]> git.proxmox.com Git - qemu.git/blob - vnc-encoding-tight.c
vnc: add lossy option
[qemu.git] / vnc-encoding-tight.c
1 /*
2 * QEMU VNC display driver: tight encoding
3 *
4 * From libvncserver/libvncserver/tight.c
5 * Copyright (C) 2000, 2001 Const Kaplinsky. All Rights Reserved.
6 * Copyright (C) 1999 AT&T Laboratories Cambridge. All Rights Reserved.
7 *
8 * Copyright (C) 2010 Corentin Chary <corentin.chary@gmail.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "qemu-common.h"
30
31 #ifdef CONFIG_VNC_JPEG
32 #include <stdio.h>
33 #include <jpeglib.h>
34 #endif
35
36 #include "bswap.h"
37 #include "qdict.h"
38 #include "qint.h"
39 #include "vnc.h"
40 #include "vnc-encoding-tight.h"
41
42 /* Compression level stuff. The following array contains various
43 encoder parameters for each of 10 compression levels (0..9).
44 Last three parameters correspond to JPEG quality levels (0..9). */
45
46 static const struct {
47 int max_rect_size, max_rect_width;
48 int mono_min_rect_size, gradient_min_rect_size;
49 int idx_zlib_level, mono_zlib_level, raw_zlib_level, gradient_zlib_level;
50 int gradient_threshold, gradient_threshold24;
51 int idx_max_colors_divisor;
52 int jpeg_quality, jpeg_threshold, jpeg_threshold24;
53 } tight_conf[] = {
54 { 512, 32, 6, 65536, 0, 0, 0, 0, 0, 0, 4, 5, 10000, 23000 },
55 { 2048, 128, 6, 65536, 1, 1, 1, 0, 0, 0, 8, 10, 8000, 18000 },
56 { 6144, 256, 8, 65536, 3, 3, 2, 0, 0, 0, 24, 15, 6500, 15000 },
57 { 10240, 1024, 12, 65536, 5, 5, 3, 0, 0, 0, 32, 25, 5000, 12000 },
58 { 16384, 2048, 12, 65536, 6, 6, 4, 0, 0, 0, 32, 37, 4000, 10000 },
59 { 32768, 2048, 12, 4096, 7, 7, 5, 4, 150, 380, 32, 50, 3000, 8000 },
60 { 65536, 2048, 16, 4096, 7, 7, 6, 4, 170, 420, 48, 60, 2000, 5000 },
61 { 65536, 2048, 16, 4096, 8, 8, 7, 5, 180, 450, 64, 70, 1000, 2500 },
62 { 65536, 2048, 32, 8192, 9, 9, 8, 6, 190, 475, 64, 75, 500, 1200 },
63 { 65536, 2048, 32, 8192, 9, 9, 9, 6, 200, 500, 96, 80, 200, 500 }
64 };
65
66 /*
67 * Code to guess if given rectangle is suitable for smooth image
68 * compression (by applying "gradient" filter or JPEG coder).
69 */
70
71 static uint
72 tight_detect_smooth_image24(VncState *vs, int w, int h)
73 {
74 int off;
75 int x, y, d, dx;
76 uint c;
77 uint stats[256];
78 int pixels = 0;
79 int pix, left[3];
80 uint errors;
81 unsigned char *buf = vs->tight.buffer;
82
83 /*
84 * If client is big-endian, color samples begin from the second
85 * byte (offset 1) of a 32-bit pixel value.
86 */
87 off = !!(vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG);
88
89 memset(stats, 0, sizeof (stats));
90
91 for (y = 0, x = 0; y < h && x < w;) {
92 for (d = 0; d < h - y && d < w - x - VNC_TIGHT_DETECT_SUBROW_WIDTH;
93 d++) {
94 for (c = 0; c < 3; c++) {
95 left[c] = buf[((y+d)*w+x+d)*4+off+c] & 0xFF;
96 }
97 for (dx = 1; dx <= VNC_TIGHT_DETECT_SUBROW_WIDTH; dx++) {
98 for (c = 0; c < 3; c++) {
99 pix = buf[((y+d)*w+x+d+dx)*4+off+c] & 0xFF;
100 stats[abs(pix - left[c])]++;
101 left[c] = pix;
102 }
103 pixels++;
104 }
105 }
106 if (w > h) {
107 x += h;
108 y = 0;
109 } else {
110 x = 0;
111 y += w;
112 }
113 }
114
115 /* 95% smooth or more ... */
116 if (stats[0] * 33 / pixels >= 95) {
117 return 0;
118 }
119
120 errors = 0;
121 for (c = 1; c < 8; c++) {
122 errors += stats[c] * (c * c);
123 if (stats[c] == 0 || stats[c] > stats[c-1] * 2) {
124 return 0;
125 }
126 }
127 for (; c < 256; c++) {
128 errors += stats[c] * (c * c);
129 }
130 errors /= (pixels * 3 - stats[0]);
131
132 return errors;
133 }
134
135 #define DEFINE_DETECT_FUNCTION(bpp) \
136 \
137 static uint \
138 tight_detect_smooth_image##bpp(VncState *vs, int w, int h) { \
139 bool endian; \
140 uint##bpp##_t pix; \
141 int max[3], shift[3]; \
142 int x, y, d, dx; \
143 uint c; \
144 uint stats[256]; \
145 int pixels = 0; \
146 int sample, sum, left[3]; \
147 uint errors; \
148 unsigned char *buf = vs->tight.buffer; \
149 \
150 endian = ((vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG) != \
151 (vs->ds->surface->flags & QEMU_BIG_ENDIAN_FLAG)); \
152 \
153 \
154 max[0] = vs->clientds.pf.rmax; \
155 max[1] = vs->clientds.pf.gmax; \
156 max[2] = vs->clientds.pf.bmax; \
157 shift[0] = vs->clientds.pf.rshift; \
158 shift[1] = vs->clientds.pf.gshift; \
159 shift[2] = vs->clientds.pf.bshift; \
160 \
161 memset(stats, 0, sizeof(stats)); \
162 \
163 y = 0, x = 0; \
164 while (y < h && x < w) { \
165 for (d = 0; d < h - y && \
166 d < w - x - VNC_TIGHT_DETECT_SUBROW_WIDTH; d++) { \
167 pix = ((uint##bpp##_t *)buf)[(y+d)*w+x+d]; \
168 if (endian) { \
169 pix = bswap_##bpp(pix); \
170 } \
171 for (c = 0; c < 3; c++) { \
172 left[c] = (int)(pix >> shift[c] & max[c]); \
173 } \
174 for (dx = 1; dx <= VNC_TIGHT_DETECT_SUBROW_WIDTH; \
175 dx++) { \
176 pix = ((uint##bpp##_t *)buf)[(y+d)*w+x+d+dx]; \
177 if (endian) { \
178 pix = bswap_##bpp(pix); \
179 } \
180 sum = 0; \
181 for (c = 0; c < 3; c++) { \
182 sample = (int)(pix >> shift[c] & max[c]); \
183 sum += abs(sample - left[c]); \
184 left[c] = sample; \
185 } \
186 if (sum > 255) { \
187 sum = 255; \
188 } \
189 stats[sum]++; \
190 pixels++; \
191 } \
192 } \
193 if (w > h) { \
194 x += h; \
195 y = 0; \
196 } else { \
197 x = 0; \
198 y += w; \
199 } \
200 } \
201 \
202 if ((stats[0] + stats[1]) * 100 / pixels >= 90) { \
203 return 0; \
204 } \
205 \
206 errors = 0; \
207 for (c = 1; c < 8; c++) { \
208 errors += stats[c] * (c * c); \
209 if (stats[c] == 0 || stats[c] > stats[c-1] * 2) { \
210 return 0; \
211 } \
212 } \
213 for (; c < 256; c++) { \
214 errors += stats[c] * (c * c); \
215 } \
216 errors /= (pixels - stats[0]); \
217 \
218 return errors; \
219 }
220
221 DEFINE_DETECT_FUNCTION(16)
222 DEFINE_DETECT_FUNCTION(32)
223
224 static int
225 tight_detect_smooth_image(VncState *vs, int w, int h)
226 {
227 uint errors;
228 int compression = vs->tight_compression;
229 int quality = vs->tight_quality;
230
231 if (!vs->vd->lossy) {
232 return 0;
233 }
234
235 if (ds_get_bytes_per_pixel(vs->ds) == 1 ||
236 vs->clientds.pf.bytes_per_pixel == 1 ||
237 w < VNC_TIGHT_DETECT_MIN_WIDTH || h < VNC_TIGHT_DETECT_MIN_HEIGHT) {
238 return 0;
239 }
240
241 if (vs->tight_quality != -1) {
242 if (w * h < VNC_TIGHT_JPEG_MIN_RECT_SIZE) {
243 return 0;
244 }
245 } else {
246 if (w * h < tight_conf[compression].gradient_min_rect_size) {
247 return 0;
248 }
249 }
250
251 if (vs->clientds.pf.bytes_per_pixel == 4) {
252 if (vs->tight_pixel24) {
253 errors = tight_detect_smooth_image24(vs, w, h);
254 if (vs->tight_quality != -1) {
255 return (errors < tight_conf[quality].jpeg_threshold24);
256 }
257 return (errors < tight_conf[compression].gradient_threshold24);
258 } else {
259 errors = tight_detect_smooth_image32(vs, w, h);
260 }
261 } else {
262 errors = tight_detect_smooth_image16(vs, w, h);
263 }
264 if (quality != -1) {
265 return (errors < tight_conf[quality].jpeg_threshold);
266 }
267 return (errors < tight_conf[compression].gradient_threshold);
268 }
269
270 /*
271 * Code to determine how many different colors used in rectangle.
272 */
273
274 static void tight_palette_rgb2buf(uint32_t rgb, int bpp, uint8_t buf[6])
275 {
276 memset(buf, 0, 6);
277
278 if (bpp == 32) {
279 buf[0] = ((rgb >> 24) & 0xFF);
280 buf[1] = ((rgb >> 16) & 0xFF);
281 buf[2] = ((rgb >> 8) & 0xFF);
282 buf[3] = ((rgb >> 0) & 0xFF);
283 buf[4] = ((buf[0] & 1) == 0) << 3 | ((buf[1] & 1) == 0) << 2;
284 buf[4]|= ((buf[2] & 1) == 0) << 1 | ((buf[3] & 1) == 0) << 0;
285 buf[0] |= 1;
286 buf[1] |= 1;
287 buf[2] |= 1;
288 buf[3] |= 1;
289 }
290 if (bpp == 16) {
291 buf[0] = ((rgb >> 8) & 0xFF);
292 buf[1] = ((rgb >> 0) & 0xFF);
293 buf[2] = ((buf[0] & 1) == 0) << 1 | ((buf[1] & 1) == 0) << 0;
294 buf[0] |= 1;
295 buf[1] |= 1;
296 }
297 }
298
299 static uint32_t tight_palette_buf2rgb(int bpp, const uint8_t *buf)
300 {
301 uint32_t rgb = 0;
302
303 if (bpp == 32) {
304 rgb |= ((buf[0] & ~1) | !((buf[4] >> 3) & 1)) << 24;
305 rgb |= ((buf[1] & ~1) | !((buf[4] >> 2) & 1)) << 16;
306 rgb |= ((buf[2] & ~1) | !((buf[4] >> 1) & 1)) << 8;
307 rgb |= ((buf[3] & ~1) | !((buf[4] >> 0) & 1)) << 0;
308 }
309 if (bpp == 16) {
310 rgb |= ((buf[0] & ~1) | !((buf[2] >> 1) & 1)) << 8;
311 rgb |= ((buf[1] & ~1) | !((buf[2] >> 0) & 1)) << 0;
312 }
313 return rgb;
314 }
315
316
317 static int tight_palette_insert(QDict *palette, uint32_t rgb, int bpp, int max)
318 {
319 uint8_t key[6];
320 int idx = qdict_size(palette);
321 bool present;
322
323 tight_palette_rgb2buf(rgb, bpp, key);
324 present = qdict_haskey(palette, (char *)key);
325 if (idx >= max && !present) {
326 return 0;
327 }
328 if (!present) {
329 qdict_put(palette, (char *)key, qint_from_int(idx));
330 }
331 return qdict_size(palette);
332 }
333
334 #define DEFINE_FILL_PALETTE_FUNCTION(bpp) \
335 \
336 static int \
337 tight_fill_palette##bpp(VncState *vs, int x, int y, \
338 int max, size_t count, \
339 uint32_t *bg, uint32_t *fg, \
340 struct QDict **palette) { \
341 uint##bpp##_t *data; \
342 uint##bpp##_t c0, c1, ci; \
343 int i, n0, n1; \
344 \
345 data = (uint##bpp##_t *)vs->tight.buffer; \
346 \
347 c0 = data[0]; \
348 i = 1; \
349 while (i < count && data[i] == c0) \
350 i++; \
351 if (i >= count) { \
352 *bg = *fg = c0; \
353 return 1; \
354 } \
355 \
356 if (max < 2) { \
357 return 0; \
358 } \
359 \
360 n0 = i; \
361 c1 = data[i]; \
362 n1 = 0; \
363 for (i++; i < count; i++) { \
364 ci = data[i]; \
365 if (ci == c0) { \
366 n0++; \
367 } else if (ci == c1) { \
368 n1++; \
369 } else \
370 break; \
371 } \
372 if (i >= count) { \
373 if (n0 > n1) { \
374 *bg = (uint32_t)c0; \
375 *fg = (uint32_t)c1; \
376 } else { \
377 *bg = (uint32_t)c1; \
378 *fg = (uint32_t)c0; \
379 } \
380 return 2; \
381 } \
382 \
383 if (max == 2) { \
384 return 0; \
385 } \
386 \
387 *palette = qdict_new(); \
388 tight_palette_insert(*palette, c0, bpp, max); \
389 tight_palette_insert(*palette, c1, bpp, max); \
390 tight_palette_insert(*palette, ci, bpp, max); \
391 \
392 for (i++; i < count; i++) { \
393 if (data[i] == ci) { \
394 continue; \
395 } else { \
396 if (!tight_palette_insert(*palette, (uint32_t)ci, \
397 bpp, max)) { \
398 return 0; \
399 } \
400 ci = data[i]; \
401 } \
402 } \
403 \
404 return qdict_size(*palette); \
405 }
406
407 DEFINE_FILL_PALETTE_FUNCTION(8)
408 DEFINE_FILL_PALETTE_FUNCTION(16)
409 DEFINE_FILL_PALETTE_FUNCTION(32)
410
411 static int tight_fill_palette(VncState *vs, int x, int y,
412 size_t count, uint32_t *bg, uint32_t *fg,
413 struct QDict **palette)
414 {
415 int max;
416
417 max = count / tight_conf[vs->tight_compression].idx_max_colors_divisor;
418 if (max < 2 &&
419 count >= tight_conf[vs->tight_compression].mono_min_rect_size) {
420 max = 2;
421 }
422 if (max >= 256) {
423 max = 256;
424 }
425
426 switch(vs->clientds.pf.bytes_per_pixel) {
427 case 4:
428 return tight_fill_palette32(vs, x, y, max, count, bg, fg, palette);
429 case 2:
430 return tight_fill_palette16(vs, x, y, max, count, bg, fg, palette);
431 default:
432 max = 2;
433 return tight_fill_palette8(vs, x, y, max, count, bg, fg, palette);
434 }
435 return 0;
436 }
437
438 /* Callback to dump a palette with qdict_iter
439 static void print_palette(const char *key, QObject *obj, void *opaque)
440 {
441 uint8_t idx = qint_get_int(qobject_to_qint(obj));
442 uint32_t rgb = tight_palette_buf2rgb(32, (uint8_t *)key);
443
444 fprintf(stderr, "%.2x ", (unsigned char)*key);
445 while (*key++)
446 fprintf(stderr, "%.2x ", (unsigned char)*key);
447
448 fprintf(stderr, ": idx: %x rgb: %x\n", idx, rgb);
449 }
450 */
451
452 /*
453 * Converting truecolor samples into palette indices.
454 */
455 #define DEFINE_IDX_ENCODE_FUNCTION(bpp) \
456 \
457 static void \
458 tight_encode_indexed_rect##bpp(uint8_t *buf, int count, \
459 struct QDict *palette) { \
460 uint##bpp##_t *src; \
461 uint##bpp##_t rgb; \
462 uint8_t key[6]; \
463 int i, rep; \
464 uint8_t idx; \
465 \
466 src = (uint##bpp##_t *) buf; \
467 \
468 for (i = 0; i < count; i++) { \
469 rgb = *src++; \
470 rep = 0; \
471 while (i < count && *src == rgb) { \
472 rep++, src++, i++; \
473 } \
474 tight_palette_rgb2buf(rgb, bpp, key); \
475 if (!qdict_haskey(palette, (char *)key)) { \
476 /* \
477 * Should never happen, but don't break everything \
478 * if it does, use the first color instead \
479 */ \
480 idx = 0; \
481 } else { \
482 idx = qdict_get_int(palette, (char *)key); \
483 } \
484 while (rep >= 0) { \
485 *buf++ = idx; \
486 rep--; \
487 } \
488 } \
489 }
490
491 DEFINE_IDX_ENCODE_FUNCTION(16)
492 DEFINE_IDX_ENCODE_FUNCTION(32)
493
494 #define DEFINE_MONO_ENCODE_FUNCTION(bpp) \
495 \
496 static void \
497 tight_encode_mono_rect##bpp(uint8_t *buf, int w, int h, \
498 uint##bpp##_t bg, uint##bpp##_t fg) { \
499 uint##bpp##_t *ptr; \
500 unsigned int value, mask; \
501 int aligned_width; \
502 int x, y, bg_bits; \
503 \
504 ptr = (uint##bpp##_t *) buf; \
505 aligned_width = w - w % 8; \
506 \
507 for (y = 0; y < h; y++) { \
508 for (x = 0; x < aligned_width; x += 8) { \
509 for (bg_bits = 0; bg_bits < 8; bg_bits++) { \
510 if (*ptr++ != bg) { \
511 break; \
512 } \
513 } \
514 if (bg_bits == 8) { \
515 *buf++ = 0; \
516 continue; \
517 } \
518 mask = 0x80 >> bg_bits; \
519 value = mask; \
520 for (bg_bits++; bg_bits < 8; bg_bits++) { \
521 mask >>= 1; \
522 if (*ptr++ != bg) { \
523 value |= mask; \
524 } \
525 } \
526 *buf++ = (uint8_t)value; \
527 } \
528 \
529 mask = 0x80; \
530 value = 0; \
531 if (x >= w) { \
532 continue; \
533 } \
534 \
535 for (; x < w; x++) { \
536 if (*ptr++ != bg) { \
537 value |= mask; \
538 } \
539 mask >>= 1; \
540 } \
541 *buf++ = (uint8_t)value; \
542 } \
543 }
544
545 DEFINE_MONO_ENCODE_FUNCTION(8)
546 DEFINE_MONO_ENCODE_FUNCTION(16)
547 DEFINE_MONO_ENCODE_FUNCTION(32)
548
549 /*
550 * ``Gradient'' filter for 24-bit color samples.
551 * Should be called only when redMax, greenMax and blueMax are 255.
552 * Color components assumed to be byte-aligned.
553 */
554
555 static void
556 tight_filter_gradient24(VncState *vs, uint8_t *buf, int w, int h)
557 {
558 uint32_t *buf32;
559 uint32_t pix32;
560 int shift[3];
561 int *prev;
562 int here[3], upper[3], left[3], upperleft[3];
563 int prediction;
564 int x, y, c;
565
566 buf32 = (uint32_t *)buf;
567 memset(vs->tight_gradient.buffer, 0, w * 3 * sizeof(int));
568
569 if ((vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG) ==
570 (vs->ds->surface->flags & QEMU_BIG_ENDIAN_FLAG)) {
571 shift[0] = vs->clientds.pf.rshift;
572 shift[1] = vs->clientds.pf.gshift;
573 shift[2] = vs->clientds.pf.bshift;
574 } else {
575 shift[0] = 24 - vs->clientds.pf.rshift;
576 shift[1] = 24 - vs->clientds.pf.gshift;
577 shift[2] = 24 - vs->clientds.pf.bshift;
578 }
579
580 for (y = 0; y < h; y++) {
581 for (c = 0; c < 3; c++) {
582 upper[c] = 0;
583 here[c] = 0;
584 }
585 prev = (int *)vs->tight_gradient.buffer;
586 for (x = 0; x < w; x++) {
587 pix32 = *buf32++;
588 for (c = 0; c < 3; c++) {
589 upperleft[c] = upper[c];
590 left[c] = here[c];
591 upper[c] = *prev;
592 here[c] = (int)(pix32 >> shift[c] & 0xFF);
593 *prev++ = here[c];
594
595 prediction = left[c] + upper[c] - upperleft[c];
596 if (prediction < 0) {
597 prediction = 0;
598 } else if (prediction > 0xFF) {
599 prediction = 0xFF;
600 }
601 *buf++ = (char)(here[c] - prediction);
602 }
603 }
604 }
605 }
606
607
608 /*
609 * ``Gradient'' filter for other color depths.
610 */
611
612 #define DEFINE_GRADIENT_FILTER_FUNCTION(bpp) \
613 \
614 static void \
615 tight_filter_gradient##bpp(VncState *vs, uint##bpp##_t *buf, \
616 int w, int h) { \
617 uint##bpp##_t pix, diff; \
618 bool endian; \
619 int *prev; \
620 int max[3], shift[3]; \
621 int here[3], upper[3], left[3], upperleft[3]; \
622 int prediction; \
623 int x, y, c; \
624 \
625 memset (vs->tight_gradient.buffer, 0, w * 3 * sizeof(int)); \
626 \
627 endian = ((vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG) != \
628 (vs->ds->surface->flags & QEMU_BIG_ENDIAN_FLAG)); \
629 \
630 max[0] = vs->clientds.pf.rmax; \
631 max[1] = vs->clientds.pf.gmax; \
632 max[2] = vs->clientds.pf.bmax; \
633 shift[0] = vs->clientds.pf.rshift; \
634 shift[1] = vs->clientds.pf.gshift; \
635 shift[2] = vs->clientds.pf.bshift; \
636 \
637 for (y = 0; y < h; y++) { \
638 for (c = 0; c < 3; c++) { \
639 upper[c] = 0; \
640 here[c] = 0; \
641 } \
642 prev = (int *)vs->tight_gradient.buffer; \
643 for (x = 0; x < w; x++) { \
644 pix = *buf; \
645 if (endian) { \
646 pix = bswap_##bpp(pix); \
647 } \
648 diff = 0; \
649 for (c = 0; c < 3; c++) { \
650 upperleft[c] = upper[c]; \
651 left[c] = here[c]; \
652 upper[c] = *prev; \
653 here[c] = (int)(pix >> shift[c] & max[c]); \
654 *prev++ = here[c]; \
655 \
656 prediction = left[c] + upper[c] - upperleft[c]; \
657 if (prediction < 0) { \
658 prediction = 0; \
659 } else if (prediction > max[c]) { \
660 prediction = max[c]; \
661 } \
662 diff |= ((here[c] - prediction) & max[c]) \
663 << shift[c]; \
664 } \
665 if (endian) { \
666 diff = bswap_##bpp(diff); \
667 } \
668 *buf++ = diff; \
669 } \
670 } \
671 }
672
673 DEFINE_GRADIENT_FILTER_FUNCTION(16)
674 DEFINE_GRADIENT_FILTER_FUNCTION(32)
675
676 /*
677 * Check if a rectangle is all of the same color. If needSameColor is
678 * set to non-zero, then also check that its color equals to the
679 * *colorPtr value. The result is 1 if the test is successfull, and in
680 * that case new color will be stored in *colorPtr.
681 */
682
683 #define DEFINE_CHECK_SOLID_FUNCTION(bpp) \
684 \
685 static bool \
686 check_solid_tile##bpp(VncState *vs, int x, int y, int w, int h, \
687 uint32_t* color, bool samecolor) \
688 { \
689 VncDisplay *vd = vs->vd; \
690 uint##bpp##_t *fbptr; \
691 uint##bpp##_t c; \
692 int dx, dy; \
693 \
694 fbptr = (uint##bpp##_t *) \
695 (vd->server->data + y * ds_get_linesize(vs->ds) + \
696 x * ds_get_bytes_per_pixel(vs->ds)); \
697 \
698 c = *fbptr; \
699 if (samecolor && (uint32_t)c != *color) { \
700 return false; \
701 } \
702 \
703 for (dy = 0; dy < h; dy++) { \
704 for (dx = 0; dx < w; dx++) { \
705 if (c != fbptr[dx]) { \
706 return false; \
707 } \
708 } \
709 fbptr = (uint##bpp##_t *) \
710 ((uint8_t *)fbptr + ds_get_linesize(vs->ds)); \
711 } \
712 \
713 *color = (uint32_t)c; \
714 return true; \
715 }
716
717 DEFINE_CHECK_SOLID_FUNCTION(32)
718 DEFINE_CHECK_SOLID_FUNCTION(16)
719 DEFINE_CHECK_SOLID_FUNCTION(8)
720
721 static bool check_solid_tile(VncState *vs, int x, int y, int w, int h,
722 uint32_t* color, bool samecolor)
723 {
724 VncDisplay *vd = vs->vd;
725
726 switch(vd->server->pf.bytes_per_pixel) {
727 case 4:
728 return check_solid_tile32(vs, x, y, w, h, color, samecolor);
729 case 2:
730 return check_solid_tile16(vs, x, y, w, h, color, samecolor);
731 default:
732 return check_solid_tile8(vs, x, y, w, h, color, samecolor);
733 }
734 }
735
736 static void find_best_solid_area(VncState *vs, int x, int y, int w, int h,
737 uint32_t color, int *w_ptr, int *h_ptr)
738 {
739 int dx, dy, dw, dh;
740 int w_prev;
741 int w_best = 0, h_best = 0;
742
743 w_prev = w;
744
745 for (dy = y; dy < y + h; dy += VNC_TIGHT_MAX_SPLIT_TILE_SIZE) {
746
747 dh = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, y + h - dy);
748 dw = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, w_prev);
749
750 if (!check_solid_tile(vs, x, dy, dw, dh, &color, true)) {
751 break;
752 }
753
754 for (dx = x + dw; dx < x + w_prev;) {
755 dw = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, x + w_prev - dx);
756
757 if (!check_solid_tile(vs, dx, dy, dw, dh, &color, true)) {
758 break;
759 }
760 dx += dw;
761 }
762
763 w_prev = dx - x;
764 if (w_prev * (dy + dh - y) > w_best * h_best) {
765 w_best = w_prev;
766 h_best = dy + dh - y;
767 }
768 }
769
770 *w_ptr = w_best;
771 *h_ptr = h_best;
772 }
773
774 static void extend_solid_area(VncState *vs, int x, int y, int w, int h,
775 uint32_t color, int *x_ptr, int *y_ptr,
776 int *w_ptr, int *h_ptr)
777 {
778 int cx, cy;
779
780 /* Try to extend the area upwards. */
781 for ( cy = *y_ptr - 1;
782 cy >= y && check_solid_tile(vs, *x_ptr, cy, *w_ptr, 1, &color, true);
783 cy-- );
784 *h_ptr += *y_ptr - (cy + 1);
785 *y_ptr = cy + 1;
786
787 /* ... downwards. */
788 for ( cy = *y_ptr + *h_ptr;
789 cy < y + h &&
790 check_solid_tile(vs, *x_ptr, cy, *w_ptr, 1, &color, true);
791 cy++ );
792 *h_ptr += cy - (*y_ptr + *h_ptr);
793
794 /* ... to the left. */
795 for ( cx = *x_ptr - 1;
796 cx >= x && check_solid_tile(vs, cx, *y_ptr, 1, *h_ptr, &color, true);
797 cx-- );
798 *w_ptr += *x_ptr - (cx + 1);
799 *x_ptr = cx + 1;
800
801 /* ... to the right. */
802 for ( cx = *x_ptr + *w_ptr;
803 cx < x + w &&
804 check_solid_tile(vs, cx, *y_ptr, 1, *h_ptr, &color, true);
805 cx++ );
806 *w_ptr += cx - (*x_ptr + *w_ptr);
807 }
808
809 static int tight_init_stream(VncState *vs, int stream_id,
810 int level, int strategy)
811 {
812 z_streamp zstream = &vs->tight_stream[stream_id];
813
814 if (zstream->opaque == NULL) {
815 int err;
816
817 VNC_DEBUG("VNC: TIGHT: initializing zlib stream %d\n", stream_id);
818 VNC_DEBUG("VNC: TIGHT: opaque = %p | vs = %p\n", zstream->opaque, vs);
819 zstream->zalloc = vnc_zlib_zalloc;
820 zstream->zfree = vnc_zlib_zfree;
821
822 err = deflateInit2(zstream, level, Z_DEFLATED, MAX_WBITS,
823 MAX_MEM_LEVEL, strategy);
824
825 if (err != Z_OK) {
826 fprintf(stderr, "VNC: error initializing zlib\n");
827 return -1;
828 }
829
830 vs->tight_levels[stream_id] = level;
831 zstream->opaque = vs;
832 }
833
834 if (vs->tight_levels[stream_id] != level) {
835 if (deflateParams(zstream, level, strategy) != Z_OK) {
836 return -1;
837 }
838 vs->tight_levels[stream_id] = level;
839 }
840 return 0;
841 }
842
843 static void tight_send_compact_size(VncState *vs, size_t len)
844 {
845 int lpc = 0;
846 int bytes = 0;
847 char buf[3] = {0, 0, 0};
848
849 buf[bytes++] = len & 0x7F;
850 if (len > 0x7F) {
851 buf[bytes-1] |= 0x80;
852 buf[bytes++] = (len >> 7) & 0x7F;
853 if (len > 0x3FFF) {
854 buf[bytes-1] |= 0x80;
855 buf[bytes++] = (len >> 14) & 0xFF;
856 }
857 }
858 for (lpc = 0; lpc < bytes; lpc++) {
859 vnc_write_u8(vs, buf[lpc]);
860 }
861 }
862
863 static int tight_compress_data(VncState *vs, int stream_id, size_t bytes,
864 int level, int strategy)
865 {
866 z_streamp zstream = &vs->tight_stream[stream_id];
867 int previous_out;
868
869 if (bytes < VNC_TIGHT_MIN_TO_COMPRESS) {
870 vnc_write(vs, vs->tight.buffer, vs->tight.offset);
871 return bytes;
872 }
873
874 if (tight_init_stream(vs, stream_id, level, strategy)) {
875 return -1;
876 }
877
878 /* reserve memory in output buffer */
879 buffer_reserve(&vs->tight_zlib, bytes + 64);
880
881 /* set pointers */
882 zstream->next_in = vs->tight.buffer;
883 zstream->avail_in = vs->tight.offset;
884 zstream->next_out = vs->tight_zlib.buffer + vs->tight_zlib.offset;
885 zstream->avail_out = vs->tight_zlib.capacity - vs->tight_zlib.offset;
886 zstream->data_type = Z_BINARY;
887 previous_out = zstream->total_out;
888
889 /* start encoding */
890 if (deflate(zstream, Z_SYNC_FLUSH) != Z_OK) {
891 fprintf(stderr, "VNC: error during tight compression\n");
892 return -1;
893 }
894
895 vs->tight_zlib.offset = vs->tight_zlib.capacity - zstream->avail_out;
896 bytes = zstream->total_out - previous_out;
897
898 tight_send_compact_size(vs, bytes);
899 vnc_write(vs, vs->tight_zlib.buffer, bytes);
900
901 buffer_reset(&vs->tight_zlib);
902
903 return bytes;
904 }
905
906 /*
907 * Subencoding implementations.
908 */
909 static void tight_pack24(VncState *vs, uint8_t *buf, size_t count, size_t *ret)
910 {
911 uint32_t *buf32;
912 uint32_t pix;
913 int rshift, gshift, bshift;
914
915 buf32 = (uint32_t *)buf;
916
917 if ((vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG) ==
918 (vs->ds->surface->flags & QEMU_BIG_ENDIAN_FLAG)) {
919 rshift = vs->clientds.pf.rshift;
920 gshift = vs->clientds.pf.gshift;
921 bshift = vs->clientds.pf.bshift;
922 } else {
923 rshift = 24 - vs->clientds.pf.rshift;
924 gshift = 24 - vs->clientds.pf.gshift;
925 bshift = 24 - vs->clientds.pf.bshift;
926 }
927
928 if (ret) {
929 *ret = count * 3;
930 }
931
932 while (count--) {
933 pix = *buf32++;
934 *buf++ = (char)(pix >> rshift);
935 *buf++ = (char)(pix >> gshift);
936 *buf++ = (char)(pix >> bshift);
937 }
938 }
939
940 static int send_full_color_rect(VncState *vs, int w, int h)
941 {
942 int stream = 0;
943 size_t bytes;
944
945 vnc_write_u8(vs, stream << 4); /* no flushing, no filter */
946
947 if (vs->tight_pixel24) {
948 tight_pack24(vs, vs->tight.buffer, w * h, &vs->tight.offset);
949 bytes = 3;
950 } else {
951 bytes = vs->clientds.pf.bytes_per_pixel;
952 }
953
954 bytes = tight_compress_data(vs, stream, w * h * bytes,
955 tight_conf[vs->tight_compression].raw_zlib_level,
956 Z_DEFAULT_STRATEGY);
957
958 return (bytes >= 0);
959 }
960
961 static int send_solid_rect(VncState *vs)
962 {
963 size_t bytes;
964
965 vnc_write_u8(vs, VNC_TIGHT_FILL << 4); /* no flushing, no filter */
966
967 if (vs->tight_pixel24) {
968 tight_pack24(vs, vs->tight.buffer, 1, &vs->tight.offset);
969 bytes = 3;
970 } else {
971 bytes = vs->clientds.pf.bytes_per_pixel;
972 }
973
974 vnc_write(vs, vs->tight.buffer, bytes);
975 return 1;
976 }
977
978 static int send_mono_rect(VncState *vs, int w, int h, uint32_t bg, uint32_t fg)
979 {
980 size_t bytes;
981 int stream = 1;
982 int level = tight_conf[vs->tight_compression].mono_zlib_level;
983
984 bytes = ((w + 7) / 8) * h;
985
986 vnc_write_u8(vs, (stream | VNC_TIGHT_EXPLICIT_FILTER) << 4);
987 vnc_write_u8(vs, VNC_TIGHT_FILTER_PALETTE);
988 vnc_write_u8(vs, 1);
989
990 switch(vs->clientds.pf.bytes_per_pixel) {
991 case 4:
992 {
993 uint32_t buf[2] = {bg, fg};
994 size_t ret = sizeof (buf);
995
996 if (vs->tight_pixel24) {
997 tight_pack24(vs, (unsigned char*)buf, 2, &ret);
998 }
999 vnc_write(vs, buf, ret);
1000
1001 tight_encode_mono_rect32(vs->tight.buffer, w, h, bg, fg);
1002 break;
1003 }
1004 case 2:
1005 vnc_write(vs, &bg, 2);
1006 vnc_write(vs, &fg, 2);
1007 tight_encode_mono_rect16(vs->tight.buffer, w, h, bg, fg);
1008 break;
1009 default:
1010 vnc_write_u8(vs, bg);
1011 vnc_write_u8(vs, fg);
1012 tight_encode_mono_rect8(vs->tight.buffer, w, h, bg, fg);
1013 break;
1014 }
1015 vs->tight.offset = bytes;
1016
1017 bytes = tight_compress_data(vs, stream, bytes, level, Z_DEFAULT_STRATEGY);
1018 return (bytes >= 0);
1019 }
1020
1021 struct palette_cb_priv {
1022 VncState *vs;
1023 uint8_t *header;
1024 };
1025
1026 static void write_palette(const char *key, QObject *obj, void *opaque)
1027 {
1028 struct palette_cb_priv *priv = opaque;
1029 VncState *vs = priv->vs;
1030 uint32_t bytes = vs->clientds.pf.bytes_per_pixel;
1031 uint8_t idx = qint_get_int(qobject_to_qint(obj));
1032
1033 if (bytes == 4) {
1034 uint32_t color = tight_palette_buf2rgb(32, (uint8_t *)key);
1035
1036 ((uint32_t*)priv->header)[idx] = color;
1037 } else {
1038 uint16_t color = tight_palette_buf2rgb(16, (uint8_t *)key);
1039
1040 ((uint16_t*)priv->header)[idx] = color;
1041 }
1042 }
1043
1044 static bool send_gradient_rect(VncState *vs, int w, int h)
1045 {
1046 int stream = 3;
1047 int level = tight_conf[vs->tight_compression].gradient_zlib_level;
1048 size_t bytes;
1049
1050 if (vs->clientds.pf.bytes_per_pixel == 1)
1051 return send_full_color_rect(vs, w, h);
1052
1053 vnc_write_u8(vs, (stream | VNC_TIGHT_EXPLICIT_FILTER) << 4);
1054 vnc_write_u8(vs, VNC_TIGHT_FILTER_GRADIENT);
1055
1056 buffer_reserve(&vs->tight_gradient, w * 3 * sizeof (int));
1057
1058 if (vs->tight_pixel24) {
1059 tight_filter_gradient24(vs, vs->tight.buffer, w, h);
1060 bytes = 3;
1061 } else if (vs->clientds.pf.bytes_per_pixel == 4) {
1062 tight_filter_gradient32(vs, (uint32_t *)vs->tight.buffer, w, h);
1063 bytes = 4;
1064 } else {
1065 tight_filter_gradient16(vs, (uint16_t *)vs->tight.buffer, w, h);
1066 bytes = 2;
1067 }
1068
1069 buffer_reset(&vs->tight_gradient);
1070
1071 bytes = w * h * bytes;
1072 vs->tight.offset = bytes;
1073
1074 bytes = tight_compress_data(vs, stream, bytes,
1075 level, Z_FILTERED);
1076 return (bytes >= 0);
1077 }
1078
1079 static int send_palette_rect(VncState *vs, int w, int h, struct QDict *palette)
1080 {
1081 int stream = 2;
1082 int level = tight_conf[vs->tight_compression].idx_zlib_level;
1083 int colors;
1084 size_t bytes;
1085
1086 colors = qdict_size(palette);
1087
1088 vnc_write_u8(vs, (stream | VNC_TIGHT_EXPLICIT_FILTER) << 4);
1089 vnc_write_u8(vs, VNC_TIGHT_FILTER_PALETTE);
1090 vnc_write_u8(vs, colors - 1);
1091
1092 switch(vs->clientds.pf.bytes_per_pixel) {
1093 case 4:
1094 {
1095 size_t old_offset, offset;
1096 uint32_t header[qdict_size(palette)];
1097 struct palette_cb_priv priv = { vs, (uint8_t *)header };
1098
1099 old_offset = vs->output.offset;
1100 qdict_iter(palette, write_palette, &priv);
1101 vnc_write(vs, header, sizeof(header));
1102
1103 if (vs->tight_pixel24) {
1104 tight_pack24(vs, vs->output.buffer + old_offset, colors, &offset);
1105 vs->output.offset = old_offset + offset;
1106 }
1107
1108 tight_encode_indexed_rect32(vs->tight.buffer, w * h, palette);
1109 break;
1110 }
1111 case 2:
1112 {
1113 uint16_t header[qdict_size(palette)];
1114 struct palette_cb_priv priv = { vs, (uint8_t *)header };
1115
1116 qdict_iter(palette, write_palette, &priv);
1117 vnc_write(vs, header, sizeof(header));
1118 tight_encode_indexed_rect16(vs->tight.buffer, w * h, palette);
1119 break;
1120 }
1121 default:
1122 return -1; /* No palette for 8bits colors */
1123 break;
1124 }
1125 bytes = w * h;
1126 vs->tight.offset = bytes;
1127
1128 bytes = tight_compress_data(vs, stream, bytes,
1129 level, Z_DEFAULT_STRATEGY);
1130 return (bytes >= 0);
1131 }
1132
1133 /*
1134 * JPEG compression stuff.
1135 */
1136 #ifdef CONFIG_VNC_JPEG
1137 static void jpeg_prepare_row24(VncState *vs, uint8_t *dst, int x, int y,
1138 int count)
1139 {
1140 VncDisplay *vd = vs->vd;
1141 uint32_t *fbptr;
1142 uint32_t pix;
1143
1144 fbptr = (uint32_t *)(vd->server->data + y * ds_get_linesize(vs->ds) +
1145 x * ds_get_bytes_per_pixel(vs->ds));
1146
1147 while (count--) {
1148 pix = *fbptr++;
1149 *dst++ = (uint8_t)(pix >> vs->ds->surface->pf.rshift);
1150 *dst++ = (uint8_t)(pix >> vs->ds->surface->pf.gshift);
1151 *dst++ = (uint8_t)(pix >> vs->ds->surface->pf.bshift);
1152 }
1153 }
1154
1155 #define DEFINE_JPEG_GET_ROW_FUNCTION(bpp) \
1156 \
1157 static void \
1158 jpeg_prepare_row##bpp(VncState *vs, uint8_t *dst, \
1159 int x, int y, int count) \
1160 { \
1161 VncDisplay *vd = vs->vd; \
1162 uint##bpp##_t *fbptr; \
1163 uint##bpp##_t pix; \
1164 int r, g, b; \
1165 \
1166 fbptr = (uint##bpp##_t *) \
1167 (vd->server->data + y * ds_get_linesize(vs->ds) + \
1168 x * ds_get_bytes_per_pixel(vs->ds)); \
1169 \
1170 while (count--) { \
1171 pix = *fbptr++; \
1172 \
1173 r = (int)((pix >> vs->ds->surface->pf.rshift) \
1174 & vs->ds->surface->pf.rmax); \
1175 g = (int)((pix >> vs->ds->surface->pf.gshift) \
1176 & vs->ds->surface->pf.gmax); \
1177 b = (int)((pix >> vs->ds->surface->pf.bshift) \
1178 & vs->ds->surface->pf.bmax); \
1179 \
1180 *dst++ = (uint8_t)((r * 255 + vs->ds->surface->pf.rmax / 2) \
1181 / vs->ds->surface->pf.rmax); \
1182 *dst++ = (uint8_t)((g * 255 + vs->ds->surface->pf.gmax / 2) \
1183 / vs->ds->surface->pf.gmax); \
1184 *dst++ = (uint8_t)((b * 255 + vs->ds->surface->pf.bmax / 2) \
1185 / vs->ds->surface->pf.bmax); \
1186 } \
1187 }
1188
1189 DEFINE_JPEG_GET_ROW_FUNCTION(16)
1190 DEFINE_JPEG_GET_ROW_FUNCTION(32)
1191
1192 static void jpeg_prepare_row(VncState *vs, uint8_t *dst, int x, int y,
1193 int count)
1194 {
1195 if (vs->tight_pixel24)
1196 jpeg_prepare_row24(vs, dst, x, y, count);
1197 else if (ds_get_bytes_per_pixel(vs->ds) == 4)
1198 jpeg_prepare_row32(vs, dst, x, y, count);
1199 else
1200 jpeg_prepare_row16(vs, dst, x, y, count);
1201 }
1202
1203 /*
1204 * Destination manager implementation for JPEG library.
1205 */
1206
1207 /* This is called once per encoding */
1208 static void jpeg_init_destination(j_compress_ptr cinfo)
1209 {
1210 VncState *vs = cinfo->client_data;
1211 Buffer *buffer = &vs->tight_jpeg;
1212
1213 cinfo->dest->next_output_byte = (JOCTET *)buffer->buffer + buffer->offset;
1214 cinfo->dest->free_in_buffer = (size_t)(buffer->capacity - buffer->offset);
1215 }
1216
1217 /* This is called when we ran out of buffer (shouldn't happen!) */
1218 static boolean jpeg_empty_output_buffer(j_compress_ptr cinfo)
1219 {
1220 VncState *vs = cinfo->client_data;
1221 Buffer *buffer = &vs->tight_jpeg;
1222
1223 buffer->offset = buffer->capacity;
1224 buffer_reserve(buffer, 2048);
1225 jpeg_init_destination(cinfo);
1226 return TRUE;
1227 }
1228
1229 /* This is called when we are done processing data */
1230 static void jpeg_term_destination(j_compress_ptr cinfo)
1231 {
1232 VncState *vs = cinfo->client_data;
1233 Buffer *buffer = &vs->tight_jpeg;
1234
1235 buffer->offset = buffer->capacity - cinfo->dest->free_in_buffer;
1236 }
1237
1238 static int send_jpeg_rect(VncState *vs, int x, int y, int w, int h, int quality)
1239 {
1240 struct jpeg_compress_struct cinfo;
1241 struct jpeg_error_mgr jerr;
1242 struct jpeg_destination_mgr manager;
1243 JSAMPROW row[1];
1244 uint8_t *buf;
1245 int dy;
1246
1247 if (ds_get_bytes_per_pixel(vs->ds) == 1)
1248 return send_full_color_rect(vs, w, h);
1249
1250 buf = qemu_malloc(w * 3);
1251 row[0] = buf;
1252 buffer_reserve(&vs->tight_jpeg, 2048);
1253
1254 cinfo.err = jpeg_std_error(&jerr);
1255 jpeg_create_compress(&cinfo);
1256
1257 cinfo.client_data = vs;
1258 cinfo.image_width = w;
1259 cinfo.image_height = h;
1260 cinfo.input_components = 3;
1261 cinfo.in_color_space = JCS_RGB;
1262
1263 jpeg_set_defaults(&cinfo);
1264 jpeg_set_quality(&cinfo, quality, true);
1265
1266 manager.init_destination = jpeg_init_destination;
1267 manager.empty_output_buffer = jpeg_empty_output_buffer;
1268 manager.term_destination = jpeg_term_destination;
1269 cinfo.dest = &manager;
1270
1271 jpeg_start_compress(&cinfo, true);
1272
1273 for (dy = 0; dy < h; dy++) {
1274 jpeg_prepare_row(vs, buf, x, y + dy, w);
1275 jpeg_write_scanlines(&cinfo, row, 1);
1276 }
1277
1278 jpeg_finish_compress(&cinfo);
1279 jpeg_destroy_compress(&cinfo);
1280
1281 vnc_write_u8(vs, VNC_TIGHT_JPEG << 4);
1282
1283 tight_send_compact_size(vs, vs->tight_jpeg.offset);
1284 vnc_write(vs, vs->tight_jpeg.buffer, vs->tight_jpeg.offset);
1285 buffer_reset(&vs->tight_jpeg);
1286
1287 return 1;
1288 }
1289 #endif /* CONFIG_VNC_JPEG */
1290
1291 static void vnc_tight_start(VncState *vs)
1292 {
1293 buffer_reset(&vs->tight);
1294
1295 // make the output buffer be the zlib buffer, so we can compress it later
1296 vs->tight_tmp = vs->output;
1297 vs->output = vs->tight;
1298 }
1299
1300 static void vnc_tight_stop(VncState *vs)
1301 {
1302 // switch back to normal output/zlib buffers
1303 vs->tight = vs->output;
1304 vs->output = vs->tight_tmp;
1305 }
1306
1307 static int send_sub_rect(VncState *vs, int x, int y, int w, int h)
1308 {
1309 struct QDict *palette = NULL;
1310 uint32_t bg = 0, fg = 0;
1311 int colors;
1312 int ret = 0;
1313
1314 vnc_framebuffer_update(vs, x, y, w, h, VNC_ENCODING_TIGHT);
1315
1316 vnc_tight_start(vs);
1317 vnc_raw_send_framebuffer_update(vs, x, y, w, h);
1318 vnc_tight_stop(vs);
1319
1320 colors = tight_fill_palette(vs, x, y, w * h, &fg, &bg, &palette);
1321
1322 if (colors == 0) {
1323 if (tight_detect_smooth_image(vs, w, h)) {
1324 if (vs->tight_quality == -1) {
1325 ret = send_gradient_rect(vs, w, h);
1326 } else {
1327 #ifdef CONFIG_VNC_JPEG
1328 int quality = tight_conf[vs->tight_quality].jpeg_quality;
1329
1330 ret = send_jpeg_rect(vs, x, y, w, h, quality);
1331 #else
1332 ret = send_full_color_rect(vs, w, h);
1333 #endif
1334 }
1335 } else {
1336 ret = send_full_color_rect(vs, w, h);
1337 }
1338 } else if (colors == 1) {
1339 ret = send_solid_rect(vs);
1340 } else if (colors == 2) {
1341 ret = send_mono_rect(vs, w, h, bg, fg);
1342 } else if (colors <= 256) {
1343 #ifdef CONFIG_VNC_JPEG
1344 if (colors > 96 && vs->tight_quality != -1 && vs->tight_quality <= 3 &&
1345 tight_detect_smooth_image(vs, w, h)) {
1346 int quality = tight_conf[vs->tight_quality].jpeg_quality;
1347
1348 ret = send_jpeg_rect(vs, x, y, w, h, quality);
1349 } else {
1350 ret = send_palette_rect(vs, w, h, palette);
1351 }
1352 #else
1353 ret = send_palette_rect(vs, w, h, palette);
1354 #endif
1355 }
1356 QDECREF(palette);
1357 return ret;
1358 }
1359
1360 static int send_sub_rect_solid(VncState *vs, int x, int y, int w, int h)
1361 {
1362 vnc_framebuffer_update(vs, x, y, w, h, VNC_ENCODING_TIGHT);
1363
1364 vnc_tight_start(vs);
1365 vnc_raw_send_framebuffer_update(vs, x, y, w, h);
1366 vnc_tight_stop(vs);
1367
1368 return send_solid_rect(vs);
1369 }
1370
1371 static int send_rect_simple(VncState *vs, int x, int y, int w, int h)
1372 {
1373 int max_size, max_width;
1374 int max_sub_width, max_sub_height;
1375 int dx, dy;
1376 int rw, rh;
1377 int n = 0;
1378
1379 max_size = tight_conf[vs->tight_compression].max_rect_size;
1380 max_width = tight_conf[vs->tight_compression].max_rect_width;
1381
1382 if (w > max_width || w * h > max_size) {
1383 max_sub_width = (w > max_width) ? max_width : w;
1384 max_sub_height = max_size / max_sub_width;
1385
1386 for (dy = 0; dy < h; dy += max_sub_height) {
1387 for (dx = 0; dx < w; dx += max_width) {
1388 rw = MIN(max_sub_width, w - dx);
1389 rh = MIN(max_sub_height, h - dy);
1390 n += send_sub_rect(vs, x+dx, y+dy, rw, rh);
1391 }
1392 }
1393 } else {
1394 n += send_sub_rect(vs, x, y, w, h);
1395 }
1396
1397 return n;
1398 }
1399
1400 static int find_large_solid_color_rect(VncState *vs, int x, int y,
1401 int w, int h, int max_rows)
1402 {
1403 int dx, dy, dw, dh;
1404 int n = 0;
1405
1406 /* Try to find large solid-color areas and send them separately. */
1407
1408 for (dy = y; dy < y + h; dy += VNC_TIGHT_MAX_SPLIT_TILE_SIZE) {
1409
1410 /* If a rectangle becomes too large, send its upper part now. */
1411
1412 if (dy - y >= max_rows) {
1413 n += send_rect_simple(vs, x, y, w, max_rows);
1414 y += max_rows;
1415 h -= max_rows;
1416 }
1417
1418 dh = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, (y + h - dy));
1419
1420 for (dx = x; dx < x + w; dx += VNC_TIGHT_MAX_SPLIT_TILE_SIZE) {
1421 uint32_t color_value;
1422 int x_best, y_best, w_best, h_best;
1423
1424 dw = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, (x + w - dx));
1425
1426 if (!check_solid_tile(vs, dx, dy, dw, dh, &color_value, false)) {
1427 continue ;
1428 }
1429
1430 /* Get dimensions of solid-color area. */
1431
1432 find_best_solid_area(vs, dx, dy, w - (dx - x), h - (dy - y),
1433 color_value, &w_best, &h_best);
1434
1435 /* Make sure a solid rectangle is large enough
1436 (or the whole rectangle is of the same color). */
1437
1438 if (w_best * h_best != w * h &&
1439 w_best * h_best < VNC_TIGHT_MIN_SOLID_SUBRECT_SIZE) {
1440 continue;
1441 }
1442
1443 /* Try to extend solid rectangle to maximum size. */
1444
1445 x_best = dx; y_best = dy;
1446 extend_solid_area(vs, x, y, w, h, color_value,
1447 &x_best, &y_best, &w_best, &h_best);
1448
1449 /* Send rectangles at top and left to solid-color area. */
1450
1451 if (y_best != y) {
1452 n += send_rect_simple(vs, x, y, w, y_best-y);
1453 }
1454 if (x_best != x) {
1455 n += vnc_tight_send_framebuffer_update(vs, x, y_best,
1456 x_best-x, h_best);
1457 }
1458
1459 /* Send solid-color rectangle. */
1460 n += send_sub_rect_solid(vs, x_best, y_best, w_best, h_best);
1461
1462 /* Send remaining rectangles (at right and bottom). */
1463
1464 if (x_best + w_best != x + w) {
1465 n += vnc_tight_send_framebuffer_update(vs, x_best+w_best,
1466 y_best,
1467 w-(x_best-x)-w_best,
1468 h_best);
1469 }
1470 if (y_best + h_best != y + h) {
1471 n += vnc_tight_send_framebuffer_update(vs, x, y_best+h_best,
1472 w, h-(y_best-y)-h_best);
1473 }
1474
1475 /* Return after all recursive calls are done. */
1476 return n;
1477 }
1478 }
1479 return n + send_rect_simple(vs, x, y, w, h);
1480 }
1481
1482 int vnc_tight_send_framebuffer_update(VncState *vs, int x, int y,
1483 int w, int h)
1484 {
1485 int max_rows;
1486
1487 if (vs->clientds.pf.bytes_per_pixel == 4 && vs->clientds.pf.rmax == 0xFF &&
1488 vs->clientds.pf.bmax == 0xFF && vs->clientds.pf.gmax == 0xFF) {
1489 vs->tight_pixel24 = true;
1490 } else {
1491 vs->tight_pixel24 = false;
1492 }
1493
1494 if (w * h < VNC_TIGHT_MIN_SPLIT_RECT_SIZE)
1495 return send_rect_simple(vs, x, y, w, h);
1496
1497 /* Calculate maximum number of rows in one non-solid rectangle. */
1498
1499 max_rows = tight_conf[vs->tight_compression].max_rect_size;
1500 max_rows /= MIN(tight_conf[vs->tight_compression].max_rect_width, w);
1501
1502 return find_large_solid_color_rect(vs, x, y, w, h, max_rows);
1503 }
1504
1505 void vnc_tight_clear(VncState *vs)
1506 {
1507 int i;
1508 for (i=0; i<ARRAY_SIZE(vs->tight_stream); i++) {
1509 if (vs->tight_stream[i].opaque) {
1510 deflateEnd(&vs->tight_stream[i]);
1511 }
1512 }
1513
1514 buffer_free(&vs->tight);
1515 buffer_free(&vs->tight_zlib);
1516 buffer_free(&vs->tight_gradient);
1517 #ifdef CONFIG_VNC_JPEG
1518 buffer_free(&vs->tight_jpeg);
1519 #endif
1520 }