]> git.proxmox.com Git - qemu.git/blob - vl.c
list MST as pci layer maintainer
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for CONFIG_BSD etc. */
33 #include "config-host.h"
34
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #include <arpa/inet.h>
48 #include <dirent.h>
49 #include <netdb.h>
50 #include <sys/select.h>
51 #ifdef CONFIG_BSD
52 #include <sys/stat.h>
53 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
54 #include <libutil.h>
55 #else
56 #include <util.h>
57 #endif
58 #else
59 #ifdef __linux__
60 #include <pty.h>
61 #include <malloc.h>
62 #include <linux/rtc.h>
63 #include <sys/prctl.h>
64
65 /* For the benefit of older linux systems which don't supply it,
66 we use a local copy of hpet.h. */
67 /* #include <linux/hpet.h> */
68 #include "hpet.h"
69
70 #include <linux/ppdev.h>
71 #include <linux/parport.h>
72 #endif
73 #ifdef __sun__
74 #include <sys/stat.h>
75 #include <sys/ethernet.h>
76 #include <sys/sockio.h>
77 #include <netinet/arp.h>
78 #include <netinet/in.h>
79 #include <netinet/in_systm.h>
80 #include <netinet/ip.h>
81 #include <netinet/ip_icmp.h> // must come after ip.h
82 #include <netinet/udp.h>
83 #include <netinet/tcp.h>
84 #include <net/if.h>
85 #include <syslog.h>
86 #include <stropts.h>
87 /* See MySQL bug #7156 (http://bugs.mysql.com/bug.php?id=7156) for
88 discussion about Solaris header problems */
89 extern int madvise(caddr_t, size_t, int);
90 #endif
91 #endif
92 #endif
93
94 #if defined(__OpenBSD__)
95 #include <util.h>
96 #endif
97
98 #if defined(CONFIG_VDE)
99 #include <libvdeplug.h>
100 #endif
101
102 #ifdef _WIN32
103 #include <windows.h>
104 #include <mmsystem.h>
105 #endif
106
107 #ifdef CONFIG_SDL
108 #if defined(__APPLE__) || defined(main)
109 #include <SDL.h>
110 int qemu_main(int argc, char **argv, char **envp);
111 int main(int argc, char **argv)
112 {
113 return qemu_main(argc, argv, NULL);
114 }
115 #undef main
116 #define main qemu_main
117 #endif
118 #endif /* CONFIG_SDL */
119
120 #ifdef CONFIG_COCOA
121 #undef main
122 #define main qemu_main
123 #endif /* CONFIG_COCOA */
124
125 #include "hw/hw.h"
126 #include "hw/boards.h"
127 #include "hw/usb.h"
128 #include "hw/pcmcia.h"
129 #include "hw/pc.h"
130 #include "hw/audiodev.h"
131 #include "hw/isa.h"
132 #include "hw/baum.h"
133 #include "hw/bt.h"
134 #include "hw/watchdog.h"
135 #include "hw/smbios.h"
136 #include "hw/xen.h"
137 #include "hw/qdev.h"
138 #include "hw/loader.h"
139 #include "bt-host.h"
140 #include "net.h"
141 #include "net/slirp.h"
142 #include "monitor.h"
143 #include "console.h"
144 #include "sysemu.h"
145 #include "gdbstub.h"
146 #include "qemu-timer.h"
147 #include "qemu-char.h"
148 #include "cache-utils.h"
149 #include "block.h"
150 #include "block_int.h"
151 #include "block-migration.h"
152 #include "dma.h"
153 #include "audio/audio.h"
154 #include "migration.h"
155 #include "kvm.h"
156 #include "balloon.h"
157 #include "qemu-option.h"
158 #include "qemu-config.h"
159 #include "qemu-objects.h"
160
161 #include "disas.h"
162
163 #include "exec-all.h"
164
165 #include "qemu_socket.h"
166
167 #include "slirp/libslirp.h"
168
169 #include "qemu-queue.h"
170
171 //#define DEBUG_NET
172 //#define DEBUG_SLIRP
173
174 #define DEFAULT_RAM_SIZE 128
175
176 static const char *data_dir;
177 const char *bios_name = NULL;
178 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
179 to store the VM snapshots */
180 struct drivelist drives = QTAILQ_HEAD_INITIALIZER(drives);
181 struct driveoptlist driveopts = QTAILQ_HEAD_INITIALIZER(driveopts);
182 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
183 static DisplayState *display_state;
184 DisplayType display_type = DT_DEFAULT;
185 const char* keyboard_layout = NULL;
186 ram_addr_t ram_size;
187 int nb_nics;
188 NICInfo nd_table[MAX_NICS];
189 int vm_running;
190 int autostart;
191 static int rtc_utc = 1;
192 static int rtc_date_offset = -1; /* -1 means no change */
193 QEMUClock *rtc_clock;
194 int vga_interface_type = VGA_NONE;
195 #ifdef TARGET_SPARC
196 int graphic_width = 1024;
197 int graphic_height = 768;
198 int graphic_depth = 8;
199 #else
200 int graphic_width = 800;
201 int graphic_height = 600;
202 int graphic_depth = 15;
203 #endif
204 static int full_screen = 0;
205 #ifdef CONFIG_SDL
206 static int no_frame = 0;
207 #endif
208 int no_quit = 0;
209 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
210 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
211 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
212 #ifdef TARGET_I386
213 int win2k_install_hack = 0;
214 int rtc_td_hack = 0;
215 #endif
216 int usb_enabled = 0;
217 int singlestep = 0;
218 int smp_cpus = 1;
219 int max_cpus = 0;
220 int smp_cores = 1;
221 int smp_threads = 1;
222 const char *vnc_display;
223 int acpi_enabled = 1;
224 int no_hpet = 0;
225 int fd_bootchk = 1;
226 int no_reboot = 0;
227 int no_shutdown = 0;
228 int cursor_hide = 1;
229 int graphic_rotate = 0;
230 uint8_t irq0override = 1;
231 #ifndef _WIN32
232 int daemonize = 0;
233 #endif
234 const char *watchdog;
235 const char *option_rom[MAX_OPTION_ROMS];
236 int nb_option_roms;
237 int semihosting_enabled = 0;
238 #ifdef TARGET_ARM
239 int old_param = 0;
240 #endif
241 const char *qemu_name;
242 int alt_grab = 0;
243 int ctrl_grab = 0;
244 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
245 unsigned int nb_prom_envs = 0;
246 const char *prom_envs[MAX_PROM_ENVS];
247 #endif
248 int boot_menu;
249
250 int nb_numa_nodes;
251 uint64_t node_mem[MAX_NODES];
252 uint64_t node_cpumask[MAX_NODES];
253
254 static CPUState *cur_cpu;
255 static CPUState *next_cpu;
256 static int timer_alarm_pending = 1;
257 /* Conversion factor from emulated instructions to virtual clock ticks. */
258 static int icount_time_shift;
259 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
260 #define MAX_ICOUNT_SHIFT 10
261 /* Compensate for varying guest execution speed. */
262 static int64_t qemu_icount_bias;
263 static QEMUTimer *icount_rt_timer;
264 static QEMUTimer *icount_vm_timer;
265 static QEMUTimer *nographic_timer;
266
267 uint8_t qemu_uuid[16];
268
269 static QEMUBootSetHandler *boot_set_handler;
270 static void *boot_set_opaque;
271
272 static int default_serial = 1;
273 static int default_parallel = 1;
274 static int default_virtcon = 1;
275 static int default_monitor = 1;
276 static int default_vga = 1;
277 static int default_floppy = 1;
278 static int default_cdrom = 1;
279 static int default_sdcard = 1;
280
281 static struct {
282 const char *driver;
283 int *flag;
284 } default_list[] = {
285 { .driver = "isa-serial", .flag = &default_serial },
286 { .driver = "isa-parallel", .flag = &default_parallel },
287 { .driver = "isa-fdc", .flag = &default_floppy },
288 { .driver = "ide-drive", .flag = &default_cdrom },
289 { .driver = "virtio-console-pci", .flag = &default_virtcon },
290 { .driver = "virtio-console-s390", .flag = &default_virtcon },
291 { .driver = "VGA", .flag = &default_vga },
292 { .driver = "cirrus-vga", .flag = &default_vga },
293 { .driver = "vmware-svga", .flag = &default_vga },
294 };
295
296 static int default_driver_check(QemuOpts *opts, void *opaque)
297 {
298 const char *driver = qemu_opt_get(opts, "driver");
299 int i;
300
301 if (!driver)
302 return 0;
303 for (i = 0; i < ARRAY_SIZE(default_list); i++) {
304 if (strcmp(default_list[i].driver, driver) != 0)
305 continue;
306 *(default_list[i].flag) = 0;
307 }
308 return 0;
309 }
310
311 /***********************************************************/
312 /* x86 ISA bus support */
313
314 target_phys_addr_t isa_mem_base = 0;
315 PicState2 *isa_pic;
316
317 /***********************************************************/
318 void hw_error(const char *fmt, ...)
319 {
320 va_list ap;
321 CPUState *env;
322
323 va_start(ap, fmt);
324 fprintf(stderr, "qemu: hardware error: ");
325 vfprintf(stderr, fmt, ap);
326 fprintf(stderr, "\n");
327 for(env = first_cpu; env != NULL; env = env->next_cpu) {
328 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
329 #ifdef TARGET_I386
330 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
331 #else
332 cpu_dump_state(env, stderr, fprintf, 0);
333 #endif
334 }
335 va_end(ap);
336 abort();
337 }
338
339 static void set_proc_name(const char *s)
340 {
341 #if defined(__linux__) && defined(PR_SET_NAME)
342 char name[16];
343 if (!s)
344 return;
345 name[sizeof(name) - 1] = 0;
346 strncpy(name, s, sizeof(name));
347 /* Could rewrite argv[0] too, but that's a bit more complicated.
348 This simple way is enough for `top'. */
349 prctl(PR_SET_NAME, name);
350 #endif
351 }
352
353 /***************/
354 /* ballooning */
355
356 static QEMUBalloonEvent *qemu_balloon_event;
357 void *qemu_balloon_event_opaque;
358
359 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
360 {
361 qemu_balloon_event = func;
362 qemu_balloon_event_opaque = opaque;
363 }
364
365 void qemu_balloon(ram_addr_t target)
366 {
367 if (qemu_balloon_event)
368 qemu_balloon_event(qemu_balloon_event_opaque, target);
369 }
370
371 ram_addr_t qemu_balloon_status(void)
372 {
373 if (qemu_balloon_event)
374 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
375 return 0;
376 }
377
378 /***********************************************************/
379 /* keyboard/mouse */
380
381 static QEMUPutKBDEvent *qemu_put_kbd_event;
382 static void *qemu_put_kbd_event_opaque;
383 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
384 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
385
386 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
387 {
388 qemu_put_kbd_event_opaque = opaque;
389 qemu_put_kbd_event = func;
390 }
391
392 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
393 void *opaque, int absolute,
394 const char *name)
395 {
396 QEMUPutMouseEntry *s, *cursor;
397
398 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
399
400 s->qemu_put_mouse_event = func;
401 s->qemu_put_mouse_event_opaque = opaque;
402 s->qemu_put_mouse_event_absolute = absolute;
403 s->qemu_put_mouse_event_name = qemu_strdup(name);
404 s->next = NULL;
405
406 if (!qemu_put_mouse_event_head) {
407 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
408 return s;
409 }
410
411 cursor = qemu_put_mouse_event_head;
412 while (cursor->next != NULL)
413 cursor = cursor->next;
414
415 cursor->next = s;
416 qemu_put_mouse_event_current = s;
417
418 return s;
419 }
420
421 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
422 {
423 QEMUPutMouseEntry *prev = NULL, *cursor;
424
425 if (!qemu_put_mouse_event_head || entry == NULL)
426 return;
427
428 cursor = qemu_put_mouse_event_head;
429 while (cursor != NULL && cursor != entry) {
430 prev = cursor;
431 cursor = cursor->next;
432 }
433
434 if (cursor == NULL) // does not exist or list empty
435 return;
436 else if (prev == NULL) { // entry is head
437 qemu_put_mouse_event_head = cursor->next;
438 if (qemu_put_mouse_event_current == entry)
439 qemu_put_mouse_event_current = cursor->next;
440 qemu_free(entry->qemu_put_mouse_event_name);
441 qemu_free(entry);
442 return;
443 }
444
445 prev->next = entry->next;
446
447 if (qemu_put_mouse_event_current == entry)
448 qemu_put_mouse_event_current = prev;
449
450 qemu_free(entry->qemu_put_mouse_event_name);
451 qemu_free(entry);
452 }
453
454 void kbd_put_keycode(int keycode)
455 {
456 if (qemu_put_kbd_event) {
457 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
458 }
459 }
460
461 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
462 {
463 QEMUPutMouseEvent *mouse_event;
464 void *mouse_event_opaque;
465 int width;
466
467 if (!qemu_put_mouse_event_current) {
468 return;
469 }
470
471 mouse_event =
472 qemu_put_mouse_event_current->qemu_put_mouse_event;
473 mouse_event_opaque =
474 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
475
476 if (mouse_event) {
477 if (graphic_rotate) {
478 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
479 width = 0x7fff;
480 else
481 width = graphic_width - 1;
482 mouse_event(mouse_event_opaque,
483 width - dy, dx, dz, buttons_state);
484 } else
485 mouse_event(mouse_event_opaque,
486 dx, dy, dz, buttons_state);
487 }
488 }
489
490 int kbd_mouse_is_absolute(void)
491 {
492 if (!qemu_put_mouse_event_current)
493 return 0;
494
495 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
496 }
497
498 static void info_mice_iter(QObject *data, void *opaque)
499 {
500 QDict *mouse;
501 Monitor *mon = opaque;
502
503 mouse = qobject_to_qdict(data);
504 monitor_printf(mon, "%c Mouse #%" PRId64 ": %s\n",
505 (qdict_get_bool(mouse, "current") ? '*' : ' '),
506 qdict_get_int(mouse, "index"), qdict_get_str(mouse, "name"));
507 }
508
509 void do_info_mice_print(Monitor *mon, const QObject *data)
510 {
511 QList *mice_list;
512
513 mice_list = qobject_to_qlist(data);
514 if (qlist_empty(mice_list)) {
515 monitor_printf(mon, "No mouse devices connected\n");
516 return;
517 }
518
519 qlist_iter(mice_list, info_mice_iter, mon);
520 }
521
522 /**
523 * do_info_mice(): Show VM mice information
524 *
525 * Each mouse is represented by a QDict, the returned QObject is a QList of
526 * all mice.
527 *
528 * The mouse QDict contains the following:
529 *
530 * - "name": mouse's name
531 * - "index": mouse's index
532 * - "current": true if this mouse is receiving events, false otherwise
533 *
534 * Example:
535 *
536 * [ { "name": "QEMU Microsoft Mouse", "index": 0, "current": false },
537 * { "name": "QEMU PS/2 Mouse", "index": 1, "current": true } ]
538 */
539 void do_info_mice(Monitor *mon, QObject **ret_data)
540 {
541 QEMUPutMouseEntry *cursor;
542 QList *mice_list;
543 int index = 0;
544
545 mice_list = qlist_new();
546
547 if (!qemu_put_mouse_event_head) {
548 goto out;
549 }
550
551 cursor = qemu_put_mouse_event_head;
552 while (cursor != NULL) {
553 QObject *obj;
554 obj = qobject_from_jsonf("{ 'name': %s, 'index': %d, 'current': %i }",
555 cursor->qemu_put_mouse_event_name,
556 index, cursor == qemu_put_mouse_event_current);
557 qlist_append_obj(mice_list, obj);
558 index++;
559 cursor = cursor->next;
560 }
561
562 out:
563 *ret_data = QOBJECT(mice_list);
564 }
565
566 void do_mouse_set(Monitor *mon, const QDict *qdict)
567 {
568 QEMUPutMouseEntry *cursor;
569 int i = 0;
570 int index = qdict_get_int(qdict, "index");
571
572 if (!qemu_put_mouse_event_head) {
573 monitor_printf(mon, "No mouse devices connected\n");
574 return;
575 }
576
577 cursor = qemu_put_mouse_event_head;
578 while (cursor != NULL && index != i) {
579 i++;
580 cursor = cursor->next;
581 }
582
583 if (cursor != NULL)
584 qemu_put_mouse_event_current = cursor;
585 else
586 monitor_printf(mon, "Mouse at given index not found\n");
587 }
588
589 /* compute with 96 bit intermediate result: (a*b)/c */
590 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
591 {
592 union {
593 uint64_t ll;
594 struct {
595 #ifdef HOST_WORDS_BIGENDIAN
596 uint32_t high, low;
597 #else
598 uint32_t low, high;
599 #endif
600 } l;
601 } u, res;
602 uint64_t rl, rh;
603
604 u.ll = a;
605 rl = (uint64_t)u.l.low * (uint64_t)b;
606 rh = (uint64_t)u.l.high * (uint64_t)b;
607 rh += (rl >> 32);
608 res.l.high = rh / c;
609 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
610 return res.ll;
611 }
612
613 /***********************************************************/
614 /* real time host monotonic timer */
615
616 static int64_t get_clock_realtime(void)
617 {
618 struct timeval tv;
619
620 gettimeofday(&tv, NULL);
621 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
622 }
623
624 #ifdef WIN32
625
626 static int64_t clock_freq;
627
628 static void init_get_clock(void)
629 {
630 LARGE_INTEGER freq;
631 int ret;
632 ret = QueryPerformanceFrequency(&freq);
633 if (ret == 0) {
634 fprintf(stderr, "Could not calibrate ticks\n");
635 exit(1);
636 }
637 clock_freq = freq.QuadPart;
638 }
639
640 static int64_t get_clock(void)
641 {
642 LARGE_INTEGER ti;
643 QueryPerformanceCounter(&ti);
644 return muldiv64(ti.QuadPart, get_ticks_per_sec(), clock_freq);
645 }
646
647 #else
648
649 static int use_rt_clock;
650
651 static void init_get_clock(void)
652 {
653 use_rt_clock = 0;
654 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
655 || defined(__DragonFly__) || defined(__FreeBSD_kernel__)
656 {
657 struct timespec ts;
658 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
659 use_rt_clock = 1;
660 }
661 }
662 #endif
663 }
664
665 static int64_t get_clock(void)
666 {
667 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
668 || defined(__DragonFly__) || defined(__FreeBSD_kernel__)
669 if (use_rt_clock) {
670 struct timespec ts;
671 clock_gettime(CLOCK_MONOTONIC, &ts);
672 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
673 } else
674 #endif
675 {
676 /* XXX: using gettimeofday leads to problems if the date
677 changes, so it should be avoided. */
678 return get_clock_realtime();
679 }
680 }
681 #endif
682
683 /* Return the virtual CPU time, based on the instruction counter. */
684 static int64_t cpu_get_icount(void)
685 {
686 int64_t icount;
687 CPUState *env = cpu_single_env;;
688 icount = qemu_icount;
689 if (env) {
690 if (!can_do_io(env))
691 fprintf(stderr, "Bad clock read\n");
692 icount -= (env->icount_decr.u16.low + env->icount_extra);
693 }
694 return qemu_icount_bias + (icount << icount_time_shift);
695 }
696
697 /***********************************************************/
698 /* guest cycle counter */
699
700 typedef struct TimersState {
701 int64_t cpu_ticks_prev;
702 int64_t cpu_ticks_offset;
703 int64_t cpu_clock_offset;
704 int32_t cpu_ticks_enabled;
705 int64_t dummy;
706 } TimersState;
707
708 TimersState timers_state;
709
710 /* return the host CPU cycle counter and handle stop/restart */
711 int64_t cpu_get_ticks(void)
712 {
713 if (use_icount) {
714 return cpu_get_icount();
715 }
716 if (!timers_state.cpu_ticks_enabled) {
717 return timers_state.cpu_ticks_offset;
718 } else {
719 int64_t ticks;
720 ticks = cpu_get_real_ticks();
721 if (timers_state.cpu_ticks_prev > ticks) {
722 /* Note: non increasing ticks may happen if the host uses
723 software suspend */
724 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
725 }
726 timers_state.cpu_ticks_prev = ticks;
727 return ticks + timers_state.cpu_ticks_offset;
728 }
729 }
730
731 /* return the host CPU monotonic timer and handle stop/restart */
732 static int64_t cpu_get_clock(void)
733 {
734 int64_t ti;
735 if (!timers_state.cpu_ticks_enabled) {
736 return timers_state.cpu_clock_offset;
737 } else {
738 ti = get_clock();
739 return ti + timers_state.cpu_clock_offset;
740 }
741 }
742
743 /* enable cpu_get_ticks() */
744 void cpu_enable_ticks(void)
745 {
746 if (!timers_state.cpu_ticks_enabled) {
747 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
748 timers_state.cpu_clock_offset -= get_clock();
749 timers_state.cpu_ticks_enabled = 1;
750 }
751 }
752
753 /* disable cpu_get_ticks() : the clock is stopped. You must not call
754 cpu_get_ticks() after that. */
755 void cpu_disable_ticks(void)
756 {
757 if (timers_state.cpu_ticks_enabled) {
758 timers_state.cpu_ticks_offset = cpu_get_ticks();
759 timers_state.cpu_clock_offset = cpu_get_clock();
760 timers_state.cpu_ticks_enabled = 0;
761 }
762 }
763
764 /***********************************************************/
765 /* timers */
766
767 #define QEMU_CLOCK_REALTIME 0
768 #define QEMU_CLOCK_VIRTUAL 1
769 #define QEMU_CLOCK_HOST 2
770
771 struct QEMUClock {
772 int type;
773 /* XXX: add frequency */
774 };
775
776 struct QEMUTimer {
777 QEMUClock *clock;
778 int64_t expire_time;
779 QEMUTimerCB *cb;
780 void *opaque;
781 struct QEMUTimer *next;
782 };
783
784 struct qemu_alarm_timer {
785 char const *name;
786 unsigned int flags;
787
788 int (*start)(struct qemu_alarm_timer *t);
789 void (*stop)(struct qemu_alarm_timer *t);
790 void (*rearm)(struct qemu_alarm_timer *t);
791 void *priv;
792 };
793
794 #define ALARM_FLAG_DYNTICKS 0x1
795 #define ALARM_FLAG_EXPIRED 0x2
796
797 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
798 {
799 return t && (t->flags & ALARM_FLAG_DYNTICKS);
800 }
801
802 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
803 {
804 if (!alarm_has_dynticks(t))
805 return;
806
807 t->rearm(t);
808 }
809
810 /* TODO: MIN_TIMER_REARM_US should be optimized */
811 #define MIN_TIMER_REARM_US 250
812
813 static struct qemu_alarm_timer *alarm_timer;
814
815 #ifdef _WIN32
816
817 struct qemu_alarm_win32 {
818 MMRESULT timerId;
819 unsigned int period;
820 } alarm_win32_data = {0, -1};
821
822 static int win32_start_timer(struct qemu_alarm_timer *t);
823 static void win32_stop_timer(struct qemu_alarm_timer *t);
824 static void win32_rearm_timer(struct qemu_alarm_timer *t);
825
826 #else
827
828 static int unix_start_timer(struct qemu_alarm_timer *t);
829 static void unix_stop_timer(struct qemu_alarm_timer *t);
830
831 #ifdef __linux__
832
833 static int dynticks_start_timer(struct qemu_alarm_timer *t);
834 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
835 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
836
837 static int hpet_start_timer(struct qemu_alarm_timer *t);
838 static void hpet_stop_timer(struct qemu_alarm_timer *t);
839
840 static int rtc_start_timer(struct qemu_alarm_timer *t);
841 static void rtc_stop_timer(struct qemu_alarm_timer *t);
842
843 #endif /* __linux__ */
844
845 #endif /* _WIN32 */
846
847 /* Correlation between real and virtual time is always going to be
848 fairly approximate, so ignore small variation.
849 When the guest is idle real and virtual time will be aligned in
850 the IO wait loop. */
851 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
852
853 static void icount_adjust(void)
854 {
855 int64_t cur_time;
856 int64_t cur_icount;
857 int64_t delta;
858 static int64_t last_delta;
859 /* If the VM is not running, then do nothing. */
860 if (!vm_running)
861 return;
862
863 cur_time = cpu_get_clock();
864 cur_icount = qemu_get_clock(vm_clock);
865 delta = cur_icount - cur_time;
866 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
867 if (delta > 0
868 && last_delta + ICOUNT_WOBBLE < delta * 2
869 && icount_time_shift > 0) {
870 /* The guest is getting too far ahead. Slow time down. */
871 icount_time_shift--;
872 }
873 if (delta < 0
874 && last_delta - ICOUNT_WOBBLE > delta * 2
875 && icount_time_shift < MAX_ICOUNT_SHIFT) {
876 /* The guest is getting too far behind. Speed time up. */
877 icount_time_shift++;
878 }
879 last_delta = delta;
880 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
881 }
882
883 static void icount_adjust_rt(void * opaque)
884 {
885 qemu_mod_timer(icount_rt_timer,
886 qemu_get_clock(rt_clock) + 1000);
887 icount_adjust();
888 }
889
890 static void icount_adjust_vm(void * opaque)
891 {
892 qemu_mod_timer(icount_vm_timer,
893 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
894 icount_adjust();
895 }
896
897 static void init_icount_adjust(void)
898 {
899 /* Have both realtime and virtual time triggers for speed adjustment.
900 The realtime trigger catches emulated time passing too slowly,
901 the virtual time trigger catches emulated time passing too fast.
902 Realtime triggers occur even when idle, so use them less frequently
903 than VM triggers. */
904 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
905 qemu_mod_timer(icount_rt_timer,
906 qemu_get_clock(rt_clock) + 1000);
907 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
908 qemu_mod_timer(icount_vm_timer,
909 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
910 }
911
912 static struct qemu_alarm_timer alarm_timers[] = {
913 #ifndef _WIN32
914 #ifdef __linux__
915 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
916 dynticks_stop_timer, dynticks_rearm_timer, NULL},
917 /* HPET - if available - is preferred */
918 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
919 /* ...otherwise try RTC */
920 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
921 #endif
922 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
923 #else
924 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
925 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
926 {"win32", 0, win32_start_timer,
927 win32_stop_timer, NULL, &alarm_win32_data},
928 #endif
929 {NULL, }
930 };
931
932 static void show_available_alarms(void)
933 {
934 int i;
935
936 printf("Available alarm timers, in order of precedence:\n");
937 for (i = 0; alarm_timers[i].name; i++)
938 printf("%s\n", alarm_timers[i].name);
939 }
940
941 static void configure_alarms(char const *opt)
942 {
943 int i;
944 int cur = 0;
945 int count = ARRAY_SIZE(alarm_timers) - 1;
946 char *arg;
947 char *name;
948 struct qemu_alarm_timer tmp;
949
950 if (!strcmp(opt, "?")) {
951 show_available_alarms();
952 exit(0);
953 }
954
955 arg = qemu_strdup(opt);
956
957 /* Reorder the array */
958 name = strtok(arg, ",");
959 while (name) {
960 for (i = 0; i < count && alarm_timers[i].name; i++) {
961 if (!strcmp(alarm_timers[i].name, name))
962 break;
963 }
964
965 if (i == count) {
966 fprintf(stderr, "Unknown clock %s\n", name);
967 goto next;
968 }
969
970 if (i < cur)
971 /* Ignore */
972 goto next;
973
974 /* Swap */
975 tmp = alarm_timers[i];
976 alarm_timers[i] = alarm_timers[cur];
977 alarm_timers[cur] = tmp;
978
979 cur++;
980 next:
981 name = strtok(NULL, ",");
982 }
983
984 qemu_free(arg);
985
986 if (cur) {
987 /* Disable remaining timers */
988 for (i = cur; i < count; i++)
989 alarm_timers[i].name = NULL;
990 } else {
991 show_available_alarms();
992 exit(1);
993 }
994 }
995
996 #define QEMU_NUM_CLOCKS 3
997
998 QEMUClock *rt_clock;
999 QEMUClock *vm_clock;
1000 QEMUClock *host_clock;
1001
1002 static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
1003
1004 static QEMUClock *qemu_new_clock(int type)
1005 {
1006 QEMUClock *clock;
1007 clock = qemu_mallocz(sizeof(QEMUClock));
1008 clock->type = type;
1009 return clock;
1010 }
1011
1012 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1013 {
1014 QEMUTimer *ts;
1015
1016 ts = qemu_mallocz(sizeof(QEMUTimer));
1017 ts->clock = clock;
1018 ts->cb = cb;
1019 ts->opaque = opaque;
1020 return ts;
1021 }
1022
1023 void qemu_free_timer(QEMUTimer *ts)
1024 {
1025 qemu_free(ts);
1026 }
1027
1028 /* stop a timer, but do not dealloc it */
1029 void qemu_del_timer(QEMUTimer *ts)
1030 {
1031 QEMUTimer **pt, *t;
1032
1033 /* NOTE: this code must be signal safe because
1034 qemu_timer_expired() can be called from a signal. */
1035 pt = &active_timers[ts->clock->type];
1036 for(;;) {
1037 t = *pt;
1038 if (!t)
1039 break;
1040 if (t == ts) {
1041 *pt = t->next;
1042 break;
1043 }
1044 pt = &t->next;
1045 }
1046 }
1047
1048 /* modify the current timer so that it will be fired when current_time
1049 >= expire_time. The corresponding callback will be called. */
1050 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1051 {
1052 QEMUTimer **pt, *t;
1053
1054 qemu_del_timer(ts);
1055
1056 /* add the timer in the sorted list */
1057 /* NOTE: this code must be signal safe because
1058 qemu_timer_expired() can be called from a signal. */
1059 pt = &active_timers[ts->clock->type];
1060 for(;;) {
1061 t = *pt;
1062 if (!t)
1063 break;
1064 if (t->expire_time > expire_time)
1065 break;
1066 pt = &t->next;
1067 }
1068 ts->expire_time = expire_time;
1069 ts->next = *pt;
1070 *pt = ts;
1071
1072 /* Rearm if necessary */
1073 if (pt == &active_timers[ts->clock->type]) {
1074 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1075 qemu_rearm_alarm_timer(alarm_timer);
1076 }
1077 /* Interrupt execution to force deadline recalculation. */
1078 if (use_icount)
1079 qemu_notify_event();
1080 }
1081 }
1082
1083 int qemu_timer_pending(QEMUTimer *ts)
1084 {
1085 QEMUTimer *t;
1086 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1087 if (t == ts)
1088 return 1;
1089 }
1090 return 0;
1091 }
1092
1093 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1094 {
1095 if (!timer_head)
1096 return 0;
1097 return (timer_head->expire_time <= current_time);
1098 }
1099
1100 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1101 {
1102 QEMUTimer *ts;
1103
1104 for(;;) {
1105 ts = *ptimer_head;
1106 if (!ts || ts->expire_time > current_time)
1107 break;
1108 /* remove timer from the list before calling the callback */
1109 *ptimer_head = ts->next;
1110 ts->next = NULL;
1111
1112 /* run the callback (the timer list can be modified) */
1113 ts->cb(ts->opaque);
1114 }
1115 }
1116
1117 int64_t qemu_get_clock(QEMUClock *clock)
1118 {
1119 switch(clock->type) {
1120 case QEMU_CLOCK_REALTIME:
1121 return get_clock() / 1000000;
1122 default:
1123 case QEMU_CLOCK_VIRTUAL:
1124 if (use_icount) {
1125 return cpu_get_icount();
1126 } else {
1127 return cpu_get_clock();
1128 }
1129 case QEMU_CLOCK_HOST:
1130 return get_clock_realtime();
1131 }
1132 }
1133
1134 static void init_clocks(void)
1135 {
1136 init_get_clock();
1137 rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
1138 vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
1139 host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
1140
1141 rtc_clock = host_clock;
1142 }
1143
1144 /* save a timer */
1145 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1146 {
1147 uint64_t expire_time;
1148
1149 if (qemu_timer_pending(ts)) {
1150 expire_time = ts->expire_time;
1151 } else {
1152 expire_time = -1;
1153 }
1154 qemu_put_be64(f, expire_time);
1155 }
1156
1157 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1158 {
1159 uint64_t expire_time;
1160
1161 expire_time = qemu_get_be64(f);
1162 if (expire_time != -1) {
1163 qemu_mod_timer(ts, expire_time);
1164 } else {
1165 qemu_del_timer(ts);
1166 }
1167 }
1168
1169 static const VMStateDescription vmstate_timers = {
1170 .name = "timer",
1171 .version_id = 2,
1172 .minimum_version_id = 1,
1173 .minimum_version_id_old = 1,
1174 .fields = (VMStateField []) {
1175 VMSTATE_INT64(cpu_ticks_offset, TimersState),
1176 VMSTATE_INT64(dummy, TimersState),
1177 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
1178 VMSTATE_END_OF_LIST()
1179 }
1180 };
1181
1182 static void qemu_event_increment(void);
1183
1184 #ifdef _WIN32
1185 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1186 DWORD_PTR dwUser, DWORD_PTR dw1,
1187 DWORD_PTR dw2)
1188 #else
1189 static void host_alarm_handler(int host_signum)
1190 #endif
1191 {
1192 #if 0
1193 #define DISP_FREQ 1000
1194 {
1195 static int64_t delta_min = INT64_MAX;
1196 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1197 static int count;
1198 ti = qemu_get_clock(vm_clock);
1199 if (last_clock != 0) {
1200 delta = ti - last_clock;
1201 if (delta < delta_min)
1202 delta_min = delta;
1203 if (delta > delta_max)
1204 delta_max = delta;
1205 delta_cum += delta;
1206 if (++count == DISP_FREQ) {
1207 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1208 muldiv64(delta_min, 1000000, get_ticks_per_sec()),
1209 muldiv64(delta_max, 1000000, get_ticks_per_sec()),
1210 muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
1211 (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
1212 count = 0;
1213 delta_min = INT64_MAX;
1214 delta_max = 0;
1215 delta_cum = 0;
1216 }
1217 }
1218 last_clock = ti;
1219 }
1220 #endif
1221 if (alarm_has_dynticks(alarm_timer) ||
1222 (!use_icount &&
1223 qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL],
1224 qemu_get_clock(vm_clock))) ||
1225 qemu_timer_expired(active_timers[QEMU_CLOCK_REALTIME],
1226 qemu_get_clock(rt_clock)) ||
1227 qemu_timer_expired(active_timers[QEMU_CLOCK_HOST],
1228 qemu_get_clock(host_clock))) {
1229 qemu_event_increment();
1230 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1231
1232 #ifndef CONFIG_IOTHREAD
1233 if (next_cpu) {
1234 /* stop the currently executing cpu because a timer occured */
1235 cpu_exit(next_cpu);
1236 }
1237 #endif
1238 timer_alarm_pending = 1;
1239 qemu_notify_event();
1240 }
1241 }
1242
1243 static int64_t qemu_next_deadline(void)
1244 {
1245 /* To avoid problems with overflow limit this to 2^32. */
1246 int64_t delta = INT32_MAX;
1247
1248 if (active_timers[QEMU_CLOCK_VIRTUAL]) {
1249 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
1250 qemu_get_clock(vm_clock);
1251 }
1252 if (active_timers[QEMU_CLOCK_HOST]) {
1253 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
1254 qemu_get_clock(host_clock);
1255 if (hdelta < delta)
1256 delta = hdelta;
1257 }
1258
1259 if (delta < 0)
1260 delta = 0;
1261
1262 return delta;
1263 }
1264
1265 #if defined(__linux__)
1266 static uint64_t qemu_next_deadline_dyntick(void)
1267 {
1268 int64_t delta;
1269 int64_t rtdelta;
1270
1271 if (use_icount)
1272 delta = INT32_MAX;
1273 else
1274 delta = (qemu_next_deadline() + 999) / 1000;
1275
1276 if (active_timers[QEMU_CLOCK_REALTIME]) {
1277 rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time -
1278 qemu_get_clock(rt_clock))*1000;
1279 if (rtdelta < delta)
1280 delta = rtdelta;
1281 }
1282
1283 if (delta < MIN_TIMER_REARM_US)
1284 delta = MIN_TIMER_REARM_US;
1285
1286 return delta;
1287 }
1288 #endif
1289
1290 #ifndef _WIN32
1291
1292 /* Sets a specific flag */
1293 static int fcntl_setfl(int fd, int flag)
1294 {
1295 int flags;
1296
1297 flags = fcntl(fd, F_GETFL);
1298 if (flags == -1)
1299 return -errno;
1300
1301 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1302 return -errno;
1303
1304 return 0;
1305 }
1306
1307 #if defined(__linux__)
1308
1309 #define RTC_FREQ 1024
1310
1311 static void enable_sigio_timer(int fd)
1312 {
1313 struct sigaction act;
1314
1315 /* timer signal */
1316 sigfillset(&act.sa_mask);
1317 act.sa_flags = 0;
1318 act.sa_handler = host_alarm_handler;
1319
1320 sigaction(SIGIO, &act, NULL);
1321 fcntl_setfl(fd, O_ASYNC);
1322 fcntl(fd, F_SETOWN, getpid());
1323 }
1324
1325 static int hpet_start_timer(struct qemu_alarm_timer *t)
1326 {
1327 struct hpet_info info;
1328 int r, fd;
1329
1330 fd = qemu_open("/dev/hpet", O_RDONLY);
1331 if (fd < 0)
1332 return -1;
1333
1334 /* Set frequency */
1335 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1336 if (r < 0) {
1337 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1338 "error, but for better emulation accuracy type:\n"
1339 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1340 goto fail;
1341 }
1342
1343 /* Check capabilities */
1344 r = ioctl(fd, HPET_INFO, &info);
1345 if (r < 0)
1346 goto fail;
1347
1348 /* Enable periodic mode */
1349 r = ioctl(fd, HPET_EPI, 0);
1350 if (info.hi_flags && (r < 0))
1351 goto fail;
1352
1353 /* Enable interrupt */
1354 r = ioctl(fd, HPET_IE_ON, 0);
1355 if (r < 0)
1356 goto fail;
1357
1358 enable_sigio_timer(fd);
1359 t->priv = (void *)(long)fd;
1360
1361 return 0;
1362 fail:
1363 close(fd);
1364 return -1;
1365 }
1366
1367 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1368 {
1369 int fd = (long)t->priv;
1370
1371 close(fd);
1372 }
1373
1374 static int rtc_start_timer(struct qemu_alarm_timer *t)
1375 {
1376 int rtc_fd;
1377 unsigned long current_rtc_freq = 0;
1378
1379 TFR(rtc_fd = qemu_open("/dev/rtc", O_RDONLY));
1380 if (rtc_fd < 0)
1381 return -1;
1382 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1383 if (current_rtc_freq != RTC_FREQ &&
1384 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1385 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1386 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1387 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1388 goto fail;
1389 }
1390 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1391 fail:
1392 close(rtc_fd);
1393 return -1;
1394 }
1395
1396 enable_sigio_timer(rtc_fd);
1397
1398 t->priv = (void *)(long)rtc_fd;
1399
1400 return 0;
1401 }
1402
1403 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1404 {
1405 int rtc_fd = (long)t->priv;
1406
1407 close(rtc_fd);
1408 }
1409
1410 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1411 {
1412 struct sigevent ev;
1413 timer_t host_timer;
1414 struct sigaction act;
1415
1416 sigfillset(&act.sa_mask);
1417 act.sa_flags = 0;
1418 act.sa_handler = host_alarm_handler;
1419
1420 sigaction(SIGALRM, &act, NULL);
1421
1422 /*
1423 * Initialize ev struct to 0 to avoid valgrind complaining
1424 * about uninitialized data in timer_create call
1425 */
1426 memset(&ev, 0, sizeof(ev));
1427 ev.sigev_value.sival_int = 0;
1428 ev.sigev_notify = SIGEV_SIGNAL;
1429 ev.sigev_signo = SIGALRM;
1430
1431 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1432 perror("timer_create");
1433
1434 /* disable dynticks */
1435 fprintf(stderr, "Dynamic Ticks disabled\n");
1436
1437 return -1;
1438 }
1439
1440 t->priv = (void *)(long)host_timer;
1441
1442 return 0;
1443 }
1444
1445 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1446 {
1447 timer_t host_timer = (timer_t)(long)t->priv;
1448
1449 timer_delete(host_timer);
1450 }
1451
1452 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1453 {
1454 timer_t host_timer = (timer_t)(long)t->priv;
1455 struct itimerspec timeout;
1456 int64_t nearest_delta_us = INT64_MAX;
1457 int64_t current_us;
1458
1459 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1460 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1461 !active_timers[QEMU_CLOCK_HOST])
1462 return;
1463
1464 nearest_delta_us = qemu_next_deadline_dyntick();
1465
1466 /* check whether a timer is already running */
1467 if (timer_gettime(host_timer, &timeout)) {
1468 perror("gettime");
1469 fprintf(stderr, "Internal timer error: aborting\n");
1470 exit(1);
1471 }
1472 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1473 if (current_us && current_us <= nearest_delta_us)
1474 return;
1475
1476 timeout.it_interval.tv_sec = 0;
1477 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1478 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1479 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1480 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1481 perror("settime");
1482 fprintf(stderr, "Internal timer error: aborting\n");
1483 exit(1);
1484 }
1485 }
1486
1487 #endif /* defined(__linux__) */
1488
1489 static int unix_start_timer(struct qemu_alarm_timer *t)
1490 {
1491 struct sigaction act;
1492 struct itimerval itv;
1493 int err;
1494
1495 /* timer signal */
1496 sigfillset(&act.sa_mask);
1497 act.sa_flags = 0;
1498 act.sa_handler = host_alarm_handler;
1499
1500 sigaction(SIGALRM, &act, NULL);
1501
1502 itv.it_interval.tv_sec = 0;
1503 /* for i386 kernel 2.6 to get 1 ms */
1504 itv.it_interval.tv_usec = 999;
1505 itv.it_value.tv_sec = 0;
1506 itv.it_value.tv_usec = 10 * 1000;
1507
1508 err = setitimer(ITIMER_REAL, &itv, NULL);
1509 if (err)
1510 return -1;
1511
1512 return 0;
1513 }
1514
1515 static void unix_stop_timer(struct qemu_alarm_timer *t)
1516 {
1517 struct itimerval itv;
1518
1519 memset(&itv, 0, sizeof(itv));
1520 setitimer(ITIMER_REAL, &itv, NULL);
1521 }
1522
1523 #endif /* !defined(_WIN32) */
1524
1525
1526 #ifdef _WIN32
1527
1528 static int win32_start_timer(struct qemu_alarm_timer *t)
1529 {
1530 TIMECAPS tc;
1531 struct qemu_alarm_win32 *data = t->priv;
1532 UINT flags;
1533
1534 memset(&tc, 0, sizeof(tc));
1535 timeGetDevCaps(&tc, sizeof(tc));
1536
1537 if (data->period < tc.wPeriodMin)
1538 data->period = tc.wPeriodMin;
1539
1540 timeBeginPeriod(data->period);
1541
1542 flags = TIME_CALLBACK_FUNCTION;
1543 if (alarm_has_dynticks(t))
1544 flags |= TIME_ONESHOT;
1545 else
1546 flags |= TIME_PERIODIC;
1547
1548 data->timerId = timeSetEvent(1, // interval (ms)
1549 data->period, // resolution
1550 host_alarm_handler, // function
1551 (DWORD)t, // parameter
1552 flags);
1553
1554 if (!data->timerId) {
1555 fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
1556 GetLastError());
1557 timeEndPeriod(data->period);
1558 return -1;
1559 }
1560
1561 return 0;
1562 }
1563
1564 static void win32_stop_timer(struct qemu_alarm_timer *t)
1565 {
1566 struct qemu_alarm_win32 *data = t->priv;
1567
1568 timeKillEvent(data->timerId);
1569 timeEndPeriod(data->period);
1570 }
1571
1572 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1573 {
1574 struct qemu_alarm_win32 *data = t->priv;
1575
1576 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1577 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1578 !active_timers[QEMU_CLOCK_HOST])
1579 return;
1580
1581 timeKillEvent(data->timerId);
1582
1583 data->timerId = timeSetEvent(1,
1584 data->period,
1585 host_alarm_handler,
1586 (DWORD)t,
1587 TIME_ONESHOT | TIME_PERIODIC);
1588
1589 if (!data->timerId) {
1590 fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n",
1591 GetLastError());
1592
1593 timeEndPeriod(data->period);
1594 exit(1);
1595 }
1596 }
1597
1598 #endif /* _WIN32 */
1599
1600 static int init_timer_alarm(void)
1601 {
1602 struct qemu_alarm_timer *t = NULL;
1603 int i, err = -1;
1604
1605 for (i = 0; alarm_timers[i].name; i++) {
1606 t = &alarm_timers[i];
1607
1608 err = t->start(t);
1609 if (!err)
1610 break;
1611 }
1612
1613 if (err) {
1614 err = -ENOENT;
1615 goto fail;
1616 }
1617
1618 alarm_timer = t;
1619
1620 return 0;
1621
1622 fail:
1623 return err;
1624 }
1625
1626 static void quit_timers(void)
1627 {
1628 alarm_timer->stop(alarm_timer);
1629 alarm_timer = NULL;
1630 }
1631
1632 /***********************************************************/
1633 /* host time/date access */
1634 void qemu_get_timedate(struct tm *tm, int offset)
1635 {
1636 time_t ti;
1637 struct tm *ret;
1638
1639 time(&ti);
1640 ti += offset;
1641 if (rtc_date_offset == -1) {
1642 if (rtc_utc)
1643 ret = gmtime(&ti);
1644 else
1645 ret = localtime(&ti);
1646 } else {
1647 ti -= rtc_date_offset;
1648 ret = gmtime(&ti);
1649 }
1650
1651 memcpy(tm, ret, sizeof(struct tm));
1652 }
1653
1654 int qemu_timedate_diff(struct tm *tm)
1655 {
1656 time_t seconds;
1657
1658 if (rtc_date_offset == -1)
1659 if (rtc_utc)
1660 seconds = mktimegm(tm);
1661 else
1662 seconds = mktime(tm);
1663 else
1664 seconds = mktimegm(tm) + rtc_date_offset;
1665
1666 return seconds - time(NULL);
1667 }
1668
1669 static void configure_rtc_date_offset(const char *startdate, int legacy)
1670 {
1671 time_t rtc_start_date;
1672 struct tm tm;
1673
1674 if (!strcmp(startdate, "now") && legacy) {
1675 rtc_date_offset = -1;
1676 } else {
1677 if (sscanf(startdate, "%d-%d-%dT%d:%d:%d",
1678 &tm.tm_year,
1679 &tm.tm_mon,
1680 &tm.tm_mday,
1681 &tm.tm_hour,
1682 &tm.tm_min,
1683 &tm.tm_sec) == 6) {
1684 /* OK */
1685 } else if (sscanf(startdate, "%d-%d-%d",
1686 &tm.tm_year,
1687 &tm.tm_mon,
1688 &tm.tm_mday) == 3) {
1689 tm.tm_hour = 0;
1690 tm.tm_min = 0;
1691 tm.tm_sec = 0;
1692 } else {
1693 goto date_fail;
1694 }
1695 tm.tm_year -= 1900;
1696 tm.tm_mon--;
1697 rtc_start_date = mktimegm(&tm);
1698 if (rtc_start_date == -1) {
1699 date_fail:
1700 fprintf(stderr, "Invalid date format. Valid formats are:\n"
1701 "'2006-06-17T16:01:21' or '2006-06-17'\n");
1702 exit(1);
1703 }
1704 rtc_date_offset = time(NULL) - rtc_start_date;
1705 }
1706 }
1707
1708 static void configure_rtc(QemuOpts *opts)
1709 {
1710 const char *value;
1711
1712 value = qemu_opt_get(opts, "base");
1713 if (value) {
1714 if (!strcmp(value, "utc")) {
1715 rtc_utc = 1;
1716 } else if (!strcmp(value, "localtime")) {
1717 rtc_utc = 0;
1718 } else {
1719 configure_rtc_date_offset(value, 0);
1720 }
1721 }
1722 value = qemu_opt_get(opts, "clock");
1723 if (value) {
1724 if (!strcmp(value, "host")) {
1725 rtc_clock = host_clock;
1726 } else if (!strcmp(value, "vm")) {
1727 rtc_clock = vm_clock;
1728 } else {
1729 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1730 exit(1);
1731 }
1732 }
1733 #ifdef CONFIG_TARGET_I386
1734 value = qemu_opt_get(opts, "driftfix");
1735 if (value) {
1736 if (!strcmp(buf, "slew")) {
1737 rtc_td_hack = 1;
1738 } else if (!strcmp(buf, "none")) {
1739 rtc_td_hack = 0;
1740 } else {
1741 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1742 exit(1);
1743 }
1744 }
1745 #endif
1746 }
1747
1748 #ifdef _WIN32
1749 static void socket_cleanup(void)
1750 {
1751 WSACleanup();
1752 }
1753
1754 static int socket_init(void)
1755 {
1756 WSADATA Data;
1757 int ret, err;
1758
1759 ret = WSAStartup(MAKEWORD(2,2), &Data);
1760 if (ret != 0) {
1761 err = WSAGetLastError();
1762 fprintf(stderr, "WSAStartup: %d\n", err);
1763 return -1;
1764 }
1765 atexit(socket_cleanup);
1766 return 0;
1767 }
1768 #endif
1769
1770 /***********************************************************/
1771 /* Bluetooth support */
1772 static int nb_hcis;
1773 static int cur_hci;
1774 static struct HCIInfo *hci_table[MAX_NICS];
1775
1776 static struct bt_vlan_s {
1777 struct bt_scatternet_s net;
1778 int id;
1779 struct bt_vlan_s *next;
1780 } *first_bt_vlan;
1781
1782 /* find or alloc a new bluetooth "VLAN" */
1783 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1784 {
1785 struct bt_vlan_s **pvlan, *vlan;
1786 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1787 if (vlan->id == id)
1788 return &vlan->net;
1789 }
1790 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1791 vlan->id = id;
1792 pvlan = &first_bt_vlan;
1793 while (*pvlan != NULL)
1794 pvlan = &(*pvlan)->next;
1795 *pvlan = vlan;
1796 return &vlan->net;
1797 }
1798
1799 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1800 {
1801 }
1802
1803 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1804 {
1805 return -ENOTSUP;
1806 }
1807
1808 static struct HCIInfo null_hci = {
1809 .cmd_send = null_hci_send,
1810 .sco_send = null_hci_send,
1811 .acl_send = null_hci_send,
1812 .bdaddr_set = null_hci_addr_set,
1813 };
1814
1815 struct HCIInfo *qemu_next_hci(void)
1816 {
1817 if (cur_hci == nb_hcis)
1818 return &null_hci;
1819
1820 return hci_table[cur_hci++];
1821 }
1822
1823 static struct HCIInfo *hci_init(const char *str)
1824 {
1825 char *endp;
1826 struct bt_scatternet_s *vlan = 0;
1827
1828 if (!strcmp(str, "null"))
1829 /* null */
1830 return &null_hci;
1831 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1832 /* host[:hciN] */
1833 return bt_host_hci(str[4] ? str + 5 : "hci0");
1834 else if (!strncmp(str, "hci", 3)) {
1835 /* hci[,vlan=n] */
1836 if (str[3]) {
1837 if (!strncmp(str + 3, ",vlan=", 6)) {
1838 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1839 if (*endp)
1840 vlan = 0;
1841 }
1842 } else
1843 vlan = qemu_find_bt_vlan(0);
1844 if (vlan)
1845 return bt_new_hci(vlan);
1846 }
1847
1848 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1849
1850 return 0;
1851 }
1852
1853 static int bt_hci_parse(const char *str)
1854 {
1855 struct HCIInfo *hci;
1856 bdaddr_t bdaddr;
1857
1858 if (nb_hcis >= MAX_NICS) {
1859 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1860 return -1;
1861 }
1862
1863 hci = hci_init(str);
1864 if (!hci)
1865 return -1;
1866
1867 bdaddr.b[0] = 0x52;
1868 bdaddr.b[1] = 0x54;
1869 bdaddr.b[2] = 0x00;
1870 bdaddr.b[3] = 0x12;
1871 bdaddr.b[4] = 0x34;
1872 bdaddr.b[5] = 0x56 + nb_hcis;
1873 hci->bdaddr_set(hci, bdaddr.b);
1874
1875 hci_table[nb_hcis++] = hci;
1876
1877 return 0;
1878 }
1879
1880 static void bt_vhci_add(int vlan_id)
1881 {
1882 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1883
1884 if (!vlan->slave)
1885 fprintf(stderr, "qemu: warning: adding a VHCI to "
1886 "an empty scatternet %i\n", vlan_id);
1887
1888 bt_vhci_init(bt_new_hci(vlan));
1889 }
1890
1891 static struct bt_device_s *bt_device_add(const char *opt)
1892 {
1893 struct bt_scatternet_s *vlan;
1894 int vlan_id = 0;
1895 char *endp = strstr(opt, ",vlan=");
1896 int len = (endp ? endp - opt : strlen(opt)) + 1;
1897 char devname[10];
1898
1899 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1900
1901 if (endp) {
1902 vlan_id = strtol(endp + 6, &endp, 0);
1903 if (*endp) {
1904 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1905 return 0;
1906 }
1907 }
1908
1909 vlan = qemu_find_bt_vlan(vlan_id);
1910
1911 if (!vlan->slave)
1912 fprintf(stderr, "qemu: warning: adding a slave device to "
1913 "an empty scatternet %i\n", vlan_id);
1914
1915 if (!strcmp(devname, "keyboard"))
1916 return bt_keyboard_init(vlan);
1917
1918 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1919 return 0;
1920 }
1921
1922 static int bt_parse(const char *opt)
1923 {
1924 const char *endp, *p;
1925 int vlan;
1926
1927 if (strstart(opt, "hci", &endp)) {
1928 if (!*endp || *endp == ',') {
1929 if (*endp)
1930 if (!strstart(endp, ",vlan=", 0))
1931 opt = endp + 1;
1932
1933 return bt_hci_parse(opt);
1934 }
1935 } else if (strstart(opt, "vhci", &endp)) {
1936 if (!*endp || *endp == ',') {
1937 if (*endp) {
1938 if (strstart(endp, ",vlan=", &p)) {
1939 vlan = strtol(p, (char **) &endp, 0);
1940 if (*endp) {
1941 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1942 return 1;
1943 }
1944 } else {
1945 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1946 return 1;
1947 }
1948 } else
1949 vlan = 0;
1950
1951 bt_vhci_add(vlan);
1952 return 0;
1953 }
1954 } else if (strstart(opt, "device:", &endp))
1955 return !bt_device_add(endp);
1956
1957 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1958 return 1;
1959 }
1960
1961 /***********************************************************/
1962 /* QEMU Block devices */
1963
1964 #define HD_ALIAS "index=%d,media=disk"
1965 #define CDROM_ALIAS "index=2,media=cdrom"
1966 #define FD_ALIAS "index=%d,if=floppy"
1967 #define PFLASH_ALIAS "if=pflash"
1968 #define MTD_ALIAS "if=mtd"
1969 #define SD_ALIAS "index=0,if=sd"
1970
1971 QemuOpts *drive_add(const char *file, const char *fmt, ...)
1972 {
1973 va_list ap;
1974 char optstr[1024];
1975 QemuOpts *opts;
1976
1977 va_start(ap, fmt);
1978 vsnprintf(optstr, sizeof(optstr), fmt, ap);
1979 va_end(ap);
1980
1981 opts = qemu_opts_parse(&qemu_drive_opts, optstr, NULL);
1982 if (!opts) {
1983 fprintf(stderr, "%s: huh? duplicate? (%s)\n",
1984 __FUNCTION__, optstr);
1985 return NULL;
1986 }
1987 if (file)
1988 qemu_opt_set(opts, "file", file);
1989 return opts;
1990 }
1991
1992 DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
1993 {
1994 DriveInfo *dinfo;
1995
1996 /* seek interface, bus and unit */
1997
1998 QTAILQ_FOREACH(dinfo, &drives, next) {
1999 if (dinfo->type == type &&
2000 dinfo->bus == bus &&
2001 dinfo->unit == unit)
2002 return dinfo;
2003 }
2004
2005 return NULL;
2006 }
2007
2008 DriveInfo *drive_get_by_id(const char *id)
2009 {
2010 DriveInfo *dinfo;
2011
2012 QTAILQ_FOREACH(dinfo, &drives, next) {
2013 if (strcmp(id, dinfo->id))
2014 continue;
2015 return dinfo;
2016 }
2017 return NULL;
2018 }
2019
2020 int drive_get_max_bus(BlockInterfaceType type)
2021 {
2022 int max_bus;
2023 DriveInfo *dinfo;
2024
2025 max_bus = -1;
2026 QTAILQ_FOREACH(dinfo, &drives, next) {
2027 if(dinfo->type == type &&
2028 dinfo->bus > max_bus)
2029 max_bus = dinfo->bus;
2030 }
2031 return max_bus;
2032 }
2033
2034 const char *drive_get_serial(BlockDriverState *bdrv)
2035 {
2036 DriveInfo *dinfo;
2037
2038 QTAILQ_FOREACH(dinfo, &drives, next) {
2039 if (dinfo->bdrv == bdrv)
2040 return dinfo->serial;
2041 }
2042
2043 return "\0";
2044 }
2045
2046 BlockInterfaceErrorAction drive_get_on_error(
2047 BlockDriverState *bdrv, int is_read)
2048 {
2049 DriveInfo *dinfo;
2050
2051 QTAILQ_FOREACH(dinfo, &drives, next) {
2052 if (dinfo->bdrv == bdrv)
2053 return is_read ? dinfo->on_read_error : dinfo->on_write_error;
2054 }
2055
2056 return is_read ? BLOCK_ERR_REPORT : BLOCK_ERR_STOP_ENOSPC;
2057 }
2058
2059 static void bdrv_format_print(void *opaque, const char *name)
2060 {
2061 fprintf(stderr, " %s", name);
2062 }
2063
2064 void drive_uninit(DriveInfo *dinfo)
2065 {
2066 qemu_opts_del(dinfo->opts);
2067 bdrv_delete(dinfo->bdrv);
2068 QTAILQ_REMOVE(&drives, dinfo, next);
2069 qemu_free(dinfo);
2070 }
2071
2072 static int parse_block_error_action(const char *buf, int is_read)
2073 {
2074 if (!strcmp(buf, "ignore")) {
2075 return BLOCK_ERR_IGNORE;
2076 } else if (!is_read && !strcmp(buf, "enospc")) {
2077 return BLOCK_ERR_STOP_ENOSPC;
2078 } else if (!strcmp(buf, "stop")) {
2079 return BLOCK_ERR_STOP_ANY;
2080 } else if (!strcmp(buf, "report")) {
2081 return BLOCK_ERR_REPORT;
2082 } else {
2083 fprintf(stderr, "qemu: '%s' invalid %s error action\n",
2084 buf, is_read ? "read" : "write");
2085 return -1;
2086 }
2087 }
2088
2089 DriveInfo *drive_init(QemuOpts *opts, void *opaque,
2090 int *fatal_error)
2091 {
2092 const char *buf;
2093 const char *file = NULL;
2094 char devname[128];
2095 const char *serial;
2096 const char *mediastr = "";
2097 BlockInterfaceType type;
2098 enum { MEDIA_DISK, MEDIA_CDROM } media;
2099 int bus_id, unit_id;
2100 int cyls, heads, secs, translation;
2101 BlockDriver *drv = NULL;
2102 QEMUMachine *machine = opaque;
2103 int max_devs;
2104 int index;
2105 int cache;
2106 int aio = 0;
2107 int ro = 0;
2108 int bdrv_flags;
2109 int on_read_error, on_write_error;
2110 const char *devaddr;
2111 DriveInfo *dinfo;
2112 int snapshot = 0;
2113
2114 *fatal_error = 1;
2115
2116 translation = BIOS_ATA_TRANSLATION_AUTO;
2117 cache = 1;
2118
2119 if (machine && machine->use_scsi) {
2120 type = IF_SCSI;
2121 max_devs = MAX_SCSI_DEVS;
2122 pstrcpy(devname, sizeof(devname), "scsi");
2123 } else {
2124 type = IF_IDE;
2125 max_devs = MAX_IDE_DEVS;
2126 pstrcpy(devname, sizeof(devname), "ide");
2127 }
2128 media = MEDIA_DISK;
2129
2130 /* extract parameters */
2131 bus_id = qemu_opt_get_number(opts, "bus", 0);
2132 unit_id = qemu_opt_get_number(opts, "unit", -1);
2133 index = qemu_opt_get_number(opts, "index", -1);
2134
2135 cyls = qemu_opt_get_number(opts, "cyls", 0);
2136 heads = qemu_opt_get_number(opts, "heads", 0);
2137 secs = qemu_opt_get_number(opts, "secs", 0);
2138
2139 snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
2140 ro = qemu_opt_get_bool(opts, "readonly", 0);
2141
2142 file = qemu_opt_get(opts, "file");
2143 serial = qemu_opt_get(opts, "serial");
2144
2145 if ((buf = qemu_opt_get(opts, "if")) != NULL) {
2146 pstrcpy(devname, sizeof(devname), buf);
2147 if (!strcmp(buf, "ide")) {
2148 type = IF_IDE;
2149 max_devs = MAX_IDE_DEVS;
2150 } else if (!strcmp(buf, "scsi")) {
2151 type = IF_SCSI;
2152 max_devs = MAX_SCSI_DEVS;
2153 } else if (!strcmp(buf, "floppy")) {
2154 type = IF_FLOPPY;
2155 max_devs = 0;
2156 } else if (!strcmp(buf, "pflash")) {
2157 type = IF_PFLASH;
2158 max_devs = 0;
2159 } else if (!strcmp(buf, "mtd")) {
2160 type = IF_MTD;
2161 max_devs = 0;
2162 } else if (!strcmp(buf, "sd")) {
2163 type = IF_SD;
2164 max_devs = 0;
2165 } else if (!strcmp(buf, "virtio")) {
2166 type = IF_VIRTIO;
2167 max_devs = 0;
2168 } else if (!strcmp(buf, "xen")) {
2169 type = IF_XEN;
2170 max_devs = 0;
2171 } else if (!strcmp(buf, "none")) {
2172 type = IF_NONE;
2173 max_devs = 0;
2174 } else {
2175 fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
2176 return NULL;
2177 }
2178 }
2179
2180 if (cyls || heads || secs) {
2181 if (cyls < 1 || (type == IF_IDE && cyls > 16383)) {
2182 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
2183 return NULL;
2184 }
2185 if (heads < 1 || (type == IF_IDE && heads > 16)) {
2186 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
2187 return NULL;
2188 }
2189 if (secs < 1 || (type == IF_IDE && secs > 63)) {
2190 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
2191 return NULL;
2192 }
2193 }
2194
2195 if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
2196 if (!cyls) {
2197 fprintf(stderr,
2198 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2199 buf);
2200 return NULL;
2201 }
2202 if (!strcmp(buf, "none"))
2203 translation = BIOS_ATA_TRANSLATION_NONE;
2204 else if (!strcmp(buf, "lba"))
2205 translation = BIOS_ATA_TRANSLATION_LBA;
2206 else if (!strcmp(buf, "auto"))
2207 translation = BIOS_ATA_TRANSLATION_AUTO;
2208 else {
2209 fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
2210 return NULL;
2211 }
2212 }
2213
2214 if ((buf = qemu_opt_get(opts, "media")) != NULL) {
2215 if (!strcmp(buf, "disk")) {
2216 media = MEDIA_DISK;
2217 } else if (!strcmp(buf, "cdrom")) {
2218 if (cyls || secs || heads) {
2219 fprintf(stderr,
2220 "qemu: '%s' invalid physical CHS format\n", buf);
2221 return NULL;
2222 }
2223 media = MEDIA_CDROM;
2224 } else {
2225 fprintf(stderr, "qemu: '%s' invalid media\n", buf);
2226 return NULL;
2227 }
2228 }
2229
2230 if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
2231 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2232 cache = 0;
2233 else if (!strcmp(buf, "writethrough"))
2234 cache = 1;
2235 else if (!strcmp(buf, "writeback"))
2236 cache = 2;
2237 else {
2238 fprintf(stderr, "qemu: invalid cache option\n");
2239 return NULL;
2240 }
2241 }
2242
2243 #ifdef CONFIG_LINUX_AIO
2244 if ((buf = qemu_opt_get(opts, "aio")) != NULL) {
2245 if (!strcmp(buf, "threads"))
2246 aio = 0;
2247 else if (!strcmp(buf, "native"))
2248 aio = 1;
2249 else {
2250 fprintf(stderr, "qemu: invalid aio option\n");
2251 return NULL;
2252 }
2253 }
2254 #endif
2255
2256 if ((buf = qemu_opt_get(opts, "format")) != NULL) {
2257 if (strcmp(buf, "?") == 0) {
2258 fprintf(stderr, "qemu: Supported formats:");
2259 bdrv_iterate_format(bdrv_format_print, NULL);
2260 fprintf(stderr, "\n");
2261 return NULL;
2262 }
2263 drv = bdrv_find_whitelisted_format(buf);
2264 if (!drv) {
2265 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2266 return NULL;
2267 }
2268 }
2269
2270 on_write_error = BLOCK_ERR_STOP_ENOSPC;
2271 if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
2272 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2273 fprintf(stderr, "werror is no supported by this format\n");
2274 return NULL;
2275 }
2276
2277 on_write_error = parse_block_error_action(buf, 0);
2278 if (on_write_error < 0) {
2279 return NULL;
2280 }
2281 }
2282
2283 on_read_error = BLOCK_ERR_REPORT;
2284 if ((buf = qemu_opt_get(opts, "rerror")) != NULL) {
2285 if (type != IF_IDE && type != IF_VIRTIO) {
2286 fprintf(stderr, "rerror is no supported by this format\n");
2287 return NULL;
2288 }
2289
2290 on_read_error = parse_block_error_action(buf, 1);
2291 if (on_read_error < 0) {
2292 return NULL;
2293 }
2294 }
2295
2296 if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
2297 if (type != IF_VIRTIO) {
2298 fprintf(stderr, "addr is not supported\n");
2299 return NULL;
2300 }
2301 }
2302
2303 /* compute bus and unit according index */
2304
2305 if (index != -1) {
2306 if (bus_id != 0 || unit_id != -1) {
2307 fprintf(stderr,
2308 "qemu: index cannot be used with bus and unit\n");
2309 return NULL;
2310 }
2311 if (max_devs == 0)
2312 {
2313 unit_id = index;
2314 bus_id = 0;
2315 } else {
2316 unit_id = index % max_devs;
2317 bus_id = index / max_devs;
2318 }
2319 }
2320
2321 /* if user doesn't specify a unit_id,
2322 * try to find the first free
2323 */
2324
2325 if (unit_id == -1) {
2326 unit_id = 0;
2327 while (drive_get(type, bus_id, unit_id) != NULL) {
2328 unit_id++;
2329 if (max_devs && unit_id >= max_devs) {
2330 unit_id -= max_devs;
2331 bus_id++;
2332 }
2333 }
2334 }
2335
2336 /* check unit id */
2337
2338 if (max_devs && unit_id >= max_devs) {
2339 fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
2340 unit_id, max_devs - 1);
2341 return NULL;
2342 }
2343
2344 /*
2345 * ignore multiple definitions
2346 */
2347
2348 if (drive_get(type, bus_id, unit_id) != NULL) {
2349 *fatal_error = 0;
2350 return NULL;
2351 }
2352
2353 /* init */
2354
2355 dinfo = qemu_mallocz(sizeof(*dinfo));
2356 if ((buf = qemu_opts_id(opts)) != NULL) {
2357 dinfo->id = qemu_strdup(buf);
2358 } else {
2359 /* no id supplied -> create one */
2360 dinfo->id = qemu_mallocz(32);
2361 if (type == IF_IDE || type == IF_SCSI)
2362 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2363 if (max_devs)
2364 snprintf(dinfo->id, 32, "%s%i%s%i",
2365 devname, bus_id, mediastr, unit_id);
2366 else
2367 snprintf(dinfo->id, 32, "%s%s%i",
2368 devname, mediastr, unit_id);
2369 }
2370 dinfo->bdrv = bdrv_new(dinfo->id);
2371 dinfo->devaddr = devaddr;
2372 dinfo->type = type;
2373 dinfo->bus = bus_id;
2374 dinfo->unit = unit_id;
2375 dinfo->on_read_error = on_read_error;
2376 dinfo->on_write_error = on_write_error;
2377 dinfo->opts = opts;
2378 if (serial)
2379 strncpy(dinfo->serial, serial, sizeof(serial));
2380 QTAILQ_INSERT_TAIL(&drives, dinfo, next);
2381
2382 switch(type) {
2383 case IF_IDE:
2384 case IF_SCSI:
2385 case IF_XEN:
2386 case IF_NONE:
2387 switch(media) {
2388 case MEDIA_DISK:
2389 if (cyls != 0) {
2390 bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
2391 bdrv_set_translation_hint(dinfo->bdrv, translation);
2392 }
2393 break;
2394 case MEDIA_CDROM:
2395 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
2396 break;
2397 }
2398 break;
2399 case IF_SD:
2400 /* FIXME: This isn't really a floppy, but it's a reasonable
2401 approximation. */
2402 case IF_FLOPPY:
2403 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
2404 break;
2405 case IF_PFLASH:
2406 case IF_MTD:
2407 break;
2408 case IF_VIRTIO:
2409 /* add virtio block device */
2410 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
2411 qemu_opt_set(opts, "driver", "virtio-blk-pci");
2412 qemu_opt_set(opts, "drive", dinfo->id);
2413 if (devaddr)
2414 qemu_opt_set(opts, "addr", devaddr);
2415 break;
2416 case IF_COUNT:
2417 abort();
2418 }
2419 if (!file) {
2420 *fatal_error = 0;
2421 return NULL;
2422 }
2423 bdrv_flags = 0;
2424 if (snapshot) {
2425 bdrv_flags |= BDRV_O_SNAPSHOT;
2426 cache = 2; /* always use write-back with snapshot */
2427 }
2428 if (cache == 0) /* no caching */
2429 bdrv_flags |= BDRV_O_NOCACHE;
2430 else if (cache == 2) /* write-back */
2431 bdrv_flags |= BDRV_O_CACHE_WB;
2432
2433 if (aio == 1) {
2434 bdrv_flags |= BDRV_O_NATIVE_AIO;
2435 } else {
2436 bdrv_flags &= ~BDRV_O_NATIVE_AIO;
2437 }
2438
2439 if (ro == 1) {
2440 if (type == IF_IDE) {
2441 fprintf(stderr, "qemu: readonly flag not supported for drive with ide interface\n");
2442 return NULL;
2443 }
2444 (void)bdrv_set_read_only(dinfo->bdrv, 1);
2445 }
2446
2447 if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
2448 fprintf(stderr, "qemu: could not open disk image %s: %s\n",
2449 file, strerror(errno));
2450 return NULL;
2451 }
2452
2453 if (bdrv_key_required(dinfo->bdrv))
2454 autostart = 0;
2455 *fatal_error = 0;
2456 return dinfo;
2457 }
2458
2459 static int drive_init_func(QemuOpts *opts, void *opaque)
2460 {
2461 QEMUMachine *machine = opaque;
2462 int fatal_error = 0;
2463
2464 if (drive_init(opts, machine, &fatal_error) == NULL) {
2465 if (fatal_error)
2466 return 1;
2467 }
2468 return 0;
2469 }
2470
2471 static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
2472 {
2473 if (NULL == qemu_opt_get(opts, "snapshot")) {
2474 qemu_opt_set(opts, "snapshot", "on");
2475 }
2476 return 0;
2477 }
2478
2479 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2480 {
2481 boot_set_handler = func;
2482 boot_set_opaque = opaque;
2483 }
2484
2485 int qemu_boot_set(const char *boot_devices)
2486 {
2487 if (!boot_set_handler) {
2488 return -EINVAL;
2489 }
2490 return boot_set_handler(boot_set_opaque, boot_devices);
2491 }
2492
2493 static int parse_bootdevices(char *devices)
2494 {
2495 /* We just do some generic consistency checks */
2496 const char *p;
2497 int bitmap = 0;
2498
2499 for (p = devices; *p != '\0'; p++) {
2500 /* Allowed boot devices are:
2501 * a-b: floppy disk drives
2502 * c-f: IDE disk drives
2503 * g-m: machine implementation dependant drives
2504 * n-p: network devices
2505 * It's up to each machine implementation to check if the given boot
2506 * devices match the actual hardware implementation and firmware
2507 * features.
2508 */
2509 if (*p < 'a' || *p > 'p') {
2510 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2511 exit(1);
2512 }
2513 if (bitmap & (1 << (*p - 'a'))) {
2514 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2515 exit(1);
2516 }
2517 bitmap |= 1 << (*p - 'a');
2518 }
2519 return bitmap;
2520 }
2521
2522 static void restore_boot_devices(void *opaque)
2523 {
2524 char *standard_boot_devices = opaque;
2525
2526 qemu_boot_set(standard_boot_devices);
2527
2528 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2529 qemu_free(standard_boot_devices);
2530 }
2531
2532 static void numa_add(const char *optarg)
2533 {
2534 char option[128];
2535 char *endptr;
2536 unsigned long long value, endvalue;
2537 int nodenr;
2538
2539 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2540 if (!strcmp(option, "node")) {
2541 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2542 nodenr = nb_numa_nodes;
2543 } else {
2544 nodenr = strtoull(option, NULL, 10);
2545 }
2546
2547 if (get_param_value(option, 128, "mem", optarg) == 0) {
2548 node_mem[nodenr] = 0;
2549 } else {
2550 value = strtoull(option, &endptr, 0);
2551 switch (*endptr) {
2552 case 0: case 'M': case 'm':
2553 value <<= 20;
2554 break;
2555 case 'G': case 'g':
2556 value <<= 30;
2557 break;
2558 }
2559 node_mem[nodenr] = value;
2560 }
2561 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2562 node_cpumask[nodenr] = 0;
2563 } else {
2564 value = strtoull(option, &endptr, 10);
2565 if (value >= 64) {
2566 value = 63;
2567 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2568 } else {
2569 if (*endptr == '-') {
2570 endvalue = strtoull(endptr+1, &endptr, 10);
2571 if (endvalue >= 63) {
2572 endvalue = 62;
2573 fprintf(stderr,
2574 "only 63 CPUs in NUMA mode supported.\n");
2575 }
2576 value = (1 << (endvalue + 1)) - (1 << value);
2577 } else {
2578 value = 1 << value;
2579 }
2580 }
2581 node_cpumask[nodenr] = value;
2582 }
2583 nb_numa_nodes++;
2584 }
2585 return;
2586 }
2587
2588 static void smp_parse(const char *optarg)
2589 {
2590 int smp, sockets = 0, threads = 0, cores = 0;
2591 char *endptr;
2592 char option[128];
2593
2594 smp = strtoul(optarg, &endptr, 10);
2595 if (endptr != optarg) {
2596 if (*endptr == ',') {
2597 endptr++;
2598 }
2599 }
2600 if (get_param_value(option, 128, "sockets", endptr) != 0)
2601 sockets = strtoull(option, NULL, 10);
2602 if (get_param_value(option, 128, "cores", endptr) != 0)
2603 cores = strtoull(option, NULL, 10);
2604 if (get_param_value(option, 128, "threads", endptr) != 0)
2605 threads = strtoull(option, NULL, 10);
2606 if (get_param_value(option, 128, "maxcpus", endptr) != 0)
2607 max_cpus = strtoull(option, NULL, 10);
2608
2609 /* compute missing values, prefer sockets over cores over threads */
2610 if (smp == 0 || sockets == 0) {
2611 sockets = sockets > 0 ? sockets : 1;
2612 cores = cores > 0 ? cores : 1;
2613 threads = threads > 0 ? threads : 1;
2614 if (smp == 0) {
2615 smp = cores * threads * sockets;
2616 } else {
2617 sockets = smp / (cores * threads);
2618 }
2619 } else {
2620 if (cores == 0) {
2621 threads = threads > 0 ? threads : 1;
2622 cores = smp / (sockets * threads);
2623 } else {
2624 if (sockets == 0) {
2625 sockets = smp / (cores * threads);
2626 } else {
2627 threads = smp / (cores * sockets);
2628 }
2629 }
2630 }
2631 smp_cpus = smp;
2632 smp_cores = cores > 0 ? cores : 1;
2633 smp_threads = threads > 0 ? threads : 1;
2634 if (max_cpus == 0)
2635 max_cpus = smp_cpus;
2636 }
2637
2638 /***********************************************************/
2639 /* USB devices */
2640
2641 static int usb_device_add(const char *devname, int is_hotplug)
2642 {
2643 const char *p;
2644 USBDevice *dev = NULL;
2645
2646 if (!usb_enabled)
2647 return -1;
2648
2649 /* drivers with .usbdevice_name entry in USBDeviceInfo */
2650 dev = usbdevice_create(devname);
2651 if (dev)
2652 goto done;
2653
2654 /* the other ones */
2655 if (strstart(devname, "host:", &p)) {
2656 dev = usb_host_device_open(p);
2657 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2658 dev = usb_bt_init(devname[2] ? hci_init(p) :
2659 bt_new_hci(qemu_find_bt_vlan(0)));
2660 } else {
2661 return -1;
2662 }
2663 if (!dev)
2664 return -1;
2665
2666 done:
2667 return 0;
2668 }
2669
2670 static int usb_device_del(const char *devname)
2671 {
2672 int bus_num, addr;
2673 const char *p;
2674
2675 if (strstart(devname, "host:", &p))
2676 return usb_host_device_close(p);
2677
2678 if (!usb_enabled)
2679 return -1;
2680
2681 p = strchr(devname, '.');
2682 if (!p)
2683 return -1;
2684 bus_num = strtoul(devname, NULL, 0);
2685 addr = strtoul(p + 1, NULL, 0);
2686
2687 return usb_device_delete_addr(bus_num, addr);
2688 }
2689
2690 static int usb_parse(const char *cmdline)
2691 {
2692 int r;
2693 r = usb_device_add(cmdline, 0);
2694 if (r < 0) {
2695 fprintf(stderr, "qemu: could not add USB device '%s'\n", cmdline);
2696 }
2697 return r;
2698 }
2699
2700 void do_usb_add(Monitor *mon, const QDict *qdict)
2701 {
2702 const char *devname = qdict_get_str(qdict, "devname");
2703 if (usb_device_add(devname, 1) < 0) {
2704 qemu_error("could not add USB device '%s'\n", devname);
2705 }
2706 }
2707
2708 void do_usb_del(Monitor *mon, const QDict *qdict)
2709 {
2710 const char *devname = qdict_get_str(qdict, "devname");
2711 if (usb_device_del(devname) < 0) {
2712 qemu_error("could not delete USB device '%s'\n", devname);
2713 }
2714 }
2715
2716 /***********************************************************/
2717 /* PCMCIA/Cardbus */
2718
2719 static struct pcmcia_socket_entry_s {
2720 PCMCIASocket *socket;
2721 struct pcmcia_socket_entry_s *next;
2722 } *pcmcia_sockets = 0;
2723
2724 void pcmcia_socket_register(PCMCIASocket *socket)
2725 {
2726 struct pcmcia_socket_entry_s *entry;
2727
2728 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2729 entry->socket = socket;
2730 entry->next = pcmcia_sockets;
2731 pcmcia_sockets = entry;
2732 }
2733
2734 void pcmcia_socket_unregister(PCMCIASocket *socket)
2735 {
2736 struct pcmcia_socket_entry_s *entry, **ptr;
2737
2738 ptr = &pcmcia_sockets;
2739 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2740 if (entry->socket == socket) {
2741 *ptr = entry->next;
2742 qemu_free(entry);
2743 }
2744 }
2745
2746 void pcmcia_info(Monitor *mon)
2747 {
2748 struct pcmcia_socket_entry_s *iter;
2749
2750 if (!pcmcia_sockets)
2751 monitor_printf(mon, "No PCMCIA sockets\n");
2752
2753 for (iter = pcmcia_sockets; iter; iter = iter->next)
2754 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2755 iter->socket->attached ? iter->socket->card_string :
2756 "Empty");
2757 }
2758
2759 /***********************************************************/
2760 /* register display */
2761
2762 struct DisplayAllocator default_allocator = {
2763 defaultallocator_create_displaysurface,
2764 defaultallocator_resize_displaysurface,
2765 defaultallocator_free_displaysurface
2766 };
2767
2768 void register_displaystate(DisplayState *ds)
2769 {
2770 DisplayState **s;
2771 s = &display_state;
2772 while (*s != NULL)
2773 s = &(*s)->next;
2774 ds->next = NULL;
2775 *s = ds;
2776 }
2777
2778 DisplayState *get_displaystate(void)
2779 {
2780 return display_state;
2781 }
2782
2783 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2784 {
2785 if(ds->allocator == &default_allocator) ds->allocator = da;
2786 return ds->allocator;
2787 }
2788
2789 /* dumb display */
2790
2791 static void dumb_display_init(void)
2792 {
2793 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2794 ds->allocator = &default_allocator;
2795 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2796 register_displaystate(ds);
2797 }
2798
2799 /***********************************************************/
2800 /* I/O handling */
2801
2802 typedef struct IOHandlerRecord {
2803 int fd;
2804 IOCanRWHandler *fd_read_poll;
2805 IOHandler *fd_read;
2806 IOHandler *fd_write;
2807 int deleted;
2808 void *opaque;
2809 /* temporary data */
2810 struct pollfd *ufd;
2811 struct IOHandlerRecord *next;
2812 } IOHandlerRecord;
2813
2814 static IOHandlerRecord *first_io_handler;
2815
2816 /* XXX: fd_read_poll should be suppressed, but an API change is
2817 necessary in the character devices to suppress fd_can_read(). */
2818 int qemu_set_fd_handler2(int fd,
2819 IOCanRWHandler *fd_read_poll,
2820 IOHandler *fd_read,
2821 IOHandler *fd_write,
2822 void *opaque)
2823 {
2824 IOHandlerRecord **pioh, *ioh;
2825
2826 if (!fd_read && !fd_write) {
2827 pioh = &first_io_handler;
2828 for(;;) {
2829 ioh = *pioh;
2830 if (ioh == NULL)
2831 break;
2832 if (ioh->fd == fd) {
2833 ioh->deleted = 1;
2834 break;
2835 }
2836 pioh = &ioh->next;
2837 }
2838 } else {
2839 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2840 if (ioh->fd == fd)
2841 goto found;
2842 }
2843 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2844 ioh->next = first_io_handler;
2845 first_io_handler = ioh;
2846 found:
2847 ioh->fd = fd;
2848 ioh->fd_read_poll = fd_read_poll;
2849 ioh->fd_read = fd_read;
2850 ioh->fd_write = fd_write;
2851 ioh->opaque = opaque;
2852 ioh->deleted = 0;
2853 }
2854 return 0;
2855 }
2856
2857 int qemu_set_fd_handler(int fd,
2858 IOHandler *fd_read,
2859 IOHandler *fd_write,
2860 void *opaque)
2861 {
2862 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2863 }
2864
2865 #ifdef _WIN32
2866 /***********************************************************/
2867 /* Polling handling */
2868
2869 typedef struct PollingEntry {
2870 PollingFunc *func;
2871 void *opaque;
2872 struct PollingEntry *next;
2873 } PollingEntry;
2874
2875 static PollingEntry *first_polling_entry;
2876
2877 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2878 {
2879 PollingEntry **ppe, *pe;
2880 pe = qemu_mallocz(sizeof(PollingEntry));
2881 pe->func = func;
2882 pe->opaque = opaque;
2883 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2884 *ppe = pe;
2885 return 0;
2886 }
2887
2888 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2889 {
2890 PollingEntry **ppe, *pe;
2891 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2892 pe = *ppe;
2893 if (pe->func == func && pe->opaque == opaque) {
2894 *ppe = pe->next;
2895 qemu_free(pe);
2896 break;
2897 }
2898 }
2899 }
2900
2901 /***********************************************************/
2902 /* Wait objects support */
2903 typedef struct WaitObjects {
2904 int num;
2905 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2906 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2907 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2908 } WaitObjects;
2909
2910 static WaitObjects wait_objects = {0};
2911
2912 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2913 {
2914 WaitObjects *w = &wait_objects;
2915
2916 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2917 return -1;
2918 w->events[w->num] = handle;
2919 w->func[w->num] = func;
2920 w->opaque[w->num] = opaque;
2921 w->num++;
2922 return 0;
2923 }
2924
2925 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2926 {
2927 int i, found;
2928 WaitObjects *w = &wait_objects;
2929
2930 found = 0;
2931 for (i = 0; i < w->num; i++) {
2932 if (w->events[i] == handle)
2933 found = 1;
2934 if (found) {
2935 w->events[i] = w->events[i + 1];
2936 w->func[i] = w->func[i + 1];
2937 w->opaque[i] = w->opaque[i + 1];
2938 }
2939 }
2940 if (found)
2941 w->num--;
2942 }
2943 #endif
2944
2945 /***********************************************************/
2946 /* ram save/restore */
2947
2948 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
2949 #define RAM_SAVE_FLAG_COMPRESS 0x02
2950 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2951 #define RAM_SAVE_FLAG_PAGE 0x08
2952 #define RAM_SAVE_FLAG_EOS 0x10
2953
2954 static int is_dup_page(uint8_t *page, uint8_t ch)
2955 {
2956 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2957 uint32_t *array = (uint32_t *)page;
2958 int i;
2959
2960 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2961 if (array[i] != val)
2962 return 0;
2963 }
2964
2965 return 1;
2966 }
2967
2968 static int ram_save_block(QEMUFile *f)
2969 {
2970 static ram_addr_t current_addr = 0;
2971 ram_addr_t saved_addr = current_addr;
2972 ram_addr_t addr = 0;
2973 int found = 0;
2974
2975 while (addr < last_ram_offset) {
2976 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2977 uint8_t *p;
2978
2979 cpu_physical_memory_reset_dirty(current_addr,
2980 current_addr + TARGET_PAGE_SIZE,
2981 MIGRATION_DIRTY_FLAG);
2982
2983 p = qemu_get_ram_ptr(current_addr);
2984
2985 if (is_dup_page(p, *p)) {
2986 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
2987 qemu_put_byte(f, *p);
2988 } else {
2989 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
2990 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
2991 }
2992
2993 found = 1;
2994 break;
2995 }
2996 addr += TARGET_PAGE_SIZE;
2997 current_addr = (saved_addr + addr) % last_ram_offset;
2998 }
2999
3000 return found;
3001 }
3002
3003 static uint64_t bytes_transferred;
3004
3005 static ram_addr_t ram_save_remaining(void)
3006 {
3007 ram_addr_t addr;
3008 ram_addr_t count = 0;
3009
3010 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3011 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3012 count++;
3013 }
3014
3015 return count;
3016 }
3017
3018 uint64_t ram_bytes_remaining(void)
3019 {
3020 return ram_save_remaining() * TARGET_PAGE_SIZE;
3021 }
3022
3023 uint64_t ram_bytes_transferred(void)
3024 {
3025 return bytes_transferred;
3026 }
3027
3028 uint64_t ram_bytes_total(void)
3029 {
3030 return last_ram_offset;
3031 }
3032
3033 static int ram_save_live(Monitor *mon, QEMUFile *f, int stage, void *opaque)
3034 {
3035 ram_addr_t addr;
3036 uint64_t bytes_transferred_last;
3037 double bwidth = 0;
3038 uint64_t expected_time = 0;
3039
3040 if (stage < 0) {
3041 cpu_physical_memory_set_dirty_tracking(0);
3042 return 0;
3043 }
3044
3045 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
3046 qemu_file_set_error(f);
3047 return 0;
3048 }
3049
3050 if (stage == 1) {
3051 bytes_transferred = 0;
3052
3053 /* Make sure all dirty bits are set */
3054 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3055 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3056 cpu_physical_memory_set_dirty(addr);
3057 }
3058
3059 /* Enable dirty memory tracking */
3060 cpu_physical_memory_set_dirty_tracking(1);
3061
3062 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3063 }
3064
3065 bytes_transferred_last = bytes_transferred;
3066 bwidth = get_clock();
3067
3068 while (!qemu_file_rate_limit(f)) {
3069 int ret;
3070
3071 ret = ram_save_block(f);
3072 bytes_transferred += ret * TARGET_PAGE_SIZE;
3073 if (ret == 0) /* no more blocks */
3074 break;
3075 }
3076
3077 bwidth = get_clock() - bwidth;
3078 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
3079
3080 /* if we haven't transferred anything this round, force expected_time to a
3081 * a very high value, but without crashing */
3082 if (bwidth == 0)
3083 bwidth = 0.000001;
3084
3085 /* try transferring iterative blocks of memory */
3086 if (stage == 3) {
3087 /* flush all remaining blocks regardless of rate limiting */
3088 while (ram_save_block(f) != 0) {
3089 bytes_transferred += TARGET_PAGE_SIZE;
3090 }
3091 cpu_physical_memory_set_dirty_tracking(0);
3092 }
3093
3094 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3095
3096 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
3097
3098 return (stage == 2) && (expected_time <= migrate_max_downtime());
3099 }
3100
3101 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3102 {
3103 ram_addr_t addr;
3104 int flags;
3105
3106 if (version_id != 3)
3107 return -EINVAL;
3108
3109 do {
3110 addr = qemu_get_be64(f);
3111
3112 flags = addr & ~TARGET_PAGE_MASK;
3113 addr &= TARGET_PAGE_MASK;
3114
3115 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3116 if (addr != last_ram_offset)
3117 return -EINVAL;
3118 }
3119
3120 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3121 uint8_t ch = qemu_get_byte(f);
3122 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3123 #ifndef _WIN32
3124 if (ch == 0 &&
3125 (!kvm_enabled() || kvm_has_sync_mmu())) {
3126 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3127 }
3128 #endif
3129 } else if (flags & RAM_SAVE_FLAG_PAGE) {
3130 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3131 }
3132 if (qemu_file_has_error(f)) {
3133 return -EIO;
3134 }
3135 } while (!(flags & RAM_SAVE_FLAG_EOS));
3136
3137 return 0;
3138 }
3139
3140 void qemu_service_io(void)
3141 {
3142 qemu_notify_event();
3143 }
3144
3145 /***********************************************************/
3146 /* machine registration */
3147
3148 static QEMUMachine *first_machine = NULL;
3149 QEMUMachine *current_machine = NULL;
3150
3151 int qemu_register_machine(QEMUMachine *m)
3152 {
3153 QEMUMachine **pm;
3154 pm = &first_machine;
3155 while (*pm != NULL)
3156 pm = &(*pm)->next;
3157 m->next = NULL;
3158 *pm = m;
3159 return 0;
3160 }
3161
3162 static QEMUMachine *find_machine(const char *name)
3163 {
3164 QEMUMachine *m;
3165
3166 for(m = first_machine; m != NULL; m = m->next) {
3167 if (!strcmp(m->name, name))
3168 return m;
3169 if (m->alias && !strcmp(m->alias, name))
3170 return m;
3171 }
3172 return NULL;
3173 }
3174
3175 static QEMUMachine *find_default_machine(void)
3176 {
3177 QEMUMachine *m;
3178
3179 for(m = first_machine; m != NULL; m = m->next) {
3180 if (m->is_default) {
3181 return m;
3182 }
3183 }
3184 return NULL;
3185 }
3186
3187 /***********************************************************/
3188 /* main execution loop */
3189
3190 static void gui_update(void *opaque)
3191 {
3192 uint64_t interval = GUI_REFRESH_INTERVAL;
3193 DisplayState *ds = opaque;
3194 DisplayChangeListener *dcl = ds->listeners;
3195
3196 dpy_refresh(ds);
3197
3198 while (dcl != NULL) {
3199 if (dcl->gui_timer_interval &&
3200 dcl->gui_timer_interval < interval)
3201 interval = dcl->gui_timer_interval;
3202 dcl = dcl->next;
3203 }
3204 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3205 }
3206
3207 static void nographic_update(void *opaque)
3208 {
3209 uint64_t interval = GUI_REFRESH_INTERVAL;
3210
3211 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3212 }
3213
3214 struct vm_change_state_entry {
3215 VMChangeStateHandler *cb;
3216 void *opaque;
3217 QLIST_ENTRY (vm_change_state_entry) entries;
3218 };
3219
3220 static QLIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3221
3222 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3223 void *opaque)
3224 {
3225 VMChangeStateEntry *e;
3226
3227 e = qemu_mallocz(sizeof (*e));
3228
3229 e->cb = cb;
3230 e->opaque = opaque;
3231 QLIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3232 return e;
3233 }
3234
3235 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3236 {
3237 QLIST_REMOVE (e, entries);
3238 qemu_free (e);
3239 }
3240
3241 static void vm_state_notify(int running, int reason)
3242 {
3243 VMChangeStateEntry *e;
3244
3245 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3246 e->cb(e->opaque, running, reason);
3247 }
3248 }
3249
3250 static void resume_all_vcpus(void);
3251 static void pause_all_vcpus(void);
3252
3253 void vm_start(void)
3254 {
3255 if (!vm_running) {
3256 cpu_enable_ticks();
3257 vm_running = 1;
3258 vm_state_notify(1, 0);
3259 qemu_rearm_alarm_timer(alarm_timer);
3260 resume_all_vcpus();
3261 }
3262 }
3263
3264 /* reset/shutdown handler */
3265
3266 typedef struct QEMUResetEntry {
3267 QTAILQ_ENTRY(QEMUResetEntry) entry;
3268 QEMUResetHandler *func;
3269 void *opaque;
3270 } QEMUResetEntry;
3271
3272 static QTAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3273 QTAILQ_HEAD_INITIALIZER(reset_handlers);
3274 static int reset_requested;
3275 static int shutdown_requested;
3276 static int powerdown_requested;
3277 static int debug_requested;
3278 static int vmstop_requested;
3279
3280 int qemu_shutdown_requested(void)
3281 {
3282 int r = shutdown_requested;
3283 shutdown_requested = 0;
3284 return r;
3285 }
3286
3287 int qemu_reset_requested(void)
3288 {
3289 int r = reset_requested;
3290 reset_requested = 0;
3291 return r;
3292 }
3293
3294 int qemu_powerdown_requested(void)
3295 {
3296 int r = powerdown_requested;
3297 powerdown_requested = 0;
3298 return r;
3299 }
3300
3301 static int qemu_debug_requested(void)
3302 {
3303 int r = debug_requested;
3304 debug_requested = 0;
3305 return r;
3306 }
3307
3308 static int qemu_vmstop_requested(void)
3309 {
3310 int r = vmstop_requested;
3311 vmstop_requested = 0;
3312 return r;
3313 }
3314
3315 static void do_vm_stop(int reason)
3316 {
3317 if (vm_running) {
3318 cpu_disable_ticks();
3319 vm_running = 0;
3320 pause_all_vcpus();
3321 vm_state_notify(0, reason);
3322 }
3323 }
3324
3325 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3326 {
3327 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3328
3329 re->func = func;
3330 re->opaque = opaque;
3331 QTAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3332 }
3333
3334 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3335 {
3336 QEMUResetEntry *re;
3337
3338 QTAILQ_FOREACH(re, &reset_handlers, entry) {
3339 if (re->func == func && re->opaque == opaque) {
3340 QTAILQ_REMOVE(&reset_handlers, re, entry);
3341 qemu_free(re);
3342 return;
3343 }
3344 }
3345 }
3346
3347 void qemu_system_reset(void)
3348 {
3349 QEMUResetEntry *re, *nre;
3350
3351 /* reset all devices */
3352 QTAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3353 re->func(re->opaque);
3354 }
3355 }
3356
3357 void qemu_system_reset_request(void)
3358 {
3359 if (no_reboot) {
3360 shutdown_requested = 1;
3361 } else {
3362 reset_requested = 1;
3363 }
3364 qemu_notify_event();
3365 }
3366
3367 void qemu_system_shutdown_request(void)
3368 {
3369 shutdown_requested = 1;
3370 qemu_notify_event();
3371 }
3372
3373 void qemu_system_powerdown_request(void)
3374 {
3375 powerdown_requested = 1;
3376 qemu_notify_event();
3377 }
3378
3379 #ifdef CONFIG_IOTHREAD
3380 static void qemu_system_vmstop_request(int reason)
3381 {
3382 vmstop_requested = reason;
3383 qemu_notify_event();
3384 }
3385 #endif
3386
3387 #ifndef _WIN32
3388 static int io_thread_fd = -1;
3389
3390 static void qemu_event_increment(void)
3391 {
3392 static const char byte = 0;
3393
3394 if (io_thread_fd == -1)
3395 return;
3396
3397 write(io_thread_fd, &byte, sizeof(byte));
3398 }
3399
3400 static void qemu_event_read(void *opaque)
3401 {
3402 int fd = (unsigned long)opaque;
3403 ssize_t len;
3404
3405 /* Drain the notify pipe */
3406 do {
3407 char buffer[512];
3408 len = read(fd, buffer, sizeof(buffer));
3409 } while ((len == -1 && errno == EINTR) || len > 0);
3410 }
3411
3412 static int qemu_event_init(void)
3413 {
3414 int err;
3415 int fds[2];
3416
3417 err = qemu_pipe(fds);
3418 if (err == -1)
3419 return -errno;
3420
3421 err = fcntl_setfl(fds[0], O_NONBLOCK);
3422 if (err < 0)
3423 goto fail;
3424
3425 err = fcntl_setfl(fds[1], O_NONBLOCK);
3426 if (err < 0)
3427 goto fail;
3428
3429 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3430 (void *)(unsigned long)fds[0]);
3431
3432 io_thread_fd = fds[1];
3433 return 0;
3434
3435 fail:
3436 close(fds[0]);
3437 close(fds[1]);
3438 return err;
3439 }
3440 #else
3441 HANDLE qemu_event_handle;
3442
3443 static void dummy_event_handler(void *opaque)
3444 {
3445 }
3446
3447 static int qemu_event_init(void)
3448 {
3449 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3450 if (!qemu_event_handle) {
3451 fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
3452 return -1;
3453 }
3454 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3455 return 0;
3456 }
3457
3458 static void qemu_event_increment(void)
3459 {
3460 if (!SetEvent(qemu_event_handle)) {
3461 fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
3462 GetLastError());
3463 exit (1);
3464 }
3465 }
3466 #endif
3467
3468 static int cpu_can_run(CPUState *env)
3469 {
3470 if (env->stop)
3471 return 0;
3472 if (env->stopped)
3473 return 0;
3474 return 1;
3475 }
3476
3477 #ifndef CONFIG_IOTHREAD
3478 static int qemu_init_main_loop(void)
3479 {
3480 return qemu_event_init();
3481 }
3482
3483 void qemu_init_vcpu(void *_env)
3484 {
3485 CPUState *env = _env;
3486
3487 if (kvm_enabled())
3488 kvm_init_vcpu(env);
3489 env->nr_cores = smp_cores;
3490 env->nr_threads = smp_threads;
3491 return;
3492 }
3493
3494 int qemu_cpu_self(void *env)
3495 {
3496 return 1;
3497 }
3498
3499 static void resume_all_vcpus(void)
3500 {
3501 }
3502
3503 static void pause_all_vcpus(void)
3504 {
3505 }
3506
3507 void qemu_cpu_kick(void *env)
3508 {
3509 return;
3510 }
3511
3512 void qemu_notify_event(void)
3513 {
3514 CPUState *env = cpu_single_env;
3515
3516 if (env) {
3517 cpu_exit(env);
3518 }
3519 }
3520
3521 void qemu_mutex_lock_iothread(void) {}
3522 void qemu_mutex_unlock_iothread(void) {}
3523
3524 void vm_stop(int reason)
3525 {
3526 do_vm_stop(reason);
3527 }
3528
3529 #else /* CONFIG_IOTHREAD */
3530
3531 #include "qemu-thread.h"
3532
3533 QemuMutex qemu_global_mutex;
3534 static QemuMutex qemu_fair_mutex;
3535
3536 static QemuThread io_thread;
3537
3538 static QemuThread *tcg_cpu_thread;
3539 static QemuCond *tcg_halt_cond;
3540
3541 static int qemu_system_ready;
3542 /* cpu creation */
3543 static QemuCond qemu_cpu_cond;
3544 /* system init */
3545 static QemuCond qemu_system_cond;
3546 static QemuCond qemu_pause_cond;
3547
3548 static void block_io_signals(void);
3549 static void unblock_io_signals(void);
3550 static int tcg_has_work(void);
3551
3552 static int qemu_init_main_loop(void)
3553 {
3554 int ret;
3555
3556 ret = qemu_event_init();
3557 if (ret)
3558 return ret;
3559
3560 qemu_cond_init(&qemu_pause_cond);
3561 qemu_mutex_init(&qemu_fair_mutex);
3562 qemu_mutex_init(&qemu_global_mutex);
3563 qemu_mutex_lock(&qemu_global_mutex);
3564
3565 unblock_io_signals();
3566 qemu_thread_self(&io_thread);
3567
3568 return 0;
3569 }
3570
3571 static void qemu_wait_io_event(CPUState *env)
3572 {
3573 while (!tcg_has_work())
3574 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3575
3576 qemu_mutex_unlock(&qemu_global_mutex);
3577
3578 /*
3579 * Users of qemu_global_mutex can be starved, having no chance
3580 * to acquire it since this path will get to it first.
3581 * So use another lock to provide fairness.
3582 */
3583 qemu_mutex_lock(&qemu_fair_mutex);
3584 qemu_mutex_unlock(&qemu_fair_mutex);
3585
3586 qemu_mutex_lock(&qemu_global_mutex);
3587 if (env->stop) {
3588 env->stop = 0;
3589 env->stopped = 1;
3590 qemu_cond_signal(&qemu_pause_cond);
3591 }
3592 }
3593
3594 static int qemu_cpu_exec(CPUState *env);
3595
3596 static void *kvm_cpu_thread_fn(void *arg)
3597 {
3598 CPUState *env = arg;
3599
3600 block_io_signals();
3601 qemu_thread_self(env->thread);
3602 if (kvm_enabled())
3603 kvm_init_vcpu(env);
3604
3605 /* signal CPU creation */
3606 qemu_mutex_lock(&qemu_global_mutex);
3607 env->created = 1;
3608 qemu_cond_signal(&qemu_cpu_cond);
3609
3610 /* and wait for machine initialization */
3611 while (!qemu_system_ready)
3612 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3613
3614 while (1) {
3615 if (cpu_can_run(env))
3616 qemu_cpu_exec(env);
3617 qemu_wait_io_event(env);
3618 }
3619
3620 return NULL;
3621 }
3622
3623 static void tcg_cpu_exec(void);
3624
3625 static void *tcg_cpu_thread_fn(void *arg)
3626 {
3627 CPUState *env = arg;
3628
3629 block_io_signals();
3630 qemu_thread_self(env->thread);
3631
3632 /* signal CPU creation */
3633 qemu_mutex_lock(&qemu_global_mutex);
3634 for (env = first_cpu; env != NULL; env = env->next_cpu)
3635 env->created = 1;
3636 qemu_cond_signal(&qemu_cpu_cond);
3637
3638 /* and wait for machine initialization */
3639 while (!qemu_system_ready)
3640 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3641
3642 while (1) {
3643 tcg_cpu_exec();
3644 qemu_wait_io_event(cur_cpu);
3645 }
3646
3647 return NULL;
3648 }
3649
3650 void qemu_cpu_kick(void *_env)
3651 {
3652 CPUState *env = _env;
3653 qemu_cond_broadcast(env->halt_cond);
3654 if (kvm_enabled())
3655 qemu_thread_signal(env->thread, SIGUSR1);
3656 }
3657
3658 int qemu_cpu_self(void *_env)
3659 {
3660 CPUState *env = _env;
3661 QemuThread this;
3662
3663 qemu_thread_self(&this);
3664
3665 return qemu_thread_equal(&this, env->thread);
3666 }
3667
3668 static void cpu_signal(int sig)
3669 {
3670 if (cpu_single_env)
3671 cpu_exit(cpu_single_env);
3672 }
3673
3674 static void block_io_signals(void)
3675 {
3676 sigset_t set;
3677 struct sigaction sigact;
3678
3679 sigemptyset(&set);
3680 sigaddset(&set, SIGUSR2);
3681 sigaddset(&set, SIGIO);
3682 sigaddset(&set, SIGALRM);
3683 pthread_sigmask(SIG_BLOCK, &set, NULL);
3684
3685 sigemptyset(&set);
3686 sigaddset(&set, SIGUSR1);
3687 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3688
3689 memset(&sigact, 0, sizeof(sigact));
3690 sigact.sa_handler = cpu_signal;
3691 sigaction(SIGUSR1, &sigact, NULL);
3692 }
3693
3694 static void unblock_io_signals(void)
3695 {
3696 sigset_t set;
3697
3698 sigemptyset(&set);
3699 sigaddset(&set, SIGUSR2);
3700 sigaddset(&set, SIGIO);
3701 sigaddset(&set, SIGALRM);
3702 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3703
3704 sigemptyset(&set);
3705 sigaddset(&set, SIGUSR1);
3706 pthread_sigmask(SIG_BLOCK, &set, NULL);
3707 }
3708
3709 static void qemu_signal_lock(unsigned int msecs)
3710 {
3711 qemu_mutex_lock(&qemu_fair_mutex);
3712
3713 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3714 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3715 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3716 break;
3717 }
3718 qemu_mutex_unlock(&qemu_fair_mutex);
3719 }
3720
3721 void qemu_mutex_lock_iothread(void)
3722 {
3723 if (kvm_enabled()) {
3724 qemu_mutex_lock(&qemu_fair_mutex);
3725 qemu_mutex_lock(&qemu_global_mutex);
3726 qemu_mutex_unlock(&qemu_fair_mutex);
3727 } else
3728 qemu_signal_lock(100);
3729 }
3730
3731 void qemu_mutex_unlock_iothread(void)
3732 {
3733 qemu_mutex_unlock(&qemu_global_mutex);
3734 }
3735
3736 static int all_vcpus_paused(void)
3737 {
3738 CPUState *penv = first_cpu;
3739
3740 while (penv) {
3741 if (!penv->stopped)
3742 return 0;
3743 penv = (CPUState *)penv->next_cpu;
3744 }
3745
3746 return 1;
3747 }
3748
3749 static void pause_all_vcpus(void)
3750 {
3751 CPUState *penv = first_cpu;
3752
3753 while (penv) {
3754 penv->stop = 1;
3755 qemu_thread_signal(penv->thread, SIGUSR1);
3756 qemu_cpu_kick(penv);
3757 penv = (CPUState *)penv->next_cpu;
3758 }
3759
3760 while (!all_vcpus_paused()) {
3761 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3762 penv = first_cpu;
3763 while (penv) {
3764 qemu_thread_signal(penv->thread, SIGUSR1);
3765 penv = (CPUState *)penv->next_cpu;
3766 }
3767 }
3768 }
3769
3770 static void resume_all_vcpus(void)
3771 {
3772 CPUState *penv = first_cpu;
3773
3774 while (penv) {
3775 penv->stop = 0;
3776 penv->stopped = 0;
3777 qemu_thread_signal(penv->thread, SIGUSR1);
3778 qemu_cpu_kick(penv);
3779 penv = (CPUState *)penv->next_cpu;
3780 }
3781 }
3782
3783 static void tcg_init_vcpu(void *_env)
3784 {
3785 CPUState *env = _env;
3786 /* share a single thread for all cpus with TCG */
3787 if (!tcg_cpu_thread) {
3788 env->thread = qemu_mallocz(sizeof(QemuThread));
3789 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3790 qemu_cond_init(env->halt_cond);
3791 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3792 while (env->created == 0)
3793 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3794 tcg_cpu_thread = env->thread;
3795 tcg_halt_cond = env->halt_cond;
3796 } else {
3797 env->thread = tcg_cpu_thread;
3798 env->halt_cond = tcg_halt_cond;
3799 }
3800 }
3801
3802 static void kvm_start_vcpu(CPUState *env)
3803 {
3804 env->thread = qemu_mallocz(sizeof(QemuThread));
3805 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3806 qemu_cond_init(env->halt_cond);
3807 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3808 while (env->created == 0)
3809 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3810 }
3811
3812 void qemu_init_vcpu(void *_env)
3813 {
3814 CPUState *env = _env;
3815
3816 if (kvm_enabled())
3817 kvm_start_vcpu(env);
3818 else
3819 tcg_init_vcpu(env);
3820 env->nr_cores = smp_cores;
3821 env->nr_threads = smp_threads;
3822 }
3823
3824 void qemu_notify_event(void)
3825 {
3826 qemu_event_increment();
3827 }
3828
3829 void vm_stop(int reason)
3830 {
3831 QemuThread me;
3832 qemu_thread_self(&me);
3833
3834 if (!qemu_thread_equal(&me, &io_thread)) {
3835 qemu_system_vmstop_request(reason);
3836 /*
3837 * FIXME: should not return to device code in case
3838 * vm_stop() has been requested.
3839 */
3840 if (cpu_single_env) {
3841 cpu_exit(cpu_single_env);
3842 cpu_single_env->stop = 1;
3843 }
3844 return;
3845 }
3846 do_vm_stop(reason);
3847 }
3848
3849 #endif
3850
3851
3852 #ifdef _WIN32
3853 static void host_main_loop_wait(int *timeout)
3854 {
3855 int ret, ret2, i;
3856 PollingEntry *pe;
3857
3858
3859 /* XXX: need to suppress polling by better using win32 events */
3860 ret = 0;
3861 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3862 ret |= pe->func(pe->opaque);
3863 }
3864 if (ret == 0) {
3865 int err;
3866 WaitObjects *w = &wait_objects;
3867
3868 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3869 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3870 if (w->func[ret - WAIT_OBJECT_0])
3871 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3872
3873 /* Check for additional signaled events */
3874 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3875
3876 /* Check if event is signaled */
3877 ret2 = WaitForSingleObject(w->events[i], 0);
3878 if(ret2 == WAIT_OBJECT_0) {
3879 if (w->func[i])
3880 w->func[i](w->opaque[i]);
3881 } else if (ret2 == WAIT_TIMEOUT) {
3882 } else {
3883 err = GetLastError();
3884 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3885 }
3886 }
3887 } else if (ret == WAIT_TIMEOUT) {
3888 } else {
3889 err = GetLastError();
3890 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3891 }
3892 }
3893
3894 *timeout = 0;
3895 }
3896 #else
3897 static void host_main_loop_wait(int *timeout)
3898 {
3899 }
3900 #endif
3901
3902 void main_loop_wait(int timeout)
3903 {
3904 IOHandlerRecord *ioh;
3905 fd_set rfds, wfds, xfds;
3906 int ret, nfds;
3907 struct timeval tv;
3908
3909 qemu_bh_update_timeout(&timeout);
3910
3911 host_main_loop_wait(&timeout);
3912
3913 /* poll any events */
3914 /* XXX: separate device handlers from system ones */
3915 nfds = -1;
3916 FD_ZERO(&rfds);
3917 FD_ZERO(&wfds);
3918 FD_ZERO(&xfds);
3919 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3920 if (ioh->deleted)
3921 continue;
3922 if (ioh->fd_read &&
3923 (!ioh->fd_read_poll ||
3924 ioh->fd_read_poll(ioh->opaque) != 0)) {
3925 FD_SET(ioh->fd, &rfds);
3926 if (ioh->fd > nfds)
3927 nfds = ioh->fd;
3928 }
3929 if (ioh->fd_write) {
3930 FD_SET(ioh->fd, &wfds);
3931 if (ioh->fd > nfds)
3932 nfds = ioh->fd;
3933 }
3934 }
3935
3936 tv.tv_sec = timeout / 1000;
3937 tv.tv_usec = (timeout % 1000) * 1000;
3938
3939 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3940
3941 qemu_mutex_unlock_iothread();
3942 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3943 qemu_mutex_lock_iothread();
3944 if (ret > 0) {
3945 IOHandlerRecord **pioh;
3946
3947 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3948 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3949 ioh->fd_read(ioh->opaque);
3950 }
3951 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3952 ioh->fd_write(ioh->opaque);
3953 }
3954 }
3955
3956 /* remove deleted IO handlers */
3957 pioh = &first_io_handler;
3958 while (*pioh) {
3959 ioh = *pioh;
3960 if (ioh->deleted) {
3961 *pioh = ioh->next;
3962 qemu_free(ioh);
3963 } else
3964 pioh = &ioh->next;
3965 }
3966 }
3967
3968 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
3969
3970 /* rearm timer, if not periodic */
3971 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
3972 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
3973 qemu_rearm_alarm_timer(alarm_timer);
3974 }
3975
3976 /* vm time timers */
3977 if (vm_running) {
3978 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3979 qemu_run_timers(&active_timers[QEMU_CLOCK_VIRTUAL],
3980 qemu_get_clock(vm_clock));
3981 }
3982
3983 /* real time timers */
3984 qemu_run_timers(&active_timers[QEMU_CLOCK_REALTIME],
3985 qemu_get_clock(rt_clock));
3986
3987 qemu_run_timers(&active_timers[QEMU_CLOCK_HOST],
3988 qemu_get_clock(host_clock));
3989
3990 /* Check bottom-halves last in case any of the earlier events triggered
3991 them. */
3992 qemu_bh_poll();
3993
3994 }
3995
3996 static int qemu_cpu_exec(CPUState *env)
3997 {
3998 int ret;
3999 #ifdef CONFIG_PROFILER
4000 int64_t ti;
4001 #endif
4002
4003 #ifdef CONFIG_PROFILER
4004 ti = profile_getclock();
4005 #endif
4006 if (use_icount) {
4007 int64_t count;
4008 int decr;
4009 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4010 env->icount_decr.u16.low = 0;
4011 env->icount_extra = 0;
4012 count = qemu_next_deadline();
4013 count = (count + (1 << icount_time_shift) - 1)
4014 >> icount_time_shift;
4015 qemu_icount += count;
4016 decr = (count > 0xffff) ? 0xffff : count;
4017 count -= decr;
4018 env->icount_decr.u16.low = decr;
4019 env->icount_extra = count;
4020 }
4021 ret = cpu_exec(env);
4022 #ifdef CONFIG_PROFILER
4023 qemu_time += profile_getclock() - ti;
4024 #endif
4025 if (use_icount) {
4026 /* Fold pending instructions back into the
4027 instruction counter, and clear the interrupt flag. */
4028 qemu_icount -= (env->icount_decr.u16.low
4029 + env->icount_extra);
4030 env->icount_decr.u32 = 0;
4031 env->icount_extra = 0;
4032 }
4033 return ret;
4034 }
4035
4036 static void tcg_cpu_exec(void)
4037 {
4038 int ret = 0;
4039
4040 if (next_cpu == NULL)
4041 next_cpu = first_cpu;
4042 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4043 CPUState *env = cur_cpu = next_cpu;
4044
4045 if (!vm_running)
4046 break;
4047 if (timer_alarm_pending) {
4048 timer_alarm_pending = 0;
4049 break;
4050 }
4051 if (cpu_can_run(env))
4052 ret = qemu_cpu_exec(env);
4053 if (ret == EXCP_DEBUG) {
4054 gdb_set_stop_cpu(env);
4055 debug_requested = 1;
4056 break;
4057 }
4058 }
4059 }
4060
4061 static int cpu_has_work(CPUState *env)
4062 {
4063 if (env->stop)
4064 return 1;
4065 if (env->stopped)
4066 return 0;
4067 if (!env->halted)
4068 return 1;
4069 if (qemu_cpu_has_work(env))
4070 return 1;
4071 return 0;
4072 }
4073
4074 static int tcg_has_work(void)
4075 {
4076 CPUState *env;
4077
4078 for (env = first_cpu; env != NULL; env = env->next_cpu)
4079 if (cpu_has_work(env))
4080 return 1;
4081 return 0;
4082 }
4083
4084 static int qemu_calculate_timeout(void)
4085 {
4086 #ifndef CONFIG_IOTHREAD
4087 int timeout;
4088
4089 if (!vm_running)
4090 timeout = 5000;
4091 else if (tcg_has_work())
4092 timeout = 0;
4093 else if (!use_icount)
4094 timeout = 5000;
4095 else {
4096 /* XXX: use timeout computed from timers */
4097 int64_t add;
4098 int64_t delta;
4099 /* Advance virtual time to the next event. */
4100 if (use_icount == 1) {
4101 /* When not using an adaptive execution frequency
4102 we tend to get badly out of sync with real time,
4103 so just delay for a reasonable amount of time. */
4104 delta = 0;
4105 } else {
4106 delta = cpu_get_icount() - cpu_get_clock();
4107 }
4108 if (delta > 0) {
4109 /* If virtual time is ahead of real time then just
4110 wait for IO. */
4111 timeout = (delta / 1000000) + 1;
4112 } else {
4113 /* Wait for either IO to occur or the next
4114 timer event. */
4115 add = qemu_next_deadline();
4116 /* We advance the timer before checking for IO.
4117 Limit the amount we advance so that early IO
4118 activity won't get the guest too far ahead. */
4119 if (add > 10000000)
4120 add = 10000000;
4121 delta += add;
4122 add = (add + (1 << icount_time_shift) - 1)
4123 >> icount_time_shift;
4124 qemu_icount += add;
4125 timeout = delta / 1000000;
4126 if (timeout < 0)
4127 timeout = 0;
4128 }
4129 }
4130
4131 return timeout;
4132 #else /* CONFIG_IOTHREAD */
4133 return 1000;
4134 #endif
4135 }
4136
4137 static int vm_can_run(void)
4138 {
4139 if (powerdown_requested)
4140 return 0;
4141 if (reset_requested)
4142 return 0;
4143 if (shutdown_requested)
4144 return 0;
4145 if (debug_requested)
4146 return 0;
4147 return 1;
4148 }
4149
4150 qemu_irq qemu_system_powerdown;
4151
4152 static void main_loop(void)
4153 {
4154 int r;
4155
4156 #ifdef CONFIG_IOTHREAD
4157 qemu_system_ready = 1;
4158 qemu_cond_broadcast(&qemu_system_cond);
4159 #endif
4160
4161 for (;;) {
4162 do {
4163 #ifdef CONFIG_PROFILER
4164 int64_t ti;
4165 #endif
4166 #ifndef CONFIG_IOTHREAD
4167 tcg_cpu_exec();
4168 #endif
4169 #ifdef CONFIG_PROFILER
4170 ti = profile_getclock();
4171 #endif
4172 main_loop_wait(qemu_calculate_timeout());
4173 #ifdef CONFIG_PROFILER
4174 dev_time += profile_getclock() - ti;
4175 #endif
4176 } while (vm_can_run());
4177
4178 if (qemu_debug_requested()) {
4179 monitor_protocol_event(QEVENT_DEBUG, NULL);
4180 vm_stop(EXCP_DEBUG);
4181 }
4182 if (qemu_shutdown_requested()) {
4183 monitor_protocol_event(QEVENT_SHUTDOWN, NULL);
4184 if (no_shutdown) {
4185 vm_stop(0);
4186 no_shutdown = 0;
4187 } else
4188 break;
4189 }
4190 if (qemu_reset_requested()) {
4191 monitor_protocol_event(QEVENT_RESET, NULL);
4192 pause_all_vcpus();
4193 qemu_system_reset();
4194 resume_all_vcpus();
4195 }
4196 if (qemu_powerdown_requested()) {
4197 monitor_protocol_event(QEVENT_POWERDOWN, NULL);
4198 qemu_irq_raise(qemu_system_powerdown);
4199 }
4200 if ((r = qemu_vmstop_requested())) {
4201 monitor_protocol_event(QEVENT_STOP, NULL);
4202 vm_stop(r);
4203 }
4204 }
4205 pause_all_vcpus();
4206 }
4207
4208 static void version(void)
4209 {
4210 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4211 }
4212
4213 static void help(int exitcode)
4214 {
4215 version();
4216 printf("usage: %s [options] [disk_image]\n"
4217 "\n"
4218 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4219 "\n"
4220 #define DEF(option, opt_arg, opt_enum, opt_help) \
4221 opt_help
4222 #define DEFHEADING(text) stringify(text) "\n"
4223 #include "qemu-options.h"
4224 #undef DEF
4225 #undef DEFHEADING
4226 #undef GEN_DOCS
4227 "\n"
4228 "During emulation, the following keys are useful:\n"
4229 "ctrl-alt-f toggle full screen\n"
4230 "ctrl-alt-n switch to virtual console 'n'\n"
4231 "ctrl-alt toggle mouse and keyboard grab\n"
4232 "\n"
4233 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4234 ,
4235 "qemu",
4236 DEFAULT_RAM_SIZE,
4237 #ifndef _WIN32
4238 DEFAULT_NETWORK_SCRIPT,
4239 DEFAULT_NETWORK_DOWN_SCRIPT,
4240 #endif
4241 DEFAULT_GDBSTUB_PORT,
4242 "/tmp/qemu.log");
4243 exit(exitcode);
4244 }
4245
4246 #define HAS_ARG 0x0001
4247
4248 enum {
4249 #define DEF(option, opt_arg, opt_enum, opt_help) \
4250 opt_enum,
4251 #define DEFHEADING(text)
4252 #include "qemu-options.h"
4253 #undef DEF
4254 #undef DEFHEADING
4255 #undef GEN_DOCS
4256 };
4257
4258 typedef struct QEMUOption {
4259 const char *name;
4260 int flags;
4261 int index;
4262 } QEMUOption;
4263
4264 static const QEMUOption qemu_options[] = {
4265 { "h", 0, QEMU_OPTION_h },
4266 #define DEF(option, opt_arg, opt_enum, opt_help) \
4267 { option, opt_arg, opt_enum },
4268 #define DEFHEADING(text)
4269 #include "qemu-options.h"
4270 #undef DEF
4271 #undef DEFHEADING
4272 #undef GEN_DOCS
4273 { NULL },
4274 };
4275
4276 #ifdef HAS_AUDIO
4277 struct soundhw soundhw[] = {
4278 #ifdef HAS_AUDIO_CHOICE
4279 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4280 {
4281 "pcspk",
4282 "PC speaker",
4283 0,
4284 1,
4285 { .init_isa = pcspk_audio_init }
4286 },
4287 #endif
4288
4289 #ifdef CONFIG_SB16
4290 {
4291 "sb16",
4292 "Creative Sound Blaster 16",
4293 0,
4294 1,
4295 { .init_isa = SB16_init }
4296 },
4297 #endif
4298
4299 #ifdef CONFIG_CS4231A
4300 {
4301 "cs4231a",
4302 "CS4231A",
4303 0,
4304 1,
4305 { .init_isa = cs4231a_init }
4306 },
4307 #endif
4308
4309 #ifdef CONFIG_ADLIB
4310 {
4311 "adlib",
4312 #ifdef HAS_YMF262
4313 "Yamaha YMF262 (OPL3)",
4314 #else
4315 "Yamaha YM3812 (OPL2)",
4316 #endif
4317 0,
4318 1,
4319 { .init_isa = Adlib_init }
4320 },
4321 #endif
4322
4323 #ifdef CONFIG_GUS
4324 {
4325 "gus",
4326 "Gravis Ultrasound GF1",
4327 0,
4328 1,
4329 { .init_isa = GUS_init }
4330 },
4331 #endif
4332
4333 #ifdef CONFIG_AC97
4334 {
4335 "ac97",
4336 "Intel 82801AA AC97 Audio",
4337 0,
4338 0,
4339 { .init_pci = ac97_init }
4340 },
4341 #endif
4342
4343 #ifdef CONFIG_ES1370
4344 {
4345 "es1370",
4346 "ENSONIQ AudioPCI ES1370",
4347 0,
4348 0,
4349 { .init_pci = es1370_init }
4350 },
4351 #endif
4352
4353 #endif /* HAS_AUDIO_CHOICE */
4354
4355 { NULL, NULL, 0, 0, { NULL } }
4356 };
4357
4358 static void select_soundhw (const char *optarg)
4359 {
4360 struct soundhw *c;
4361
4362 if (*optarg == '?') {
4363 show_valid_cards:
4364
4365 printf ("Valid sound card names (comma separated):\n");
4366 for (c = soundhw; c->name; ++c) {
4367 printf ("%-11s %s\n", c->name, c->descr);
4368 }
4369 printf ("\n-soundhw all will enable all of the above\n");
4370 exit (*optarg != '?');
4371 }
4372 else {
4373 size_t l;
4374 const char *p;
4375 char *e;
4376 int bad_card = 0;
4377
4378 if (!strcmp (optarg, "all")) {
4379 for (c = soundhw; c->name; ++c) {
4380 c->enabled = 1;
4381 }
4382 return;
4383 }
4384
4385 p = optarg;
4386 while (*p) {
4387 e = strchr (p, ',');
4388 l = !e ? strlen (p) : (size_t) (e - p);
4389
4390 for (c = soundhw; c->name; ++c) {
4391 if (!strncmp (c->name, p, l) && !c->name[l]) {
4392 c->enabled = 1;
4393 break;
4394 }
4395 }
4396
4397 if (!c->name) {
4398 if (l > 80) {
4399 fprintf (stderr,
4400 "Unknown sound card name (too big to show)\n");
4401 }
4402 else {
4403 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4404 (int) l, p);
4405 }
4406 bad_card = 1;
4407 }
4408 p += l + (e != NULL);
4409 }
4410
4411 if (bad_card)
4412 goto show_valid_cards;
4413 }
4414 }
4415 #endif
4416
4417 static void select_vgahw (const char *p)
4418 {
4419 const char *opts;
4420
4421 default_vga = 0;
4422 vga_interface_type = VGA_NONE;
4423 if (strstart(p, "std", &opts)) {
4424 vga_interface_type = VGA_STD;
4425 } else if (strstart(p, "cirrus", &opts)) {
4426 vga_interface_type = VGA_CIRRUS;
4427 } else if (strstart(p, "vmware", &opts)) {
4428 vga_interface_type = VGA_VMWARE;
4429 } else if (strstart(p, "xenfb", &opts)) {
4430 vga_interface_type = VGA_XENFB;
4431 } else if (!strstart(p, "none", &opts)) {
4432 invalid_vga:
4433 fprintf(stderr, "Unknown vga type: %s\n", p);
4434 exit(1);
4435 }
4436 while (*opts) {
4437 const char *nextopt;
4438
4439 if (strstart(opts, ",retrace=", &nextopt)) {
4440 opts = nextopt;
4441 if (strstart(opts, "dumb", &nextopt))
4442 vga_retrace_method = VGA_RETRACE_DUMB;
4443 else if (strstart(opts, "precise", &nextopt))
4444 vga_retrace_method = VGA_RETRACE_PRECISE;
4445 else goto invalid_vga;
4446 } else goto invalid_vga;
4447 opts = nextopt;
4448 }
4449 }
4450
4451 #ifdef TARGET_I386
4452 static int balloon_parse(const char *arg)
4453 {
4454 QemuOpts *opts;
4455
4456 if (strcmp(arg, "none") == 0) {
4457 return 0;
4458 }
4459
4460 if (!strncmp(arg, "virtio", 6)) {
4461 if (arg[6] == ',') {
4462 /* have params -> parse them */
4463 opts = qemu_opts_parse(&qemu_device_opts, arg+7, NULL);
4464 if (!opts)
4465 return -1;
4466 } else {
4467 /* create empty opts */
4468 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4469 }
4470 qemu_opt_set(opts, "driver", "virtio-balloon-pci");
4471 return 0;
4472 }
4473
4474 return -1;
4475 }
4476 #endif
4477
4478 #ifdef _WIN32
4479 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4480 {
4481 exit(STATUS_CONTROL_C_EXIT);
4482 return TRUE;
4483 }
4484 #endif
4485
4486 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4487 {
4488 int ret;
4489
4490 if(strlen(str) != 36)
4491 return -1;
4492
4493 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4494 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4495 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4496
4497 if(ret != 16)
4498 return -1;
4499
4500 #ifdef TARGET_I386
4501 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4502 #endif
4503
4504 return 0;
4505 }
4506
4507 #ifndef _WIN32
4508
4509 static void termsig_handler(int signal)
4510 {
4511 qemu_system_shutdown_request();
4512 }
4513
4514 static void sigchld_handler(int signal)
4515 {
4516 waitpid(-1, NULL, WNOHANG);
4517 }
4518
4519 static void sighandler_setup(void)
4520 {
4521 struct sigaction act;
4522
4523 memset(&act, 0, sizeof(act));
4524 act.sa_handler = termsig_handler;
4525 sigaction(SIGINT, &act, NULL);
4526 sigaction(SIGHUP, &act, NULL);
4527 sigaction(SIGTERM, &act, NULL);
4528
4529 act.sa_handler = sigchld_handler;
4530 act.sa_flags = SA_NOCLDSTOP;
4531 sigaction(SIGCHLD, &act, NULL);
4532 }
4533
4534 #endif
4535
4536 #ifdef _WIN32
4537 /* Look for support files in the same directory as the executable. */
4538 static char *find_datadir(const char *argv0)
4539 {
4540 char *p;
4541 char buf[MAX_PATH];
4542 DWORD len;
4543
4544 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4545 if (len == 0) {
4546 return NULL;
4547 }
4548
4549 buf[len] = 0;
4550 p = buf + len - 1;
4551 while (p != buf && *p != '\\')
4552 p--;
4553 *p = 0;
4554 if (access(buf, R_OK) == 0) {
4555 return qemu_strdup(buf);
4556 }
4557 return NULL;
4558 }
4559 #else /* !_WIN32 */
4560
4561 /* Find a likely location for support files using the location of the binary.
4562 For installed binaries this will be "$bindir/../share/qemu". When
4563 running from the build tree this will be "$bindir/../pc-bios". */
4564 #define SHARE_SUFFIX "/share/qemu"
4565 #define BUILD_SUFFIX "/pc-bios"
4566 static char *find_datadir(const char *argv0)
4567 {
4568 char *dir;
4569 char *p = NULL;
4570 char *res;
4571 char buf[PATH_MAX];
4572 size_t max_len;
4573
4574 #if defined(__linux__)
4575 {
4576 int len;
4577 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4578 if (len > 0) {
4579 buf[len] = 0;
4580 p = buf;
4581 }
4582 }
4583 #elif defined(__FreeBSD__)
4584 {
4585 int len;
4586 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4587 if (len > 0) {
4588 buf[len] = 0;
4589 p = buf;
4590 }
4591 }
4592 #endif
4593 /* If we don't have any way of figuring out the actual executable
4594 location then try argv[0]. */
4595 if (!p) {
4596 p = realpath(argv0, buf);
4597 if (!p) {
4598 return NULL;
4599 }
4600 }
4601 dir = dirname(p);
4602 dir = dirname(dir);
4603
4604 max_len = strlen(dir) +
4605 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4606 res = qemu_mallocz(max_len);
4607 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4608 if (access(res, R_OK)) {
4609 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4610 if (access(res, R_OK)) {
4611 qemu_free(res);
4612 res = NULL;
4613 }
4614 }
4615
4616 return res;
4617 }
4618 #undef SHARE_SUFFIX
4619 #undef BUILD_SUFFIX
4620 #endif
4621
4622 char *qemu_find_file(int type, const char *name)
4623 {
4624 int len;
4625 const char *subdir;
4626 char *buf;
4627
4628 /* If name contains path separators then try it as a straight path. */
4629 if ((strchr(name, '/') || strchr(name, '\\'))
4630 && access(name, R_OK) == 0) {
4631 return qemu_strdup(name);
4632 }
4633 switch (type) {
4634 case QEMU_FILE_TYPE_BIOS:
4635 subdir = "";
4636 break;
4637 case QEMU_FILE_TYPE_KEYMAP:
4638 subdir = "keymaps/";
4639 break;
4640 default:
4641 abort();
4642 }
4643 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4644 buf = qemu_mallocz(len);
4645 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4646 if (access(buf, R_OK)) {
4647 qemu_free(buf);
4648 return NULL;
4649 }
4650 return buf;
4651 }
4652
4653 static int device_init_func(QemuOpts *opts, void *opaque)
4654 {
4655 DeviceState *dev;
4656
4657 dev = qdev_device_add(opts);
4658 if (!dev)
4659 return -1;
4660 return 0;
4661 }
4662
4663 static int chardev_init_func(QemuOpts *opts, void *opaque)
4664 {
4665 CharDriverState *chr;
4666
4667 chr = qemu_chr_open_opts(opts, NULL);
4668 if (!chr)
4669 return -1;
4670 return 0;
4671 }
4672
4673 static int mon_init_func(QemuOpts *opts, void *opaque)
4674 {
4675 CharDriverState *chr;
4676 const char *chardev;
4677 const char *mode;
4678 int flags;
4679
4680 mode = qemu_opt_get(opts, "mode");
4681 if (mode == NULL) {
4682 mode = "readline";
4683 }
4684 if (strcmp(mode, "readline") == 0) {
4685 flags = MONITOR_USE_READLINE;
4686 } else if (strcmp(mode, "control") == 0) {
4687 flags = MONITOR_USE_CONTROL;
4688 } else {
4689 fprintf(stderr, "unknown monitor mode \"%s\"\n", mode);
4690 exit(1);
4691 }
4692
4693 if (qemu_opt_get_bool(opts, "default", 0))
4694 flags |= MONITOR_IS_DEFAULT;
4695
4696 chardev = qemu_opt_get(opts, "chardev");
4697 chr = qemu_chr_find(chardev);
4698 if (chr == NULL) {
4699 fprintf(stderr, "chardev \"%s\" not found\n", chardev);
4700 exit(1);
4701 }
4702
4703 monitor_init(chr, flags);
4704 return 0;
4705 }
4706
4707 static void monitor_parse(const char *optarg, const char *mode)
4708 {
4709 static int monitor_device_index = 0;
4710 QemuOpts *opts;
4711 const char *p;
4712 char label[32];
4713 int def = 0;
4714
4715 if (strstart(optarg, "chardev:", &p)) {
4716 snprintf(label, sizeof(label), "%s", p);
4717 } else {
4718 if (monitor_device_index) {
4719 snprintf(label, sizeof(label), "monitor%d",
4720 monitor_device_index);
4721 } else {
4722 snprintf(label, sizeof(label), "monitor");
4723 def = 1;
4724 }
4725 opts = qemu_chr_parse_compat(label, optarg);
4726 if (!opts) {
4727 fprintf(stderr, "parse error: %s\n", optarg);
4728 exit(1);
4729 }
4730 }
4731
4732 opts = qemu_opts_create(&qemu_mon_opts, label, 1);
4733 if (!opts) {
4734 fprintf(stderr, "duplicate chardev: %s\n", label);
4735 exit(1);
4736 }
4737 qemu_opt_set(opts, "mode", mode);
4738 qemu_opt_set(opts, "chardev", label);
4739 if (def)
4740 qemu_opt_set(opts, "default", "on");
4741 monitor_device_index++;
4742 }
4743
4744 struct device_config {
4745 enum {
4746 DEV_USB, /* -usbdevice */
4747 DEV_BT, /* -bt */
4748 DEV_SERIAL, /* -serial */
4749 DEV_PARALLEL, /* -parallel */
4750 DEV_VIRTCON, /* -virtioconsole */
4751 } type;
4752 const char *cmdline;
4753 QTAILQ_ENTRY(device_config) next;
4754 };
4755 QTAILQ_HEAD(, device_config) device_configs = QTAILQ_HEAD_INITIALIZER(device_configs);
4756
4757 static void add_device_config(int type, const char *cmdline)
4758 {
4759 struct device_config *conf;
4760
4761 conf = qemu_mallocz(sizeof(*conf));
4762 conf->type = type;
4763 conf->cmdline = cmdline;
4764 QTAILQ_INSERT_TAIL(&device_configs, conf, next);
4765 }
4766
4767 static int foreach_device_config(int type, int (*func)(const char *cmdline))
4768 {
4769 struct device_config *conf;
4770 int rc;
4771
4772 QTAILQ_FOREACH(conf, &device_configs, next) {
4773 if (conf->type != type)
4774 continue;
4775 rc = func(conf->cmdline);
4776 if (0 != rc)
4777 return rc;
4778 }
4779 return 0;
4780 }
4781
4782 static int serial_parse(const char *devname)
4783 {
4784 static int index = 0;
4785 char label[32];
4786
4787 if (strcmp(devname, "none") == 0)
4788 return 0;
4789 if (index == MAX_SERIAL_PORTS) {
4790 fprintf(stderr, "qemu: too many serial ports\n");
4791 exit(1);
4792 }
4793 snprintf(label, sizeof(label), "serial%d", index);
4794 serial_hds[index] = qemu_chr_open(label, devname, NULL);
4795 if (!serial_hds[index]) {
4796 fprintf(stderr, "qemu: could not open serial device '%s': %s\n",
4797 devname, strerror(errno));
4798 return -1;
4799 }
4800 index++;
4801 return 0;
4802 }
4803
4804 static int parallel_parse(const char *devname)
4805 {
4806 static int index = 0;
4807 char label[32];
4808
4809 if (strcmp(devname, "none") == 0)
4810 return 0;
4811 if (index == MAX_PARALLEL_PORTS) {
4812 fprintf(stderr, "qemu: too many parallel ports\n");
4813 exit(1);
4814 }
4815 snprintf(label, sizeof(label), "parallel%d", index);
4816 parallel_hds[index] = qemu_chr_open(label, devname, NULL);
4817 if (!parallel_hds[index]) {
4818 fprintf(stderr, "qemu: could not open parallel device '%s': %s\n",
4819 devname, strerror(errno));
4820 return -1;
4821 }
4822 index++;
4823 return 0;
4824 }
4825
4826 static int virtcon_parse(const char *devname)
4827 {
4828 static int index = 0;
4829 char label[32];
4830
4831 if (strcmp(devname, "none") == 0)
4832 return 0;
4833 if (index == MAX_VIRTIO_CONSOLES) {
4834 fprintf(stderr, "qemu: too many virtio consoles\n");
4835 exit(1);
4836 }
4837 snprintf(label, sizeof(label), "virtcon%d", index);
4838 virtcon_hds[index] = qemu_chr_open(label, devname, NULL);
4839 if (!virtcon_hds[index]) {
4840 fprintf(stderr, "qemu: could not open virtio console '%s': %s\n",
4841 devname, strerror(errno));
4842 return -1;
4843 }
4844 index++;
4845 return 0;
4846 }
4847
4848 int main(int argc, char **argv, char **envp)
4849 {
4850 const char *gdbstub_dev = NULL;
4851 uint32_t boot_devices_bitmap = 0;
4852 int i;
4853 int snapshot, linux_boot, net_boot;
4854 const char *initrd_filename;
4855 const char *kernel_filename, *kernel_cmdline;
4856 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4857 DisplayState *ds;
4858 DisplayChangeListener *dcl;
4859 int cyls, heads, secs, translation;
4860 QemuOpts *hda_opts = NULL, *opts;
4861 int optind;
4862 const char *r, *optarg;
4863 const char *loadvm = NULL;
4864 QEMUMachine *machine;
4865 const char *cpu_model;
4866 #ifndef _WIN32
4867 int fds[2];
4868 #endif
4869 int tb_size;
4870 const char *pid_file = NULL;
4871 const char *incoming = NULL;
4872 #ifndef _WIN32
4873 int fd = 0;
4874 struct passwd *pwd = NULL;
4875 const char *chroot_dir = NULL;
4876 const char *run_as = NULL;
4877 #endif
4878 CPUState *env;
4879 int show_vnc_port = 0;
4880
4881 init_clocks();
4882
4883 qemu_errors_to_file(stderr);
4884 qemu_cache_utils_init(envp);
4885
4886 QLIST_INIT (&vm_change_state_head);
4887 #ifndef _WIN32
4888 {
4889 struct sigaction act;
4890 sigfillset(&act.sa_mask);
4891 act.sa_flags = 0;
4892 act.sa_handler = SIG_IGN;
4893 sigaction(SIGPIPE, &act, NULL);
4894 }
4895 #else
4896 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4897 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4898 QEMU to run on a single CPU */
4899 {
4900 HANDLE h;
4901 DWORD mask, smask;
4902 int i;
4903 h = GetCurrentProcess();
4904 if (GetProcessAffinityMask(h, &mask, &smask)) {
4905 for(i = 0; i < 32; i++) {
4906 if (mask & (1 << i))
4907 break;
4908 }
4909 if (i != 32) {
4910 mask = 1 << i;
4911 SetProcessAffinityMask(h, mask);
4912 }
4913 }
4914 }
4915 #endif
4916
4917 module_call_init(MODULE_INIT_MACHINE);
4918 machine = find_default_machine();
4919 cpu_model = NULL;
4920 initrd_filename = NULL;
4921 ram_size = 0;
4922 snapshot = 0;
4923 kernel_filename = NULL;
4924 kernel_cmdline = "";
4925 cyls = heads = secs = 0;
4926 translation = BIOS_ATA_TRANSLATION_AUTO;
4927
4928 for (i = 0; i < MAX_NODES; i++) {
4929 node_mem[i] = 0;
4930 node_cpumask[i] = 0;
4931 }
4932
4933 nb_numa_nodes = 0;
4934 nb_nics = 0;
4935
4936 tb_size = 0;
4937 autostart= 1;
4938
4939 optind = 1;
4940 for(;;) {
4941 if (optind >= argc)
4942 break;
4943 r = argv[optind];
4944 if (r[0] != '-') {
4945 hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
4946 } else {
4947 const QEMUOption *popt;
4948
4949 optind++;
4950 /* Treat --foo the same as -foo. */
4951 if (r[1] == '-')
4952 r++;
4953 popt = qemu_options;
4954 for(;;) {
4955 if (!popt->name) {
4956 fprintf(stderr, "%s: invalid option -- '%s'\n",
4957 argv[0], r);
4958 exit(1);
4959 }
4960 if (!strcmp(popt->name, r + 1))
4961 break;
4962 popt++;
4963 }
4964 if (popt->flags & HAS_ARG) {
4965 if (optind >= argc) {
4966 fprintf(stderr, "%s: option '%s' requires an argument\n",
4967 argv[0], r);
4968 exit(1);
4969 }
4970 optarg = argv[optind++];
4971 } else {
4972 optarg = NULL;
4973 }
4974
4975 switch(popt->index) {
4976 case QEMU_OPTION_M:
4977 machine = find_machine(optarg);
4978 if (!machine) {
4979 QEMUMachine *m;
4980 printf("Supported machines are:\n");
4981 for(m = first_machine; m != NULL; m = m->next) {
4982 if (m->alias)
4983 printf("%-10s %s (alias of %s)\n",
4984 m->alias, m->desc, m->name);
4985 printf("%-10s %s%s\n",
4986 m->name, m->desc,
4987 m->is_default ? " (default)" : "");
4988 }
4989 exit(*optarg != '?');
4990 }
4991 break;
4992 case QEMU_OPTION_cpu:
4993 /* hw initialization will check this */
4994 if (*optarg == '?') {
4995 /* XXX: implement xxx_cpu_list for targets that still miss it */
4996 #if defined(cpu_list)
4997 cpu_list(stdout, &fprintf);
4998 #endif
4999 exit(0);
5000 } else {
5001 cpu_model = optarg;
5002 }
5003 break;
5004 case QEMU_OPTION_initrd:
5005 initrd_filename = optarg;
5006 break;
5007 case QEMU_OPTION_hda:
5008 if (cyls == 0)
5009 hda_opts = drive_add(optarg, HD_ALIAS, 0);
5010 else
5011 hda_opts = drive_add(optarg, HD_ALIAS
5012 ",cyls=%d,heads=%d,secs=%d%s",
5013 0, cyls, heads, secs,
5014 translation == BIOS_ATA_TRANSLATION_LBA ?
5015 ",trans=lba" :
5016 translation == BIOS_ATA_TRANSLATION_NONE ?
5017 ",trans=none" : "");
5018 break;
5019 case QEMU_OPTION_hdb:
5020 case QEMU_OPTION_hdc:
5021 case QEMU_OPTION_hdd:
5022 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5023 break;
5024 case QEMU_OPTION_drive:
5025 drive_add(NULL, "%s", optarg);
5026 break;
5027 case QEMU_OPTION_set:
5028 if (qemu_set_option(optarg) != 0)
5029 exit(1);
5030 break;
5031 case QEMU_OPTION_global:
5032 if (qemu_global_option(optarg) != 0)
5033 exit(1);
5034 break;
5035 case QEMU_OPTION_mtdblock:
5036 drive_add(optarg, MTD_ALIAS);
5037 break;
5038 case QEMU_OPTION_sd:
5039 drive_add(optarg, SD_ALIAS);
5040 break;
5041 case QEMU_OPTION_pflash:
5042 drive_add(optarg, PFLASH_ALIAS);
5043 break;
5044 case QEMU_OPTION_snapshot:
5045 snapshot = 1;
5046 break;
5047 case QEMU_OPTION_hdachs:
5048 {
5049 const char *p;
5050 p = optarg;
5051 cyls = strtol(p, (char **)&p, 0);
5052 if (cyls < 1 || cyls > 16383)
5053 goto chs_fail;
5054 if (*p != ',')
5055 goto chs_fail;
5056 p++;
5057 heads = strtol(p, (char **)&p, 0);
5058 if (heads < 1 || heads > 16)
5059 goto chs_fail;
5060 if (*p != ',')
5061 goto chs_fail;
5062 p++;
5063 secs = strtol(p, (char **)&p, 0);
5064 if (secs < 1 || secs > 63)
5065 goto chs_fail;
5066 if (*p == ',') {
5067 p++;
5068 if (!strcmp(p, "none"))
5069 translation = BIOS_ATA_TRANSLATION_NONE;
5070 else if (!strcmp(p, "lba"))
5071 translation = BIOS_ATA_TRANSLATION_LBA;
5072 else if (!strcmp(p, "auto"))
5073 translation = BIOS_ATA_TRANSLATION_AUTO;
5074 else
5075 goto chs_fail;
5076 } else if (*p != '\0') {
5077 chs_fail:
5078 fprintf(stderr, "qemu: invalid physical CHS format\n");
5079 exit(1);
5080 }
5081 if (hda_opts != NULL) {
5082 char num[16];
5083 snprintf(num, sizeof(num), "%d", cyls);
5084 qemu_opt_set(hda_opts, "cyls", num);
5085 snprintf(num, sizeof(num), "%d", heads);
5086 qemu_opt_set(hda_opts, "heads", num);
5087 snprintf(num, sizeof(num), "%d", secs);
5088 qemu_opt_set(hda_opts, "secs", num);
5089 if (translation == BIOS_ATA_TRANSLATION_LBA)
5090 qemu_opt_set(hda_opts, "trans", "lba");
5091 if (translation == BIOS_ATA_TRANSLATION_NONE)
5092 qemu_opt_set(hda_opts, "trans", "none");
5093 }
5094 }
5095 break;
5096 case QEMU_OPTION_numa:
5097 if (nb_numa_nodes >= MAX_NODES) {
5098 fprintf(stderr, "qemu: too many NUMA nodes\n");
5099 exit(1);
5100 }
5101 numa_add(optarg);
5102 break;
5103 case QEMU_OPTION_nographic:
5104 display_type = DT_NOGRAPHIC;
5105 break;
5106 #ifdef CONFIG_CURSES
5107 case QEMU_OPTION_curses:
5108 display_type = DT_CURSES;
5109 break;
5110 #endif
5111 case QEMU_OPTION_portrait:
5112 graphic_rotate = 1;
5113 break;
5114 case QEMU_OPTION_kernel:
5115 kernel_filename = optarg;
5116 break;
5117 case QEMU_OPTION_append:
5118 kernel_cmdline = optarg;
5119 break;
5120 case QEMU_OPTION_cdrom:
5121 drive_add(optarg, CDROM_ALIAS);
5122 break;
5123 case QEMU_OPTION_boot:
5124 {
5125 static const char * const params[] = {
5126 "order", "once", "menu", NULL
5127 };
5128 char buf[sizeof(boot_devices)];
5129 char *standard_boot_devices;
5130 int legacy = 0;
5131
5132 if (!strchr(optarg, '=')) {
5133 legacy = 1;
5134 pstrcpy(buf, sizeof(buf), optarg);
5135 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
5136 fprintf(stderr,
5137 "qemu: unknown boot parameter '%s' in '%s'\n",
5138 buf, optarg);
5139 exit(1);
5140 }
5141
5142 if (legacy ||
5143 get_param_value(buf, sizeof(buf), "order", optarg)) {
5144 boot_devices_bitmap = parse_bootdevices(buf);
5145 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5146 }
5147 if (!legacy) {
5148 if (get_param_value(buf, sizeof(buf),
5149 "once", optarg)) {
5150 boot_devices_bitmap |= parse_bootdevices(buf);
5151 standard_boot_devices = qemu_strdup(boot_devices);
5152 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5153 qemu_register_reset(restore_boot_devices,
5154 standard_boot_devices);
5155 }
5156 if (get_param_value(buf, sizeof(buf),
5157 "menu", optarg)) {
5158 if (!strcmp(buf, "on")) {
5159 boot_menu = 1;
5160 } else if (!strcmp(buf, "off")) {
5161 boot_menu = 0;
5162 } else {
5163 fprintf(stderr,
5164 "qemu: invalid option value '%s'\n",
5165 buf);
5166 exit(1);
5167 }
5168 }
5169 }
5170 }
5171 break;
5172 case QEMU_OPTION_fda:
5173 case QEMU_OPTION_fdb:
5174 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5175 break;
5176 #ifdef TARGET_I386
5177 case QEMU_OPTION_no_fd_bootchk:
5178 fd_bootchk = 0;
5179 break;
5180 #endif
5181 case QEMU_OPTION_netdev:
5182 if (net_client_parse(&qemu_netdev_opts, optarg) == -1) {
5183 exit(1);
5184 }
5185 break;
5186 case QEMU_OPTION_net:
5187 if (net_client_parse(&qemu_net_opts, optarg) == -1) {
5188 exit(1);
5189 }
5190 break;
5191 #ifdef CONFIG_SLIRP
5192 case QEMU_OPTION_tftp:
5193 legacy_tftp_prefix = optarg;
5194 break;
5195 case QEMU_OPTION_bootp:
5196 legacy_bootp_filename = optarg;
5197 break;
5198 #ifndef _WIN32
5199 case QEMU_OPTION_smb:
5200 if (net_slirp_smb(optarg) < 0)
5201 exit(1);
5202 break;
5203 #endif
5204 case QEMU_OPTION_redir:
5205 if (net_slirp_redir(optarg) < 0)
5206 exit(1);
5207 break;
5208 #endif
5209 case QEMU_OPTION_bt:
5210 add_device_config(DEV_BT, optarg);
5211 break;
5212 #ifdef HAS_AUDIO
5213 case QEMU_OPTION_audio_help:
5214 AUD_help ();
5215 exit (0);
5216 break;
5217 case QEMU_OPTION_soundhw:
5218 select_soundhw (optarg);
5219 break;
5220 #endif
5221 case QEMU_OPTION_h:
5222 help(0);
5223 break;
5224 case QEMU_OPTION_version:
5225 version();
5226 exit(0);
5227 break;
5228 case QEMU_OPTION_m: {
5229 uint64_t value;
5230 char *ptr;
5231
5232 value = strtoul(optarg, &ptr, 10);
5233 switch (*ptr) {
5234 case 0: case 'M': case 'm':
5235 value <<= 20;
5236 break;
5237 case 'G': case 'g':
5238 value <<= 30;
5239 break;
5240 default:
5241 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5242 exit(1);
5243 }
5244
5245 /* On 32-bit hosts, QEMU is limited by virtual address space */
5246 if (value > (2047 << 20) && HOST_LONG_BITS == 32) {
5247 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5248 exit(1);
5249 }
5250 if (value != (uint64_t)(ram_addr_t)value) {
5251 fprintf(stderr, "qemu: ram size too large\n");
5252 exit(1);
5253 }
5254 ram_size = value;
5255 break;
5256 }
5257 case QEMU_OPTION_d:
5258 {
5259 int mask;
5260 const CPULogItem *item;
5261
5262 mask = cpu_str_to_log_mask(optarg);
5263 if (!mask) {
5264 printf("Log items (comma separated):\n");
5265 for(item = cpu_log_items; item->mask != 0; item++) {
5266 printf("%-10s %s\n", item->name, item->help);
5267 }
5268 exit(1);
5269 }
5270 cpu_set_log(mask);
5271 }
5272 break;
5273 case QEMU_OPTION_s:
5274 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5275 break;
5276 case QEMU_OPTION_gdb:
5277 gdbstub_dev = optarg;
5278 break;
5279 case QEMU_OPTION_L:
5280 data_dir = optarg;
5281 break;
5282 case QEMU_OPTION_bios:
5283 bios_name = optarg;
5284 break;
5285 case QEMU_OPTION_singlestep:
5286 singlestep = 1;
5287 break;
5288 case QEMU_OPTION_S:
5289 autostart = 0;
5290 break;
5291 case QEMU_OPTION_k:
5292 keyboard_layout = optarg;
5293 break;
5294 case QEMU_OPTION_localtime:
5295 rtc_utc = 0;
5296 break;
5297 case QEMU_OPTION_vga:
5298 select_vgahw (optarg);
5299 break;
5300 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5301 case QEMU_OPTION_g:
5302 {
5303 const char *p;
5304 int w, h, depth;
5305 p = optarg;
5306 w = strtol(p, (char **)&p, 10);
5307 if (w <= 0) {
5308 graphic_error:
5309 fprintf(stderr, "qemu: invalid resolution or depth\n");
5310 exit(1);
5311 }
5312 if (*p != 'x')
5313 goto graphic_error;
5314 p++;
5315 h = strtol(p, (char **)&p, 10);
5316 if (h <= 0)
5317 goto graphic_error;
5318 if (*p == 'x') {
5319 p++;
5320 depth = strtol(p, (char **)&p, 10);
5321 if (depth != 8 && depth != 15 && depth != 16 &&
5322 depth != 24 && depth != 32)
5323 goto graphic_error;
5324 } else if (*p == '\0') {
5325 depth = graphic_depth;
5326 } else {
5327 goto graphic_error;
5328 }
5329
5330 graphic_width = w;
5331 graphic_height = h;
5332 graphic_depth = depth;
5333 }
5334 break;
5335 #endif
5336 case QEMU_OPTION_echr:
5337 {
5338 char *r;
5339 term_escape_char = strtol(optarg, &r, 0);
5340 if (r == optarg)
5341 printf("Bad argument to echr\n");
5342 break;
5343 }
5344 case QEMU_OPTION_monitor:
5345 monitor_parse(optarg, "readline");
5346 default_monitor = 0;
5347 break;
5348 case QEMU_OPTION_qmp:
5349 monitor_parse(optarg, "control");
5350 default_monitor = 0;
5351 break;
5352 case QEMU_OPTION_mon:
5353 opts = qemu_opts_parse(&qemu_mon_opts, optarg, "chardev");
5354 if (!opts) {
5355 fprintf(stderr, "parse error: %s\n", optarg);
5356 exit(1);
5357 }
5358 default_monitor = 0;
5359 break;
5360 case QEMU_OPTION_chardev:
5361 opts = qemu_opts_parse(&qemu_chardev_opts, optarg, "backend");
5362 if (!opts) {
5363 fprintf(stderr, "parse error: %s\n", optarg);
5364 exit(1);
5365 }
5366 break;
5367 case QEMU_OPTION_serial:
5368 add_device_config(DEV_SERIAL, optarg);
5369 default_serial = 0;
5370 break;
5371 case QEMU_OPTION_watchdog:
5372 if (watchdog) {
5373 fprintf(stderr,
5374 "qemu: only one watchdog option may be given\n");
5375 return 1;
5376 }
5377 watchdog = optarg;
5378 break;
5379 case QEMU_OPTION_watchdog_action:
5380 if (select_watchdog_action(optarg) == -1) {
5381 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5382 exit(1);
5383 }
5384 break;
5385 case QEMU_OPTION_virtiocon:
5386 add_device_config(DEV_VIRTCON, optarg);
5387 default_virtcon = 0;
5388 break;
5389 case QEMU_OPTION_parallel:
5390 add_device_config(DEV_PARALLEL, optarg);
5391 default_parallel = 0;
5392 break;
5393 case QEMU_OPTION_loadvm:
5394 loadvm = optarg;
5395 break;
5396 case QEMU_OPTION_full_screen:
5397 full_screen = 1;
5398 break;
5399 #ifdef CONFIG_SDL
5400 case QEMU_OPTION_no_frame:
5401 no_frame = 1;
5402 break;
5403 case QEMU_OPTION_alt_grab:
5404 alt_grab = 1;
5405 break;
5406 case QEMU_OPTION_ctrl_grab:
5407 ctrl_grab = 1;
5408 break;
5409 case QEMU_OPTION_no_quit:
5410 no_quit = 1;
5411 break;
5412 case QEMU_OPTION_sdl:
5413 display_type = DT_SDL;
5414 break;
5415 #endif
5416 case QEMU_OPTION_pidfile:
5417 pid_file = optarg;
5418 break;
5419 #ifdef TARGET_I386
5420 case QEMU_OPTION_win2k_hack:
5421 win2k_install_hack = 1;
5422 break;
5423 case QEMU_OPTION_rtc_td_hack:
5424 rtc_td_hack = 1;
5425 break;
5426 case QEMU_OPTION_acpitable:
5427 if(acpi_table_add(optarg) < 0) {
5428 fprintf(stderr, "Wrong acpi table provided\n");
5429 exit(1);
5430 }
5431 break;
5432 case QEMU_OPTION_smbios:
5433 if(smbios_entry_add(optarg) < 0) {
5434 fprintf(stderr, "Wrong smbios provided\n");
5435 exit(1);
5436 }
5437 break;
5438 #endif
5439 #ifdef CONFIG_KVM
5440 case QEMU_OPTION_enable_kvm:
5441 kvm_allowed = 1;
5442 break;
5443 #endif
5444 case QEMU_OPTION_usb:
5445 usb_enabled = 1;
5446 break;
5447 case QEMU_OPTION_usbdevice:
5448 usb_enabled = 1;
5449 add_device_config(DEV_USB, optarg);
5450 break;
5451 case QEMU_OPTION_device:
5452 if (!qemu_opts_parse(&qemu_device_opts, optarg, "driver")) {
5453 exit(1);
5454 }
5455 break;
5456 case QEMU_OPTION_smp:
5457 smp_parse(optarg);
5458 if (smp_cpus < 1) {
5459 fprintf(stderr, "Invalid number of CPUs\n");
5460 exit(1);
5461 }
5462 if (max_cpus < smp_cpus) {
5463 fprintf(stderr, "maxcpus must be equal to or greater than "
5464 "smp\n");
5465 exit(1);
5466 }
5467 if (max_cpus > 255) {
5468 fprintf(stderr, "Unsupported number of maxcpus\n");
5469 exit(1);
5470 }
5471 break;
5472 case QEMU_OPTION_vnc:
5473 display_type = DT_VNC;
5474 vnc_display = optarg;
5475 break;
5476 #ifdef TARGET_I386
5477 case QEMU_OPTION_no_acpi:
5478 acpi_enabled = 0;
5479 break;
5480 case QEMU_OPTION_no_hpet:
5481 no_hpet = 1;
5482 break;
5483 case QEMU_OPTION_balloon:
5484 if (balloon_parse(optarg) < 0) {
5485 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5486 exit(1);
5487 }
5488 break;
5489 #endif
5490 case QEMU_OPTION_no_reboot:
5491 no_reboot = 1;
5492 break;
5493 case QEMU_OPTION_no_shutdown:
5494 no_shutdown = 1;
5495 break;
5496 case QEMU_OPTION_show_cursor:
5497 cursor_hide = 0;
5498 break;
5499 case QEMU_OPTION_uuid:
5500 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5501 fprintf(stderr, "Fail to parse UUID string."
5502 " Wrong format.\n");
5503 exit(1);
5504 }
5505 break;
5506 #ifndef _WIN32
5507 case QEMU_OPTION_daemonize:
5508 daemonize = 1;
5509 break;
5510 #endif
5511 case QEMU_OPTION_option_rom:
5512 if (nb_option_roms >= MAX_OPTION_ROMS) {
5513 fprintf(stderr, "Too many option ROMs\n");
5514 exit(1);
5515 }
5516 option_rom[nb_option_roms] = optarg;
5517 nb_option_roms++;
5518 break;
5519 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5520 case QEMU_OPTION_semihosting:
5521 semihosting_enabled = 1;
5522 break;
5523 #endif
5524 case QEMU_OPTION_name:
5525 qemu_name = qemu_strdup(optarg);
5526 {
5527 char *p = strchr(qemu_name, ',');
5528 if (p != NULL) {
5529 *p++ = 0;
5530 if (strncmp(p, "process=", 8)) {
5531 fprintf(stderr, "Unknown subargument %s to -name", p);
5532 exit(1);
5533 }
5534 p += 8;
5535 set_proc_name(p);
5536 }
5537 }
5538 break;
5539 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5540 case QEMU_OPTION_prom_env:
5541 if (nb_prom_envs >= MAX_PROM_ENVS) {
5542 fprintf(stderr, "Too many prom variables\n");
5543 exit(1);
5544 }
5545 prom_envs[nb_prom_envs] = optarg;
5546 nb_prom_envs++;
5547 break;
5548 #endif
5549 #ifdef TARGET_ARM
5550 case QEMU_OPTION_old_param:
5551 old_param = 1;
5552 break;
5553 #endif
5554 case QEMU_OPTION_clock:
5555 configure_alarms(optarg);
5556 break;
5557 case QEMU_OPTION_startdate:
5558 configure_rtc_date_offset(optarg, 1);
5559 break;
5560 case QEMU_OPTION_rtc:
5561 opts = qemu_opts_parse(&qemu_rtc_opts, optarg, NULL);
5562 if (!opts) {
5563 fprintf(stderr, "parse error: %s\n", optarg);
5564 exit(1);
5565 }
5566 configure_rtc(opts);
5567 break;
5568 case QEMU_OPTION_tb_size:
5569 tb_size = strtol(optarg, NULL, 0);
5570 if (tb_size < 0)
5571 tb_size = 0;
5572 break;
5573 case QEMU_OPTION_icount:
5574 use_icount = 1;
5575 if (strcmp(optarg, "auto") == 0) {
5576 icount_time_shift = -1;
5577 } else {
5578 icount_time_shift = strtol(optarg, NULL, 0);
5579 }
5580 break;
5581 case QEMU_OPTION_incoming:
5582 incoming = optarg;
5583 break;
5584 case QEMU_OPTION_nodefaults:
5585 default_serial = 0;
5586 default_parallel = 0;
5587 default_virtcon = 0;
5588 default_monitor = 0;
5589 default_vga = 0;
5590 default_net = 0;
5591 default_floppy = 0;
5592 default_cdrom = 0;
5593 default_sdcard = 0;
5594 break;
5595 #ifndef _WIN32
5596 case QEMU_OPTION_chroot:
5597 chroot_dir = optarg;
5598 break;
5599 case QEMU_OPTION_runas:
5600 run_as = optarg;
5601 break;
5602 #endif
5603 #ifdef CONFIG_XEN
5604 case QEMU_OPTION_xen_domid:
5605 xen_domid = atoi(optarg);
5606 break;
5607 case QEMU_OPTION_xen_create:
5608 xen_mode = XEN_CREATE;
5609 break;
5610 case QEMU_OPTION_xen_attach:
5611 xen_mode = XEN_ATTACH;
5612 break;
5613 #endif
5614 case QEMU_OPTION_readconfig:
5615 {
5616 FILE *fp;
5617 fp = fopen(optarg, "r");
5618 if (fp == NULL) {
5619 fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5620 exit(1);
5621 }
5622 if (qemu_config_parse(fp) != 0) {
5623 exit(1);
5624 }
5625 fclose(fp);
5626 break;
5627 }
5628 case QEMU_OPTION_writeconfig:
5629 {
5630 FILE *fp;
5631 if (strcmp(optarg, "-") == 0) {
5632 fp = stdout;
5633 } else {
5634 fp = fopen(optarg, "w");
5635 if (fp == NULL) {
5636 fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5637 exit(1);
5638 }
5639 }
5640 qemu_config_write(fp);
5641 fclose(fp);
5642 break;
5643 }
5644 }
5645 }
5646 }
5647
5648 /* If no data_dir is specified then try to find it relative to the
5649 executable path. */
5650 if (!data_dir) {
5651 data_dir = find_datadir(argv[0]);
5652 }
5653 /* If all else fails use the install patch specified when building. */
5654 if (!data_dir) {
5655 data_dir = CONFIG_QEMU_SHAREDIR;
5656 }
5657
5658 /*
5659 * Default to max_cpus = smp_cpus, in case the user doesn't
5660 * specify a max_cpus value.
5661 */
5662 if (!max_cpus)
5663 max_cpus = smp_cpus;
5664
5665 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5666 if (smp_cpus > machine->max_cpus) {
5667 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5668 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5669 machine->max_cpus);
5670 exit(1);
5671 }
5672
5673 qemu_opts_foreach(&qemu_device_opts, default_driver_check, NULL, 0);
5674 qemu_opts_foreach(&qemu_global_opts, default_driver_check, NULL, 0);
5675
5676 if (machine->no_serial) {
5677 default_serial = 0;
5678 }
5679 if (machine->no_parallel) {
5680 default_parallel = 0;
5681 }
5682 if (!machine->use_virtcon) {
5683 default_virtcon = 0;
5684 }
5685 if (machine->no_vga) {
5686 default_vga = 0;
5687 }
5688 if (machine->no_floppy) {
5689 default_floppy = 0;
5690 }
5691 if (machine->no_cdrom) {
5692 default_cdrom = 0;
5693 }
5694 if (machine->no_sdcard) {
5695 default_sdcard = 0;
5696 }
5697
5698 if (display_type == DT_NOGRAPHIC) {
5699 if (default_parallel)
5700 add_device_config(DEV_PARALLEL, "null");
5701 if (default_serial && default_monitor) {
5702 add_device_config(DEV_SERIAL, "mon:stdio");
5703 } else if (default_virtcon && default_monitor) {
5704 add_device_config(DEV_VIRTCON, "mon:stdio");
5705 } else {
5706 if (default_serial)
5707 add_device_config(DEV_SERIAL, "stdio");
5708 if (default_virtcon)
5709 add_device_config(DEV_VIRTCON, "stdio");
5710 if (default_monitor)
5711 monitor_parse("stdio", "readline");
5712 }
5713 } else {
5714 if (default_serial)
5715 add_device_config(DEV_SERIAL, "vc:80Cx24C");
5716 if (default_parallel)
5717 add_device_config(DEV_PARALLEL, "vc:80Cx24C");
5718 if (default_monitor)
5719 monitor_parse("vc:80Cx24C", "readline");
5720 if (default_virtcon)
5721 add_device_config(DEV_VIRTCON, "vc:80Cx24C");
5722 }
5723 if (default_vga)
5724 vga_interface_type = VGA_CIRRUS;
5725
5726 if (qemu_opts_foreach(&qemu_chardev_opts, chardev_init_func, NULL, 1) != 0)
5727 exit(1);
5728
5729 #ifndef _WIN32
5730 if (daemonize) {
5731 pid_t pid;
5732
5733 if (pipe(fds) == -1)
5734 exit(1);
5735
5736 pid = fork();
5737 if (pid > 0) {
5738 uint8_t status;
5739 ssize_t len;
5740
5741 close(fds[1]);
5742
5743 again:
5744 len = read(fds[0], &status, 1);
5745 if (len == -1 && (errno == EINTR))
5746 goto again;
5747
5748 if (len != 1)
5749 exit(1);
5750 else if (status == 1) {
5751 fprintf(stderr, "Could not acquire pidfile: %s\n", strerror(errno));
5752 exit(1);
5753 } else
5754 exit(0);
5755 } else if (pid < 0)
5756 exit(1);
5757
5758 close(fds[0]);
5759 qemu_set_cloexec(fds[1]);
5760
5761 setsid();
5762
5763 pid = fork();
5764 if (pid > 0)
5765 exit(0);
5766 else if (pid < 0)
5767 exit(1);
5768
5769 umask(027);
5770
5771 signal(SIGTSTP, SIG_IGN);
5772 signal(SIGTTOU, SIG_IGN);
5773 signal(SIGTTIN, SIG_IGN);
5774 }
5775 #endif
5776
5777 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5778 #ifndef _WIN32
5779 if (daemonize) {
5780 uint8_t status = 1;
5781 write(fds[1], &status, 1);
5782 } else
5783 #endif
5784 fprintf(stderr, "Could not acquire pid file: %s\n", strerror(errno));
5785 exit(1);
5786 }
5787
5788 if (kvm_enabled()) {
5789 int ret;
5790
5791 ret = kvm_init(smp_cpus);
5792 if (ret < 0) {
5793 fprintf(stderr, "failed to initialize KVM\n");
5794 exit(1);
5795 }
5796 }
5797
5798 if (qemu_init_main_loop()) {
5799 fprintf(stderr, "qemu_init_main_loop failed\n");
5800 exit(1);
5801 }
5802 linux_boot = (kernel_filename != NULL);
5803
5804 if (!linux_boot && *kernel_cmdline != '\0') {
5805 fprintf(stderr, "-append only allowed with -kernel option\n");
5806 exit(1);
5807 }
5808
5809 if (!linux_boot && initrd_filename != NULL) {
5810 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5811 exit(1);
5812 }
5813
5814 #ifndef _WIN32
5815 /* Win32 doesn't support line-buffering and requires size >= 2 */
5816 setvbuf(stdout, NULL, _IOLBF, 0);
5817 #endif
5818
5819 if (init_timer_alarm() < 0) {
5820 fprintf(stderr, "could not initialize alarm timer\n");
5821 exit(1);
5822 }
5823 if (use_icount && icount_time_shift < 0) {
5824 use_icount = 2;
5825 /* 125MIPS seems a reasonable initial guess at the guest speed.
5826 It will be corrected fairly quickly anyway. */
5827 icount_time_shift = 3;
5828 init_icount_adjust();
5829 }
5830
5831 #ifdef _WIN32
5832 socket_init();
5833 #endif
5834
5835 if (net_init_clients() < 0) {
5836 exit(1);
5837 }
5838
5839 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5840 net_set_boot_mask(net_boot);
5841
5842 /* init the bluetooth world */
5843 if (foreach_device_config(DEV_BT, bt_parse))
5844 exit(1);
5845
5846 /* init the memory */
5847 if (ram_size == 0)
5848 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5849
5850 /* init the dynamic translator */
5851 cpu_exec_init_all(tb_size * 1024 * 1024);
5852
5853 bdrv_init_with_whitelist();
5854
5855 blk_mig_init();
5856
5857 if (default_cdrom) {
5858 /* we always create the cdrom drive, even if no disk is there */
5859 drive_add(NULL, CDROM_ALIAS);
5860 }
5861
5862 if (default_floppy) {
5863 /* we always create at least one floppy */
5864 drive_add(NULL, FD_ALIAS, 0);
5865 }
5866
5867 if (default_sdcard) {
5868 /* we always create one sd slot, even if no card is in it */
5869 drive_add(NULL, SD_ALIAS);
5870 }
5871
5872 /* open the virtual block devices */
5873 if (snapshot)
5874 qemu_opts_foreach(&qemu_drive_opts, drive_enable_snapshot, NULL, 0);
5875 if (qemu_opts_foreach(&qemu_drive_opts, drive_init_func, machine, 1) != 0)
5876 exit(1);
5877
5878 vmstate_register(0, &vmstate_timers ,&timers_state);
5879 register_savevm_live("ram", 0, 3, NULL, ram_save_live, NULL,
5880 ram_load, NULL);
5881
5882 if (nb_numa_nodes > 0) {
5883 int i;
5884
5885 if (nb_numa_nodes > smp_cpus) {
5886 nb_numa_nodes = smp_cpus;
5887 }
5888
5889 /* If no memory size if given for any node, assume the default case
5890 * and distribute the available memory equally across all nodes
5891 */
5892 for (i = 0; i < nb_numa_nodes; i++) {
5893 if (node_mem[i] != 0)
5894 break;
5895 }
5896 if (i == nb_numa_nodes) {
5897 uint64_t usedmem = 0;
5898
5899 /* On Linux, the each node's border has to be 8MB aligned,
5900 * the final node gets the rest.
5901 */
5902 for (i = 0; i < nb_numa_nodes - 1; i++) {
5903 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5904 usedmem += node_mem[i];
5905 }
5906 node_mem[i] = ram_size - usedmem;
5907 }
5908
5909 for (i = 0; i < nb_numa_nodes; i++) {
5910 if (node_cpumask[i] != 0)
5911 break;
5912 }
5913 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5914 * must cope with this anyway, because there are BIOSes out there in
5915 * real machines which also use this scheme.
5916 */
5917 if (i == nb_numa_nodes) {
5918 for (i = 0; i < smp_cpus; i++) {
5919 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5920 }
5921 }
5922 }
5923
5924 if (foreach_device_config(DEV_SERIAL, serial_parse) < 0)
5925 exit(1);
5926 if (foreach_device_config(DEV_PARALLEL, parallel_parse) < 0)
5927 exit(1);
5928 if (foreach_device_config(DEV_VIRTCON, virtcon_parse) < 0)
5929 exit(1);
5930
5931 module_call_init(MODULE_INIT_DEVICE);
5932
5933 if (watchdog) {
5934 i = select_watchdog(watchdog);
5935 if (i > 0)
5936 exit (i == 1 ? 1 : 0);
5937 }
5938
5939 if (machine->compat_props) {
5940 qdev_prop_register_global_list(machine->compat_props);
5941 }
5942 qemu_add_globals();
5943
5944 machine->init(ram_size, boot_devices,
5945 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5946
5947
5948 #ifndef _WIN32
5949 /* must be after terminal init, SDL library changes signal handlers */
5950 sighandler_setup();
5951 #endif
5952
5953 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5954 for (i = 0; i < nb_numa_nodes; i++) {
5955 if (node_cpumask[i] & (1 << env->cpu_index)) {
5956 env->numa_node = i;
5957 }
5958 }
5959 }
5960
5961 current_machine = machine;
5962
5963 /* init USB devices */
5964 if (usb_enabled) {
5965 if (foreach_device_config(DEV_USB, usb_parse) < 0)
5966 exit(1);
5967 }
5968
5969 /* init generic devices */
5970 if (qemu_opts_foreach(&qemu_device_opts, device_init_func, NULL, 1) != 0)
5971 exit(1);
5972
5973 if (!display_state)
5974 dumb_display_init();
5975 /* just use the first displaystate for the moment */
5976 ds = display_state;
5977
5978 if (display_type == DT_DEFAULT) {
5979 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5980 display_type = DT_SDL;
5981 #else
5982 display_type = DT_VNC;
5983 vnc_display = "localhost:0,to=99";
5984 show_vnc_port = 1;
5985 #endif
5986 }
5987
5988
5989 switch (display_type) {
5990 case DT_NOGRAPHIC:
5991 break;
5992 #if defined(CONFIG_CURSES)
5993 case DT_CURSES:
5994 curses_display_init(ds, full_screen);
5995 break;
5996 #endif
5997 #if defined(CONFIG_SDL)
5998 case DT_SDL:
5999 sdl_display_init(ds, full_screen, no_frame);
6000 break;
6001 #elif defined(CONFIG_COCOA)
6002 case DT_SDL:
6003 cocoa_display_init(ds, full_screen);
6004 break;
6005 #endif
6006 case DT_VNC:
6007 vnc_display_init(ds);
6008 if (vnc_display_open(ds, vnc_display) < 0)
6009 exit(1);
6010
6011 if (show_vnc_port) {
6012 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
6013 }
6014 break;
6015 default:
6016 break;
6017 }
6018 dpy_resize(ds);
6019
6020 dcl = ds->listeners;
6021 while (dcl != NULL) {
6022 if (dcl->dpy_refresh != NULL) {
6023 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
6024 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
6025 }
6026 dcl = dcl->next;
6027 }
6028
6029 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
6030 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6031 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6032 }
6033
6034 text_consoles_set_display(display_state);
6035
6036 if (qemu_opts_foreach(&qemu_mon_opts, mon_init_func, NULL, 1) != 0)
6037 exit(1);
6038
6039 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6040 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6041 gdbstub_dev);
6042 exit(1);
6043 }
6044
6045 qdev_machine_creation_done();
6046
6047 if (rom_load_all() != 0) {
6048 fprintf(stderr, "rom loading failed\n");
6049 exit(1);
6050 }
6051
6052 qemu_system_reset();
6053 if (loadvm) {
6054 if (load_vmstate(cur_mon, loadvm) < 0) {
6055 autostart = 0;
6056 }
6057 }
6058
6059 if (incoming) {
6060 qemu_start_incoming_migration(incoming);
6061 } else if (autostart) {
6062 vm_start();
6063 }
6064
6065 #ifndef _WIN32
6066 if (daemonize) {
6067 uint8_t status = 0;
6068 ssize_t len;
6069
6070 again1:
6071 len = write(fds[1], &status, 1);
6072 if (len == -1 && (errno == EINTR))
6073 goto again1;
6074
6075 if (len != 1)
6076 exit(1);
6077
6078 chdir("/");
6079 TFR(fd = qemu_open("/dev/null", O_RDWR));
6080 if (fd == -1)
6081 exit(1);
6082 }
6083
6084 if (run_as) {
6085 pwd = getpwnam(run_as);
6086 if (!pwd) {
6087 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6088 exit(1);
6089 }
6090 }
6091
6092 if (chroot_dir) {
6093 if (chroot(chroot_dir) < 0) {
6094 fprintf(stderr, "chroot failed\n");
6095 exit(1);
6096 }
6097 chdir("/");
6098 }
6099
6100 if (run_as) {
6101 if (setgid(pwd->pw_gid) < 0) {
6102 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6103 exit(1);
6104 }
6105 if (setuid(pwd->pw_uid) < 0) {
6106 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6107 exit(1);
6108 }
6109 if (setuid(0) != -1) {
6110 fprintf(stderr, "Dropping privileges failed\n");
6111 exit(1);
6112 }
6113 }
6114
6115 if (daemonize) {
6116 dup2(fd, 0);
6117 dup2(fd, 1);
6118 dup2(fd, 2);
6119
6120 close(fd);
6121 }
6122 #endif
6123
6124 main_loop();
6125 quit_timers();
6126 net_cleanup();
6127
6128 return 0;
6129 }