]> git.proxmox.com Git - qemu.git/blob - vl.c
live migration: Propagate output monitor to callback handler
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for CONFIG_BSD etc. */
33 #include "config-host.h"
34
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #include <arpa/inet.h>
48 #include <dirent.h>
49 #include <netdb.h>
50 #include <sys/select.h>
51 #ifdef CONFIG_BSD
52 #include <sys/stat.h>
53 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
54 #include <libutil.h>
55 #else
56 #include <util.h>
57 #endif
58 #else
59 #ifdef __linux__
60 #include <pty.h>
61 #include <malloc.h>
62 #include <linux/rtc.h>
63 #include <sys/prctl.h>
64
65 /* For the benefit of older linux systems which don't supply it,
66 we use a local copy of hpet.h. */
67 /* #include <linux/hpet.h> */
68 #include "hpet.h"
69
70 #include <linux/ppdev.h>
71 #include <linux/parport.h>
72 #endif
73 #ifdef __sun__
74 #include <sys/stat.h>
75 #include <sys/ethernet.h>
76 #include <sys/sockio.h>
77 #include <netinet/arp.h>
78 #include <netinet/in.h>
79 #include <netinet/in_systm.h>
80 #include <netinet/ip.h>
81 #include <netinet/ip_icmp.h> // must come after ip.h
82 #include <netinet/udp.h>
83 #include <netinet/tcp.h>
84 #include <net/if.h>
85 #include <syslog.h>
86 #include <stropts.h>
87 /* See MySQL bug #7156 (http://bugs.mysql.com/bug.php?id=7156) for
88 discussion about Solaris header problems */
89 extern int madvise(caddr_t, size_t, int);
90 #endif
91 #endif
92 #endif
93
94 #if defined(__OpenBSD__)
95 #include <util.h>
96 #endif
97
98 #if defined(CONFIG_VDE)
99 #include <libvdeplug.h>
100 #endif
101
102 #ifdef _WIN32
103 #include <windows.h>
104 #include <mmsystem.h>
105 #endif
106
107 #ifdef CONFIG_SDL
108 #if defined(__APPLE__) || defined(main)
109 #include <SDL.h>
110 int qemu_main(int argc, char **argv, char **envp);
111 int main(int argc, char **argv)
112 {
113 return qemu_main(argc, argv, NULL);
114 }
115 #undef main
116 #define main qemu_main
117 #endif
118 #endif /* CONFIG_SDL */
119
120 #ifdef CONFIG_COCOA
121 #undef main
122 #define main qemu_main
123 #endif /* CONFIG_COCOA */
124
125 #include "hw/hw.h"
126 #include "hw/boards.h"
127 #include "hw/usb.h"
128 #include "hw/pcmcia.h"
129 #include "hw/pc.h"
130 #include "hw/audiodev.h"
131 #include "hw/isa.h"
132 #include "hw/baum.h"
133 #include "hw/bt.h"
134 #include "hw/watchdog.h"
135 #include "hw/smbios.h"
136 #include "hw/xen.h"
137 #include "hw/qdev.h"
138 #include "hw/loader.h"
139 #include "bt-host.h"
140 #include "net.h"
141 #include "net/slirp.h"
142 #include "monitor.h"
143 #include "console.h"
144 #include "sysemu.h"
145 #include "gdbstub.h"
146 #include "qemu-timer.h"
147 #include "qemu-char.h"
148 #include "cache-utils.h"
149 #include "block.h"
150 #include "block_int.h"
151 #include "block-migration.h"
152 #include "dma.h"
153 #include "audio/audio.h"
154 #include "migration.h"
155 #include "kvm.h"
156 #include "balloon.h"
157 #include "qemu-option.h"
158 #include "qemu-config.h"
159
160 #include "disas.h"
161
162 #include "exec-all.h"
163
164 #include "qemu_socket.h"
165
166 #include "slirp/libslirp.h"
167
168 #include "qemu-queue.h"
169
170 //#define DEBUG_NET
171 //#define DEBUG_SLIRP
172
173 #define DEFAULT_RAM_SIZE 128
174
175 /* Maximum number of monitor devices */
176 #define MAX_MONITOR_DEVICES 10
177
178 static const char *data_dir;
179 const char *bios_name = NULL;
180 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
181 to store the VM snapshots */
182 struct drivelist drives = QTAILQ_HEAD_INITIALIZER(drives);
183 struct driveoptlist driveopts = QTAILQ_HEAD_INITIALIZER(driveopts);
184 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
185 static DisplayState *display_state;
186 DisplayType display_type = DT_DEFAULT;
187 const char* keyboard_layout = NULL;
188 ram_addr_t ram_size;
189 int nb_nics;
190 NICInfo nd_table[MAX_NICS];
191 int vm_running;
192 int autostart;
193 static int rtc_utc = 1;
194 static int rtc_date_offset = -1; /* -1 means no change */
195 QEMUClock *rtc_clock;
196 int vga_interface_type = VGA_CIRRUS;
197 #ifdef TARGET_SPARC
198 int graphic_width = 1024;
199 int graphic_height = 768;
200 int graphic_depth = 8;
201 #else
202 int graphic_width = 800;
203 int graphic_height = 600;
204 int graphic_depth = 15;
205 #endif
206 static int full_screen = 0;
207 #ifdef CONFIG_SDL
208 static int no_frame = 0;
209 #endif
210 int no_quit = 0;
211 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
212 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
213 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
214 #ifdef TARGET_I386
215 int win2k_install_hack = 0;
216 int rtc_td_hack = 0;
217 #endif
218 int usb_enabled = 0;
219 int singlestep = 0;
220 int smp_cpus = 1;
221 int max_cpus = 0;
222 int smp_cores = 1;
223 int smp_threads = 1;
224 const char *vnc_display;
225 int acpi_enabled = 1;
226 int no_hpet = 0;
227 int fd_bootchk = 1;
228 int no_reboot = 0;
229 int no_shutdown = 0;
230 int cursor_hide = 1;
231 int graphic_rotate = 0;
232 uint8_t irq0override = 1;
233 #ifndef _WIN32
234 int daemonize = 0;
235 #endif
236 const char *watchdog;
237 const char *option_rom[MAX_OPTION_ROMS];
238 int nb_option_roms;
239 int semihosting_enabled = 0;
240 #ifdef TARGET_ARM
241 int old_param = 0;
242 #endif
243 const char *qemu_name;
244 int alt_grab = 0;
245 int ctrl_grab = 0;
246 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
247 unsigned int nb_prom_envs = 0;
248 const char *prom_envs[MAX_PROM_ENVS];
249 #endif
250 int boot_menu;
251
252 int nb_numa_nodes;
253 uint64_t node_mem[MAX_NODES];
254 uint64_t node_cpumask[MAX_NODES];
255
256 static CPUState *cur_cpu;
257 static CPUState *next_cpu;
258 static int timer_alarm_pending = 1;
259 /* Conversion factor from emulated instructions to virtual clock ticks. */
260 static int icount_time_shift;
261 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
262 #define MAX_ICOUNT_SHIFT 10
263 /* Compensate for varying guest execution speed. */
264 static int64_t qemu_icount_bias;
265 static QEMUTimer *icount_rt_timer;
266 static QEMUTimer *icount_vm_timer;
267 static QEMUTimer *nographic_timer;
268
269 uint8_t qemu_uuid[16];
270
271 static QEMUBootSetHandler *boot_set_handler;
272 static void *boot_set_opaque;
273
274 /***********************************************************/
275 /* x86 ISA bus support */
276
277 target_phys_addr_t isa_mem_base = 0;
278 PicState2 *isa_pic;
279
280 /***********************************************************/
281 void hw_error(const char *fmt, ...)
282 {
283 va_list ap;
284 CPUState *env;
285
286 va_start(ap, fmt);
287 fprintf(stderr, "qemu: hardware error: ");
288 vfprintf(stderr, fmt, ap);
289 fprintf(stderr, "\n");
290 for(env = first_cpu; env != NULL; env = env->next_cpu) {
291 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
292 #ifdef TARGET_I386
293 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
294 #else
295 cpu_dump_state(env, stderr, fprintf, 0);
296 #endif
297 }
298 va_end(ap);
299 abort();
300 }
301
302 static void set_proc_name(const char *s)
303 {
304 #if defined(__linux__) && defined(PR_SET_NAME)
305 char name[16];
306 if (!s)
307 return;
308 name[sizeof(name) - 1] = 0;
309 strncpy(name, s, sizeof(name));
310 /* Could rewrite argv[0] too, but that's a bit more complicated.
311 This simple way is enough for `top'. */
312 prctl(PR_SET_NAME, name);
313 #endif
314 }
315
316 /***************/
317 /* ballooning */
318
319 static QEMUBalloonEvent *qemu_balloon_event;
320 void *qemu_balloon_event_opaque;
321
322 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
323 {
324 qemu_balloon_event = func;
325 qemu_balloon_event_opaque = opaque;
326 }
327
328 void qemu_balloon(ram_addr_t target)
329 {
330 if (qemu_balloon_event)
331 qemu_balloon_event(qemu_balloon_event_opaque, target);
332 }
333
334 ram_addr_t qemu_balloon_status(void)
335 {
336 if (qemu_balloon_event)
337 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
338 return 0;
339 }
340
341 /***********************************************************/
342 /* keyboard/mouse */
343
344 static QEMUPutKBDEvent *qemu_put_kbd_event;
345 static void *qemu_put_kbd_event_opaque;
346 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
347 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
348
349 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
350 {
351 qemu_put_kbd_event_opaque = opaque;
352 qemu_put_kbd_event = func;
353 }
354
355 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
356 void *opaque, int absolute,
357 const char *name)
358 {
359 QEMUPutMouseEntry *s, *cursor;
360
361 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
362
363 s->qemu_put_mouse_event = func;
364 s->qemu_put_mouse_event_opaque = opaque;
365 s->qemu_put_mouse_event_absolute = absolute;
366 s->qemu_put_mouse_event_name = qemu_strdup(name);
367 s->next = NULL;
368
369 if (!qemu_put_mouse_event_head) {
370 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
371 return s;
372 }
373
374 cursor = qemu_put_mouse_event_head;
375 while (cursor->next != NULL)
376 cursor = cursor->next;
377
378 cursor->next = s;
379 qemu_put_mouse_event_current = s;
380
381 return s;
382 }
383
384 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
385 {
386 QEMUPutMouseEntry *prev = NULL, *cursor;
387
388 if (!qemu_put_mouse_event_head || entry == NULL)
389 return;
390
391 cursor = qemu_put_mouse_event_head;
392 while (cursor != NULL && cursor != entry) {
393 prev = cursor;
394 cursor = cursor->next;
395 }
396
397 if (cursor == NULL) // does not exist or list empty
398 return;
399 else if (prev == NULL) { // entry is head
400 qemu_put_mouse_event_head = cursor->next;
401 if (qemu_put_mouse_event_current == entry)
402 qemu_put_mouse_event_current = cursor->next;
403 qemu_free(entry->qemu_put_mouse_event_name);
404 qemu_free(entry);
405 return;
406 }
407
408 prev->next = entry->next;
409
410 if (qemu_put_mouse_event_current == entry)
411 qemu_put_mouse_event_current = prev;
412
413 qemu_free(entry->qemu_put_mouse_event_name);
414 qemu_free(entry);
415 }
416
417 void kbd_put_keycode(int keycode)
418 {
419 if (qemu_put_kbd_event) {
420 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
421 }
422 }
423
424 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
425 {
426 QEMUPutMouseEvent *mouse_event;
427 void *mouse_event_opaque;
428 int width;
429
430 if (!qemu_put_mouse_event_current) {
431 return;
432 }
433
434 mouse_event =
435 qemu_put_mouse_event_current->qemu_put_mouse_event;
436 mouse_event_opaque =
437 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
438
439 if (mouse_event) {
440 if (graphic_rotate) {
441 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
442 width = 0x7fff;
443 else
444 width = graphic_width - 1;
445 mouse_event(mouse_event_opaque,
446 width - dy, dx, dz, buttons_state);
447 } else
448 mouse_event(mouse_event_opaque,
449 dx, dy, dz, buttons_state);
450 }
451 }
452
453 int kbd_mouse_is_absolute(void)
454 {
455 if (!qemu_put_mouse_event_current)
456 return 0;
457
458 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
459 }
460
461 void do_info_mice(Monitor *mon)
462 {
463 QEMUPutMouseEntry *cursor;
464 int index = 0;
465
466 if (!qemu_put_mouse_event_head) {
467 monitor_printf(mon, "No mouse devices connected\n");
468 return;
469 }
470
471 monitor_printf(mon, "Mouse devices available:\n");
472 cursor = qemu_put_mouse_event_head;
473 while (cursor != NULL) {
474 monitor_printf(mon, "%c Mouse #%d: %s\n",
475 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
476 index, cursor->qemu_put_mouse_event_name);
477 index++;
478 cursor = cursor->next;
479 }
480 }
481
482 void do_mouse_set(Monitor *mon, const QDict *qdict)
483 {
484 QEMUPutMouseEntry *cursor;
485 int i = 0;
486 int index = qdict_get_int(qdict, "index");
487
488 if (!qemu_put_mouse_event_head) {
489 monitor_printf(mon, "No mouse devices connected\n");
490 return;
491 }
492
493 cursor = qemu_put_mouse_event_head;
494 while (cursor != NULL && index != i) {
495 i++;
496 cursor = cursor->next;
497 }
498
499 if (cursor != NULL)
500 qemu_put_mouse_event_current = cursor;
501 else
502 monitor_printf(mon, "Mouse at given index not found\n");
503 }
504
505 /* compute with 96 bit intermediate result: (a*b)/c */
506 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
507 {
508 union {
509 uint64_t ll;
510 struct {
511 #ifdef HOST_WORDS_BIGENDIAN
512 uint32_t high, low;
513 #else
514 uint32_t low, high;
515 #endif
516 } l;
517 } u, res;
518 uint64_t rl, rh;
519
520 u.ll = a;
521 rl = (uint64_t)u.l.low * (uint64_t)b;
522 rh = (uint64_t)u.l.high * (uint64_t)b;
523 rh += (rl >> 32);
524 res.l.high = rh / c;
525 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
526 return res.ll;
527 }
528
529 /***********************************************************/
530 /* real time host monotonic timer */
531
532 static int64_t get_clock_realtime(void)
533 {
534 struct timeval tv;
535
536 gettimeofday(&tv, NULL);
537 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
538 }
539
540 #ifdef WIN32
541
542 static int64_t clock_freq;
543
544 static void init_get_clock(void)
545 {
546 LARGE_INTEGER freq;
547 int ret;
548 ret = QueryPerformanceFrequency(&freq);
549 if (ret == 0) {
550 fprintf(stderr, "Could not calibrate ticks\n");
551 exit(1);
552 }
553 clock_freq = freq.QuadPart;
554 }
555
556 static int64_t get_clock(void)
557 {
558 LARGE_INTEGER ti;
559 QueryPerformanceCounter(&ti);
560 return muldiv64(ti.QuadPart, get_ticks_per_sec(), clock_freq);
561 }
562
563 #else
564
565 static int use_rt_clock;
566
567 static void init_get_clock(void)
568 {
569 use_rt_clock = 0;
570 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
571 || defined(__DragonFly__) || defined(__FreeBSD_kernel__)
572 {
573 struct timespec ts;
574 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
575 use_rt_clock = 1;
576 }
577 }
578 #endif
579 }
580
581 static int64_t get_clock(void)
582 {
583 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
584 || defined(__DragonFly__) || defined(__FreeBSD_kernel__)
585 if (use_rt_clock) {
586 struct timespec ts;
587 clock_gettime(CLOCK_MONOTONIC, &ts);
588 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
589 } else
590 #endif
591 {
592 /* XXX: using gettimeofday leads to problems if the date
593 changes, so it should be avoided. */
594 return get_clock_realtime();
595 }
596 }
597 #endif
598
599 /* Return the virtual CPU time, based on the instruction counter. */
600 static int64_t cpu_get_icount(void)
601 {
602 int64_t icount;
603 CPUState *env = cpu_single_env;;
604 icount = qemu_icount;
605 if (env) {
606 if (!can_do_io(env))
607 fprintf(stderr, "Bad clock read\n");
608 icount -= (env->icount_decr.u16.low + env->icount_extra);
609 }
610 return qemu_icount_bias + (icount << icount_time_shift);
611 }
612
613 /***********************************************************/
614 /* guest cycle counter */
615
616 typedef struct TimersState {
617 int64_t cpu_ticks_prev;
618 int64_t cpu_ticks_offset;
619 int64_t cpu_clock_offset;
620 int32_t cpu_ticks_enabled;
621 int64_t dummy;
622 } TimersState;
623
624 TimersState timers_state;
625
626 /* return the host CPU cycle counter and handle stop/restart */
627 int64_t cpu_get_ticks(void)
628 {
629 if (use_icount) {
630 return cpu_get_icount();
631 }
632 if (!timers_state.cpu_ticks_enabled) {
633 return timers_state.cpu_ticks_offset;
634 } else {
635 int64_t ticks;
636 ticks = cpu_get_real_ticks();
637 if (timers_state.cpu_ticks_prev > ticks) {
638 /* Note: non increasing ticks may happen if the host uses
639 software suspend */
640 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
641 }
642 timers_state.cpu_ticks_prev = ticks;
643 return ticks + timers_state.cpu_ticks_offset;
644 }
645 }
646
647 /* return the host CPU monotonic timer and handle stop/restart */
648 static int64_t cpu_get_clock(void)
649 {
650 int64_t ti;
651 if (!timers_state.cpu_ticks_enabled) {
652 return timers_state.cpu_clock_offset;
653 } else {
654 ti = get_clock();
655 return ti + timers_state.cpu_clock_offset;
656 }
657 }
658
659 /* enable cpu_get_ticks() */
660 void cpu_enable_ticks(void)
661 {
662 if (!timers_state.cpu_ticks_enabled) {
663 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
664 timers_state.cpu_clock_offset -= get_clock();
665 timers_state.cpu_ticks_enabled = 1;
666 }
667 }
668
669 /* disable cpu_get_ticks() : the clock is stopped. You must not call
670 cpu_get_ticks() after that. */
671 void cpu_disable_ticks(void)
672 {
673 if (timers_state.cpu_ticks_enabled) {
674 timers_state.cpu_ticks_offset = cpu_get_ticks();
675 timers_state.cpu_clock_offset = cpu_get_clock();
676 timers_state.cpu_ticks_enabled = 0;
677 }
678 }
679
680 /***********************************************************/
681 /* timers */
682
683 #define QEMU_CLOCK_REALTIME 0
684 #define QEMU_CLOCK_VIRTUAL 1
685 #define QEMU_CLOCK_HOST 2
686
687 struct QEMUClock {
688 int type;
689 /* XXX: add frequency */
690 };
691
692 struct QEMUTimer {
693 QEMUClock *clock;
694 int64_t expire_time;
695 QEMUTimerCB *cb;
696 void *opaque;
697 struct QEMUTimer *next;
698 };
699
700 struct qemu_alarm_timer {
701 char const *name;
702 unsigned int flags;
703
704 int (*start)(struct qemu_alarm_timer *t);
705 void (*stop)(struct qemu_alarm_timer *t);
706 void (*rearm)(struct qemu_alarm_timer *t);
707 void *priv;
708 };
709
710 #define ALARM_FLAG_DYNTICKS 0x1
711 #define ALARM_FLAG_EXPIRED 0x2
712
713 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
714 {
715 return t && (t->flags & ALARM_FLAG_DYNTICKS);
716 }
717
718 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
719 {
720 if (!alarm_has_dynticks(t))
721 return;
722
723 t->rearm(t);
724 }
725
726 /* TODO: MIN_TIMER_REARM_US should be optimized */
727 #define MIN_TIMER_REARM_US 250
728
729 static struct qemu_alarm_timer *alarm_timer;
730
731 #ifdef _WIN32
732
733 struct qemu_alarm_win32 {
734 MMRESULT timerId;
735 unsigned int period;
736 } alarm_win32_data = {0, -1};
737
738 static int win32_start_timer(struct qemu_alarm_timer *t);
739 static void win32_stop_timer(struct qemu_alarm_timer *t);
740 static void win32_rearm_timer(struct qemu_alarm_timer *t);
741
742 #else
743
744 static int unix_start_timer(struct qemu_alarm_timer *t);
745 static void unix_stop_timer(struct qemu_alarm_timer *t);
746
747 #ifdef __linux__
748
749 static int dynticks_start_timer(struct qemu_alarm_timer *t);
750 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
751 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
752
753 static int hpet_start_timer(struct qemu_alarm_timer *t);
754 static void hpet_stop_timer(struct qemu_alarm_timer *t);
755
756 static int rtc_start_timer(struct qemu_alarm_timer *t);
757 static void rtc_stop_timer(struct qemu_alarm_timer *t);
758
759 #endif /* __linux__ */
760
761 #endif /* _WIN32 */
762
763 /* Correlation between real and virtual time is always going to be
764 fairly approximate, so ignore small variation.
765 When the guest is idle real and virtual time will be aligned in
766 the IO wait loop. */
767 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
768
769 static void icount_adjust(void)
770 {
771 int64_t cur_time;
772 int64_t cur_icount;
773 int64_t delta;
774 static int64_t last_delta;
775 /* If the VM is not running, then do nothing. */
776 if (!vm_running)
777 return;
778
779 cur_time = cpu_get_clock();
780 cur_icount = qemu_get_clock(vm_clock);
781 delta = cur_icount - cur_time;
782 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
783 if (delta > 0
784 && last_delta + ICOUNT_WOBBLE < delta * 2
785 && icount_time_shift > 0) {
786 /* The guest is getting too far ahead. Slow time down. */
787 icount_time_shift--;
788 }
789 if (delta < 0
790 && last_delta - ICOUNT_WOBBLE > delta * 2
791 && icount_time_shift < MAX_ICOUNT_SHIFT) {
792 /* The guest is getting too far behind. Speed time up. */
793 icount_time_shift++;
794 }
795 last_delta = delta;
796 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
797 }
798
799 static void icount_adjust_rt(void * opaque)
800 {
801 qemu_mod_timer(icount_rt_timer,
802 qemu_get_clock(rt_clock) + 1000);
803 icount_adjust();
804 }
805
806 static void icount_adjust_vm(void * opaque)
807 {
808 qemu_mod_timer(icount_vm_timer,
809 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
810 icount_adjust();
811 }
812
813 static void init_icount_adjust(void)
814 {
815 /* Have both realtime and virtual time triggers for speed adjustment.
816 The realtime trigger catches emulated time passing too slowly,
817 the virtual time trigger catches emulated time passing too fast.
818 Realtime triggers occur even when idle, so use them less frequently
819 than VM triggers. */
820 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
821 qemu_mod_timer(icount_rt_timer,
822 qemu_get_clock(rt_clock) + 1000);
823 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
824 qemu_mod_timer(icount_vm_timer,
825 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
826 }
827
828 static struct qemu_alarm_timer alarm_timers[] = {
829 #ifndef _WIN32
830 #ifdef __linux__
831 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
832 dynticks_stop_timer, dynticks_rearm_timer, NULL},
833 /* HPET - if available - is preferred */
834 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
835 /* ...otherwise try RTC */
836 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
837 #endif
838 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
839 #else
840 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
841 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
842 {"win32", 0, win32_start_timer,
843 win32_stop_timer, NULL, &alarm_win32_data},
844 #endif
845 {NULL, }
846 };
847
848 static void show_available_alarms(void)
849 {
850 int i;
851
852 printf("Available alarm timers, in order of precedence:\n");
853 for (i = 0; alarm_timers[i].name; i++)
854 printf("%s\n", alarm_timers[i].name);
855 }
856
857 static void configure_alarms(char const *opt)
858 {
859 int i;
860 int cur = 0;
861 int count = ARRAY_SIZE(alarm_timers) - 1;
862 char *arg;
863 char *name;
864 struct qemu_alarm_timer tmp;
865
866 if (!strcmp(opt, "?")) {
867 show_available_alarms();
868 exit(0);
869 }
870
871 arg = qemu_strdup(opt);
872
873 /* Reorder the array */
874 name = strtok(arg, ",");
875 while (name) {
876 for (i = 0; i < count && alarm_timers[i].name; i++) {
877 if (!strcmp(alarm_timers[i].name, name))
878 break;
879 }
880
881 if (i == count) {
882 fprintf(stderr, "Unknown clock %s\n", name);
883 goto next;
884 }
885
886 if (i < cur)
887 /* Ignore */
888 goto next;
889
890 /* Swap */
891 tmp = alarm_timers[i];
892 alarm_timers[i] = alarm_timers[cur];
893 alarm_timers[cur] = tmp;
894
895 cur++;
896 next:
897 name = strtok(NULL, ",");
898 }
899
900 qemu_free(arg);
901
902 if (cur) {
903 /* Disable remaining timers */
904 for (i = cur; i < count; i++)
905 alarm_timers[i].name = NULL;
906 } else {
907 show_available_alarms();
908 exit(1);
909 }
910 }
911
912 #define QEMU_NUM_CLOCKS 3
913
914 QEMUClock *rt_clock;
915 QEMUClock *vm_clock;
916 QEMUClock *host_clock;
917
918 static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
919
920 static QEMUClock *qemu_new_clock(int type)
921 {
922 QEMUClock *clock;
923 clock = qemu_mallocz(sizeof(QEMUClock));
924 clock->type = type;
925 return clock;
926 }
927
928 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
929 {
930 QEMUTimer *ts;
931
932 ts = qemu_mallocz(sizeof(QEMUTimer));
933 ts->clock = clock;
934 ts->cb = cb;
935 ts->opaque = opaque;
936 return ts;
937 }
938
939 void qemu_free_timer(QEMUTimer *ts)
940 {
941 qemu_free(ts);
942 }
943
944 /* stop a timer, but do not dealloc it */
945 void qemu_del_timer(QEMUTimer *ts)
946 {
947 QEMUTimer **pt, *t;
948
949 /* NOTE: this code must be signal safe because
950 qemu_timer_expired() can be called from a signal. */
951 pt = &active_timers[ts->clock->type];
952 for(;;) {
953 t = *pt;
954 if (!t)
955 break;
956 if (t == ts) {
957 *pt = t->next;
958 break;
959 }
960 pt = &t->next;
961 }
962 }
963
964 /* modify the current timer so that it will be fired when current_time
965 >= expire_time. The corresponding callback will be called. */
966 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
967 {
968 QEMUTimer **pt, *t;
969
970 qemu_del_timer(ts);
971
972 /* add the timer in the sorted list */
973 /* NOTE: this code must be signal safe because
974 qemu_timer_expired() can be called from a signal. */
975 pt = &active_timers[ts->clock->type];
976 for(;;) {
977 t = *pt;
978 if (!t)
979 break;
980 if (t->expire_time > expire_time)
981 break;
982 pt = &t->next;
983 }
984 ts->expire_time = expire_time;
985 ts->next = *pt;
986 *pt = ts;
987
988 /* Rearm if necessary */
989 if (pt == &active_timers[ts->clock->type]) {
990 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
991 qemu_rearm_alarm_timer(alarm_timer);
992 }
993 /* Interrupt execution to force deadline recalculation. */
994 if (use_icount)
995 qemu_notify_event();
996 }
997 }
998
999 int qemu_timer_pending(QEMUTimer *ts)
1000 {
1001 QEMUTimer *t;
1002 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1003 if (t == ts)
1004 return 1;
1005 }
1006 return 0;
1007 }
1008
1009 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1010 {
1011 if (!timer_head)
1012 return 0;
1013 return (timer_head->expire_time <= current_time);
1014 }
1015
1016 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1017 {
1018 QEMUTimer *ts;
1019
1020 for(;;) {
1021 ts = *ptimer_head;
1022 if (!ts || ts->expire_time > current_time)
1023 break;
1024 /* remove timer from the list before calling the callback */
1025 *ptimer_head = ts->next;
1026 ts->next = NULL;
1027
1028 /* run the callback (the timer list can be modified) */
1029 ts->cb(ts->opaque);
1030 }
1031 }
1032
1033 int64_t qemu_get_clock(QEMUClock *clock)
1034 {
1035 switch(clock->type) {
1036 case QEMU_CLOCK_REALTIME:
1037 return get_clock() / 1000000;
1038 default:
1039 case QEMU_CLOCK_VIRTUAL:
1040 if (use_icount) {
1041 return cpu_get_icount();
1042 } else {
1043 return cpu_get_clock();
1044 }
1045 case QEMU_CLOCK_HOST:
1046 return get_clock_realtime();
1047 }
1048 }
1049
1050 static void init_clocks(void)
1051 {
1052 init_get_clock();
1053 rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
1054 vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
1055 host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
1056
1057 rtc_clock = host_clock;
1058 }
1059
1060 /* save a timer */
1061 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1062 {
1063 uint64_t expire_time;
1064
1065 if (qemu_timer_pending(ts)) {
1066 expire_time = ts->expire_time;
1067 } else {
1068 expire_time = -1;
1069 }
1070 qemu_put_be64(f, expire_time);
1071 }
1072
1073 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1074 {
1075 uint64_t expire_time;
1076
1077 expire_time = qemu_get_be64(f);
1078 if (expire_time != -1) {
1079 qemu_mod_timer(ts, expire_time);
1080 } else {
1081 qemu_del_timer(ts);
1082 }
1083 }
1084
1085 static const VMStateDescription vmstate_timers = {
1086 .name = "timer",
1087 .version_id = 2,
1088 .minimum_version_id = 1,
1089 .minimum_version_id_old = 1,
1090 .fields = (VMStateField []) {
1091 VMSTATE_INT64(cpu_ticks_offset, TimersState),
1092 VMSTATE_INT64(dummy, TimersState),
1093 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
1094 VMSTATE_END_OF_LIST()
1095 }
1096 };
1097
1098 static void qemu_event_increment(void);
1099
1100 #ifdef _WIN32
1101 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1102 DWORD_PTR dwUser, DWORD_PTR dw1,
1103 DWORD_PTR dw2)
1104 #else
1105 static void host_alarm_handler(int host_signum)
1106 #endif
1107 {
1108 #if 0
1109 #define DISP_FREQ 1000
1110 {
1111 static int64_t delta_min = INT64_MAX;
1112 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1113 static int count;
1114 ti = qemu_get_clock(vm_clock);
1115 if (last_clock != 0) {
1116 delta = ti - last_clock;
1117 if (delta < delta_min)
1118 delta_min = delta;
1119 if (delta > delta_max)
1120 delta_max = delta;
1121 delta_cum += delta;
1122 if (++count == DISP_FREQ) {
1123 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1124 muldiv64(delta_min, 1000000, get_ticks_per_sec()),
1125 muldiv64(delta_max, 1000000, get_ticks_per_sec()),
1126 muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
1127 (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
1128 count = 0;
1129 delta_min = INT64_MAX;
1130 delta_max = 0;
1131 delta_cum = 0;
1132 }
1133 }
1134 last_clock = ti;
1135 }
1136 #endif
1137 if (alarm_has_dynticks(alarm_timer) ||
1138 (!use_icount &&
1139 qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL],
1140 qemu_get_clock(vm_clock))) ||
1141 qemu_timer_expired(active_timers[QEMU_CLOCK_REALTIME],
1142 qemu_get_clock(rt_clock)) ||
1143 qemu_timer_expired(active_timers[QEMU_CLOCK_HOST],
1144 qemu_get_clock(host_clock))) {
1145 qemu_event_increment();
1146 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1147
1148 #ifndef CONFIG_IOTHREAD
1149 if (next_cpu) {
1150 /* stop the currently executing cpu because a timer occured */
1151 cpu_exit(next_cpu);
1152 }
1153 #endif
1154 timer_alarm_pending = 1;
1155 qemu_notify_event();
1156 }
1157 }
1158
1159 static int64_t qemu_next_deadline(void)
1160 {
1161 /* To avoid problems with overflow limit this to 2^32. */
1162 int64_t delta = INT32_MAX;
1163
1164 if (active_timers[QEMU_CLOCK_VIRTUAL]) {
1165 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
1166 qemu_get_clock(vm_clock);
1167 }
1168 if (active_timers[QEMU_CLOCK_HOST]) {
1169 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
1170 qemu_get_clock(host_clock);
1171 if (hdelta < delta)
1172 delta = hdelta;
1173 }
1174
1175 if (delta < 0)
1176 delta = 0;
1177
1178 return delta;
1179 }
1180
1181 #if defined(__linux__)
1182 static uint64_t qemu_next_deadline_dyntick(void)
1183 {
1184 int64_t delta;
1185 int64_t rtdelta;
1186
1187 if (use_icount)
1188 delta = INT32_MAX;
1189 else
1190 delta = (qemu_next_deadline() + 999) / 1000;
1191
1192 if (active_timers[QEMU_CLOCK_REALTIME]) {
1193 rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time -
1194 qemu_get_clock(rt_clock))*1000;
1195 if (rtdelta < delta)
1196 delta = rtdelta;
1197 }
1198
1199 if (delta < MIN_TIMER_REARM_US)
1200 delta = MIN_TIMER_REARM_US;
1201
1202 return delta;
1203 }
1204 #endif
1205
1206 #ifndef _WIN32
1207
1208 /* Sets a specific flag */
1209 static int fcntl_setfl(int fd, int flag)
1210 {
1211 int flags;
1212
1213 flags = fcntl(fd, F_GETFL);
1214 if (flags == -1)
1215 return -errno;
1216
1217 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1218 return -errno;
1219
1220 return 0;
1221 }
1222
1223 #if defined(__linux__)
1224
1225 #define RTC_FREQ 1024
1226
1227 static void enable_sigio_timer(int fd)
1228 {
1229 struct sigaction act;
1230
1231 /* timer signal */
1232 sigfillset(&act.sa_mask);
1233 act.sa_flags = 0;
1234 act.sa_handler = host_alarm_handler;
1235
1236 sigaction(SIGIO, &act, NULL);
1237 fcntl_setfl(fd, O_ASYNC);
1238 fcntl(fd, F_SETOWN, getpid());
1239 }
1240
1241 static int hpet_start_timer(struct qemu_alarm_timer *t)
1242 {
1243 struct hpet_info info;
1244 int r, fd;
1245
1246 fd = open("/dev/hpet", O_RDONLY);
1247 if (fd < 0)
1248 return -1;
1249
1250 /* Set frequency */
1251 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1252 if (r < 0) {
1253 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1254 "error, but for better emulation accuracy type:\n"
1255 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1256 goto fail;
1257 }
1258
1259 /* Check capabilities */
1260 r = ioctl(fd, HPET_INFO, &info);
1261 if (r < 0)
1262 goto fail;
1263
1264 /* Enable periodic mode */
1265 r = ioctl(fd, HPET_EPI, 0);
1266 if (info.hi_flags && (r < 0))
1267 goto fail;
1268
1269 /* Enable interrupt */
1270 r = ioctl(fd, HPET_IE_ON, 0);
1271 if (r < 0)
1272 goto fail;
1273
1274 enable_sigio_timer(fd);
1275 t->priv = (void *)(long)fd;
1276
1277 return 0;
1278 fail:
1279 close(fd);
1280 return -1;
1281 }
1282
1283 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1284 {
1285 int fd = (long)t->priv;
1286
1287 close(fd);
1288 }
1289
1290 static int rtc_start_timer(struct qemu_alarm_timer *t)
1291 {
1292 int rtc_fd;
1293 unsigned long current_rtc_freq = 0;
1294
1295 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1296 if (rtc_fd < 0)
1297 return -1;
1298 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1299 if (current_rtc_freq != RTC_FREQ &&
1300 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1301 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1302 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1303 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1304 goto fail;
1305 }
1306 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1307 fail:
1308 close(rtc_fd);
1309 return -1;
1310 }
1311
1312 enable_sigio_timer(rtc_fd);
1313
1314 t->priv = (void *)(long)rtc_fd;
1315
1316 return 0;
1317 }
1318
1319 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1320 {
1321 int rtc_fd = (long)t->priv;
1322
1323 close(rtc_fd);
1324 }
1325
1326 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1327 {
1328 struct sigevent ev;
1329 timer_t host_timer;
1330 struct sigaction act;
1331
1332 sigfillset(&act.sa_mask);
1333 act.sa_flags = 0;
1334 act.sa_handler = host_alarm_handler;
1335
1336 sigaction(SIGALRM, &act, NULL);
1337
1338 /*
1339 * Initialize ev struct to 0 to avoid valgrind complaining
1340 * about uninitialized data in timer_create call
1341 */
1342 memset(&ev, 0, sizeof(ev));
1343 ev.sigev_value.sival_int = 0;
1344 ev.sigev_notify = SIGEV_SIGNAL;
1345 ev.sigev_signo = SIGALRM;
1346
1347 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1348 perror("timer_create");
1349
1350 /* disable dynticks */
1351 fprintf(stderr, "Dynamic Ticks disabled\n");
1352
1353 return -1;
1354 }
1355
1356 t->priv = (void *)(long)host_timer;
1357
1358 return 0;
1359 }
1360
1361 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1362 {
1363 timer_t host_timer = (timer_t)(long)t->priv;
1364
1365 timer_delete(host_timer);
1366 }
1367
1368 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1369 {
1370 timer_t host_timer = (timer_t)(long)t->priv;
1371 struct itimerspec timeout;
1372 int64_t nearest_delta_us = INT64_MAX;
1373 int64_t current_us;
1374
1375 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1376 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1377 !active_timers[QEMU_CLOCK_HOST])
1378 return;
1379
1380 nearest_delta_us = qemu_next_deadline_dyntick();
1381
1382 /* check whether a timer is already running */
1383 if (timer_gettime(host_timer, &timeout)) {
1384 perror("gettime");
1385 fprintf(stderr, "Internal timer error: aborting\n");
1386 exit(1);
1387 }
1388 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1389 if (current_us && current_us <= nearest_delta_us)
1390 return;
1391
1392 timeout.it_interval.tv_sec = 0;
1393 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1394 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1395 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1396 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1397 perror("settime");
1398 fprintf(stderr, "Internal timer error: aborting\n");
1399 exit(1);
1400 }
1401 }
1402
1403 #endif /* defined(__linux__) */
1404
1405 static int unix_start_timer(struct qemu_alarm_timer *t)
1406 {
1407 struct sigaction act;
1408 struct itimerval itv;
1409 int err;
1410
1411 /* timer signal */
1412 sigfillset(&act.sa_mask);
1413 act.sa_flags = 0;
1414 act.sa_handler = host_alarm_handler;
1415
1416 sigaction(SIGALRM, &act, NULL);
1417
1418 itv.it_interval.tv_sec = 0;
1419 /* for i386 kernel 2.6 to get 1 ms */
1420 itv.it_interval.tv_usec = 999;
1421 itv.it_value.tv_sec = 0;
1422 itv.it_value.tv_usec = 10 * 1000;
1423
1424 err = setitimer(ITIMER_REAL, &itv, NULL);
1425 if (err)
1426 return -1;
1427
1428 return 0;
1429 }
1430
1431 static void unix_stop_timer(struct qemu_alarm_timer *t)
1432 {
1433 struct itimerval itv;
1434
1435 memset(&itv, 0, sizeof(itv));
1436 setitimer(ITIMER_REAL, &itv, NULL);
1437 }
1438
1439 #endif /* !defined(_WIN32) */
1440
1441
1442 #ifdef _WIN32
1443
1444 static int win32_start_timer(struct qemu_alarm_timer *t)
1445 {
1446 TIMECAPS tc;
1447 struct qemu_alarm_win32 *data = t->priv;
1448 UINT flags;
1449
1450 memset(&tc, 0, sizeof(tc));
1451 timeGetDevCaps(&tc, sizeof(tc));
1452
1453 if (data->period < tc.wPeriodMin)
1454 data->period = tc.wPeriodMin;
1455
1456 timeBeginPeriod(data->period);
1457
1458 flags = TIME_CALLBACK_FUNCTION;
1459 if (alarm_has_dynticks(t))
1460 flags |= TIME_ONESHOT;
1461 else
1462 flags |= TIME_PERIODIC;
1463
1464 data->timerId = timeSetEvent(1, // interval (ms)
1465 data->period, // resolution
1466 host_alarm_handler, // function
1467 (DWORD)t, // parameter
1468 flags);
1469
1470 if (!data->timerId) {
1471 fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
1472 GetLastError());
1473 timeEndPeriod(data->period);
1474 return -1;
1475 }
1476
1477 return 0;
1478 }
1479
1480 static void win32_stop_timer(struct qemu_alarm_timer *t)
1481 {
1482 struct qemu_alarm_win32 *data = t->priv;
1483
1484 timeKillEvent(data->timerId);
1485 timeEndPeriod(data->period);
1486 }
1487
1488 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1489 {
1490 struct qemu_alarm_win32 *data = t->priv;
1491
1492 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1493 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1494 !active_timers[QEMU_CLOCK_HOST])
1495 return;
1496
1497 timeKillEvent(data->timerId);
1498
1499 data->timerId = timeSetEvent(1,
1500 data->period,
1501 host_alarm_handler,
1502 (DWORD)t,
1503 TIME_ONESHOT | TIME_PERIODIC);
1504
1505 if (!data->timerId) {
1506 fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n",
1507 GetLastError());
1508
1509 timeEndPeriod(data->period);
1510 exit(1);
1511 }
1512 }
1513
1514 #endif /* _WIN32 */
1515
1516 static int init_timer_alarm(void)
1517 {
1518 struct qemu_alarm_timer *t = NULL;
1519 int i, err = -1;
1520
1521 for (i = 0; alarm_timers[i].name; i++) {
1522 t = &alarm_timers[i];
1523
1524 err = t->start(t);
1525 if (!err)
1526 break;
1527 }
1528
1529 if (err) {
1530 err = -ENOENT;
1531 goto fail;
1532 }
1533
1534 alarm_timer = t;
1535
1536 return 0;
1537
1538 fail:
1539 return err;
1540 }
1541
1542 static void quit_timers(void)
1543 {
1544 alarm_timer->stop(alarm_timer);
1545 alarm_timer = NULL;
1546 }
1547
1548 /***********************************************************/
1549 /* host time/date access */
1550 void qemu_get_timedate(struct tm *tm, int offset)
1551 {
1552 time_t ti;
1553 struct tm *ret;
1554
1555 time(&ti);
1556 ti += offset;
1557 if (rtc_date_offset == -1) {
1558 if (rtc_utc)
1559 ret = gmtime(&ti);
1560 else
1561 ret = localtime(&ti);
1562 } else {
1563 ti -= rtc_date_offset;
1564 ret = gmtime(&ti);
1565 }
1566
1567 memcpy(tm, ret, sizeof(struct tm));
1568 }
1569
1570 int qemu_timedate_diff(struct tm *tm)
1571 {
1572 time_t seconds;
1573
1574 if (rtc_date_offset == -1)
1575 if (rtc_utc)
1576 seconds = mktimegm(tm);
1577 else
1578 seconds = mktime(tm);
1579 else
1580 seconds = mktimegm(tm) + rtc_date_offset;
1581
1582 return seconds - time(NULL);
1583 }
1584
1585 static void configure_rtc_date_offset(const char *startdate, int legacy)
1586 {
1587 time_t rtc_start_date;
1588 struct tm tm;
1589
1590 if (!strcmp(startdate, "now") && legacy) {
1591 rtc_date_offset = -1;
1592 } else {
1593 if (sscanf(startdate, "%d-%d-%dT%d:%d:%d",
1594 &tm.tm_year,
1595 &tm.tm_mon,
1596 &tm.tm_mday,
1597 &tm.tm_hour,
1598 &tm.tm_min,
1599 &tm.tm_sec) == 6) {
1600 /* OK */
1601 } else if (sscanf(startdate, "%d-%d-%d",
1602 &tm.tm_year,
1603 &tm.tm_mon,
1604 &tm.tm_mday) == 3) {
1605 tm.tm_hour = 0;
1606 tm.tm_min = 0;
1607 tm.tm_sec = 0;
1608 } else {
1609 goto date_fail;
1610 }
1611 tm.tm_year -= 1900;
1612 tm.tm_mon--;
1613 rtc_start_date = mktimegm(&tm);
1614 if (rtc_start_date == -1) {
1615 date_fail:
1616 fprintf(stderr, "Invalid date format. Valid formats are:\n"
1617 "'2006-06-17T16:01:21' or '2006-06-17'\n");
1618 exit(1);
1619 }
1620 rtc_date_offset = time(NULL) - rtc_start_date;
1621 }
1622 }
1623
1624 static void configure_rtc(QemuOpts *opts)
1625 {
1626 const char *value;
1627
1628 value = qemu_opt_get(opts, "base");
1629 if (value) {
1630 if (!strcmp(value, "utc")) {
1631 rtc_utc = 1;
1632 } else if (!strcmp(value, "localtime")) {
1633 rtc_utc = 0;
1634 } else {
1635 configure_rtc_date_offset(value, 0);
1636 }
1637 }
1638 value = qemu_opt_get(opts, "clock");
1639 if (value) {
1640 if (!strcmp(value, "host")) {
1641 rtc_clock = host_clock;
1642 } else if (!strcmp(value, "vm")) {
1643 rtc_clock = vm_clock;
1644 } else {
1645 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1646 exit(1);
1647 }
1648 }
1649 #ifdef CONFIG_TARGET_I386
1650 value = qemu_opt_get(opts, "driftfix");
1651 if (value) {
1652 if (!strcmp(buf, "slew")) {
1653 rtc_td_hack = 1;
1654 } else if (!strcmp(buf, "none")) {
1655 rtc_td_hack = 0;
1656 } else {
1657 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1658 exit(1);
1659 }
1660 }
1661 #endif
1662 }
1663
1664 #ifdef _WIN32
1665 static void socket_cleanup(void)
1666 {
1667 WSACleanup();
1668 }
1669
1670 static int socket_init(void)
1671 {
1672 WSADATA Data;
1673 int ret, err;
1674
1675 ret = WSAStartup(MAKEWORD(2,2), &Data);
1676 if (ret != 0) {
1677 err = WSAGetLastError();
1678 fprintf(stderr, "WSAStartup: %d\n", err);
1679 return -1;
1680 }
1681 atexit(socket_cleanup);
1682 return 0;
1683 }
1684 #endif
1685
1686 /***********************************************************/
1687 /* Bluetooth support */
1688 static int nb_hcis;
1689 static int cur_hci;
1690 static struct HCIInfo *hci_table[MAX_NICS];
1691
1692 static struct bt_vlan_s {
1693 struct bt_scatternet_s net;
1694 int id;
1695 struct bt_vlan_s *next;
1696 } *first_bt_vlan;
1697
1698 /* find or alloc a new bluetooth "VLAN" */
1699 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1700 {
1701 struct bt_vlan_s **pvlan, *vlan;
1702 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1703 if (vlan->id == id)
1704 return &vlan->net;
1705 }
1706 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1707 vlan->id = id;
1708 pvlan = &first_bt_vlan;
1709 while (*pvlan != NULL)
1710 pvlan = &(*pvlan)->next;
1711 *pvlan = vlan;
1712 return &vlan->net;
1713 }
1714
1715 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1716 {
1717 }
1718
1719 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1720 {
1721 return -ENOTSUP;
1722 }
1723
1724 static struct HCIInfo null_hci = {
1725 .cmd_send = null_hci_send,
1726 .sco_send = null_hci_send,
1727 .acl_send = null_hci_send,
1728 .bdaddr_set = null_hci_addr_set,
1729 };
1730
1731 struct HCIInfo *qemu_next_hci(void)
1732 {
1733 if (cur_hci == nb_hcis)
1734 return &null_hci;
1735
1736 return hci_table[cur_hci++];
1737 }
1738
1739 static struct HCIInfo *hci_init(const char *str)
1740 {
1741 char *endp;
1742 struct bt_scatternet_s *vlan = 0;
1743
1744 if (!strcmp(str, "null"))
1745 /* null */
1746 return &null_hci;
1747 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1748 /* host[:hciN] */
1749 return bt_host_hci(str[4] ? str + 5 : "hci0");
1750 else if (!strncmp(str, "hci", 3)) {
1751 /* hci[,vlan=n] */
1752 if (str[3]) {
1753 if (!strncmp(str + 3, ",vlan=", 6)) {
1754 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1755 if (*endp)
1756 vlan = 0;
1757 }
1758 } else
1759 vlan = qemu_find_bt_vlan(0);
1760 if (vlan)
1761 return bt_new_hci(vlan);
1762 }
1763
1764 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1765
1766 return 0;
1767 }
1768
1769 static int bt_hci_parse(const char *str)
1770 {
1771 struct HCIInfo *hci;
1772 bdaddr_t bdaddr;
1773
1774 if (nb_hcis >= MAX_NICS) {
1775 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1776 return -1;
1777 }
1778
1779 hci = hci_init(str);
1780 if (!hci)
1781 return -1;
1782
1783 bdaddr.b[0] = 0x52;
1784 bdaddr.b[1] = 0x54;
1785 bdaddr.b[2] = 0x00;
1786 bdaddr.b[3] = 0x12;
1787 bdaddr.b[4] = 0x34;
1788 bdaddr.b[5] = 0x56 + nb_hcis;
1789 hci->bdaddr_set(hci, bdaddr.b);
1790
1791 hci_table[nb_hcis++] = hci;
1792
1793 return 0;
1794 }
1795
1796 static void bt_vhci_add(int vlan_id)
1797 {
1798 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1799
1800 if (!vlan->slave)
1801 fprintf(stderr, "qemu: warning: adding a VHCI to "
1802 "an empty scatternet %i\n", vlan_id);
1803
1804 bt_vhci_init(bt_new_hci(vlan));
1805 }
1806
1807 static struct bt_device_s *bt_device_add(const char *opt)
1808 {
1809 struct bt_scatternet_s *vlan;
1810 int vlan_id = 0;
1811 char *endp = strstr(opt, ",vlan=");
1812 int len = (endp ? endp - opt : strlen(opt)) + 1;
1813 char devname[10];
1814
1815 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1816
1817 if (endp) {
1818 vlan_id = strtol(endp + 6, &endp, 0);
1819 if (*endp) {
1820 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1821 return 0;
1822 }
1823 }
1824
1825 vlan = qemu_find_bt_vlan(vlan_id);
1826
1827 if (!vlan->slave)
1828 fprintf(stderr, "qemu: warning: adding a slave device to "
1829 "an empty scatternet %i\n", vlan_id);
1830
1831 if (!strcmp(devname, "keyboard"))
1832 return bt_keyboard_init(vlan);
1833
1834 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1835 return 0;
1836 }
1837
1838 static int bt_parse(const char *opt)
1839 {
1840 const char *endp, *p;
1841 int vlan;
1842
1843 if (strstart(opt, "hci", &endp)) {
1844 if (!*endp || *endp == ',') {
1845 if (*endp)
1846 if (!strstart(endp, ",vlan=", 0))
1847 opt = endp + 1;
1848
1849 return bt_hci_parse(opt);
1850 }
1851 } else if (strstart(opt, "vhci", &endp)) {
1852 if (!*endp || *endp == ',') {
1853 if (*endp) {
1854 if (strstart(endp, ",vlan=", &p)) {
1855 vlan = strtol(p, (char **) &endp, 0);
1856 if (*endp) {
1857 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1858 return 1;
1859 }
1860 } else {
1861 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1862 return 1;
1863 }
1864 } else
1865 vlan = 0;
1866
1867 bt_vhci_add(vlan);
1868 return 0;
1869 }
1870 } else if (strstart(opt, "device:", &endp))
1871 return !bt_device_add(endp);
1872
1873 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1874 return 1;
1875 }
1876
1877 /***********************************************************/
1878 /* QEMU Block devices */
1879
1880 #define HD_ALIAS "index=%d,media=disk"
1881 #define CDROM_ALIAS "index=2,media=cdrom"
1882 #define FD_ALIAS "index=%d,if=floppy"
1883 #define PFLASH_ALIAS "if=pflash"
1884 #define MTD_ALIAS "if=mtd"
1885 #define SD_ALIAS "index=0,if=sd"
1886
1887 QemuOpts *drive_add(const char *file, const char *fmt, ...)
1888 {
1889 va_list ap;
1890 char optstr[1024];
1891 QemuOpts *opts;
1892
1893 va_start(ap, fmt);
1894 vsnprintf(optstr, sizeof(optstr), fmt, ap);
1895 va_end(ap);
1896
1897 opts = qemu_opts_parse(&qemu_drive_opts, optstr, NULL);
1898 if (!opts) {
1899 fprintf(stderr, "%s: huh? duplicate? (%s)\n",
1900 __FUNCTION__, optstr);
1901 return NULL;
1902 }
1903 if (file)
1904 qemu_opt_set(opts, "file", file);
1905 return opts;
1906 }
1907
1908 DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
1909 {
1910 DriveInfo *dinfo;
1911
1912 /* seek interface, bus and unit */
1913
1914 QTAILQ_FOREACH(dinfo, &drives, next) {
1915 if (dinfo->type == type &&
1916 dinfo->bus == bus &&
1917 dinfo->unit == unit)
1918 return dinfo;
1919 }
1920
1921 return NULL;
1922 }
1923
1924 DriveInfo *drive_get_by_id(const char *id)
1925 {
1926 DriveInfo *dinfo;
1927
1928 QTAILQ_FOREACH(dinfo, &drives, next) {
1929 if (strcmp(id, dinfo->id))
1930 continue;
1931 return dinfo;
1932 }
1933 return NULL;
1934 }
1935
1936 int drive_get_max_bus(BlockInterfaceType type)
1937 {
1938 int max_bus;
1939 DriveInfo *dinfo;
1940
1941 max_bus = -1;
1942 QTAILQ_FOREACH(dinfo, &drives, next) {
1943 if(dinfo->type == type &&
1944 dinfo->bus > max_bus)
1945 max_bus = dinfo->bus;
1946 }
1947 return max_bus;
1948 }
1949
1950 const char *drive_get_serial(BlockDriverState *bdrv)
1951 {
1952 DriveInfo *dinfo;
1953
1954 QTAILQ_FOREACH(dinfo, &drives, next) {
1955 if (dinfo->bdrv == bdrv)
1956 return dinfo->serial;
1957 }
1958
1959 return "\0";
1960 }
1961
1962 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
1963 {
1964 DriveInfo *dinfo;
1965
1966 QTAILQ_FOREACH(dinfo, &drives, next) {
1967 if (dinfo->bdrv == bdrv)
1968 return dinfo->onerror;
1969 }
1970
1971 return BLOCK_ERR_STOP_ENOSPC;
1972 }
1973
1974 static void bdrv_format_print(void *opaque, const char *name)
1975 {
1976 fprintf(stderr, " %s", name);
1977 }
1978
1979 void drive_uninit(DriveInfo *dinfo)
1980 {
1981 qemu_opts_del(dinfo->opts);
1982 bdrv_delete(dinfo->bdrv);
1983 QTAILQ_REMOVE(&drives, dinfo, next);
1984 qemu_free(dinfo);
1985 }
1986
1987 DriveInfo *drive_init(QemuOpts *opts, void *opaque,
1988 int *fatal_error)
1989 {
1990 const char *buf;
1991 const char *file = NULL;
1992 char devname[128];
1993 const char *serial;
1994 const char *mediastr = "";
1995 BlockInterfaceType type;
1996 enum { MEDIA_DISK, MEDIA_CDROM } media;
1997 int bus_id, unit_id;
1998 int cyls, heads, secs, translation;
1999 BlockDriver *drv = NULL;
2000 QEMUMachine *machine = opaque;
2001 int max_devs;
2002 int index;
2003 int cache;
2004 int aio = 0;
2005 int ro = 0;
2006 int bdrv_flags, onerror;
2007 const char *devaddr;
2008 DriveInfo *dinfo;
2009 int snapshot = 0;
2010
2011 *fatal_error = 1;
2012
2013 translation = BIOS_ATA_TRANSLATION_AUTO;
2014 cache = 1;
2015
2016 if (machine && machine->use_scsi) {
2017 type = IF_SCSI;
2018 max_devs = MAX_SCSI_DEVS;
2019 pstrcpy(devname, sizeof(devname), "scsi");
2020 } else {
2021 type = IF_IDE;
2022 max_devs = MAX_IDE_DEVS;
2023 pstrcpy(devname, sizeof(devname), "ide");
2024 }
2025 media = MEDIA_DISK;
2026
2027 /* extract parameters */
2028 bus_id = qemu_opt_get_number(opts, "bus", 0);
2029 unit_id = qemu_opt_get_number(opts, "unit", -1);
2030 index = qemu_opt_get_number(opts, "index", -1);
2031
2032 cyls = qemu_opt_get_number(opts, "cyls", 0);
2033 heads = qemu_opt_get_number(opts, "heads", 0);
2034 secs = qemu_opt_get_number(opts, "secs", 0);
2035
2036 snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
2037 ro = qemu_opt_get_bool(opts, "readonly", 0);
2038
2039 file = qemu_opt_get(opts, "file");
2040 serial = qemu_opt_get(opts, "serial");
2041
2042 if ((buf = qemu_opt_get(opts, "if")) != NULL) {
2043 pstrcpy(devname, sizeof(devname), buf);
2044 if (!strcmp(buf, "ide")) {
2045 type = IF_IDE;
2046 max_devs = MAX_IDE_DEVS;
2047 } else if (!strcmp(buf, "scsi")) {
2048 type = IF_SCSI;
2049 max_devs = MAX_SCSI_DEVS;
2050 } else if (!strcmp(buf, "floppy")) {
2051 type = IF_FLOPPY;
2052 max_devs = 0;
2053 } else if (!strcmp(buf, "pflash")) {
2054 type = IF_PFLASH;
2055 max_devs = 0;
2056 } else if (!strcmp(buf, "mtd")) {
2057 type = IF_MTD;
2058 max_devs = 0;
2059 } else if (!strcmp(buf, "sd")) {
2060 type = IF_SD;
2061 max_devs = 0;
2062 } else if (!strcmp(buf, "virtio")) {
2063 type = IF_VIRTIO;
2064 max_devs = 0;
2065 } else if (!strcmp(buf, "xen")) {
2066 type = IF_XEN;
2067 max_devs = 0;
2068 } else if (!strcmp(buf, "none")) {
2069 type = IF_NONE;
2070 max_devs = 0;
2071 } else {
2072 fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
2073 return NULL;
2074 }
2075 }
2076
2077 if (cyls || heads || secs) {
2078 if (cyls < 1 || (type == IF_IDE && cyls > 16383)) {
2079 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
2080 return NULL;
2081 }
2082 if (heads < 1 || (type == IF_IDE && heads > 16)) {
2083 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
2084 return NULL;
2085 }
2086 if (secs < 1 || (type == IF_IDE && secs > 63)) {
2087 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
2088 return NULL;
2089 }
2090 }
2091
2092 if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
2093 if (!cyls) {
2094 fprintf(stderr,
2095 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2096 buf);
2097 return NULL;
2098 }
2099 if (!strcmp(buf, "none"))
2100 translation = BIOS_ATA_TRANSLATION_NONE;
2101 else if (!strcmp(buf, "lba"))
2102 translation = BIOS_ATA_TRANSLATION_LBA;
2103 else if (!strcmp(buf, "auto"))
2104 translation = BIOS_ATA_TRANSLATION_AUTO;
2105 else {
2106 fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
2107 return NULL;
2108 }
2109 }
2110
2111 if ((buf = qemu_opt_get(opts, "media")) != NULL) {
2112 if (!strcmp(buf, "disk")) {
2113 media = MEDIA_DISK;
2114 } else if (!strcmp(buf, "cdrom")) {
2115 if (cyls || secs || heads) {
2116 fprintf(stderr,
2117 "qemu: '%s' invalid physical CHS format\n", buf);
2118 return NULL;
2119 }
2120 media = MEDIA_CDROM;
2121 } else {
2122 fprintf(stderr, "qemu: '%s' invalid media\n", buf);
2123 return NULL;
2124 }
2125 }
2126
2127 if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
2128 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2129 cache = 0;
2130 else if (!strcmp(buf, "writethrough"))
2131 cache = 1;
2132 else if (!strcmp(buf, "writeback"))
2133 cache = 2;
2134 else {
2135 fprintf(stderr, "qemu: invalid cache option\n");
2136 return NULL;
2137 }
2138 }
2139
2140 #ifdef CONFIG_LINUX_AIO
2141 if ((buf = qemu_opt_get(opts, "aio")) != NULL) {
2142 if (!strcmp(buf, "threads"))
2143 aio = 0;
2144 else if (!strcmp(buf, "native"))
2145 aio = 1;
2146 else {
2147 fprintf(stderr, "qemu: invalid aio option\n");
2148 return NULL;
2149 }
2150 }
2151 #endif
2152
2153 if ((buf = qemu_opt_get(opts, "format")) != NULL) {
2154 if (strcmp(buf, "?") == 0) {
2155 fprintf(stderr, "qemu: Supported formats:");
2156 bdrv_iterate_format(bdrv_format_print, NULL);
2157 fprintf(stderr, "\n");
2158 return NULL;
2159 }
2160 drv = bdrv_find_whitelisted_format(buf);
2161 if (!drv) {
2162 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2163 return NULL;
2164 }
2165 }
2166
2167 onerror = BLOCK_ERR_STOP_ENOSPC;
2168 if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
2169 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2170 fprintf(stderr, "werror is no supported by this format\n");
2171 return NULL;
2172 }
2173 if (!strcmp(buf, "ignore"))
2174 onerror = BLOCK_ERR_IGNORE;
2175 else if (!strcmp(buf, "enospc"))
2176 onerror = BLOCK_ERR_STOP_ENOSPC;
2177 else if (!strcmp(buf, "stop"))
2178 onerror = BLOCK_ERR_STOP_ANY;
2179 else if (!strcmp(buf, "report"))
2180 onerror = BLOCK_ERR_REPORT;
2181 else {
2182 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2183 return NULL;
2184 }
2185 }
2186
2187 if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
2188 if (type != IF_VIRTIO) {
2189 fprintf(stderr, "addr is not supported\n");
2190 return NULL;
2191 }
2192 }
2193
2194 /* compute bus and unit according index */
2195
2196 if (index != -1) {
2197 if (bus_id != 0 || unit_id != -1) {
2198 fprintf(stderr,
2199 "qemu: index cannot be used with bus and unit\n");
2200 return NULL;
2201 }
2202 if (max_devs == 0)
2203 {
2204 unit_id = index;
2205 bus_id = 0;
2206 } else {
2207 unit_id = index % max_devs;
2208 bus_id = index / max_devs;
2209 }
2210 }
2211
2212 /* if user doesn't specify a unit_id,
2213 * try to find the first free
2214 */
2215
2216 if (unit_id == -1) {
2217 unit_id = 0;
2218 while (drive_get(type, bus_id, unit_id) != NULL) {
2219 unit_id++;
2220 if (max_devs && unit_id >= max_devs) {
2221 unit_id -= max_devs;
2222 bus_id++;
2223 }
2224 }
2225 }
2226
2227 /* check unit id */
2228
2229 if (max_devs && unit_id >= max_devs) {
2230 fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
2231 unit_id, max_devs - 1);
2232 return NULL;
2233 }
2234
2235 /*
2236 * ignore multiple definitions
2237 */
2238
2239 if (drive_get(type, bus_id, unit_id) != NULL) {
2240 *fatal_error = 0;
2241 return NULL;
2242 }
2243
2244 /* init */
2245
2246 dinfo = qemu_mallocz(sizeof(*dinfo));
2247 if ((buf = qemu_opts_id(opts)) != NULL) {
2248 dinfo->id = qemu_strdup(buf);
2249 } else {
2250 /* no id supplied -> create one */
2251 dinfo->id = qemu_mallocz(32);
2252 if (type == IF_IDE || type == IF_SCSI)
2253 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2254 if (max_devs)
2255 snprintf(dinfo->id, 32, "%s%i%s%i",
2256 devname, bus_id, mediastr, unit_id);
2257 else
2258 snprintf(dinfo->id, 32, "%s%s%i",
2259 devname, mediastr, unit_id);
2260 }
2261 dinfo->bdrv = bdrv_new(dinfo->id);
2262 dinfo->devaddr = devaddr;
2263 dinfo->type = type;
2264 dinfo->bus = bus_id;
2265 dinfo->unit = unit_id;
2266 dinfo->onerror = onerror;
2267 dinfo->opts = opts;
2268 if (serial)
2269 strncpy(dinfo->serial, serial, sizeof(serial));
2270 QTAILQ_INSERT_TAIL(&drives, dinfo, next);
2271
2272 switch(type) {
2273 case IF_IDE:
2274 case IF_SCSI:
2275 case IF_XEN:
2276 case IF_NONE:
2277 switch(media) {
2278 case MEDIA_DISK:
2279 if (cyls != 0) {
2280 bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
2281 bdrv_set_translation_hint(dinfo->bdrv, translation);
2282 }
2283 break;
2284 case MEDIA_CDROM:
2285 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
2286 break;
2287 }
2288 break;
2289 case IF_SD:
2290 /* FIXME: This isn't really a floppy, but it's a reasonable
2291 approximation. */
2292 case IF_FLOPPY:
2293 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
2294 break;
2295 case IF_PFLASH:
2296 case IF_MTD:
2297 break;
2298 case IF_VIRTIO:
2299 /* add virtio block device */
2300 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
2301 qemu_opt_set(opts, "driver", "virtio-blk-pci");
2302 qemu_opt_set(opts, "drive", dinfo->id);
2303 if (devaddr)
2304 qemu_opt_set(opts, "addr", devaddr);
2305 break;
2306 case IF_COUNT:
2307 abort();
2308 }
2309 if (!file) {
2310 *fatal_error = 0;
2311 return NULL;
2312 }
2313 bdrv_flags = 0;
2314 if (snapshot) {
2315 bdrv_flags |= BDRV_O_SNAPSHOT;
2316 cache = 2; /* always use write-back with snapshot */
2317 }
2318 if (cache == 0) /* no caching */
2319 bdrv_flags |= BDRV_O_NOCACHE;
2320 else if (cache == 2) /* write-back */
2321 bdrv_flags |= BDRV_O_CACHE_WB;
2322
2323 if (aio == 1) {
2324 bdrv_flags |= BDRV_O_NATIVE_AIO;
2325 } else {
2326 bdrv_flags &= ~BDRV_O_NATIVE_AIO;
2327 }
2328
2329 if (ro == 1) {
2330 if (type == IF_IDE) {
2331 fprintf(stderr, "qemu: readonly flag not supported for drive with ide interface\n");
2332 return NULL;
2333 }
2334 (void)bdrv_set_read_only(dinfo->bdrv, 1);
2335 }
2336
2337 if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
2338 fprintf(stderr, "qemu: could not open disk image %s: %s\n",
2339 file, strerror(errno));
2340 return NULL;
2341 }
2342
2343 if (bdrv_key_required(dinfo->bdrv))
2344 autostart = 0;
2345 *fatal_error = 0;
2346 return dinfo;
2347 }
2348
2349 static int drive_init_func(QemuOpts *opts, void *opaque)
2350 {
2351 QEMUMachine *machine = opaque;
2352 int fatal_error = 0;
2353
2354 if (drive_init(opts, machine, &fatal_error) == NULL) {
2355 if (fatal_error)
2356 return 1;
2357 }
2358 return 0;
2359 }
2360
2361 static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
2362 {
2363 if (NULL == qemu_opt_get(opts, "snapshot")) {
2364 qemu_opt_set(opts, "snapshot", "on");
2365 }
2366 return 0;
2367 }
2368
2369 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2370 {
2371 boot_set_handler = func;
2372 boot_set_opaque = opaque;
2373 }
2374
2375 int qemu_boot_set(const char *boot_devices)
2376 {
2377 if (!boot_set_handler) {
2378 return -EINVAL;
2379 }
2380 return boot_set_handler(boot_set_opaque, boot_devices);
2381 }
2382
2383 static int parse_bootdevices(char *devices)
2384 {
2385 /* We just do some generic consistency checks */
2386 const char *p;
2387 int bitmap = 0;
2388
2389 for (p = devices; *p != '\0'; p++) {
2390 /* Allowed boot devices are:
2391 * a-b: floppy disk drives
2392 * c-f: IDE disk drives
2393 * g-m: machine implementation dependant drives
2394 * n-p: network devices
2395 * It's up to each machine implementation to check if the given boot
2396 * devices match the actual hardware implementation and firmware
2397 * features.
2398 */
2399 if (*p < 'a' || *p > 'p') {
2400 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2401 exit(1);
2402 }
2403 if (bitmap & (1 << (*p - 'a'))) {
2404 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2405 exit(1);
2406 }
2407 bitmap |= 1 << (*p - 'a');
2408 }
2409 return bitmap;
2410 }
2411
2412 static void restore_boot_devices(void *opaque)
2413 {
2414 char *standard_boot_devices = opaque;
2415
2416 qemu_boot_set(standard_boot_devices);
2417
2418 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2419 qemu_free(standard_boot_devices);
2420 }
2421
2422 static void numa_add(const char *optarg)
2423 {
2424 char option[128];
2425 char *endptr;
2426 unsigned long long value, endvalue;
2427 int nodenr;
2428
2429 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2430 if (!strcmp(option, "node")) {
2431 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2432 nodenr = nb_numa_nodes;
2433 } else {
2434 nodenr = strtoull(option, NULL, 10);
2435 }
2436
2437 if (get_param_value(option, 128, "mem", optarg) == 0) {
2438 node_mem[nodenr] = 0;
2439 } else {
2440 value = strtoull(option, &endptr, 0);
2441 switch (*endptr) {
2442 case 0: case 'M': case 'm':
2443 value <<= 20;
2444 break;
2445 case 'G': case 'g':
2446 value <<= 30;
2447 break;
2448 }
2449 node_mem[nodenr] = value;
2450 }
2451 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2452 node_cpumask[nodenr] = 0;
2453 } else {
2454 value = strtoull(option, &endptr, 10);
2455 if (value >= 64) {
2456 value = 63;
2457 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2458 } else {
2459 if (*endptr == '-') {
2460 endvalue = strtoull(endptr+1, &endptr, 10);
2461 if (endvalue >= 63) {
2462 endvalue = 62;
2463 fprintf(stderr,
2464 "only 63 CPUs in NUMA mode supported.\n");
2465 }
2466 value = (1 << (endvalue + 1)) - (1 << value);
2467 } else {
2468 value = 1 << value;
2469 }
2470 }
2471 node_cpumask[nodenr] = value;
2472 }
2473 nb_numa_nodes++;
2474 }
2475 return;
2476 }
2477
2478 static void smp_parse(const char *optarg)
2479 {
2480 int smp, sockets = 0, threads = 0, cores = 0;
2481 char *endptr;
2482 char option[128];
2483
2484 smp = strtoul(optarg, &endptr, 10);
2485 if (endptr != optarg) {
2486 if (*endptr == ',') {
2487 endptr++;
2488 }
2489 }
2490 if (get_param_value(option, 128, "sockets", endptr) != 0)
2491 sockets = strtoull(option, NULL, 10);
2492 if (get_param_value(option, 128, "cores", endptr) != 0)
2493 cores = strtoull(option, NULL, 10);
2494 if (get_param_value(option, 128, "threads", endptr) != 0)
2495 threads = strtoull(option, NULL, 10);
2496 if (get_param_value(option, 128, "maxcpus", endptr) != 0)
2497 max_cpus = strtoull(option, NULL, 10);
2498
2499 /* compute missing values, prefer sockets over cores over threads */
2500 if (smp == 0 || sockets == 0) {
2501 sockets = sockets > 0 ? sockets : 1;
2502 cores = cores > 0 ? cores : 1;
2503 threads = threads > 0 ? threads : 1;
2504 if (smp == 0) {
2505 smp = cores * threads * sockets;
2506 } else {
2507 sockets = smp / (cores * threads);
2508 }
2509 } else {
2510 if (cores == 0) {
2511 threads = threads > 0 ? threads : 1;
2512 cores = smp / (sockets * threads);
2513 } else {
2514 if (sockets == 0) {
2515 sockets = smp / (cores * threads);
2516 } else {
2517 threads = smp / (cores * sockets);
2518 }
2519 }
2520 }
2521 smp_cpus = smp;
2522 smp_cores = cores > 0 ? cores : 1;
2523 smp_threads = threads > 0 ? threads : 1;
2524 if (max_cpus == 0)
2525 max_cpus = smp_cpus;
2526 }
2527
2528 /***********************************************************/
2529 /* USB devices */
2530
2531 static int usb_device_add(const char *devname, int is_hotplug)
2532 {
2533 const char *p;
2534 USBDevice *dev = NULL;
2535
2536 if (!usb_enabled)
2537 return -1;
2538
2539 /* drivers with .usbdevice_name entry in USBDeviceInfo */
2540 dev = usbdevice_create(devname);
2541 if (dev)
2542 goto done;
2543
2544 /* the other ones */
2545 if (strstart(devname, "host:", &p)) {
2546 dev = usb_host_device_open(p);
2547 } else if (strstart(devname, "net:", &p)) {
2548 QemuOpts *opts;
2549 int idx;
2550
2551 opts = qemu_opts_parse(&qemu_net_opts, p, NULL);
2552 if (!opts) {
2553 return -1;
2554 }
2555
2556 qemu_opt_set(opts, "type", "nic");
2557 qemu_opt_set(opts, "model", "usb");
2558
2559 idx = net_client_init(NULL, opts, 0);
2560 if (idx == -1) {
2561 return -1;
2562 }
2563
2564 dev = usb_net_init(&nd_table[idx]);
2565 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2566 dev = usb_bt_init(devname[2] ? hci_init(p) :
2567 bt_new_hci(qemu_find_bt_vlan(0)));
2568 } else {
2569 return -1;
2570 }
2571 if (!dev)
2572 return -1;
2573
2574 done:
2575 return 0;
2576 }
2577
2578 static int usb_device_del(const char *devname)
2579 {
2580 int bus_num, addr;
2581 const char *p;
2582
2583 if (strstart(devname, "host:", &p))
2584 return usb_host_device_close(p);
2585
2586 if (!usb_enabled)
2587 return -1;
2588
2589 p = strchr(devname, '.');
2590 if (!p)
2591 return -1;
2592 bus_num = strtoul(devname, NULL, 0);
2593 addr = strtoul(p + 1, NULL, 0);
2594
2595 return usb_device_delete_addr(bus_num, addr);
2596 }
2597
2598 static int usb_parse(const char *cmdline)
2599 {
2600 return usb_device_add(cmdline, 0);
2601 }
2602
2603 void do_usb_add(Monitor *mon, const QDict *qdict)
2604 {
2605 usb_device_add(qdict_get_str(qdict, "devname"), 1);
2606 }
2607
2608 void do_usb_del(Monitor *mon, const QDict *qdict)
2609 {
2610 usb_device_del(qdict_get_str(qdict, "devname"));
2611 }
2612
2613 /***********************************************************/
2614 /* PCMCIA/Cardbus */
2615
2616 static struct pcmcia_socket_entry_s {
2617 PCMCIASocket *socket;
2618 struct pcmcia_socket_entry_s *next;
2619 } *pcmcia_sockets = 0;
2620
2621 void pcmcia_socket_register(PCMCIASocket *socket)
2622 {
2623 struct pcmcia_socket_entry_s *entry;
2624
2625 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2626 entry->socket = socket;
2627 entry->next = pcmcia_sockets;
2628 pcmcia_sockets = entry;
2629 }
2630
2631 void pcmcia_socket_unregister(PCMCIASocket *socket)
2632 {
2633 struct pcmcia_socket_entry_s *entry, **ptr;
2634
2635 ptr = &pcmcia_sockets;
2636 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2637 if (entry->socket == socket) {
2638 *ptr = entry->next;
2639 qemu_free(entry);
2640 }
2641 }
2642
2643 void pcmcia_info(Monitor *mon)
2644 {
2645 struct pcmcia_socket_entry_s *iter;
2646
2647 if (!pcmcia_sockets)
2648 monitor_printf(mon, "No PCMCIA sockets\n");
2649
2650 for (iter = pcmcia_sockets; iter; iter = iter->next)
2651 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2652 iter->socket->attached ? iter->socket->card_string :
2653 "Empty");
2654 }
2655
2656 /***********************************************************/
2657 /* register display */
2658
2659 struct DisplayAllocator default_allocator = {
2660 defaultallocator_create_displaysurface,
2661 defaultallocator_resize_displaysurface,
2662 defaultallocator_free_displaysurface
2663 };
2664
2665 void register_displaystate(DisplayState *ds)
2666 {
2667 DisplayState **s;
2668 s = &display_state;
2669 while (*s != NULL)
2670 s = &(*s)->next;
2671 ds->next = NULL;
2672 *s = ds;
2673 }
2674
2675 DisplayState *get_displaystate(void)
2676 {
2677 return display_state;
2678 }
2679
2680 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2681 {
2682 if(ds->allocator == &default_allocator) ds->allocator = da;
2683 return ds->allocator;
2684 }
2685
2686 /* dumb display */
2687
2688 static void dumb_display_init(void)
2689 {
2690 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2691 ds->allocator = &default_allocator;
2692 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2693 register_displaystate(ds);
2694 }
2695
2696 /***********************************************************/
2697 /* I/O handling */
2698
2699 typedef struct IOHandlerRecord {
2700 int fd;
2701 IOCanRWHandler *fd_read_poll;
2702 IOHandler *fd_read;
2703 IOHandler *fd_write;
2704 int deleted;
2705 void *opaque;
2706 /* temporary data */
2707 struct pollfd *ufd;
2708 struct IOHandlerRecord *next;
2709 } IOHandlerRecord;
2710
2711 static IOHandlerRecord *first_io_handler;
2712
2713 /* XXX: fd_read_poll should be suppressed, but an API change is
2714 necessary in the character devices to suppress fd_can_read(). */
2715 int qemu_set_fd_handler2(int fd,
2716 IOCanRWHandler *fd_read_poll,
2717 IOHandler *fd_read,
2718 IOHandler *fd_write,
2719 void *opaque)
2720 {
2721 IOHandlerRecord **pioh, *ioh;
2722
2723 if (!fd_read && !fd_write) {
2724 pioh = &first_io_handler;
2725 for(;;) {
2726 ioh = *pioh;
2727 if (ioh == NULL)
2728 break;
2729 if (ioh->fd == fd) {
2730 ioh->deleted = 1;
2731 break;
2732 }
2733 pioh = &ioh->next;
2734 }
2735 } else {
2736 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2737 if (ioh->fd == fd)
2738 goto found;
2739 }
2740 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2741 ioh->next = first_io_handler;
2742 first_io_handler = ioh;
2743 found:
2744 ioh->fd = fd;
2745 ioh->fd_read_poll = fd_read_poll;
2746 ioh->fd_read = fd_read;
2747 ioh->fd_write = fd_write;
2748 ioh->opaque = opaque;
2749 ioh->deleted = 0;
2750 }
2751 return 0;
2752 }
2753
2754 int qemu_set_fd_handler(int fd,
2755 IOHandler *fd_read,
2756 IOHandler *fd_write,
2757 void *opaque)
2758 {
2759 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2760 }
2761
2762 #ifdef _WIN32
2763 /***********************************************************/
2764 /* Polling handling */
2765
2766 typedef struct PollingEntry {
2767 PollingFunc *func;
2768 void *opaque;
2769 struct PollingEntry *next;
2770 } PollingEntry;
2771
2772 static PollingEntry *first_polling_entry;
2773
2774 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2775 {
2776 PollingEntry **ppe, *pe;
2777 pe = qemu_mallocz(sizeof(PollingEntry));
2778 pe->func = func;
2779 pe->opaque = opaque;
2780 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2781 *ppe = pe;
2782 return 0;
2783 }
2784
2785 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2786 {
2787 PollingEntry **ppe, *pe;
2788 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2789 pe = *ppe;
2790 if (pe->func == func && pe->opaque == opaque) {
2791 *ppe = pe->next;
2792 qemu_free(pe);
2793 break;
2794 }
2795 }
2796 }
2797
2798 /***********************************************************/
2799 /* Wait objects support */
2800 typedef struct WaitObjects {
2801 int num;
2802 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2803 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2804 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2805 } WaitObjects;
2806
2807 static WaitObjects wait_objects = {0};
2808
2809 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2810 {
2811 WaitObjects *w = &wait_objects;
2812
2813 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2814 return -1;
2815 w->events[w->num] = handle;
2816 w->func[w->num] = func;
2817 w->opaque[w->num] = opaque;
2818 w->num++;
2819 return 0;
2820 }
2821
2822 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2823 {
2824 int i, found;
2825 WaitObjects *w = &wait_objects;
2826
2827 found = 0;
2828 for (i = 0; i < w->num; i++) {
2829 if (w->events[i] == handle)
2830 found = 1;
2831 if (found) {
2832 w->events[i] = w->events[i + 1];
2833 w->func[i] = w->func[i + 1];
2834 w->opaque[i] = w->opaque[i + 1];
2835 }
2836 }
2837 if (found)
2838 w->num--;
2839 }
2840 #endif
2841
2842 /***********************************************************/
2843 /* ram save/restore */
2844
2845 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
2846 #define RAM_SAVE_FLAG_COMPRESS 0x02
2847 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2848 #define RAM_SAVE_FLAG_PAGE 0x08
2849 #define RAM_SAVE_FLAG_EOS 0x10
2850
2851 static int is_dup_page(uint8_t *page, uint8_t ch)
2852 {
2853 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2854 uint32_t *array = (uint32_t *)page;
2855 int i;
2856
2857 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2858 if (array[i] != val)
2859 return 0;
2860 }
2861
2862 return 1;
2863 }
2864
2865 static int ram_save_block(QEMUFile *f)
2866 {
2867 static ram_addr_t current_addr = 0;
2868 ram_addr_t saved_addr = current_addr;
2869 ram_addr_t addr = 0;
2870 int found = 0;
2871
2872 while (addr < last_ram_offset) {
2873 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2874 uint8_t *p;
2875
2876 cpu_physical_memory_reset_dirty(current_addr,
2877 current_addr + TARGET_PAGE_SIZE,
2878 MIGRATION_DIRTY_FLAG);
2879
2880 p = qemu_get_ram_ptr(current_addr);
2881
2882 if (is_dup_page(p, *p)) {
2883 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
2884 qemu_put_byte(f, *p);
2885 } else {
2886 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
2887 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
2888 }
2889
2890 found = 1;
2891 break;
2892 }
2893 addr += TARGET_PAGE_SIZE;
2894 current_addr = (saved_addr + addr) % last_ram_offset;
2895 }
2896
2897 return found;
2898 }
2899
2900 static uint64_t bytes_transferred = 0;
2901
2902 static ram_addr_t ram_save_remaining(void)
2903 {
2904 ram_addr_t addr;
2905 ram_addr_t count = 0;
2906
2907 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2908 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2909 count++;
2910 }
2911
2912 return count;
2913 }
2914
2915 uint64_t ram_bytes_remaining(void)
2916 {
2917 return ram_save_remaining() * TARGET_PAGE_SIZE;
2918 }
2919
2920 uint64_t ram_bytes_transferred(void)
2921 {
2922 return bytes_transferred;
2923 }
2924
2925 uint64_t ram_bytes_total(void)
2926 {
2927 return last_ram_offset;
2928 }
2929
2930 static int ram_save_live(Monitor *mon, QEMUFile *f, int stage, void *opaque)
2931 {
2932 ram_addr_t addr;
2933 uint64_t bytes_transferred_last;
2934 double bwidth = 0;
2935 uint64_t expected_time = 0;
2936
2937 if (stage < 0) {
2938 cpu_physical_memory_set_dirty_tracking(0);
2939 return 0;
2940 }
2941
2942 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
2943 qemu_file_set_error(f);
2944 return 0;
2945 }
2946
2947 if (stage == 1) {
2948 /* Make sure all dirty bits are set */
2949 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2950 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2951 cpu_physical_memory_set_dirty(addr);
2952 }
2953
2954 /* Enable dirty memory tracking */
2955 cpu_physical_memory_set_dirty_tracking(1);
2956
2957 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
2958 }
2959
2960 bytes_transferred_last = bytes_transferred;
2961 bwidth = get_clock();
2962
2963 while (!qemu_file_rate_limit(f)) {
2964 int ret;
2965
2966 ret = ram_save_block(f);
2967 bytes_transferred += ret * TARGET_PAGE_SIZE;
2968 if (ret == 0) /* no more blocks */
2969 break;
2970 }
2971
2972 bwidth = get_clock() - bwidth;
2973 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
2974
2975 /* if we haven't transferred anything this round, force expected_time to a
2976 * a very high value, but without crashing */
2977 if (bwidth == 0)
2978 bwidth = 0.000001;
2979
2980 /* try transferring iterative blocks of memory */
2981 if (stage == 3) {
2982 /* flush all remaining blocks regardless of rate limiting */
2983 while (ram_save_block(f) != 0) {
2984 bytes_transferred += TARGET_PAGE_SIZE;
2985 }
2986 cpu_physical_memory_set_dirty_tracking(0);
2987 }
2988
2989 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2990
2991 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
2992
2993 return (stage == 2) && (expected_time <= migrate_max_downtime());
2994 }
2995
2996 static int ram_load(QEMUFile *f, void *opaque, int version_id)
2997 {
2998 ram_addr_t addr;
2999 int flags;
3000
3001 if (version_id != 3)
3002 return -EINVAL;
3003
3004 do {
3005 addr = qemu_get_be64(f);
3006
3007 flags = addr & ~TARGET_PAGE_MASK;
3008 addr &= TARGET_PAGE_MASK;
3009
3010 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3011 if (addr != last_ram_offset)
3012 return -EINVAL;
3013 }
3014
3015 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3016 uint8_t ch = qemu_get_byte(f);
3017 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3018 #ifndef _WIN32
3019 if (ch == 0 &&
3020 (!kvm_enabled() || kvm_has_sync_mmu())) {
3021 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3022 }
3023 #endif
3024 } else if (flags & RAM_SAVE_FLAG_PAGE) {
3025 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3026 }
3027 if (qemu_file_has_error(f)) {
3028 return -EIO;
3029 }
3030 } while (!(flags & RAM_SAVE_FLAG_EOS));
3031
3032 return 0;
3033 }
3034
3035 void qemu_service_io(void)
3036 {
3037 qemu_notify_event();
3038 }
3039
3040 /***********************************************************/
3041 /* machine registration */
3042
3043 static QEMUMachine *first_machine = NULL;
3044 QEMUMachine *current_machine = NULL;
3045
3046 int qemu_register_machine(QEMUMachine *m)
3047 {
3048 QEMUMachine **pm;
3049 pm = &first_machine;
3050 while (*pm != NULL)
3051 pm = &(*pm)->next;
3052 m->next = NULL;
3053 *pm = m;
3054 return 0;
3055 }
3056
3057 static QEMUMachine *find_machine(const char *name)
3058 {
3059 QEMUMachine *m;
3060
3061 for(m = first_machine; m != NULL; m = m->next) {
3062 if (!strcmp(m->name, name))
3063 return m;
3064 if (m->alias && !strcmp(m->alias, name))
3065 return m;
3066 }
3067 return NULL;
3068 }
3069
3070 static QEMUMachine *find_default_machine(void)
3071 {
3072 QEMUMachine *m;
3073
3074 for(m = first_machine; m != NULL; m = m->next) {
3075 if (m->is_default) {
3076 return m;
3077 }
3078 }
3079 return NULL;
3080 }
3081
3082 /***********************************************************/
3083 /* main execution loop */
3084
3085 static void gui_update(void *opaque)
3086 {
3087 uint64_t interval = GUI_REFRESH_INTERVAL;
3088 DisplayState *ds = opaque;
3089 DisplayChangeListener *dcl = ds->listeners;
3090
3091 dpy_refresh(ds);
3092
3093 while (dcl != NULL) {
3094 if (dcl->gui_timer_interval &&
3095 dcl->gui_timer_interval < interval)
3096 interval = dcl->gui_timer_interval;
3097 dcl = dcl->next;
3098 }
3099 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3100 }
3101
3102 static void nographic_update(void *opaque)
3103 {
3104 uint64_t interval = GUI_REFRESH_INTERVAL;
3105
3106 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3107 }
3108
3109 struct vm_change_state_entry {
3110 VMChangeStateHandler *cb;
3111 void *opaque;
3112 QLIST_ENTRY (vm_change_state_entry) entries;
3113 };
3114
3115 static QLIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3116
3117 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3118 void *opaque)
3119 {
3120 VMChangeStateEntry *e;
3121
3122 e = qemu_mallocz(sizeof (*e));
3123
3124 e->cb = cb;
3125 e->opaque = opaque;
3126 QLIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3127 return e;
3128 }
3129
3130 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3131 {
3132 QLIST_REMOVE (e, entries);
3133 qemu_free (e);
3134 }
3135
3136 static void vm_state_notify(int running, int reason)
3137 {
3138 VMChangeStateEntry *e;
3139
3140 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3141 e->cb(e->opaque, running, reason);
3142 }
3143 }
3144
3145 static void resume_all_vcpus(void);
3146 static void pause_all_vcpus(void);
3147
3148 void vm_start(void)
3149 {
3150 if (!vm_running) {
3151 cpu_enable_ticks();
3152 vm_running = 1;
3153 vm_state_notify(1, 0);
3154 qemu_rearm_alarm_timer(alarm_timer);
3155 resume_all_vcpus();
3156 }
3157 }
3158
3159 /* reset/shutdown handler */
3160
3161 typedef struct QEMUResetEntry {
3162 QTAILQ_ENTRY(QEMUResetEntry) entry;
3163 QEMUResetHandler *func;
3164 void *opaque;
3165 } QEMUResetEntry;
3166
3167 static QTAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3168 QTAILQ_HEAD_INITIALIZER(reset_handlers);
3169 static int reset_requested;
3170 static int shutdown_requested;
3171 static int powerdown_requested;
3172 static int debug_requested;
3173 static int vmstop_requested;
3174
3175 int qemu_shutdown_requested(void)
3176 {
3177 int r = shutdown_requested;
3178 shutdown_requested = 0;
3179 return r;
3180 }
3181
3182 int qemu_reset_requested(void)
3183 {
3184 int r = reset_requested;
3185 reset_requested = 0;
3186 return r;
3187 }
3188
3189 int qemu_powerdown_requested(void)
3190 {
3191 int r = powerdown_requested;
3192 powerdown_requested = 0;
3193 return r;
3194 }
3195
3196 static int qemu_debug_requested(void)
3197 {
3198 int r = debug_requested;
3199 debug_requested = 0;
3200 return r;
3201 }
3202
3203 static int qemu_vmstop_requested(void)
3204 {
3205 int r = vmstop_requested;
3206 vmstop_requested = 0;
3207 return r;
3208 }
3209
3210 static void do_vm_stop(int reason)
3211 {
3212 if (vm_running) {
3213 cpu_disable_ticks();
3214 vm_running = 0;
3215 pause_all_vcpus();
3216 vm_state_notify(0, reason);
3217 }
3218 }
3219
3220 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3221 {
3222 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3223
3224 re->func = func;
3225 re->opaque = opaque;
3226 QTAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3227 }
3228
3229 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3230 {
3231 QEMUResetEntry *re;
3232
3233 QTAILQ_FOREACH(re, &reset_handlers, entry) {
3234 if (re->func == func && re->opaque == opaque) {
3235 QTAILQ_REMOVE(&reset_handlers, re, entry);
3236 qemu_free(re);
3237 return;
3238 }
3239 }
3240 }
3241
3242 void qemu_system_reset(void)
3243 {
3244 QEMUResetEntry *re, *nre;
3245
3246 /* reset all devices */
3247 QTAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3248 re->func(re->opaque);
3249 }
3250 }
3251
3252 void qemu_system_reset_request(void)
3253 {
3254 if (no_reboot) {
3255 shutdown_requested = 1;
3256 } else {
3257 reset_requested = 1;
3258 }
3259 qemu_notify_event();
3260 }
3261
3262 void qemu_system_shutdown_request(void)
3263 {
3264 shutdown_requested = 1;
3265 qemu_notify_event();
3266 }
3267
3268 void qemu_system_powerdown_request(void)
3269 {
3270 powerdown_requested = 1;
3271 qemu_notify_event();
3272 }
3273
3274 #ifdef CONFIG_IOTHREAD
3275 static void qemu_system_vmstop_request(int reason)
3276 {
3277 vmstop_requested = reason;
3278 qemu_notify_event();
3279 }
3280 #endif
3281
3282 #ifndef _WIN32
3283 static int io_thread_fd = -1;
3284
3285 static void qemu_event_increment(void)
3286 {
3287 static const char byte = 0;
3288
3289 if (io_thread_fd == -1)
3290 return;
3291
3292 write(io_thread_fd, &byte, sizeof(byte));
3293 }
3294
3295 static void qemu_event_read(void *opaque)
3296 {
3297 int fd = (unsigned long)opaque;
3298 ssize_t len;
3299
3300 /* Drain the notify pipe */
3301 do {
3302 char buffer[512];
3303 len = read(fd, buffer, sizeof(buffer));
3304 } while ((len == -1 && errno == EINTR) || len > 0);
3305 }
3306
3307 static int qemu_event_init(void)
3308 {
3309 int err;
3310 int fds[2];
3311
3312 err = pipe(fds);
3313 if (err == -1)
3314 return -errno;
3315
3316 err = fcntl_setfl(fds[0], O_NONBLOCK);
3317 if (err < 0)
3318 goto fail;
3319
3320 err = fcntl_setfl(fds[1], O_NONBLOCK);
3321 if (err < 0)
3322 goto fail;
3323
3324 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3325 (void *)(unsigned long)fds[0]);
3326
3327 io_thread_fd = fds[1];
3328 return 0;
3329
3330 fail:
3331 close(fds[0]);
3332 close(fds[1]);
3333 return err;
3334 }
3335 #else
3336 HANDLE qemu_event_handle;
3337
3338 static void dummy_event_handler(void *opaque)
3339 {
3340 }
3341
3342 static int qemu_event_init(void)
3343 {
3344 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3345 if (!qemu_event_handle) {
3346 fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
3347 return -1;
3348 }
3349 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3350 return 0;
3351 }
3352
3353 static void qemu_event_increment(void)
3354 {
3355 if (!SetEvent(qemu_event_handle)) {
3356 fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
3357 GetLastError());
3358 exit (1);
3359 }
3360 }
3361 #endif
3362
3363 static int cpu_can_run(CPUState *env)
3364 {
3365 if (env->stop)
3366 return 0;
3367 if (env->stopped)
3368 return 0;
3369 return 1;
3370 }
3371
3372 #ifndef CONFIG_IOTHREAD
3373 static int qemu_init_main_loop(void)
3374 {
3375 return qemu_event_init();
3376 }
3377
3378 void qemu_init_vcpu(void *_env)
3379 {
3380 CPUState *env = _env;
3381
3382 if (kvm_enabled())
3383 kvm_init_vcpu(env);
3384 env->nr_cores = smp_cores;
3385 env->nr_threads = smp_threads;
3386 return;
3387 }
3388
3389 int qemu_cpu_self(void *env)
3390 {
3391 return 1;
3392 }
3393
3394 static void resume_all_vcpus(void)
3395 {
3396 }
3397
3398 static void pause_all_vcpus(void)
3399 {
3400 }
3401
3402 void qemu_cpu_kick(void *env)
3403 {
3404 return;
3405 }
3406
3407 void qemu_notify_event(void)
3408 {
3409 CPUState *env = cpu_single_env;
3410
3411 if (env) {
3412 cpu_exit(env);
3413 }
3414 }
3415
3416 void qemu_mutex_lock_iothread(void) {}
3417 void qemu_mutex_unlock_iothread(void) {}
3418
3419 void vm_stop(int reason)
3420 {
3421 do_vm_stop(reason);
3422 }
3423
3424 #else /* CONFIG_IOTHREAD */
3425
3426 #include "qemu-thread.h"
3427
3428 QemuMutex qemu_global_mutex;
3429 static QemuMutex qemu_fair_mutex;
3430
3431 static QemuThread io_thread;
3432
3433 static QemuThread *tcg_cpu_thread;
3434 static QemuCond *tcg_halt_cond;
3435
3436 static int qemu_system_ready;
3437 /* cpu creation */
3438 static QemuCond qemu_cpu_cond;
3439 /* system init */
3440 static QemuCond qemu_system_cond;
3441 static QemuCond qemu_pause_cond;
3442
3443 static void block_io_signals(void);
3444 static void unblock_io_signals(void);
3445 static int tcg_has_work(void);
3446
3447 static int qemu_init_main_loop(void)
3448 {
3449 int ret;
3450
3451 ret = qemu_event_init();
3452 if (ret)
3453 return ret;
3454
3455 qemu_cond_init(&qemu_pause_cond);
3456 qemu_mutex_init(&qemu_fair_mutex);
3457 qemu_mutex_init(&qemu_global_mutex);
3458 qemu_mutex_lock(&qemu_global_mutex);
3459
3460 unblock_io_signals();
3461 qemu_thread_self(&io_thread);
3462
3463 return 0;
3464 }
3465
3466 static void qemu_wait_io_event(CPUState *env)
3467 {
3468 while (!tcg_has_work())
3469 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3470
3471 qemu_mutex_unlock(&qemu_global_mutex);
3472
3473 /*
3474 * Users of qemu_global_mutex can be starved, having no chance
3475 * to acquire it since this path will get to it first.
3476 * So use another lock to provide fairness.
3477 */
3478 qemu_mutex_lock(&qemu_fair_mutex);
3479 qemu_mutex_unlock(&qemu_fair_mutex);
3480
3481 qemu_mutex_lock(&qemu_global_mutex);
3482 if (env->stop) {
3483 env->stop = 0;
3484 env->stopped = 1;
3485 qemu_cond_signal(&qemu_pause_cond);
3486 }
3487 }
3488
3489 static int qemu_cpu_exec(CPUState *env);
3490
3491 static void *kvm_cpu_thread_fn(void *arg)
3492 {
3493 CPUState *env = arg;
3494
3495 block_io_signals();
3496 qemu_thread_self(env->thread);
3497 if (kvm_enabled())
3498 kvm_init_vcpu(env);
3499
3500 /* signal CPU creation */
3501 qemu_mutex_lock(&qemu_global_mutex);
3502 env->created = 1;
3503 qemu_cond_signal(&qemu_cpu_cond);
3504
3505 /* and wait for machine initialization */
3506 while (!qemu_system_ready)
3507 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3508
3509 while (1) {
3510 if (cpu_can_run(env))
3511 qemu_cpu_exec(env);
3512 qemu_wait_io_event(env);
3513 }
3514
3515 return NULL;
3516 }
3517
3518 static void tcg_cpu_exec(void);
3519
3520 static void *tcg_cpu_thread_fn(void *arg)
3521 {
3522 CPUState *env = arg;
3523
3524 block_io_signals();
3525 qemu_thread_self(env->thread);
3526
3527 /* signal CPU creation */
3528 qemu_mutex_lock(&qemu_global_mutex);
3529 for (env = first_cpu; env != NULL; env = env->next_cpu)
3530 env->created = 1;
3531 qemu_cond_signal(&qemu_cpu_cond);
3532
3533 /* and wait for machine initialization */
3534 while (!qemu_system_ready)
3535 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3536
3537 while (1) {
3538 tcg_cpu_exec();
3539 qemu_wait_io_event(cur_cpu);
3540 }
3541
3542 return NULL;
3543 }
3544
3545 void qemu_cpu_kick(void *_env)
3546 {
3547 CPUState *env = _env;
3548 qemu_cond_broadcast(env->halt_cond);
3549 if (kvm_enabled())
3550 qemu_thread_signal(env->thread, SIGUSR1);
3551 }
3552
3553 int qemu_cpu_self(void *_env)
3554 {
3555 CPUState *env = _env;
3556 QemuThread this;
3557
3558 qemu_thread_self(&this);
3559
3560 return qemu_thread_equal(&this, env->thread);
3561 }
3562
3563 static void cpu_signal(int sig)
3564 {
3565 if (cpu_single_env)
3566 cpu_exit(cpu_single_env);
3567 }
3568
3569 static void block_io_signals(void)
3570 {
3571 sigset_t set;
3572 struct sigaction sigact;
3573
3574 sigemptyset(&set);
3575 sigaddset(&set, SIGUSR2);
3576 sigaddset(&set, SIGIO);
3577 sigaddset(&set, SIGALRM);
3578 pthread_sigmask(SIG_BLOCK, &set, NULL);
3579
3580 sigemptyset(&set);
3581 sigaddset(&set, SIGUSR1);
3582 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3583
3584 memset(&sigact, 0, sizeof(sigact));
3585 sigact.sa_handler = cpu_signal;
3586 sigaction(SIGUSR1, &sigact, NULL);
3587 }
3588
3589 static void unblock_io_signals(void)
3590 {
3591 sigset_t set;
3592
3593 sigemptyset(&set);
3594 sigaddset(&set, SIGUSR2);
3595 sigaddset(&set, SIGIO);
3596 sigaddset(&set, SIGALRM);
3597 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3598
3599 sigemptyset(&set);
3600 sigaddset(&set, SIGUSR1);
3601 pthread_sigmask(SIG_BLOCK, &set, NULL);
3602 }
3603
3604 static void qemu_signal_lock(unsigned int msecs)
3605 {
3606 qemu_mutex_lock(&qemu_fair_mutex);
3607
3608 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3609 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3610 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3611 break;
3612 }
3613 qemu_mutex_unlock(&qemu_fair_mutex);
3614 }
3615
3616 void qemu_mutex_lock_iothread(void)
3617 {
3618 if (kvm_enabled()) {
3619 qemu_mutex_lock(&qemu_fair_mutex);
3620 qemu_mutex_lock(&qemu_global_mutex);
3621 qemu_mutex_unlock(&qemu_fair_mutex);
3622 } else
3623 qemu_signal_lock(100);
3624 }
3625
3626 void qemu_mutex_unlock_iothread(void)
3627 {
3628 qemu_mutex_unlock(&qemu_global_mutex);
3629 }
3630
3631 static int all_vcpus_paused(void)
3632 {
3633 CPUState *penv = first_cpu;
3634
3635 while (penv) {
3636 if (!penv->stopped)
3637 return 0;
3638 penv = (CPUState *)penv->next_cpu;
3639 }
3640
3641 return 1;
3642 }
3643
3644 static void pause_all_vcpus(void)
3645 {
3646 CPUState *penv = first_cpu;
3647
3648 while (penv) {
3649 penv->stop = 1;
3650 qemu_thread_signal(penv->thread, SIGUSR1);
3651 qemu_cpu_kick(penv);
3652 penv = (CPUState *)penv->next_cpu;
3653 }
3654
3655 while (!all_vcpus_paused()) {
3656 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3657 penv = first_cpu;
3658 while (penv) {
3659 qemu_thread_signal(penv->thread, SIGUSR1);
3660 penv = (CPUState *)penv->next_cpu;
3661 }
3662 }
3663 }
3664
3665 static void resume_all_vcpus(void)
3666 {
3667 CPUState *penv = first_cpu;
3668
3669 while (penv) {
3670 penv->stop = 0;
3671 penv->stopped = 0;
3672 qemu_thread_signal(penv->thread, SIGUSR1);
3673 qemu_cpu_kick(penv);
3674 penv = (CPUState *)penv->next_cpu;
3675 }
3676 }
3677
3678 static void tcg_init_vcpu(void *_env)
3679 {
3680 CPUState *env = _env;
3681 /* share a single thread for all cpus with TCG */
3682 if (!tcg_cpu_thread) {
3683 env->thread = qemu_mallocz(sizeof(QemuThread));
3684 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3685 qemu_cond_init(env->halt_cond);
3686 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3687 while (env->created == 0)
3688 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3689 tcg_cpu_thread = env->thread;
3690 tcg_halt_cond = env->halt_cond;
3691 } else {
3692 env->thread = tcg_cpu_thread;
3693 env->halt_cond = tcg_halt_cond;
3694 }
3695 }
3696
3697 static void kvm_start_vcpu(CPUState *env)
3698 {
3699 env->thread = qemu_mallocz(sizeof(QemuThread));
3700 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3701 qemu_cond_init(env->halt_cond);
3702 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3703 while (env->created == 0)
3704 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3705 }
3706
3707 void qemu_init_vcpu(void *_env)
3708 {
3709 CPUState *env = _env;
3710
3711 if (kvm_enabled())
3712 kvm_start_vcpu(env);
3713 else
3714 tcg_init_vcpu(env);
3715 env->nr_cores = smp_cores;
3716 env->nr_threads = smp_threads;
3717 }
3718
3719 void qemu_notify_event(void)
3720 {
3721 qemu_event_increment();
3722 }
3723
3724 void vm_stop(int reason)
3725 {
3726 QemuThread me;
3727 qemu_thread_self(&me);
3728
3729 if (!qemu_thread_equal(&me, &io_thread)) {
3730 qemu_system_vmstop_request(reason);
3731 /*
3732 * FIXME: should not return to device code in case
3733 * vm_stop() has been requested.
3734 */
3735 if (cpu_single_env) {
3736 cpu_exit(cpu_single_env);
3737 cpu_single_env->stop = 1;
3738 }
3739 return;
3740 }
3741 do_vm_stop(reason);
3742 }
3743
3744 #endif
3745
3746
3747 #ifdef _WIN32
3748 static void host_main_loop_wait(int *timeout)
3749 {
3750 int ret, ret2, i;
3751 PollingEntry *pe;
3752
3753
3754 /* XXX: need to suppress polling by better using win32 events */
3755 ret = 0;
3756 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3757 ret |= pe->func(pe->opaque);
3758 }
3759 if (ret == 0) {
3760 int err;
3761 WaitObjects *w = &wait_objects;
3762
3763 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3764 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3765 if (w->func[ret - WAIT_OBJECT_0])
3766 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3767
3768 /* Check for additional signaled events */
3769 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3770
3771 /* Check if event is signaled */
3772 ret2 = WaitForSingleObject(w->events[i], 0);
3773 if(ret2 == WAIT_OBJECT_0) {
3774 if (w->func[i])
3775 w->func[i](w->opaque[i]);
3776 } else if (ret2 == WAIT_TIMEOUT) {
3777 } else {
3778 err = GetLastError();
3779 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3780 }
3781 }
3782 } else if (ret == WAIT_TIMEOUT) {
3783 } else {
3784 err = GetLastError();
3785 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3786 }
3787 }
3788
3789 *timeout = 0;
3790 }
3791 #else
3792 static void host_main_loop_wait(int *timeout)
3793 {
3794 }
3795 #endif
3796
3797 void main_loop_wait(int timeout)
3798 {
3799 IOHandlerRecord *ioh;
3800 fd_set rfds, wfds, xfds;
3801 int ret, nfds;
3802 struct timeval tv;
3803
3804 qemu_bh_update_timeout(&timeout);
3805
3806 host_main_loop_wait(&timeout);
3807
3808 /* poll any events */
3809 /* XXX: separate device handlers from system ones */
3810 nfds = -1;
3811 FD_ZERO(&rfds);
3812 FD_ZERO(&wfds);
3813 FD_ZERO(&xfds);
3814 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3815 if (ioh->deleted)
3816 continue;
3817 if (ioh->fd_read &&
3818 (!ioh->fd_read_poll ||
3819 ioh->fd_read_poll(ioh->opaque) != 0)) {
3820 FD_SET(ioh->fd, &rfds);
3821 if (ioh->fd > nfds)
3822 nfds = ioh->fd;
3823 }
3824 if (ioh->fd_write) {
3825 FD_SET(ioh->fd, &wfds);
3826 if (ioh->fd > nfds)
3827 nfds = ioh->fd;
3828 }
3829 }
3830
3831 tv.tv_sec = timeout / 1000;
3832 tv.tv_usec = (timeout % 1000) * 1000;
3833
3834 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3835
3836 qemu_mutex_unlock_iothread();
3837 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3838 qemu_mutex_lock_iothread();
3839 if (ret > 0) {
3840 IOHandlerRecord **pioh;
3841
3842 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3843 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3844 ioh->fd_read(ioh->opaque);
3845 }
3846 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3847 ioh->fd_write(ioh->opaque);
3848 }
3849 }
3850
3851 /* remove deleted IO handlers */
3852 pioh = &first_io_handler;
3853 while (*pioh) {
3854 ioh = *pioh;
3855 if (ioh->deleted) {
3856 *pioh = ioh->next;
3857 qemu_free(ioh);
3858 } else
3859 pioh = &ioh->next;
3860 }
3861 }
3862
3863 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
3864
3865 /* rearm timer, if not periodic */
3866 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
3867 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
3868 qemu_rearm_alarm_timer(alarm_timer);
3869 }
3870
3871 /* vm time timers */
3872 if (vm_running) {
3873 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3874 qemu_run_timers(&active_timers[QEMU_CLOCK_VIRTUAL],
3875 qemu_get_clock(vm_clock));
3876 }
3877
3878 /* real time timers */
3879 qemu_run_timers(&active_timers[QEMU_CLOCK_REALTIME],
3880 qemu_get_clock(rt_clock));
3881
3882 qemu_run_timers(&active_timers[QEMU_CLOCK_HOST],
3883 qemu_get_clock(host_clock));
3884
3885 /* Check bottom-halves last in case any of the earlier events triggered
3886 them. */
3887 qemu_bh_poll();
3888
3889 }
3890
3891 static int qemu_cpu_exec(CPUState *env)
3892 {
3893 int ret;
3894 #ifdef CONFIG_PROFILER
3895 int64_t ti;
3896 #endif
3897
3898 #ifdef CONFIG_PROFILER
3899 ti = profile_getclock();
3900 #endif
3901 if (use_icount) {
3902 int64_t count;
3903 int decr;
3904 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3905 env->icount_decr.u16.low = 0;
3906 env->icount_extra = 0;
3907 count = qemu_next_deadline();
3908 count = (count + (1 << icount_time_shift) - 1)
3909 >> icount_time_shift;
3910 qemu_icount += count;
3911 decr = (count > 0xffff) ? 0xffff : count;
3912 count -= decr;
3913 env->icount_decr.u16.low = decr;
3914 env->icount_extra = count;
3915 }
3916 ret = cpu_exec(env);
3917 #ifdef CONFIG_PROFILER
3918 qemu_time += profile_getclock() - ti;
3919 #endif
3920 if (use_icount) {
3921 /* Fold pending instructions back into the
3922 instruction counter, and clear the interrupt flag. */
3923 qemu_icount -= (env->icount_decr.u16.low
3924 + env->icount_extra);
3925 env->icount_decr.u32 = 0;
3926 env->icount_extra = 0;
3927 }
3928 return ret;
3929 }
3930
3931 static void tcg_cpu_exec(void)
3932 {
3933 int ret = 0;
3934
3935 if (next_cpu == NULL)
3936 next_cpu = first_cpu;
3937 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
3938 CPUState *env = cur_cpu = next_cpu;
3939
3940 if (!vm_running)
3941 break;
3942 if (timer_alarm_pending) {
3943 timer_alarm_pending = 0;
3944 break;
3945 }
3946 if (cpu_can_run(env))
3947 ret = qemu_cpu_exec(env);
3948 if (ret == EXCP_DEBUG) {
3949 gdb_set_stop_cpu(env);
3950 debug_requested = 1;
3951 break;
3952 }
3953 }
3954 }
3955
3956 static int cpu_has_work(CPUState *env)
3957 {
3958 if (env->stop)
3959 return 1;
3960 if (env->stopped)
3961 return 0;
3962 if (!env->halted)
3963 return 1;
3964 if (qemu_cpu_has_work(env))
3965 return 1;
3966 return 0;
3967 }
3968
3969 static int tcg_has_work(void)
3970 {
3971 CPUState *env;
3972
3973 for (env = first_cpu; env != NULL; env = env->next_cpu)
3974 if (cpu_has_work(env))
3975 return 1;
3976 return 0;
3977 }
3978
3979 static int qemu_calculate_timeout(void)
3980 {
3981 #ifndef CONFIG_IOTHREAD
3982 int timeout;
3983
3984 if (!vm_running)
3985 timeout = 5000;
3986 else if (tcg_has_work())
3987 timeout = 0;
3988 else if (!use_icount)
3989 timeout = 5000;
3990 else {
3991 /* XXX: use timeout computed from timers */
3992 int64_t add;
3993 int64_t delta;
3994 /* Advance virtual time to the next event. */
3995 if (use_icount == 1) {
3996 /* When not using an adaptive execution frequency
3997 we tend to get badly out of sync with real time,
3998 so just delay for a reasonable amount of time. */
3999 delta = 0;
4000 } else {
4001 delta = cpu_get_icount() - cpu_get_clock();
4002 }
4003 if (delta > 0) {
4004 /* If virtual time is ahead of real time then just
4005 wait for IO. */
4006 timeout = (delta / 1000000) + 1;
4007 } else {
4008 /* Wait for either IO to occur or the next
4009 timer event. */
4010 add = qemu_next_deadline();
4011 /* We advance the timer before checking for IO.
4012 Limit the amount we advance so that early IO
4013 activity won't get the guest too far ahead. */
4014 if (add > 10000000)
4015 add = 10000000;
4016 delta += add;
4017 add = (add + (1 << icount_time_shift) - 1)
4018 >> icount_time_shift;
4019 qemu_icount += add;
4020 timeout = delta / 1000000;
4021 if (timeout < 0)
4022 timeout = 0;
4023 }
4024 }
4025
4026 return timeout;
4027 #else /* CONFIG_IOTHREAD */
4028 return 1000;
4029 #endif
4030 }
4031
4032 static int vm_can_run(void)
4033 {
4034 if (powerdown_requested)
4035 return 0;
4036 if (reset_requested)
4037 return 0;
4038 if (shutdown_requested)
4039 return 0;
4040 if (debug_requested)
4041 return 0;
4042 return 1;
4043 }
4044
4045 qemu_irq qemu_system_powerdown;
4046
4047 static void main_loop(void)
4048 {
4049 int r;
4050
4051 #ifdef CONFIG_IOTHREAD
4052 qemu_system_ready = 1;
4053 qemu_cond_broadcast(&qemu_system_cond);
4054 #endif
4055
4056 for (;;) {
4057 do {
4058 #ifdef CONFIG_PROFILER
4059 int64_t ti;
4060 #endif
4061 #ifndef CONFIG_IOTHREAD
4062 tcg_cpu_exec();
4063 #endif
4064 #ifdef CONFIG_PROFILER
4065 ti = profile_getclock();
4066 #endif
4067 main_loop_wait(qemu_calculate_timeout());
4068 #ifdef CONFIG_PROFILER
4069 dev_time += profile_getclock() - ti;
4070 #endif
4071 } while (vm_can_run());
4072
4073 if (qemu_debug_requested()) {
4074 monitor_protocol_event(EVENT_DEBUG, NULL);
4075 vm_stop(EXCP_DEBUG);
4076 }
4077 if (qemu_shutdown_requested()) {
4078 monitor_protocol_event(EVENT_SHUTDOWN, NULL);
4079 if (no_shutdown) {
4080 vm_stop(0);
4081 no_shutdown = 0;
4082 } else
4083 break;
4084 }
4085 if (qemu_reset_requested()) {
4086 monitor_protocol_event(EVENT_RESET, NULL);
4087 pause_all_vcpus();
4088 qemu_system_reset();
4089 resume_all_vcpus();
4090 }
4091 if (qemu_powerdown_requested()) {
4092 monitor_protocol_event(EVENT_POWERDOWN, NULL);
4093 qemu_irq_raise(qemu_system_powerdown);
4094 }
4095 if ((r = qemu_vmstop_requested())) {
4096 monitor_protocol_event(EVENT_STOP, NULL);
4097 vm_stop(r);
4098 }
4099 }
4100 pause_all_vcpus();
4101 }
4102
4103 static void version(void)
4104 {
4105 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4106 }
4107
4108 static void help(int exitcode)
4109 {
4110 version();
4111 printf("usage: %s [options] [disk_image]\n"
4112 "\n"
4113 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4114 "\n"
4115 #define DEF(option, opt_arg, opt_enum, opt_help) \
4116 opt_help
4117 #define DEFHEADING(text) stringify(text) "\n"
4118 #include "qemu-options.h"
4119 #undef DEF
4120 #undef DEFHEADING
4121 #undef GEN_DOCS
4122 "\n"
4123 "During emulation, the following keys are useful:\n"
4124 "ctrl-alt-f toggle full screen\n"
4125 "ctrl-alt-n switch to virtual console 'n'\n"
4126 "ctrl-alt toggle mouse and keyboard grab\n"
4127 "\n"
4128 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4129 ,
4130 "qemu",
4131 DEFAULT_RAM_SIZE,
4132 #ifndef _WIN32
4133 DEFAULT_NETWORK_SCRIPT,
4134 DEFAULT_NETWORK_DOWN_SCRIPT,
4135 #endif
4136 DEFAULT_GDBSTUB_PORT,
4137 "/tmp/qemu.log");
4138 exit(exitcode);
4139 }
4140
4141 #define HAS_ARG 0x0001
4142
4143 enum {
4144 #define DEF(option, opt_arg, opt_enum, opt_help) \
4145 opt_enum,
4146 #define DEFHEADING(text)
4147 #include "qemu-options.h"
4148 #undef DEF
4149 #undef DEFHEADING
4150 #undef GEN_DOCS
4151 };
4152
4153 typedef struct QEMUOption {
4154 const char *name;
4155 int flags;
4156 int index;
4157 } QEMUOption;
4158
4159 static const QEMUOption qemu_options[] = {
4160 { "h", 0, QEMU_OPTION_h },
4161 #define DEF(option, opt_arg, opt_enum, opt_help) \
4162 { option, opt_arg, opt_enum },
4163 #define DEFHEADING(text)
4164 #include "qemu-options.h"
4165 #undef DEF
4166 #undef DEFHEADING
4167 #undef GEN_DOCS
4168 { NULL },
4169 };
4170
4171 #ifdef HAS_AUDIO
4172 struct soundhw soundhw[] = {
4173 #ifdef HAS_AUDIO_CHOICE
4174 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4175 {
4176 "pcspk",
4177 "PC speaker",
4178 0,
4179 1,
4180 { .init_isa = pcspk_audio_init }
4181 },
4182 #endif
4183
4184 #ifdef CONFIG_SB16
4185 {
4186 "sb16",
4187 "Creative Sound Blaster 16",
4188 0,
4189 1,
4190 { .init_isa = SB16_init }
4191 },
4192 #endif
4193
4194 #ifdef CONFIG_CS4231A
4195 {
4196 "cs4231a",
4197 "CS4231A",
4198 0,
4199 1,
4200 { .init_isa = cs4231a_init }
4201 },
4202 #endif
4203
4204 #ifdef CONFIG_ADLIB
4205 {
4206 "adlib",
4207 #ifdef HAS_YMF262
4208 "Yamaha YMF262 (OPL3)",
4209 #else
4210 "Yamaha YM3812 (OPL2)",
4211 #endif
4212 0,
4213 1,
4214 { .init_isa = Adlib_init }
4215 },
4216 #endif
4217
4218 #ifdef CONFIG_GUS
4219 {
4220 "gus",
4221 "Gravis Ultrasound GF1",
4222 0,
4223 1,
4224 { .init_isa = GUS_init }
4225 },
4226 #endif
4227
4228 #ifdef CONFIG_AC97
4229 {
4230 "ac97",
4231 "Intel 82801AA AC97 Audio",
4232 0,
4233 0,
4234 { .init_pci = ac97_init }
4235 },
4236 #endif
4237
4238 #ifdef CONFIG_ES1370
4239 {
4240 "es1370",
4241 "ENSONIQ AudioPCI ES1370",
4242 0,
4243 0,
4244 { .init_pci = es1370_init }
4245 },
4246 #endif
4247
4248 #endif /* HAS_AUDIO_CHOICE */
4249
4250 { NULL, NULL, 0, 0, { NULL } }
4251 };
4252
4253 static void select_soundhw (const char *optarg)
4254 {
4255 struct soundhw *c;
4256
4257 if (*optarg == '?') {
4258 show_valid_cards:
4259
4260 printf ("Valid sound card names (comma separated):\n");
4261 for (c = soundhw; c->name; ++c) {
4262 printf ("%-11s %s\n", c->name, c->descr);
4263 }
4264 printf ("\n-soundhw all will enable all of the above\n");
4265 exit (*optarg != '?');
4266 }
4267 else {
4268 size_t l;
4269 const char *p;
4270 char *e;
4271 int bad_card = 0;
4272
4273 if (!strcmp (optarg, "all")) {
4274 for (c = soundhw; c->name; ++c) {
4275 c->enabled = 1;
4276 }
4277 return;
4278 }
4279
4280 p = optarg;
4281 while (*p) {
4282 e = strchr (p, ',');
4283 l = !e ? strlen (p) : (size_t) (e - p);
4284
4285 for (c = soundhw; c->name; ++c) {
4286 if (!strncmp (c->name, p, l) && !c->name[l]) {
4287 c->enabled = 1;
4288 break;
4289 }
4290 }
4291
4292 if (!c->name) {
4293 if (l > 80) {
4294 fprintf (stderr,
4295 "Unknown sound card name (too big to show)\n");
4296 }
4297 else {
4298 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4299 (int) l, p);
4300 }
4301 bad_card = 1;
4302 }
4303 p += l + (e != NULL);
4304 }
4305
4306 if (bad_card)
4307 goto show_valid_cards;
4308 }
4309 }
4310 #endif
4311
4312 static void select_vgahw (const char *p)
4313 {
4314 const char *opts;
4315
4316 vga_interface_type = VGA_NONE;
4317 if (strstart(p, "std", &opts)) {
4318 vga_interface_type = VGA_STD;
4319 } else if (strstart(p, "cirrus", &opts)) {
4320 vga_interface_type = VGA_CIRRUS;
4321 } else if (strstart(p, "vmware", &opts)) {
4322 vga_interface_type = VGA_VMWARE;
4323 } else if (strstart(p, "xenfb", &opts)) {
4324 vga_interface_type = VGA_XENFB;
4325 } else if (!strstart(p, "none", &opts)) {
4326 invalid_vga:
4327 fprintf(stderr, "Unknown vga type: %s\n", p);
4328 exit(1);
4329 }
4330 while (*opts) {
4331 const char *nextopt;
4332
4333 if (strstart(opts, ",retrace=", &nextopt)) {
4334 opts = nextopt;
4335 if (strstart(opts, "dumb", &nextopt))
4336 vga_retrace_method = VGA_RETRACE_DUMB;
4337 else if (strstart(opts, "precise", &nextopt))
4338 vga_retrace_method = VGA_RETRACE_PRECISE;
4339 else goto invalid_vga;
4340 } else goto invalid_vga;
4341 opts = nextopt;
4342 }
4343 }
4344
4345 #ifdef TARGET_I386
4346 static int balloon_parse(const char *arg)
4347 {
4348 QemuOpts *opts;
4349
4350 if (strcmp(arg, "none") == 0) {
4351 return 0;
4352 }
4353
4354 if (!strncmp(arg, "virtio", 6)) {
4355 if (arg[6] == ',') {
4356 /* have params -> parse them */
4357 opts = qemu_opts_parse(&qemu_device_opts, arg+7, NULL);
4358 if (!opts)
4359 return -1;
4360 } else {
4361 /* create empty opts */
4362 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4363 }
4364 qemu_opt_set(opts, "driver", "virtio-balloon-pci");
4365 return 0;
4366 }
4367
4368 return -1;
4369 }
4370 #endif
4371
4372 #ifdef _WIN32
4373 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4374 {
4375 exit(STATUS_CONTROL_C_EXIT);
4376 return TRUE;
4377 }
4378 #endif
4379
4380 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4381 {
4382 int ret;
4383
4384 if(strlen(str) != 36)
4385 return -1;
4386
4387 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4388 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4389 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4390
4391 if(ret != 16)
4392 return -1;
4393
4394 #ifdef TARGET_I386
4395 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4396 #endif
4397
4398 return 0;
4399 }
4400
4401 #ifndef _WIN32
4402
4403 static void termsig_handler(int signal)
4404 {
4405 qemu_system_shutdown_request();
4406 }
4407
4408 static void sigchld_handler(int signal)
4409 {
4410 waitpid(-1, NULL, WNOHANG);
4411 }
4412
4413 static void sighandler_setup(void)
4414 {
4415 struct sigaction act;
4416
4417 memset(&act, 0, sizeof(act));
4418 act.sa_handler = termsig_handler;
4419 sigaction(SIGINT, &act, NULL);
4420 sigaction(SIGHUP, &act, NULL);
4421 sigaction(SIGTERM, &act, NULL);
4422
4423 act.sa_handler = sigchld_handler;
4424 act.sa_flags = SA_NOCLDSTOP;
4425 sigaction(SIGCHLD, &act, NULL);
4426 }
4427
4428 #endif
4429
4430 #ifdef _WIN32
4431 /* Look for support files in the same directory as the executable. */
4432 static char *find_datadir(const char *argv0)
4433 {
4434 char *p;
4435 char buf[MAX_PATH];
4436 DWORD len;
4437
4438 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4439 if (len == 0) {
4440 return NULL;
4441 }
4442
4443 buf[len] = 0;
4444 p = buf + len - 1;
4445 while (p != buf && *p != '\\')
4446 p--;
4447 *p = 0;
4448 if (access(buf, R_OK) == 0) {
4449 return qemu_strdup(buf);
4450 }
4451 return NULL;
4452 }
4453 #else /* !_WIN32 */
4454
4455 /* Find a likely location for support files using the location of the binary.
4456 For installed binaries this will be "$bindir/../share/qemu". When
4457 running from the build tree this will be "$bindir/../pc-bios". */
4458 #define SHARE_SUFFIX "/share/qemu"
4459 #define BUILD_SUFFIX "/pc-bios"
4460 static char *find_datadir(const char *argv0)
4461 {
4462 char *dir;
4463 char *p = NULL;
4464 char *res;
4465 char buf[PATH_MAX];
4466 size_t max_len;
4467
4468 #if defined(__linux__)
4469 {
4470 int len;
4471 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4472 if (len > 0) {
4473 buf[len] = 0;
4474 p = buf;
4475 }
4476 }
4477 #elif defined(__FreeBSD__)
4478 {
4479 int len;
4480 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4481 if (len > 0) {
4482 buf[len] = 0;
4483 p = buf;
4484 }
4485 }
4486 #endif
4487 /* If we don't have any way of figuring out the actual executable
4488 location then try argv[0]. */
4489 if (!p) {
4490 p = realpath(argv0, buf);
4491 if (!p) {
4492 return NULL;
4493 }
4494 }
4495 dir = dirname(p);
4496 dir = dirname(dir);
4497
4498 max_len = strlen(dir) +
4499 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4500 res = qemu_mallocz(max_len);
4501 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4502 if (access(res, R_OK)) {
4503 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4504 if (access(res, R_OK)) {
4505 qemu_free(res);
4506 res = NULL;
4507 }
4508 }
4509
4510 return res;
4511 }
4512 #undef SHARE_SUFFIX
4513 #undef BUILD_SUFFIX
4514 #endif
4515
4516 char *qemu_find_file(int type, const char *name)
4517 {
4518 int len;
4519 const char *subdir;
4520 char *buf;
4521
4522 /* If name contains path separators then try it as a straight path. */
4523 if ((strchr(name, '/') || strchr(name, '\\'))
4524 && access(name, R_OK) == 0) {
4525 return qemu_strdup(name);
4526 }
4527 switch (type) {
4528 case QEMU_FILE_TYPE_BIOS:
4529 subdir = "";
4530 break;
4531 case QEMU_FILE_TYPE_KEYMAP:
4532 subdir = "keymaps/";
4533 break;
4534 default:
4535 abort();
4536 }
4537 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4538 buf = qemu_mallocz(len);
4539 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4540 if (access(buf, R_OK)) {
4541 qemu_free(buf);
4542 return NULL;
4543 }
4544 return buf;
4545 }
4546
4547 static int device_init_func(QemuOpts *opts, void *opaque)
4548 {
4549 DeviceState *dev;
4550
4551 dev = qdev_device_add(opts);
4552 if (!dev)
4553 return -1;
4554 return 0;
4555 }
4556
4557 struct device_config {
4558 enum {
4559 DEV_USB, /* -usbdevice */
4560 DEV_BT, /* -bt */
4561 } type;
4562 const char *cmdline;
4563 QTAILQ_ENTRY(device_config) next;
4564 };
4565 QTAILQ_HEAD(, device_config) device_configs = QTAILQ_HEAD_INITIALIZER(device_configs);
4566
4567 static void add_device_config(int type, const char *cmdline)
4568 {
4569 struct device_config *conf;
4570
4571 conf = qemu_mallocz(sizeof(*conf));
4572 conf->type = type;
4573 conf->cmdline = cmdline;
4574 QTAILQ_INSERT_TAIL(&device_configs, conf, next);
4575 }
4576
4577 static int foreach_device_config(int type, int (*func)(const char *cmdline))
4578 {
4579 struct device_config *conf;
4580 int rc;
4581
4582 QTAILQ_FOREACH(conf, &device_configs, next) {
4583 if (conf->type != type)
4584 continue;
4585 rc = func(conf->cmdline);
4586 if (0 != rc)
4587 return rc;
4588 }
4589 return 0;
4590 }
4591
4592 int main(int argc, char **argv, char **envp)
4593 {
4594 const char *gdbstub_dev = NULL;
4595 uint32_t boot_devices_bitmap = 0;
4596 int i;
4597 int snapshot, linux_boot, net_boot;
4598 const char *initrd_filename;
4599 const char *kernel_filename, *kernel_cmdline;
4600 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4601 DisplayState *ds;
4602 DisplayChangeListener *dcl;
4603 int cyls, heads, secs, translation;
4604 QemuOpts *hda_opts = NULL, *opts;
4605 int optind;
4606 const char *r, *optarg;
4607 CharDriverState *monitor_hds[MAX_MONITOR_DEVICES];
4608 const char *monitor_devices[MAX_MONITOR_DEVICES];
4609 int monitor_flags[MAX_MONITOR_DEVICES];
4610 int monitor_device_index;
4611 const char *serial_devices[MAX_SERIAL_PORTS];
4612 int serial_device_index;
4613 const char *parallel_devices[MAX_PARALLEL_PORTS];
4614 int parallel_device_index;
4615 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4616 int virtio_console_index;
4617 const char *loadvm = NULL;
4618 QEMUMachine *machine;
4619 const char *cpu_model;
4620 #ifndef _WIN32
4621 int fds[2];
4622 #endif
4623 int tb_size;
4624 const char *pid_file = NULL;
4625 const char *incoming = NULL;
4626 #ifndef _WIN32
4627 int fd = 0;
4628 struct passwd *pwd = NULL;
4629 const char *chroot_dir = NULL;
4630 const char *run_as = NULL;
4631 #endif
4632 CPUState *env;
4633 int show_vnc_port = 0;
4634
4635 init_clocks();
4636
4637 qemu_errors_to_file(stderr);
4638 qemu_cache_utils_init(envp);
4639
4640 QLIST_INIT (&vm_change_state_head);
4641 #ifndef _WIN32
4642 {
4643 struct sigaction act;
4644 sigfillset(&act.sa_mask);
4645 act.sa_flags = 0;
4646 act.sa_handler = SIG_IGN;
4647 sigaction(SIGPIPE, &act, NULL);
4648 }
4649 #else
4650 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4651 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4652 QEMU to run on a single CPU */
4653 {
4654 HANDLE h;
4655 DWORD mask, smask;
4656 int i;
4657 h = GetCurrentProcess();
4658 if (GetProcessAffinityMask(h, &mask, &smask)) {
4659 for(i = 0; i < 32; i++) {
4660 if (mask & (1 << i))
4661 break;
4662 }
4663 if (i != 32) {
4664 mask = 1 << i;
4665 SetProcessAffinityMask(h, mask);
4666 }
4667 }
4668 }
4669 #endif
4670
4671 module_call_init(MODULE_INIT_MACHINE);
4672 machine = find_default_machine();
4673 cpu_model = NULL;
4674 initrd_filename = NULL;
4675 ram_size = 0;
4676 snapshot = 0;
4677 kernel_filename = NULL;
4678 kernel_cmdline = "";
4679 cyls = heads = secs = 0;
4680 translation = BIOS_ATA_TRANSLATION_AUTO;
4681
4682 serial_devices[0] = "vc:80Cx24C";
4683 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4684 serial_devices[i] = NULL;
4685 serial_device_index = 0;
4686
4687 parallel_devices[0] = "vc:80Cx24C";
4688 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4689 parallel_devices[i] = NULL;
4690 parallel_device_index = 0;
4691
4692 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4693 virtio_consoles[i] = NULL;
4694 virtio_console_index = 0;
4695
4696 monitor_devices[0] = "vc:80Cx24C";
4697 monitor_flags[0] = MONITOR_IS_DEFAULT | MONITOR_USE_READLINE;
4698 for (i = 1; i < MAX_MONITOR_DEVICES; i++) {
4699 monitor_devices[i] = NULL;
4700 monitor_flags[i] = MONITOR_USE_READLINE;
4701 }
4702 monitor_device_index = 0;
4703
4704 for (i = 0; i < MAX_NODES; i++) {
4705 node_mem[i] = 0;
4706 node_cpumask[i] = 0;
4707 }
4708
4709 nb_numa_nodes = 0;
4710 nb_nics = 0;
4711
4712 tb_size = 0;
4713 autostart= 1;
4714
4715 optind = 1;
4716 for(;;) {
4717 if (optind >= argc)
4718 break;
4719 r = argv[optind];
4720 if (r[0] != '-') {
4721 hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
4722 } else {
4723 const QEMUOption *popt;
4724
4725 optind++;
4726 /* Treat --foo the same as -foo. */
4727 if (r[1] == '-')
4728 r++;
4729 popt = qemu_options;
4730 for(;;) {
4731 if (!popt->name) {
4732 fprintf(stderr, "%s: invalid option -- '%s'\n",
4733 argv[0], r);
4734 exit(1);
4735 }
4736 if (!strcmp(popt->name, r + 1))
4737 break;
4738 popt++;
4739 }
4740 if (popt->flags & HAS_ARG) {
4741 if (optind >= argc) {
4742 fprintf(stderr, "%s: option '%s' requires an argument\n",
4743 argv[0], r);
4744 exit(1);
4745 }
4746 optarg = argv[optind++];
4747 } else {
4748 optarg = NULL;
4749 }
4750
4751 switch(popt->index) {
4752 case QEMU_OPTION_M:
4753 machine = find_machine(optarg);
4754 if (!machine) {
4755 QEMUMachine *m;
4756 printf("Supported machines are:\n");
4757 for(m = first_machine; m != NULL; m = m->next) {
4758 if (m->alias)
4759 printf("%-10s %s (alias of %s)\n",
4760 m->alias, m->desc, m->name);
4761 printf("%-10s %s%s\n",
4762 m->name, m->desc,
4763 m->is_default ? " (default)" : "");
4764 }
4765 exit(*optarg != '?');
4766 }
4767 break;
4768 case QEMU_OPTION_cpu:
4769 /* hw initialization will check this */
4770 if (*optarg == '?') {
4771 /* XXX: implement xxx_cpu_list for targets that still miss it */
4772 #if defined(cpu_list)
4773 cpu_list(stdout, &fprintf);
4774 #endif
4775 exit(0);
4776 } else {
4777 cpu_model = optarg;
4778 }
4779 break;
4780 case QEMU_OPTION_initrd:
4781 initrd_filename = optarg;
4782 break;
4783 case QEMU_OPTION_hda:
4784 if (cyls == 0)
4785 hda_opts = drive_add(optarg, HD_ALIAS, 0);
4786 else
4787 hda_opts = drive_add(optarg, HD_ALIAS
4788 ",cyls=%d,heads=%d,secs=%d%s",
4789 0, cyls, heads, secs,
4790 translation == BIOS_ATA_TRANSLATION_LBA ?
4791 ",trans=lba" :
4792 translation == BIOS_ATA_TRANSLATION_NONE ?
4793 ",trans=none" : "");
4794 break;
4795 case QEMU_OPTION_hdb:
4796 case QEMU_OPTION_hdc:
4797 case QEMU_OPTION_hdd:
4798 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4799 break;
4800 case QEMU_OPTION_drive:
4801 drive_add(NULL, "%s", optarg);
4802 break;
4803 case QEMU_OPTION_set:
4804 if (qemu_set_option(optarg) != 0)
4805 exit(1);
4806 break;
4807 case QEMU_OPTION_mtdblock:
4808 drive_add(optarg, MTD_ALIAS);
4809 break;
4810 case QEMU_OPTION_sd:
4811 drive_add(optarg, SD_ALIAS);
4812 break;
4813 case QEMU_OPTION_pflash:
4814 drive_add(optarg, PFLASH_ALIAS);
4815 break;
4816 case QEMU_OPTION_snapshot:
4817 snapshot = 1;
4818 break;
4819 case QEMU_OPTION_hdachs:
4820 {
4821 const char *p;
4822 p = optarg;
4823 cyls = strtol(p, (char **)&p, 0);
4824 if (cyls < 1 || cyls > 16383)
4825 goto chs_fail;
4826 if (*p != ',')
4827 goto chs_fail;
4828 p++;
4829 heads = strtol(p, (char **)&p, 0);
4830 if (heads < 1 || heads > 16)
4831 goto chs_fail;
4832 if (*p != ',')
4833 goto chs_fail;
4834 p++;
4835 secs = strtol(p, (char **)&p, 0);
4836 if (secs < 1 || secs > 63)
4837 goto chs_fail;
4838 if (*p == ',') {
4839 p++;
4840 if (!strcmp(p, "none"))
4841 translation = BIOS_ATA_TRANSLATION_NONE;
4842 else if (!strcmp(p, "lba"))
4843 translation = BIOS_ATA_TRANSLATION_LBA;
4844 else if (!strcmp(p, "auto"))
4845 translation = BIOS_ATA_TRANSLATION_AUTO;
4846 else
4847 goto chs_fail;
4848 } else if (*p != '\0') {
4849 chs_fail:
4850 fprintf(stderr, "qemu: invalid physical CHS format\n");
4851 exit(1);
4852 }
4853 if (hda_opts != NULL) {
4854 char num[16];
4855 snprintf(num, sizeof(num), "%d", cyls);
4856 qemu_opt_set(hda_opts, "cyls", num);
4857 snprintf(num, sizeof(num), "%d", heads);
4858 qemu_opt_set(hda_opts, "heads", num);
4859 snprintf(num, sizeof(num), "%d", secs);
4860 qemu_opt_set(hda_opts, "secs", num);
4861 if (translation == BIOS_ATA_TRANSLATION_LBA)
4862 qemu_opt_set(hda_opts, "trans", "lba");
4863 if (translation == BIOS_ATA_TRANSLATION_NONE)
4864 qemu_opt_set(hda_opts, "trans", "none");
4865 }
4866 }
4867 break;
4868 case QEMU_OPTION_numa:
4869 if (nb_numa_nodes >= MAX_NODES) {
4870 fprintf(stderr, "qemu: too many NUMA nodes\n");
4871 exit(1);
4872 }
4873 numa_add(optarg);
4874 break;
4875 case QEMU_OPTION_nographic:
4876 display_type = DT_NOGRAPHIC;
4877 break;
4878 #ifdef CONFIG_CURSES
4879 case QEMU_OPTION_curses:
4880 display_type = DT_CURSES;
4881 break;
4882 #endif
4883 case QEMU_OPTION_portrait:
4884 graphic_rotate = 1;
4885 break;
4886 case QEMU_OPTION_kernel:
4887 kernel_filename = optarg;
4888 break;
4889 case QEMU_OPTION_append:
4890 kernel_cmdline = optarg;
4891 break;
4892 case QEMU_OPTION_cdrom:
4893 drive_add(optarg, CDROM_ALIAS);
4894 break;
4895 case QEMU_OPTION_boot:
4896 {
4897 static const char * const params[] = {
4898 "order", "once", "menu", NULL
4899 };
4900 char buf[sizeof(boot_devices)];
4901 char *standard_boot_devices;
4902 int legacy = 0;
4903
4904 if (!strchr(optarg, '=')) {
4905 legacy = 1;
4906 pstrcpy(buf, sizeof(buf), optarg);
4907 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
4908 fprintf(stderr,
4909 "qemu: unknown boot parameter '%s' in '%s'\n",
4910 buf, optarg);
4911 exit(1);
4912 }
4913
4914 if (legacy ||
4915 get_param_value(buf, sizeof(buf), "order", optarg)) {
4916 boot_devices_bitmap = parse_bootdevices(buf);
4917 pstrcpy(boot_devices, sizeof(boot_devices), buf);
4918 }
4919 if (!legacy) {
4920 if (get_param_value(buf, sizeof(buf),
4921 "once", optarg)) {
4922 boot_devices_bitmap |= parse_bootdevices(buf);
4923 standard_boot_devices = qemu_strdup(boot_devices);
4924 pstrcpy(boot_devices, sizeof(boot_devices), buf);
4925 qemu_register_reset(restore_boot_devices,
4926 standard_boot_devices);
4927 }
4928 if (get_param_value(buf, sizeof(buf),
4929 "menu", optarg)) {
4930 if (!strcmp(buf, "on")) {
4931 boot_menu = 1;
4932 } else if (!strcmp(buf, "off")) {
4933 boot_menu = 0;
4934 } else {
4935 fprintf(stderr,
4936 "qemu: invalid option value '%s'\n",
4937 buf);
4938 exit(1);
4939 }
4940 }
4941 }
4942 }
4943 break;
4944 case QEMU_OPTION_fda:
4945 case QEMU_OPTION_fdb:
4946 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4947 break;
4948 #ifdef TARGET_I386
4949 case QEMU_OPTION_no_fd_bootchk:
4950 fd_bootchk = 0;
4951 break;
4952 #endif
4953 case QEMU_OPTION_netdev:
4954 if (net_client_parse(&qemu_netdev_opts, optarg) == -1) {
4955 exit(1);
4956 }
4957 break;
4958 case QEMU_OPTION_net:
4959 if (net_client_parse(&qemu_net_opts, optarg) == -1) {
4960 exit(1);
4961 }
4962 break;
4963 #ifdef CONFIG_SLIRP
4964 case QEMU_OPTION_tftp:
4965 legacy_tftp_prefix = optarg;
4966 break;
4967 case QEMU_OPTION_bootp:
4968 legacy_bootp_filename = optarg;
4969 break;
4970 #ifndef _WIN32
4971 case QEMU_OPTION_smb:
4972 if (net_slirp_smb(optarg) < 0)
4973 exit(1);
4974 break;
4975 #endif
4976 case QEMU_OPTION_redir:
4977 if (net_slirp_redir(optarg) < 0)
4978 exit(1);
4979 break;
4980 #endif
4981 case QEMU_OPTION_bt:
4982 add_device_config(DEV_BT, optarg);
4983 break;
4984 #ifdef HAS_AUDIO
4985 case QEMU_OPTION_audio_help:
4986 AUD_help ();
4987 exit (0);
4988 break;
4989 case QEMU_OPTION_soundhw:
4990 select_soundhw (optarg);
4991 break;
4992 #endif
4993 case QEMU_OPTION_h:
4994 help(0);
4995 break;
4996 case QEMU_OPTION_version:
4997 version();
4998 exit(0);
4999 break;
5000 case QEMU_OPTION_m: {
5001 uint64_t value;
5002 char *ptr;
5003
5004 value = strtoul(optarg, &ptr, 10);
5005 switch (*ptr) {
5006 case 0: case 'M': case 'm':
5007 value <<= 20;
5008 break;
5009 case 'G': case 'g':
5010 value <<= 30;
5011 break;
5012 default:
5013 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5014 exit(1);
5015 }
5016
5017 /* On 32-bit hosts, QEMU is limited by virtual address space */
5018 if (value > (2047 << 20) && HOST_LONG_BITS == 32) {
5019 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5020 exit(1);
5021 }
5022 if (value != (uint64_t)(ram_addr_t)value) {
5023 fprintf(stderr, "qemu: ram size too large\n");
5024 exit(1);
5025 }
5026 ram_size = value;
5027 break;
5028 }
5029 case QEMU_OPTION_d:
5030 {
5031 int mask;
5032 const CPULogItem *item;
5033
5034 mask = cpu_str_to_log_mask(optarg);
5035 if (!mask) {
5036 printf("Log items (comma separated):\n");
5037 for(item = cpu_log_items; item->mask != 0; item++) {
5038 printf("%-10s %s\n", item->name, item->help);
5039 }
5040 exit(1);
5041 }
5042 cpu_set_log(mask);
5043 }
5044 break;
5045 case QEMU_OPTION_s:
5046 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5047 break;
5048 case QEMU_OPTION_gdb:
5049 gdbstub_dev = optarg;
5050 break;
5051 case QEMU_OPTION_L:
5052 data_dir = optarg;
5053 break;
5054 case QEMU_OPTION_bios:
5055 bios_name = optarg;
5056 break;
5057 case QEMU_OPTION_singlestep:
5058 singlestep = 1;
5059 break;
5060 case QEMU_OPTION_S:
5061 autostart = 0;
5062 break;
5063 case QEMU_OPTION_k:
5064 keyboard_layout = optarg;
5065 break;
5066 case QEMU_OPTION_localtime:
5067 rtc_utc = 0;
5068 break;
5069 case QEMU_OPTION_vga:
5070 select_vgahw (optarg);
5071 break;
5072 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5073 case QEMU_OPTION_g:
5074 {
5075 const char *p;
5076 int w, h, depth;
5077 p = optarg;
5078 w = strtol(p, (char **)&p, 10);
5079 if (w <= 0) {
5080 graphic_error:
5081 fprintf(stderr, "qemu: invalid resolution or depth\n");
5082 exit(1);
5083 }
5084 if (*p != 'x')
5085 goto graphic_error;
5086 p++;
5087 h = strtol(p, (char **)&p, 10);
5088 if (h <= 0)
5089 goto graphic_error;
5090 if (*p == 'x') {
5091 p++;
5092 depth = strtol(p, (char **)&p, 10);
5093 if (depth != 8 && depth != 15 && depth != 16 &&
5094 depth != 24 && depth != 32)
5095 goto graphic_error;
5096 } else if (*p == '\0') {
5097 depth = graphic_depth;
5098 } else {
5099 goto graphic_error;
5100 }
5101
5102 graphic_width = w;
5103 graphic_height = h;
5104 graphic_depth = depth;
5105 }
5106 break;
5107 #endif
5108 case QEMU_OPTION_echr:
5109 {
5110 char *r;
5111 term_escape_char = strtol(optarg, &r, 0);
5112 if (r == optarg)
5113 printf("Bad argument to echr\n");
5114 break;
5115 }
5116 case QEMU_OPTION_monitor:
5117 if (monitor_device_index >= MAX_MONITOR_DEVICES) {
5118 fprintf(stderr, "qemu: too many monitor devices\n");
5119 exit(1);
5120 }
5121 monitor_devices[monitor_device_index] =
5122 monitor_cmdline_parse(optarg,
5123 &monitor_flags[monitor_device_index]);
5124 monitor_device_index++;
5125 break;
5126 case QEMU_OPTION_chardev:
5127 opts = qemu_opts_parse(&qemu_chardev_opts, optarg, "backend");
5128 if (!opts) {
5129 fprintf(stderr, "parse error: %s\n", optarg);
5130 exit(1);
5131 }
5132 if (qemu_chr_open_opts(opts, NULL) == NULL) {
5133 exit(1);
5134 }
5135 break;
5136 case QEMU_OPTION_serial:
5137 if (serial_device_index >= MAX_SERIAL_PORTS) {
5138 fprintf(stderr, "qemu: too many serial ports\n");
5139 exit(1);
5140 }
5141 serial_devices[serial_device_index] = optarg;
5142 serial_device_index++;
5143 break;
5144 case QEMU_OPTION_watchdog:
5145 if (watchdog) {
5146 fprintf(stderr,
5147 "qemu: only one watchdog option may be given\n");
5148 return 1;
5149 }
5150 watchdog = optarg;
5151 break;
5152 case QEMU_OPTION_watchdog_action:
5153 if (select_watchdog_action(optarg) == -1) {
5154 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5155 exit(1);
5156 }
5157 break;
5158 case QEMU_OPTION_virtiocon:
5159 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5160 fprintf(stderr, "qemu: too many virtio consoles\n");
5161 exit(1);
5162 }
5163 virtio_consoles[virtio_console_index] = optarg;
5164 virtio_console_index++;
5165 break;
5166 case QEMU_OPTION_parallel:
5167 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5168 fprintf(stderr, "qemu: too many parallel ports\n");
5169 exit(1);
5170 }
5171 parallel_devices[parallel_device_index] = optarg;
5172 parallel_device_index++;
5173 break;
5174 case QEMU_OPTION_loadvm:
5175 loadvm = optarg;
5176 break;
5177 case QEMU_OPTION_full_screen:
5178 full_screen = 1;
5179 break;
5180 #ifdef CONFIG_SDL
5181 case QEMU_OPTION_no_frame:
5182 no_frame = 1;
5183 break;
5184 case QEMU_OPTION_alt_grab:
5185 alt_grab = 1;
5186 break;
5187 case QEMU_OPTION_ctrl_grab:
5188 ctrl_grab = 1;
5189 break;
5190 case QEMU_OPTION_no_quit:
5191 no_quit = 1;
5192 break;
5193 case QEMU_OPTION_sdl:
5194 display_type = DT_SDL;
5195 break;
5196 #endif
5197 case QEMU_OPTION_pidfile:
5198 pid_file = optarg;
5199 break;
5200 #ifdef TARGET_I386
5201 case QEMU_OPTION_win2k_hack:
5202 win2k_install_hack = 1;
5203 break;
5204 case QEMU_OPTION_rtc_td_hack:
5205 rtc_td_hack = 1;
5206 break;
5207 case QEMU_OPTION_acpitable:
5208 if(acpi_table_add(optarg) < 0) {
5209 fprintf(stderr, "Wrong acpi table provided\n");
5210 exit(1);
5211 }
5212 break;
5213 case QEMU_OPTION_smbios:
5214 if(smbios_entry_add(optarg) < 0) {
5215 fprintf(stderr, "Wrong smbios provided\n");
5216 exit(1);
5217 }
5218 break;
5219 #endif
5220 #ifdef CONFIG_KVM
5221 case QEMU_OPTION_enable_kvm:
5222 kvm_allowed = 1;
5223 break;
5224 #endif
5225 case QEMU_OPTION_usb:
5226 usb_enabled = 1;
5227 break;
5228 case QEMU_OPTION_usbdevice:
5229 usb_enabled = 1;
5230 add_device_config(DEV_USB, optarg);
5231 break;
5232 case QEMU_OPTION_device:
5233 if (!qemu_opts_parse(&qemu_device_opts, optarg, "driver")) {
5234 exit(1);
5235 }
5236 break;
5237 case QEMU_OPTION_smp:
5238 smp_parse(optarg);
5239 if (smp_cpus < 1) {
5240 fprintf(stderr, "Invalid number of CPUs\n");
5241 exit(1);
5242 }
5243 if (max_cpus < smp_cpus) {
5244 fprintf(stderr, "maxcpus must be equal to or greater than "
5245 "smp\n");
5246 exit(1);
5247 }
5248 if (max_cpus > 255) {
5249 fprintf(stderr, "Unsupported number of maxcpus\n");
5250 exit(1);
5251 }
5252 break;
5253 case QEMU_OPTION_vnc:
5254 display_type = DT_VNC;
5255 vnc_display = optarg;
5256 break;
5257 #ifdef TARGET_I386
5258 case QEMU_OPTION_no_acpi:
5259 acpi_enabled = 0;
5260 break;
5261 case QEMU_OPTION_no_hpet:
5262 no_hpet = 1;
5263 break;
5264 case QEMU_OPTION_balloon:
5265 if (balloon_parse(optarg) < 0) {
5266 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5267 exit(1);
5268 }
5269 break;
5270 #endif
5271 case QEMU_OPTION_no_reboot:
5272 no_reboot = 1;
5273 break;
5274 case QEMU_OPTION_no_shutdown:
5275 no_shutdown = 1;
5276 break;
5277 case QEMU_OPTION_show_cursor:
5278 cursor_hide = 0;
5279 break;
5280 case QEMU_OPTION_uuid:
5281 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5282 fprintf(stderr, "Fail to parse UUID string."
5283 " Wrong format.\n");
5284 exit(1);
5285 }
5286 break;
5287 #ifndef _WIN32
5288 case QEMU_OPTION_daemonize:
5289 daemonize = 1;
5290 break;
5291 #endif
5292 case QEMU_OPTION_option_rom:
5293 if (nb_option_roms >= MAX_OPTION_ROMS) {
5294 fprintf(stderr, "Too many option ROMs\n");
5295 exit(1);
5296 }
5297 option_rom[nb_option_roms] = optarg;
5298 nb_option_roms++;
5299 break;
5300 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5301 case QEMU_OPTION_semihosting:
5302 semihosting_enabled = 1;
5303 break;
5304 #endif
5305 case QEMU_OPTION_name:
5306 qemu_name = qemu_strdup(optarg);
5307 {
5308 char *p = strchr(qemu_name, ',');
5309 if (p != NULL) {
5310 *p++ = 0;
5311 if (strncmp(p, "process=", 8)) {
5312 fprintf(stderr, "Unknown subargument %s to -name", p);
5313 exit(1);
5314 }
5315 p += 8;
5316 set_proc_name(p);
5317 }
5318 }
5319 break;
5320 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5321 case QEMU_OPTION_prom_env:
5322 if (nb_prom_envs >= MAX_PROM_ENVS) {
5323 fprintf(stderr, "Too many prom variables\n");
5324 exit(1);
5325 }
5326 prom_envs[nb_prom_envs] = optarg;
5327 nb_prom_envs++;
5328 break;
5329 #endif
5330 #ifdef TARGET_ARM
5331 case QEMU_OPTION_old_param:
5332 old_param = 1;
5333 break;
5334 #endif
5335 case QEMU_OPTION_clock:
5336 configure_alarms(optarg);
5337 break;
5338 case QEMU_OPTION_startdate:
5339 configure_rtc_date_offset(optarg, 1);
5340 break;
5341 case QEMU_OPTION_rtc:
5342 opts = qemu_opts_parse(&qemu_rtc_opts, optarg, NULL);
5343 if (!opts) {
5344 fprintf(stderr, "parse error: %s\n", optarg);
5345 exit(1);
5346 }
5347 configure_rtc(opts);
5348 break;
5349 case QEMU_OPTION_tb_size:
5350 tb_size = strtol(optarg, NULL, 0);
5351 if (tb_size < 0)
5352 tb_size = 0;
5353 break;
5354 case QEMU_OPTION_icount:
5355 use_icount = 1;
5356 if (strcmp(optarg, "auto") == 0) {
5357 icount_time_shift = -1;
5358 } else {
5359 icount_time_shift = strtol(optarg, NULL, 0);
5360 }
5361 break;
5362 case QEMU_OPTION_incoming:
5363 incoming = optarg;
5364 break;
5365 #ifndef _WIN32
5366 case QEMU_OPTION_chroot:
5367 chroot_dir = optarg;
5368 break;
5369 case QEMU_OPTION_runas:
5370 run_as = optarg;
5371 break;
5372 #endif
5373 #ifdef CONFIG_XEN
5374 case QEMU_OPTION_xen_domid:
5375 xen_domid = atoi(optarg);
5376 break;
5377 case QEMU_OPTION_xen_create:
5378 xen_mode = XEN_CREATE;
5379 break;
5380 case QEMU_OPTION_xen_attach:
5381 xen_mode = XEN_ATTACH;
5382 break;
5383 #endif
5384 case QEMU_OPTION_readconfig:
5385 {
5386 FILE *fp;
5387 fp = fopen(optarg, "r");
5388 if (fp == NULL) {
5389 fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5390 exit(1);
5391 }
5392 if (qemu_config_parse(fp) != 0) {
5393 exit(1);
5394 }
5395 fclose(fp);
5396 break;
5397 }
5398 case QEMU_OPTION_writeconfig:
5399 {
5400 FILE *fp;
5401 if (strcmp(optarg, "-") == 0) {
5402 fp = stdout;
5403 } else {
5404 fp = fopen(optarg, "w");
5405 if (fp == NULL) {
5406 fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5407 exit(1);
5408 }
5409 }
5410 qemu_config_write(fp);
5411 fclose(fp);
5412 break;
5413 }
5414 }
5415 }
5416 }
5417
5418 /* If no data_dir is specified then try to find it relative to the
5419 executable path. */
5420 if (!data_dir) {
5421 data_dir = find_datadir(argv[0]);
5422 }
5423 /* If all else fails use the install patch specified when building. */
5424 if (!data_dir) {
5425 data_dir = CONFIG_QEMU_SHAREDIR;
5426 }
5427
5428 /*
5429 * Default to max_cpus = smp_cpus, in case the user doesn't
5430 * specify a max_cpus value.
5431 */
5432 if (!max_cpus)
5433 max_cpus = smp_cpus;
5434
5435 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5436 if (smp_cpus > machine->max_cpus) {
5437 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5438 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5439 machine->max_cpus);
5440 exit(1);
5441 }
5442
5443 if (display_type == DT_NOGRAPHIC) {
5444 if (serial_device_index == 0)
5445 serial_devices[0] = "stdio";
5446 if (parallel_device_index == 0)
5447 parallel_devices[0] = "null";
5448 if (strncmp(monitor_devices[0], "vc", 2) == 0) {
5449 monitor_devices[0] = "stdio";
5450 }
5451 }
5452
5453 #ifndef _WIN32
5454 if (daemonize) {
5455 pid_t pid;
5456
5457 if (pipe(fds) == -1)
5458 exit(1);
5459
5460 pid = fork();
5461 if (pid > 0) {
5462 uint8_t status;
5463 ssize_t len;
5464
5465 close(fds[1]);
5466
5467 again:
5468 len = read(fds[0], &status, 1);
5469 if (len == -1 && (errno == EINTR))
5470 goto again;
5471
5472 if (len != 1)
5473 exit(1);
5474 else if (status == 1) {
5475 fprintf(stderr, "Could not acquire pidfile: %s\n", strerror(errno));
5476 exit(1);
5477 } else
5478 exit(0);
5479 } else if (pid < 0)
5480 exit(1);
5481
5482 setsid();
5483
5484 pid = fork();
5485 if (pid > 0)
5486 exit(0);
5487 else if (pid < 0)
5488 exit(1);
5489
5490 umask(027);
5491
5492 signal(SIGTSTP, SIG_IGN);
5493 signal(SIGTTOU, SIG_IGN);
5494 signal(SIGTTIN, SIG_IGN);
5495 }
5496
5497 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5498 if (daemonize) {
5499 uint8_t status = 1;
5500 write(fds[1], &status, 1);
5501 } else
5502 fprintf(stderr, "Could not acquire pid file: %s\n", strerror(errno));
5503 exit(1);
5504 }
5505 #endif
5506
5507 if (kvm_enabled()) {
5508 int ret;
5509
5510 ret = kvm_init(smp_cpus);
5511 if (ret < 0) {
5512 fprintf(stderr, "failed to initialize KVM\n");
5513 exit(1);
5514 }
5515 }
5516
5517 if (qemu_init_main_loop()) {
5518 fprintf(stderr, "qemu_init_main_loop failed\n");
5519 exit(1);
5520 }
5521 linux_boot = (kernel_filename != NULL);
5522
5523 if (!linux_boot && *kernel_cmdline != '\0') {
5524 fprintf(stderr, "-append only allowed with -kernel option\n");
5525 exit(1);
5526 }
5527
5528 if (!linux_boot && initrd_filename != NULL) {
5529 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5530 exit(1);
5531 }
5532
5533 #ifndef _WIN32
5534 /* Win32 doesn't support line-buffering and requires size >= 2 */
5535 setvbuf(stdout, NULL, _IOLBF, 0);
5536 #endif
5537
5538 if (init_timer_alarm() < 0) {
5539 fprintf(stderr, "could not initialize alarm timer\n");
5540 exit(1);
5541 }
5542 if (use_icount && icount_time_shift < 0) {
5543 use_icount = 2;
5544 /* 125MIPS seems a reasonable initial guess at the guest speed.
5545 It will be corrected fairly quickly anyway. */
5546 icount_time_shift = 3;
5547 init_icount_adjust();
5548 }
5549
5550 #ifdef _WIN32
5551 socket_init();
5552 #endif
5553
5554 if (net_init_clients() < 0) {
5555 exit(1);
5556 }
5557
5558 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5559 net_set_boot_mask(net_boot);
5560
5561 /* init the bluetooth world */
5562 if (foreach_device_config(DEV_BT, bt_parse))
5563 exit(1);
5564
5565 /* init the memory */
5566 if (ram_size == 0)
5567 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5568
5569 /* init the dynamic translator */
5570 cpu_exec_init_all(tb_size * 1024 * 1024);
5571
5572 bdrv_init_with_whitelist();
5573
5574 blk_mig_init();
5575
5576 /* we always create the cdrom drive, even if no disk is there */
5577 drive_add(NULL, CDROM_ALIAS);
5578
5579 /* we always create at least one floppy */
5580 drive_add(NULL, FD_ALIAS, 0);
5581
5582 /* we always create one sd slot, even if no card is in it */
5583 drive_add(NULL, SD_ALIAS);
5584
5585 /* open the virtual block devices */
5586 if (snapshot)
5587 qemu_opts_foreach(&qemu_drive_opts, drive_enable_snapshot, NULL, 0);
5588 if (qemu_opts_foreach(&qemu_drive_opts, drive_init_func, machine, 1) != 0)
5589 exit(1);
5590
5591 vmstate_register(0, &vmstate_timers ,&timers_state);
5592 register_savevm_live("ram", 0, 3, NULL, ram_save_live, NULL,
5593 ram_load, NULL);
5594
5595 /* Maintain compatibility with multiple stdio monitors */
5596 if (!strcmp(monitor_devices[0],"stdio")) {
5597 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5598 const char *devname = serial_devices[i];
5599 if (devname && !strcmp(devname,"mon:stdio")) {
5600 monitor_devices[0] = NULL;
5601 break;
5602 } else if (devname && !strcmp(devname,"stdio")) {
5603 monitor_devices[0] = NULL;
5604 serial_devices[i] = "mon:stdio";
5605 break;
5606 }
5607 }
5608 }
5609
5610 if (nb_numa_nodes > 0) {
5611 int i;
5612
5613 if (nb_numa_nodes > smp_cpus) {
5614 nb_numa_nodes = smp_cpus;
5615 }
5616
5617 /* If no memory size if given for any node, assume the default case
5618 * and distribute the available memory equally across all nodes
5619 */
5620 for (i = 0; i < nb_numa_nodes; i++) {
5621 if (node_mem[i] != 0)
5622 break;
5623 }
5624 if (i == nb_numa_nodes) {
5625 uint64_t usedmem = 0;
5626
5627 /* On Linux, the each node's border has to be 8MB aligned,
5628 * the final node gets the rest.
5629 */
5630 for (i = 0; i < nb_numa_nodes - 1; i++) {
5631 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5632 usedmem += node_mem[i];
5633 }
5634 node_mem[i] = ram_size - usedmem;
5635 }
5636
5637 for (i = 0; i < nb_numa_nodes; i++) {
5638 if (node_cpumask[i] != 0)
5639 break;
5640 }
5641 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5642 * must cope with this anyway, because there are BIOSes out there in
5643 * real machines which also use this scheme.
5644 */
5645 if (i == nb_numa_nodes) {
5646 for (i = 0; i < smp_cpus; i++) {
5647 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5648 }
5649 }
5650 }
5651
5652 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5653 const char *devname = monitor_devices[i];
5654 if (devname && strcmp(devname, "none")) {
5655 char label[32];
5656 if (i == 0) {
5657 snprintf(label, sizeof(label), "monitor");
5658 } else {
5659 snprintf(label, sizeof(label), "monitor%d", i);
5660 }
5661 monitor_hds[i] = qemu_chr_open(label, devname, NULL);
5662 if (!monitor_hds[i]) {
5663 fprintf(stderr, "qemu: could not open monitor device '%s'\n",
5664 devname);
5665 exit(1);
5666 }
5667 }
5668 }
5669
5670 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5671 const char *devname = serial_devices[i];
5672 if (devname && strcmp(devname, "none")) {
5673 char label[32];
5674 snprintf(label, sizeof(label), "serial%d", i);
5675 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5676 if (!serial_hds[i]) {
5677 fprintf(stderr, "qemu: could not open serial device '%s': %s\n",
5678 devname, strerror(errno));
5679 exit(1);
5680 }
5681 }
5682 }
5683
5684 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5685 const char *devname = parallel_devices[i];
5686 if (devname && strcmp(devname, "none")) {
5687 char label[32];
5688 snprintf(label, sizeof(label), "parallel%d", i);
5689 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5690 if (!parallel_hds[i]) {
5691 fprintf(stderr, "qemu: could not open parallel device '%s': %s\n",
5692 devname, strerror(errno));
5693 exit(1);
5694 }
5695 }
5696 }
5697
5698 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5699 const char *devname = virtio_consoles[i];
5700 if (devname && strcmp(devname, "none")) {
5701 char label[32];
5702 snprintf(label, sizeof(label), "virtcon%d", i);
5703 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5704 if (!virtcon_hds[i]) {
5705 fprintf(stderr, "qemu: could not open virtio console '%s': %s\n",
5706 devname, strerror(errno));
5707 exit(1);
5708 }
5709 }
5710 }
5711
5712 module_call_init(MODULE_INIT_DEVICE);
5713
5714 if (watchdog) {
5715 i = select_watchdog(watchdog);
5716 if (i > 0)
5717 exit (i == 1 ? 1 : 0);
5718 }
5719
5720 if (machine->compat_props) {
5721 qdev_prop_register_compat(machine->compat_props);
5722 }
5723 machine->init(ram_size, boot_devices,
5724 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5725
5726
5727 #ifndef _WIN32
5728 /* must be after terminal init, SDL library changes signal handlers */
5729 sighandler_setup();
5730 #endif
5731
5732 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5733 for (i = 0; i < nb_numa_nodes; i++) {
5734 if (node_cpumask[i] & (1 << env->cpu_index)) {
5735 env->numa_node = i;
5736 }
5737 }
5738 }
5739
5740 current_machine = machine;
5741
5742 /* init USB devices */
5743 if (usb_enabled) {
5744 if (foreach_device_config(DEV_USB, usb_parse) < 0)
5745 exit(1);
5746 }
5747
5748 /* init generic devices */
5749 if (qemu_opts_foreach(&qemu_device_opts, device_init_func, NULL, 1) != 0)
5750 exit(1);
5751
5752 if (!display_state)
5753 dumb_display_init();
5754 /* just use the first displaystate for the moment */
5755 ds = display_state;
5756
5757 if (display_type == DT_DEFAULT) {
5758 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5759 display_type = DT_SDL;
5760 #else
5761 display_type = DT_VNC;
5762 vnc_display = "localhost:0,to=99";
5763 show_vnc_port = 1;
5764 #endif
5765 }
5766
5767
5768 switch (display_type) {
5769 case DT_NOGRAPHIC:
5770 break;
5771 #if defined(CONFIG_CURSES)
5772 case DT_CURSES:
5773 curses_display_init(ds, full_screen);
5774 break;
5775 #endif
5776 #if defined(CONFIG_SDL)
5777 case DT_SDL:
5778 sdl_display_init(ds, full_screen, no_frame);
5779 break;
5780 #elif defined(CONFIG_COCOA)
5781 case DT_SDL:
5782 cocoa_display_init(ds, full_screen);
5783 break;
5784 #endif
5785 case DT_VNC:
5786 vnc_display_init(ds);
5787 if (vnc_display_open(ds, vnc_display) < 0)
5788 exit(1);
5789
5790 if (show_vnc_port) {
5791 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5792 }
5793 break;
5794 default:
5795 break;
5796 }
5797 dpy_resize(ds);
5798
5799 dcl = ds->listeners;
5800 while (dcl != NULL) {
5801 if (dcl->dpy_refresh != NULL) {
5802 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5803 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5804 }
5805 dcl = dcl->next;
5806 }
5807
5808 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
5809 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5810 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5811 }
5812
5813 text_consoles_set_display(display_state);
5814
5815 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5816 if (monitor_devices[i] && monitor_hds[i]) {
5817 monitor_init(monitor_hds[i], monitor_flags[i]);
5818 }
5819 }
5820
5821 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5822 const char *devname = serial_devices[i];
5823 if (devname && strcmp(devname, "none")) {
5824 if (strstart(devname, "vc", 0))
5825 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5826 }
5827 }
5828
5829 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5830 const char *devname = parallel_devices[i];
5831 if (devname && strcmp(devname, "none")) {
5832 if (strstart(devname, "vc", 0))
5833 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5834 }
5835 }
5836
5837 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5838 const char *devname = virtio_consoles[i];
5839 if (virtcon_hds[i] && devname) {
5840 if (strstart(devname, "vc", 0))
5841 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5842 }
5843 }
5844
5845 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
5846 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
5847 gdbstub_dev);
5848 exit(1);
5849 }
5850
5851 qdev_machine_creation_done();
5852
5853 rom_load_all();
5854
5855 qemu_system_reset();
5856 if (loadvm) {
5857 if (load_vmstate(cur_mon, loadvm) < 0) {
5858 autostart = 0;
5859 }
5860 }
5861
5862 if (incoming) {
5863 qemu_start_incoming_migration(incoming);
5864 } else if (autostart) {
5865 vm_start();
5866 }
5867
5868 #ifndef _WIN32
5869 if (daemonize) {
5870 uint8_t status = 0;
5871 ssize_t len;
5872
5873 again1:
5874 len = write(fds[1], &status, 1);
5875 if (len == -1 && (errno == EINTR))
5876 goto again1;
5877
5878 if (len != 1)
5879 exit(1);
5880
5881 chdir("/");
5882 TFR(fd = open("/dev/null", O_RDWR));
5883 if (fd == -1)
5884 exit(1);
5885 }
5886
5887 if (run_as) {
5888 pwd = getpwnam(run_as);
5889 if (!pwd) {
5890 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
5891 exit(1);
5892 }
5893 }
5894
5895 if (chroot_dir) {
5896 if (chroot(chroot_dir) < 0) {
5897 fprintf(stderr, "chroot failed\n");
5898 exit(1);
5899 }
5900 chdir("/");
5901 }
5902
5903 if (run_as) {
5904 if (setgid(pwd->pw_gid) < 0) {
5905 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
5906 exit(1);
5907 }
5908 if (setuid(pwd->pw_uid) < 0) {
5909 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
5910 exit(1);
5911 }
5912 if (setuid(0) != -1) {
5913 fprintf(stderr, "Dropping privileges failed\n");
5914 exit(1);
5915 }
5916 }
5917
5918 if (daemonize) {
5919 dup2(fd, 0);
5920 dup2(fd, 1);
5921 dup2(fd, 2);
5922
5923 close(fd);
5924 }
5925 #endif
5926
5927 main_loop();
5928 quit_timers();
5929 net_cleanup();
5930
5931 return 0;
5932 }