_drives_opt; i++)
5507 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5508 exit(1);
5509
5510 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5511 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5512
5513 #ifndef _WIN32
5514 /* must be after terminal init, SDL library changes signal handlers */
5515 termsig_setup();
5516 #endif
5517
5518 /* Maintain compatibility with multiple stdio monitors */
5519 if (!strcmp(monitor_device,"stdio")) {
5520 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5521 const char *devname = serial_devices[i];
5522 if (devname && !strcmp(devname,"mon:stdio")) {
5523 monitor_device = NULL;
5524 break;
5525 } else if (devname && !strcmp(devname,"stdio")) {
5526 monitor_device = NULL;
5527 serial_devices[i] = "mon:stdio";
5528 break;
5529 }
5530 }
5531 }
5532
5533 if (kvm_enabled()) {
5534 int ret;
5535
5536 ret = kvm_init(smp_cpus);
5537 if (ret < 0) {
5538 fprintf(stderr, "failed to initialize KVM\n");
5539 exit(1);
5540 }
5541 }
5542
5543 if (monitor_device) {
5544 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5545 if (!monitor_hd) {
5546 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5547 exit(1);
5548 }
5549 }
5550
5551 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5552 const char *devname = serial_devices[i];
5553 if (devname && strcmp(devname, "none")) {
5554 char label[32];
5555 snprintf(label, sizeof(label), "serial%d", i);
5556 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5557 if (!serial_hds[i]) {
5558 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5559 devname);
5560 exit(1);
5561 }
5562 }
5563 }
5564
5565 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5566 const char *devname = parallel_devices[i];
5567 if (devname && strcmp(devname, "none")) {
5568 char label[32];
5569 snprintf(label, sizeof(label), "parallel%d", i);
5570 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5571 if (!parallel_hds[i]) {
5572 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5573 devname);
5574 exit(1);
5575 }
5576 }
5577 }
5578
5579 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5580 const char *devname = virtio_consoles[i];
5581 if (devname && strcmp(devname, "none")) {
5582 char label[32];
5583 snprintf(label, sizeof(label), "virtcon%d", i);
5584 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5585 if (!virtcon_hds[i]) {
5586 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5587 devname);
5588 exit(1);
5589 }
5590 }
5591 }
5592
5593 machine->init(ram_size, vga_ram_size, boot_devices,
5594 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5595
5596 current_machine = machine;
5597
5598 /* Set KVM's vcpu state to qemu's initial CPUState. */
5599 if (kvm_enabled()) {
5600 int ret;
5601
5602 ret = kvm_sync_vcpus();
5603 if (ret < 0) {
5604 fprintf(stderr, "failed to initialize vcpus\n");
5605 exit(1);
5606 }
5607 }
5608
5609 /* init USB devices */
5610 if (usb_enabled) {
5611 for(i = 0; i < usb_devices_index; i++) {
5612 if (usb_device_add(usb_devices[i], 0) < 0) {
5613 fprintf(stderr, "Warning: could not add USB device %s\n",
5614 usb_devices[i]);
5615 }
5616 }
5617 }
5618
5619 if (!display_state)
5620 dumb_display_init();
5621 /* just use the first displaystate for the moment */
5622 ds = display_state;
5623 /* terminal init */
5624 if (nographic) {
5625 if (curses) {
5626 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5627 exit(1);
5628 }
5629 } else {
5630 #if defined(CONFIG_CURSES)
5631 if (curses) {
5632 /* At the moment curses cannot be used with other displays */
5633 curses_display_init(ds, full_screen);
5634 } else
5635 #endif
5636 {
5637 if (vnc_display != NULL) {
5638 vnc_display_init(ds);
5639 if (vnc_display_open(ds, vnc_display) < 0)
5640 exit(1);
5641 }
5642 #if defined(CONFIG_SDL)
5643 if (sdl || !vnc_display)
5644 sdl_display_init(ds, full_screen, no_frame);
5645 #elif defined(CONFIG_COCOA)
5646 if (sdl || !vnc_display)
5647 cocoa_display_init(ds, full_screen);
5648 #endif
5649 }
5650 }
5651 dpy_resize(ds);
5652
5653 dcl = ds->listeners;
5654 while (dcl != NULL) {
5655 if (dcl->dpy_refresh != NULL) {
5656 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5657 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5658 }
5659 dcl = dcl->next;
5660 }
5661
5662 if (nographic || (vnc_display && !sdl)) {
5663 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5664 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5665 }
5666
5667 text_consoles_set_display(display_state);
5668 qemu_chr_initial_reset();
5669
5670 if (monitor_device && monitor_hd)
5671 monitor_init(monitor_hd, !nographic);
5672
5673 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5674 const char *devname = serial_devices[i];
5675 if (devname && strcmp(devname, "none")) {
5676 char label[32];
5677 snprintf(label, sizeof(label), "serial%d", i);
5678 if (strstart(devname, "vc", 0))
5679 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5680 }
5681 }
5682
5683 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5684 const char *devname = parallel_devices[i];
5685 if (devname && strcmp(devname, "none")) {
5686 char label[32];
5687 snprintf(label, sizeof(label), "parallel%d", i);
5688 if (strstart(devname, "vc", 0))
5689 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5690 }
5691 }
5692
5693 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5694 const char *devname = virtio_consoles[i];
5695 if (virtcon_hds[i] && devname) {
5696 char label[32];
5697 snprintf(label, sizeof(label), "virtcon%d", i);
5698 if (strstart(devname, "vc", 0))
5699 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5700 }
5701 }
5702
5703 #ifdef CONFIG_GDBSTUB
5704 if (use_gdbstub) {
5705 /* XXX: use standard host:port notation and modify options
5706 accordingly. */
5707 if (gdbserver_start(gdbstub_port) < 0) {
5708 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
5709 gdbstub_port);
5710 exit(1);
5711 }
5712 }
5713 #endif
5714
5715 if (loadvm)
5716 do_loadvm(loadvm);
5717
5718 if (incoming) {
5719 autostart = 0; /* fixme how to deal with -daemonize */
5720 qemu_start_incoming_migration(incoming);
5721 }
5722
5723 if (autostart)
5724 vm_start();
5725
5726 if (daemonize) {
5727 uint8_t status = 0;
5728 ssize_t len;
5729
5730 again1:
5731 len = write(fds[1], &status, 1);
5732 if (len == -1 && (errno == EINTR))
5733 goto again1;
5734
5735 if (len != 1)
5736 exit(1);
5737
5738 chdir("/");
5739 TFR(fd = open("/dev/null", O_RDWR));
5740 if (fd == -1)
5741 exit(1);
5742 }
5743
5744 #ifndef _WIN32
5745 if (run_as) {
5746 pwd = getpwnam(run_as);
5747 if (!pwd) {
5748 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
5749 exit(1);
5750 }
5751 }
5752
5753 if (chroot_dir) {
5754 if (chroot(chroot_dir) < 0) {
5755 fprintf(stderr, "chroot failed\n");
5756 exit(1);
5757 }
5758 chdir("/");
5759 }
5760
5761 if (run_as) {
5762 if (setgid(pwd->pw_gid) < 0) {
5763 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
5764 exit(1);
5765 }
5766 if (setuid(pwd->pw_uid) < 0) {
5767 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
5768 exit(1);
5769 }
5770 if (setuid(0) != -1) {
5771 fprintf(stderr, "Dropping privileges failed\n");
5772 exit(1);
5773 }
5774 }
5775 #endif
5776
5777 if (daemonize) {
5778 dup2(fd, 0);
5779 dup2(fd, 1);
5780 dup2(fd, 2);
5781
5782 close(fd);
5783 }
5784
5785 main_loop();
5786 quit_timers();
5787 net_cleanup();
5788
5789 return 0;
5790 }