]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block: fix accounting bug on cross partition merges
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
55782138
LZ
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/block.h>
1da177e4 33
8324aa91
JA
34#include "blk.h"
35
d07335e5 36EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 37EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 39
165125e1 40static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
41
42/*
43 * For the allocated request tables
44 */
5ece6c52 45static struct kmem_cache *request_cachep;
1da177e4
LT
46
47/*
48 * For queue allocation
49 */
6728cb0e 50struct kmem_cache *blk_requestq_cachep;
1da177e4 51
1da177e4
LT
52/*
53 * Controlling structure to kblockd
54 */
ff856bad 55static struct workqueue_struct *kblockd_workqueue;
1da177e4 56
26b8256e
JA
57static void drive_stat_acct(struct request *rq, int new_io)
58{
28f13702 59 struct hd_struct *part;
26b8256e 60 int rw = rq_data_dir(rq);
c9959059 61 int cpu;
26b8256e 62
c2553b58 63 if (!blk_do_io_stat(rq))
26b8256e
JA
64 return;
65
074a7aca 66 cpu = part_stat_lock();
c9959059 67
09e099d4
JM
68 if (!new_io) {
69 part = rq->part;
074a7aca 70 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
71 } else {
72 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
73 if (!kref_test_and_get(&part->ref)) {
74 /*
75 * The partition is already being removed,
76 * the request will be accounted on the disk only
77 *
78 * We take a reference on disk->part0 although that
79 * partition will never be deleted, so we can treat
80 * it as any other partition.
81 */
82 part = &rq->rq_disk->part0;
83 kref_get(&part->ref);
84 }
074a7aca 85 part_round_stats(cpu, part);
316d315b 86 part_inc_in_flight(part, rw);
09e099d4 87 rq->part = part;
26b8256e 88 }
e71bf0d0 89
074a7aca 90 part_stat_unlock();
26b8256e
JA
91}
92
8324aa91 93void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
94{
95 int nr;
96
97 nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 if (nr > q->nr_requests)
99 nr = q->nr_requests;
100 q->nr_congestion_on = nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 if (nr < 1)
104 nr = 1;
105 q->nr_congestion_off = nr;
106}
107
1da177e4
LT
108/**
109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110 * @bdev: device
111 *
112 * Locates the passed device's request queue and returns the address of its
113 * backing_dev_info
114 *
115 * Will return NULL if the request queue cannot be located.
116 */
117struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
118{
119 struct backing_dev_info *ret = NULL;
165125e1 120 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
121
122 if (q)
123 ret = &q->backing_dev_info;
124 return ret;
125}
1da177e4
LT
126EXPORT_SYMBOL(blk_get_backing_dev_info);
127
2a4aa30c 128void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 129{
1afb20f3
FT
130 memset(rq, 0, sizeof(*rq));
131
1da177e4 132 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 133 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 134 rq->cpu = -1;
63a71386 135 rq->q = q;
a2dec7b3 136 rq->__sector = (sector_t) -1;
2e662b65
JA
137 INIT_HLIST_NODE(&rq->hash);
138 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 139 rq->cmd = rq->__cmd;
e2494e1b 140 rq->cmd_len = BLK_MAX_CDB;
63a71386 141 rq->tag = -1;
1da177e4 142 rq->ref_count = 1;
b243ddcb 143 rq->start_time = jiffies;
9195291e 144 set_start_time_ns(rq);
09e099d4 145 rq->part = NULL;
1da177e4 146}
2a4aa30c 147EXPORT_SYMBOL(blk_rq_init);
1da177e4 148
5bb23a68
N
149static void req_bio_endio(struct request *rq, struct bio *bio,
150 unsigned int nbytes, int error)
1da177e4 151{
165125e1 152 struct request_queue *q = rq->q;
797e7dbb 153
dd4c133f 154 if (&q->flush_rq != rq) {
5bb23a68
N
155 if (error)
156 clear_bit(BIO_UPTODATE, &bio->bi_flags);
157 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
158 error = -EIO;
797e7dbb 159
5bb23a68 160 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 161 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 162 __func__, nbytes, bio->bi_size);
5bb23a68
N
163 nbytes = bio->bi_size;
164 }
797e7dbb 165
08bafc03
KM
166 if (unlikely(rq->cmd_flags & REQ_QUIET))
167 set_bit(BIO_QUIET, &bio->bi_flags);
168
5bb23a68
N
169 bio->bi_size -= nbytes;
170 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
171
172 if (bio_integrity(bio))
173 bio_integrity_advance(bio, nbytes);
174
5bb23a68 175 if (bio->bi_size == 0)
6712ecf8 176 bio_endio(bio, error);
5bb23a68 177 } else {
5bb23a68 178 /*
dd4c133f
TH
179 * Okay, this is the sequenced flush request in
180 * progress, just record the error;
5bb23a68 181 */
dd4c133f
TH
182 if (error && !q->flush_err)
183 q->flush_err = error;
5bb23a68 184 }
1da177e4 185}
1da177e4 186
1da177e4
LT
187void blk_dump_rq_flags(struct request *rq, char *msg)
188{
189 int bit;
190
6728cb0e 191 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
192 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
193 rq->cmd_flags);
1da177e4 194
83096ebf
TH
195 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
196 (unsigned long long)blk_rq_pos(rq),
197 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 198 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 199 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 200
33659ebb 201 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 202 printk(KERN_INFO " cdb: ");
d34c87e4 203 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
204 printk("%02x ", rq->cmd[bit]);
205 printk("\n");
206 }
207}
1da177e4
LT
208EXPORT_SYMBOL(blk_dump_rq_flags);
209
1da177e4
LT
210/*
211 * "plug" the device if there are no outstanding requests: this will
212 * force the transfer to start only after we have put all the requests
213 * on the list.
214 *
215 * This is called with interrupts off and no requests on the queue and
216 * with the queue lock held.
217 */
165125e1 218void blk_plug_device(struct request_queue *q)
1da177e4
LT
219{
220 WARN_ON(!irqs_disabled());
221
222 /*
223 * don't plug a stopped queue, it must be paired with blk_start_queue()
224 * which will restart the queueing
225 */
7daac490 226 if (blk_queue_stopped(q))
1da177e4
LT
227 return;
228
e48ec690 229 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 230 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
5f3ea37c 231 trace_block_plug(q);
2056a782 232 }
1da177e4 233}
1da177e4
LT
234EXPORT_SYMBOL(blk_plug_device);
235
6c5e0c4d
JA
236/**
237 * blk_plug_device_unlocked - plug a device without queue lock held
238 * @q: The &struct request_queue to plug
239 *
240 * Description:
241 * Like @blk_plug_device(), but grabs the queue lock and disables
242 * interrupts.
243 **/
244void blk_plug_device_unlocked(struct request_queue *q)
245{
246 unsigned long flags;
247
248 spin_lock_irqsave(q->queue_lock, flags);
249 blk_plug_device(q);
250 spin_unlock_irqrestore(q->queue_lock, flags);
251}
252EXPORT_SYMBOL(blk_plug_device_unlocked);
253
1da177e4
LT
254/*
255 * remove the queue from the plugged list, if present. called with
256 * queue lock held and interrupts disabled.
257 */
165125e1 258int blk_remove_plug(struct request_queue *q)
1da177e4
LT
259{
260 WARN_ON(!irqs_disabled());
261
e48ec690 262 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
263 return 0;
264
265 del_timer(&q->unplug_timer);
266 return 1;
267}
1da177e4
LT
268EXPORT_SYMBOL(blk_remove_plug);
269
270/*
271 * remove the plug and let it rip..
272 */
165125e1 273void __generic_unplug_device(struct request_queue *q)
1da177e4 274{
7daac490 275 if (unlikely(blk_queue_stopped(q)))
1da177e4 276 return;
a31a9738 277 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
1da177e4
LT
278 return;
279
22e2c507 280 q->request_fn(q);
1da177e4 281}
1da177e4
LT
282
283/**
284 * generic_unplug_device - fire a request queue
165125e1 285 * @q: The &struct request_queue in question
1da177e4
LT
286 *
287 * Description:
288 * Linux uses plugging to build bigger requests queues before letting
289 * the device have at them. If a queue is plugged, the I/O scheduler
290 * is still adding and merging requests on the queue. Once the queue
291 * gets unplugged, the request_fn defined for the queue is invoked and
292 * transfers started.
293 **/
165125e1 294void generic_unplug_device(struct request_queue *q)
1da177e4 295{
dbaf2c00
JA
296 if (blk_queue_plugged(q)) {
297 spin_lock_irq(q->queue_lock);
298 __generic_unplug_device(q);
299 spin_unlock_irq(q->queue_lock);
300 }
1da177e4
LT
301}
302EXPORT_SYMBOL(generic_unplug_device);
303
304static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
305 struct page *page)
306{
165125e1 307 struct request_queue *q = bdi->unplug_io_data;
1da177e4 308
2ad8b1ef 309 blk_unplug(q);
1da177e4
LT
310}
311
86db1e29 312void blk_unplug_work(struct work_struct *work)
1da177e4 313{
165125e1
JA
314 struct request_queue *q =
315 container_of(work, struct request_queue, unplug_work);
1da177e4 316
5f3ea37c 317 trace_block_unplug_io(q);
1da177e4
LT
318 q->unplug_fn(q);
319}
320
86db1e29 321void blk_unplug_timeout(unsigned long data)
1da177e4 322{
165125e1 323 struct request_queue *q = (struct request_queue *)data;
1da177e4 324
5f3ea37c 325 trace_block_unplug_timer(q);
18887ad9 326 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
327}
328
2ad8b1ef
AB
329void blk_unplug(struct request_queue *q)
330{
331 /*
332 * devices don't necessarily have an ->unplug_fn defined
333 */
334 if (q->unplug_fn) {
5f3ea37c 335 trace_block_unplug_io(q);
2ad8b1ef
AB
336 q->unplug_fn(q);
337 }
338}
339EXPORT_SYMBOL(blk_unplug);
340
1da177e4
LT
341/**
342 * blk_start_queue - restart a previously stopped queue
165125e1 343 * @q: The &struct request_queue in question
1da177e4
LT
344 *
345 * Description:
346 * blk_start_queue() will clear the stop flag on the queue, and call
347 * the request_fn for the queue if it was in a stopped state when
348 * entered. Also see blk_stop_queue(). Queue lock must be held.
349 **/
165125e1 350void blk_start_queue(struct request_queue *q)
1da177e4 351{
a038e253
PBG
352 WARN_ON(!irqs_disabled());
353
75ad23bc 354 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
a538cd03 355 __blk_run_queue(q);
1da177e4 356}
1da177e4
LT
357EXPORT_SYMBOL(blk_start_queue);
358
359/**
360 * blk_stop_queue - stop a queue
165125e1 361 * @q: The &struct request_queue in question
1da177e4
LT
362 *
363 * Description:
364 * The Linux block layer assumes that a block driver will consume all
365 * entries on the request queue when the request_fn strategy is called.
366 * Often this will not happen, because of hardware limitations (queue
367 * depth settings). If a device driver gets a 'queue full' response,
368 * or if it simply chooses not to queue more I/O at one point, it can
369 * call this function to prevent the request_fn from being called until
370 * the driver has signalled it's ready to go again. This happens by calling
371 * blk_start_queue() to restart queue operations. Queue lock must be held.
372 **/
165125e1 373void blk_stop_queue(struct request_queue *q)
1da177e4
LT
374{
375 blk_remove_plug(q);
75ad23bc 376 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
377}
378EXPORT_SYMBOL(blk_stop_queue);
379
380/**
381 * blk_sync_queue - cancel any pending callbacks on a queue
382 * @q: the queue
383 *
384 * Description:
385 * The block layer may perform asynchronous callback activity
386 * on a queue, such as calling the unplug function after a timeout.
387 * A block device may call blk_sync_queue to ensure that any
388 * such activity is cancelled, thus allowing it to release resources
59c51591 389 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
390 * that its ->make_request_fn will not re-add plugging prior to calling
391 * this function.
392 *
393 */
394void blk_sync_queue(struct request_queue *q)
395{
396 del_timer_sync(&q->unplug_timer);
70ed28b9 397 del_timer_sync(&q->timeout);
64d01dc9 398 cancel_work_sync(&q->unplug_work);
e43473b7 399 throtl_shutdown_timer_wq(q);
1da177e4
LT
400}
401EXPORT_SYMBOL(blk_sync_queue);
402
403/**
80a4b58e 404 * __blk_run_queue - run a single device queue
1da177e4 405 * @q: The queue to run
80a4b58e
JA
406 *
407 * Description:
408 * See @blk_run_queue. This variant must be called with the queue lock
409 * held and interrupts disabled.
410 *
1da177e4 411 */
75ad23bc 412void __blk_run_queue(struct request_queue *q)
1da177e4 413{
1da177e4 414 blk_remove_plug(q);
dac07ec1 415
a538cd03
TH
416 if (unlikely(blk_queue_stopped(q)))
417 return;
418
419 if (elv_queue_empty(q))
420 return;
421
dac07ec1
JA
422 /*
423 * Only recurse once to avoid overrunning the stack, let the unplug
424 * handling reinvoke the handler shortly if we already got there.
425 */
a538cd03
TH
426 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
427 q->request_fn(q);
428 queue_flag_clear(QUEUE_FLAG_REENTER, q);
429 } else {
430 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
431 kblockd_schedule_work(q, &q->unplug_work);
432 }
75ad23bc
NP
433}
434EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 435
75ad23bc
NP
436/**
437 * blk_run_queue - run a single device queue
438 * @q: The queue to run
80a4b58e
JA
439 *
440 * Description:
441 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 442 * May be used to restart queueing when a request has completed.
75ad23bc
NP
443 */
444void blk_run_queue(struct request_queue *q)
445{
446 unsigned long flags;
447
448 spin_lock_irqsave(q->queue_lock, flags);
449 __blk_run_queue(q);
1da177e4
LT
450 spin_unlock_irqrestore(q->queue_lock, flags);
451}
452EXPORT_SYMBOL(blk_run_queue);
453
165125e1 454void blk_put_queue(struct request_queue *q)
483f4afc
AV
455{
456 kobject_put(&q->kobj);
457}
483f4afc 458
6728cb0e 459void blk_cleanup_queue(struct request_queue *q)
483f4afc 460{
e3335de9
JA
461 /*
462 * We know we have process context here, so we can be a little
463 * cautious and ensure that pending block actions on this device
464 * are done before moving on. Going into this function, we should
465 * not have processes doing IO to this device.
466 */
467 blk_sync_queue(q);
468
31373d09 469 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
483f4afc 470 mutex_lock(&q->sysfs_lock);
75ad23bc 471 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
472 mutex_unlock(&q->sysfs_lock);
473
474 if (q->elevator)
475 elevator_exit(q->elevator);
476
477 blk_put_queue(q);
478}
1da177e4
LT
479EXPORT_SYMBOL(blk_cleanup_queue);
480
165125e1 481static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
482{
483 struct request_list *rl = &q->rq;
484
1abec4fd
MS
485 if (unlikely(rl->rq_pool))
486 return 0;
487
1faa16d2
JA
488 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
489 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 490 rl->elvpriv = 0;
1faa16d2
JA
491 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
492 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 493
1946089a
CL
494 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
495 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
496
497 if (!rl->rq_pool)
498 return -ENOMEM;
499
500 return 0;
501}
502
165125e1 503struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 504{
1946089a
CL
505 return blk_alloc_queue_node(gfp_mask, -1);
506}
507EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 508
165125e1 509struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 510{
165125e1 511 struct request_queue *q;
e0bf68dd 512 int err;
1946089a 513
8324aa91 514 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 515 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
516 if (!q)
517 return NULL;
518
e0bf68dd
PZ
519 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
520 q->backing_dev_info.unplug_io_data = q;
0989a025
JA
521 q->backing_dev_info.ra_pages =
522 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
523 q->backing_dev_info.state = 0;
524 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 525 q->backing_dev_info.name = "block";
0989a025 526
e0bf68dd
PZ
527 err = bdi_init(&q->backing_dev_info);
528 if (err) {
8324aa91 529 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
530 return NULL;
531 }
532
e43473b7
VG
533 if (blk_throtl_init(q)) {
534 kmem_cache_free(blk_requestq_cachep, q);
535 return NULL;
536 }
537
31373d09
MG
538 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
539 laptop_mode_timer_fn, (unsigned long) q);
1da177e4 540 init_timer(&q->unplug_timer);
242f9dcb
JA
541 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
542 INIT_LIST_HEAD(&q->timeout_list);
dd4c133f 543 INIT_LIST_HEAD(&q->pending_flushes);
713ada9b 544 INIT_WORK(&q->unplug_work, blk_unplug_work);
483f4afc 545
8324aa91 546 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 547
483f4afc 548 mutex_init(&q->sysfs_lock);
e7e72bf6 549 spin_lock_init(&q->__queue_lock);
483f4afc 550
1da177e4
LT
551 return q;
552}
1946089a 553EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
554
555/**
556 * blk_init_queue - prepare a request queue for use with a block device
557 * @rfn: The function to be called to process requests that have been
558 * placed on the queue.
559 * @lock: Request queue spin lock
560 *
561 * Description:
562 * If a block device wishes to use the standard request handling procedures,
563 * which sorts requests and coalesces adjacent requests, then it must
564 * call blk_init_queue(). The function @rfn will be called when there
565 * are requests on the queue that need to be processed. If the device
566 * supports plugging, then @rfn may not be called immediately when requests
567 * are available on the queue, but may be called at some time later instead.
568 * Plugged queues are generally unplugged when a buffer belonging to one
569 * of the requests on the queue is needed, or due to memory pressure.
570 *
571 * @rfn is not required, or even expected, to remove all requests off the
572 * queue, but only as many as it can handle at a time. If it does leave
573 * requests on the queue, it is responsible for arranging that the requests
574 * get dealt with eventually.
575 *
576 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
577 * request queue; this lock will be taken also from interrupt context, so irq
578 * disabling is needed for it.
1da177e4 579 *
710027a4 580 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
581 * it didn't succeed.
582 *
583 * Note:
584 * blk_init_queue() must be paired with a blk_cleanup_queue() call
585 * when the block device is deactivated (such as at module unload).
586 **/
1946089a 587
165125e1 588struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 589{
1946089a
CL
590 return blk_init_queue_node(rfn, lock, -1);
591}
592EXPORT_SYMBOL(blk_init_queue);
593
165125e1 594struct request_queue *
1946089a
CL
595blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
596{
c86d1b8a 597 struct request_queue *uninit_q, *q;
1da177e4 598
c86d1b8a
MS
599 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
600 if (!uninit_q)
601 return NULL;
602
603 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
604 if (!q)
605 blk_cleanup_queue(uninit_q);
606
607 return q;
01effb0d
MS
608}
609EXPORT_SYMBOL(blk_init_queue_node);
610
611struct request_queue *
612blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
613 spinlock_t *lock)
614{
615 return blk_init_allocated_queue_node(q, rfn, lock, -1);
616}
617EXPORT_SYMBOL(blk_init_allocated_queue);
618
619struct request_queue *
620blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
621 spinlock_t *lock, int node_id)
622{
1da177e4
LT
623 if (!q)
624 return NULL;
625
1946089a 626 q->node = node_id;
c86d1b8a 627 if (blk_init_free_list(q))
8669aafd 628 return NULL;
1da177e4
LT
629
630 q->request_fn = rfn;
1da177e4 631 q->prep_rq_fn = NULL;
28018c24 632 q->unprep_rq_fn = NULL;
1da177e4 633 q->unplug_fn = generic_unplug_device;
bc58ba94 634 q->queue_flags = QUEUE_FLAG_DEFAULT;
1da177e4
LT
635 q->queue_lock = lock;
636
f3b144aa
JA
637 /*
638 * This also sets hw/phys segments, boundary and size
639 */
1da177e4 640 blk_queue_make_request(q, __make_request);
1da177e4 641
44ec9542
AS
642 q->sg_reserved_size = INT_MAX;
643
1da177e4
LT
644 /*
645 * all done
646 */
647 if (!elevator_init(q, NULL)) {
648 blk_queue_congestion_threshold(q);
649 return q;
650 }
651
1da177e4
LT
652 return NULL;
653}
01effb0d 654EXPORT_SYMBOL(blk_init_allocated_queue_node);
1da177e4 655
165125e1 656int blk_get_queue(struct request_queue *q)
1da177e4 657{
fde6ad22 658 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 659 kobject_get(&q->kobj);
1da177e4
LT
660 return 0;
661 }
662
663 return 1;
664}
1da177e4 665
165125e1 666static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 667{
4aff5e23 668 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 669 elv_put_request(q, rq);
1da177e4
LT
670 mempool_free(rq, q->rq.rq_pool);
671}
672
1ea25ecb 673static struct request *
42dad764 674blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
675{
676 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
677
678 if (!rq)
679 return NULL;
680
2a4aa30c 681 blk_rq_init(q, rq);
1afb20f3 682
42dad764 683 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 684
cb98fc8b 685 if (priv) {
cb78b285 686 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
687 mempool_free(rq, q->rq.rq_pool);
688 return NULL;
689 }
4aff5e23 690 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 691 }
1da177e4 692
cb98fc8b 693 return rq;
1da177e4
LT
694}
695
696/*
697 * ioc_batching returns true if the ioc is a valid batching request and
698 * should be given priority access to a request.
699 */
165125e1 700static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
701{
702 if (!ioc)
703 return 0;
704
705 /*
706 * Make sure the process is able to allocate at least 1 request
707 * even if the batch times out, otherwise we could theoretically
708 * lose wakeups.
709 */
710 return ioc->nr_batch_requests == q->nr_batching ||
711 (ioc->nr_batch_requests > 0
712 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
713}
714
715/*
716 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
717 * will cause the process to be a "batcher" on all queues in the system. This
718 * is the behaviour we want though - once it gets a wakeup it should be given
719 * a nice run.
720 */
165125e1 721static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
722{
723 if (!ioc || ioc_batching(q, ioc))
724 return;
725
726 ioc->nr_batch_requests = q->nr_batching;
727 ioc->last_waited = jiffies;
728}
729
1faa16d2 730static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
731{
732 struct request_list *rl = &q->rq;
733
1faa16d2
JA
734 if (rl->count[sync] < queue_congestion_off_threshold(q))
735 blk_clear_queue_congested(q, sync);
1da177e4 736
1faa16d2
JA
737 if (rl->count[sync] + 1 <= q->nr_requests) {
738 if (waitqueue_active(&rl->wait[sync]))
739 wake_up(&rl->wait[sync]);
1da177e4 740
1faa16d2 741 blk_clear_queue_full(q, sync);
1da177e4
LT
742 }
743}
744
745/*
746 * A request has just been released. Account for it, update the full and
747 * congestion status, wake up any waiters. Called under q->queue_lock.
748 */
1faa16d2 749static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
750{
751 struct request_list *rl = &q->rq;
752
1faa16d2 753 rl->count[sync]--;
cb98fc8b
TH
754 if (priv)
755 rl->elvpriv--;
1da177e4 756
1faa16d2 757 __freed_request(q, sync);
1da177e4 758
1faa16d2
JA
759 if (unlikely(rl->starved[sync ^ 1]))
760 __freed_request(q, sync ^ 1);
1da177e4
LT
761}
762
1da177e4 763/*
d6344532
NP
764 * Get a free request, queue_lock must be held.
765 * Returns NULL on failure, with queue_lock held.
766 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 767 */
165125e1 768static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 769 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
770{
771 struct request *rq = NULL;
772 struct request_list *rl = &q->rq;
88ee5ef1 773 struct io_context *ioc = NULL;
1faa16d2 774 const bool is_sync = rw_is_sync(rw_flags) != 0;
88ee5ef1
JA
775 int may_queue, priv;
776
7749a8d4 777 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
778 if (may_queue == ELV_MQUEUE_NO)
779 goto rq_starved;
780
1faa16d2
JA
781 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
782 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 783 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
784 /*
785 * The queue will fill after this allocation, so set
786 * it as full, and mark this process as "batching".
787 * This process will be allowed to complete a batch of
788 * requests, others will be blocked.
789 */
1faa16d2 790 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 791 ioc_set_batching(q, ioc);
1faa16d2 792 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
793 } else {
794 if (may_queue != ELV_MQUEUE_MUST
795 && !ioc_batching(q, ioc)) {
796 /*
797 * The queue is full and the allocating
798 * process is not a "batcher", and not
799 * exempted by the IO scheduler
800 */
801 goto out;
802 }
803 }
1da177e4 804 }
1faa16d2 805 blk_set_queue_congested(q, is_sync);
1da177e4
LT
806 }
807
082cf69e
JA
808 /*
809 * Only allow batching queuers to allocate up to 50% over the defined
810 * limit of requests, otherwise we could have thousands of requests
811 * allocated with any setting of ->nr_requests
812 */
1faa16d2 813 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 814 goto out;
fd782a4a 815
1faa16d2
JA
816 rl->count[is_sync]++;
817 rl->starved[is_sync] = 0;
cb98fc8b 818
64521d1a 819 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
f253b86b 820 if (priv)
cb98fc8b
TH
821 rl->elvpriv++;
822
f253b86b
JA
823 if (blk_queue_io_stat(q))
824 rw_flags |= REQ_IO_STAT;
1da177e4
LT
825 spin_unlock_irq(q->queue_lock);
826
7749a8d4 827 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 828 if (unlikely(!rq)) {
1da177e4
LT
829 /*
830 * Allocation failed presumably due to memory. Undo anything
831 * we might have messed up.
832 *
833 * Allocating task should really be put onto the front of the
834 * wait queue, but this is pretty rare.
835 */
836 spin_lock_irq(q->queue_lock);
1faa16d2 837 freed_request(q, is_sync, priv);
1da177e4
LT
838
839 /*
840 * in the very unlikely event that allocation failed and no
841 * requests for this direction was pending, mark us starved
842 * so that freeing of a request in the other direction will
843 * notice us. another possible fix would be to split the
844 * rq mempool into READ and WRITE
845 */
846rq_starved:
1faa16d2
JA
847 if (unlikely(rl->count[is_sync] == 0))
848 rl->starved[is_sync] = 1;
1da177e4 849
1da177e4
LT
850 goto out;
851 }
852
88ee5ef1
JA
853 /*
854 * ioc may be NULL here, and ioc_batching will be false. That's
855 * OK, if the queue is under the request limit then requests need
856 * not count toward the nr_batch_requests limit. There will always
857 * be some limit enforced by BLK_BATCH_TIME.
858 */
1da177e4
LT
859 if (ioc_batching(q, ioc))
860 ioc->nr_batch_requests--;
6728cb0e 861
1faa16d2 862 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 863out:
1da177e4
LT
864 return rq;
865}
866
867/*
868 * No available requests for this queue, unplug the device and wait for some
869 * requests to become available.
d6344532
NP
870 *
871 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 872 */
165125e1 873static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 874 struct bio *bio)
1da177e4 875{
1faa16d2 876 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
877 struct request *rq;
878
7749a8d4 879 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
880 while (!rq) {
881 DEFINE_WAIT(wait);
05caf8db 882 struct io_context *ioc;
1da177e4
LT
883 struct request_list *rl = &q->rq;
884
1faa16d2 885 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
886 TASK_UNINTERRUPTIBLE);
887
1faa16d2 888 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 889
05caf8db
ZY
890 __generic_unplug_device(q);
891 spin_unlock_irq(q->queue_lock);
892 io_schedule();
1da177e4 893
05caf8db
ZY
894 /*
895 * After sleeping, we become a "batching" process and
896 * will be able to allocate at least one request, and
897 * up to a big batch of them for a small period time.
898 * See ioc_batching, ioc_set_batching
899 */
900 ioc = current_io_context(GFP_NOIO, q->node);
901 ioc_set_batching(q, ioc);
d6344532 902
05caf8db 903 spin_lock_irq(q->queue_lock);
1faa16d2 904 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
905
906 rq = get_request(q, rw_flags, bio, GFP_NOIO);
907 };
1da177e4
LT
908
909 return rq;
910}
911
165125e1 912struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
913{
914 struct request *rq;
915
916 BUG_ON(rw != READ && rw != WRITE);
917
d6344532
NP
918 spin_lock_irq(q->queue_lock);
919 if (gfp_mask & __GFP_WAIT) {
22e2c507 920 rq = get_request_wait(q, rw, NULL);
d6344532 921 } else {
22e2c507 922 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
923 if (!rq)
924 spin_unlock_irq(q->queue_lock);
925 }
926 /* q->queue_lock is unlocked at this point */
1da177e4
LT
927
928 return rq;
929}
1da177e4
LT
930EXPORT_SYMBOL(blk_get_request);
931
dc72ef4a 932/**
79eb63e9 933 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 934 * @q: target request queue
79eb63e9
BH
935 * @bio: The bio describing the memory mappings that will be submitted for IO.
936 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 937 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 938 *
79eb63e9
BH
939 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
940 * type commands. Where the struct request needs to be farther initialized by
941 * the caller. It is passed a &struct bio, which describes the memory info of
942 * the I/O transfer.
dc72ef4a 943 *
79eb63e9
BH
944 * The caller of blk_make_request must make sure that bi_io_vec
945 * are set to describe the memory buffers. That bio_data_dir() will return
946 * the needed direction of the request. (And all bio's in the passed bio-chain
947 * are properly set accordingly)
948 *
949 * If called under none-sleepable conditions, mapped bio buffers must not
950 * need bouncing, by calling the appropriate masked or flagged allocator,
951 * suitable for the target device. Otherwise the call to blk_queue_bounce will
952 * BUG.
53674ac5
JA
953 *
954 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
955 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
956 * anything but the first bio in the chain. Otherwise you risk waiting for IO
957 * completion of a bio that hasn't been submitted yet, thus resulting in a
958 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
959 * of bio_alloc(), as that avoids the mempool deadlock.
960 * If possible a big IO should be split into smaller parts when allocation
961 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 962 */
79eb63e9
BH
963struct request *blk_make_request(struct request_queue *q, struct bio *bio,
964 gfp_t gfp_mask)
dc72ef4a 965{
79eb63e9
BH
966 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
967
968 if (unlikely(!rq))
969 return ERR_PTR(-ENOMEM);
970
971 for_each_bio(bio) {
972 struct bio *bounce_bio = bio;
973 int ret;
974
975 blk_queue_bounce(q, &bounce_bio);
976 ret = blk_rq_append_bio(q, rq, bounce_bio);
977 if (unlikely(ret)) {
978 blk_put_request(rq);
979 return ERR_PTR(ret);
980 }
981 }
982
983 return rq;
dc72ef4a 984}
79eb63e9 985EXPORT_SYMBOL(blk_make_request);
dc72ef4a 986
1da177e4
LT
987/**
988 * blk_requeue_request - put a request back on queue
989 * @q: request queue where request should be inserted
990 * @rq: request to be inserted
991 *
992 * Description:
993 * Drivers often keep queueing requests until the hardware cannot accept
994 * more, when that condition happens we need to put the request back
995 * on the queue. Must be called with queue lock held.
996 */
165125e1 997void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 998{
242f9dcb
JA
999 blk_delete_timer(rq);
1000 blk_clear_rq_complete(rq);
5f3ea37c 1001 trace_block_rq_requeue(q, rq);
2056a782 1002
1da177e4
LT
1003 if (blk_rq_tagged(rq))
1004 blk_queue_end_tag(q, rq);
1005
ba396a6c
JB
1006 BUG_ON(blk_queued_rq(rq));
1007
1da177e4
LT
1008 elv_requeue_request(q, rq);
1009}
1da177e4
LT
1010EXPORT_SYMBOL(blk_requeue_request);
1011
1012/**
710027a4 1013 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
1014 * @q: request queue where request should be inserted
1015 * @rq: request to be inserted
1016 * @at_head: insert request at head or tail of queue
1017 * @data: private data
1da177e4
LT
1018 *
1019 * Description:
1020 * Many block devices need to execute commands asynchronously, so they don't
1021 * block the whole kernel from preemption during request execution. This is
1022 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
1023 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1024 * be scheduled for actual execution by the request queue.
1da177e4
LT
1025 *
1026 * We have the option of inserting the head or the tail of the queue.
1027 * Typically we use the tail for new ioctls and so forth. We use the head
1028 * of the queue for things like a QUEUE_FULL message from a device, or a
1029 * host that is unable to accept a particular command.
1030 */
165125e1 1031void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 1032 int at_head, void *data)
1da177e4 1033{
867d1191 1034 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
1035 unsigned long flags;
1036
1037 /*
1038 * tell I/O scheduler that this isn't a regular read/write (ie it
1039 * must not attempt merges on this) and that it acts as a soft
1040 * barrier
1041 */
4aff5e23 1042 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
1043
1044 rq->special = data;
1045
1046 spin_lock_irqsave(q->queue_lock, flags);
1047
1048 /*
1049 * If command is tagged, release the tag
1050 */
867d1191
TH
1051 if (blk_rq_tagged(rq))
1052 blk_queue_end_tag(q, rq);
1da177e4 1053
b238b3d4 1054 drive_stat_acct(rq, 1);
867d1191 1055 __elv_add_request(q, rq, where, 0);
a7f55792 1056 __blk_run_queue(q);
1da177e4
LT
1057 spin_unlock_irqrestore(q->queue_lock, flags);
1058}
1da177e4
LT
1059EXPORT_SYMBOL(blk_insert_request);
1060
074a7aca
TH
1061static void part_round_stats_single(int cpu, struct hd_struct *part,
1062 unsigned long now)
1063{
1064 if (now == part->stamp)
1065 return;
1066
316d315b 1067 if (part_in_flight(part)) {
074a7aca 1068 __part_stat_add(cpu, part, time_in_queue,
316d315b 1069 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1070 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1071 }
1072 part->stamp = now;
1073}
1074
1075/**
496aa8a9
RD
1076 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1077 * @cpu: cpu number for stats access
1078 * @part: target partition
1da177e4
LT
1079 *
1080 * The average IO queue length and utilisation statistics are maintained
1081 * by observing the current state of the queue length and the amount of
1082 * time it has been in this state for.
1083 *
1084 * Normally, that accounting is done on IO completion, but that can result
1085 * in more than a second's worth of IO being accounted for within any one
1086 * second, leading to >100% utilisation. To deal with that, we call this
1087 * function to do a round-off before returning the results when reading
1088 * /proc/diskstats. This accounts immediately for all queue usage up to
1089 * the current jiffies and restarts the counters again.
1090 */
c9959059 1091void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1092{
1093 unsigned long now = jiffies;
1094
074a7aca
TH
1095 if (part->partno)
1096 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1097 part_round_stats_single(cpu, part, now);
6f2576af 1098}
074a7aca 1099EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1100
1da177e4
LT
1101/*
1102 * queue lock must be held
1103 */
165125e1 1104void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1105{
1da177e4
LT
1106 if (unlikely(!q))
1107 return;
1108 if (unlikely(--req->ref_count))
1109 return;
1110
8922e16c
TH
1111 elv_completed_request(q, req);
1112
1cd96c24
BH
1113 /* this is a bio leak */
1114 WARN_ON(req->bio != NULL);
1115
1da177e4
LT
1116 /*
1117 * Request may not have originated from ll_rw_blk. if not,
1118 * it didn't come out of our reserved rq pools
1119 */
49171e5c 1120 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1121 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1122 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1123
1da177e4 1124 BUG_ON(!list_empty(&req->queuelist));
9817064b 1125 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1126
1127 blk_free_request(q, req);
1faa16d2 1128 freed_request(q, is_sync, priv);
1da177e4
LT
1129 }
1130}
6e39b69e
MC
1131EXPORT_SYMBOL_GPL(__blk_put_request);
1132
1da177e4
LT
1133void blk_put_request(struct request *req)
1134{
8922e16c 1135 unsigned long flags;
165125e1 1136 struct request_queue *q = req->q;
8922e16c 1137
52a93ba8
FT
1138 spin_lock_irqsave(q->queue_lock, flags);
1139 __blk_put_request(q, req);
1140 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1141}
1da177e4
LT
1142EXPORT_SYMBOL(blk_put_request);
1143
66ac0280
CH
1144/**
1145 * blk_add_request_payload - add a payload to a request
1146 * @rq: request to update
1147 * @page: page backing the payload
1148 * @len: length of the payload.
1149 *
1150 * This allows to later add a payload to an already submitted request by
1151 * a block driver. The driver needs to take care of freeing the payload
1152 * itself.
1153 *
1154 * Note that this is a quite horrible hack and nothing but handling of
1155 * discard requests should ever use it.
1156 */
1157void blk_add_request_payload(struct request *rq, struct page *page,
1158 unsigned int len)
1159{
1160 struct bio *bio = rq->bio;
1161
1162 bio->bi_io_vec->bv_page = page;
1163 bio->bi_io_vec->bv_offset = 0;
1164 bio->bi_io_vec->bv_len = len;
1165
1166 bio->bi_size = len;
1167 bio->bi_vcnt = 1;
1168 bio->bi_phys_segments = 1;
1169
1170 rq->__data_len = rq->resid_len = len;
1171 rq->nr_phys_segments = 1;
1172 rq->buffer = bio_data(bio);
1173}
1174EXPORT_SYMBOL_GPL(blk_add_request_payload);
1175
86db1e29 1176void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1177{
c7c22e4d 1178 req->cpu = bio->bi_comp_cpu;
4aff5e23 1179 req->cmd_type = REQ_TYPE_FS;
52d9e675 1180
7b6d91da
CH
1181 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1182 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1183 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1184
52d9e675 1185 req->errors = 0;
a2dec7b3 1186 req->__sector = bio->bi_sector;
52d9e675 1187 req->ioprio = bio_prio(bio);
bc1c56fd 1188 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1189}
1190
644b2d99
JA
1191/*
1192 * Only disabling plugging for non-rotational devices if it does tagging
1193 * as well, otherwise we do need the proper merging
1194 */
1195static inline bool queue_should_plug(struct request_queue *q)
1196{
79da0644 1197 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
644b2d99
JA
1198}
1199
165125e1 1200static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1201{
450991bc 1202 struct request *req;
2e46e8b2
TH
1203 int el_ret;
1204 unsigned int bytes = bio->bi_size;
51da90fc 1205 const unsigned short prio = bio_prio(bio);
5e00d1b5
JS
1206 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1207 const bool unplug = !!(bio->bi_rw & REQ_UNPLUG);
1208 const unsigned long ff = bio->bi_rw & REQ_FAILFAST_MASK;
28e7d184 1209 int where = ELEVATOR_INSERT_SORT;
7749a8d4 1210 int rw_flags;
1da177e4 1211
1da177e4
LT
1212 /*
1213 * low level driver can indicate that it wants pages above a
1214 * certain limit bounced to low memory (ie for highmem, or even
1215 * ISA dma in theory)
1216 */
1217 blk_queue_bounce(q, &bio);
1218
1da177e4
LT
1219 spin_lock_irq(q->queue_lock);
1220
4fed947c 1221 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
28e7d184
TH
1222 where = ELEVATOR_INSERT_FRONT;
1223 goto get_rq;
1224 }
1225
1226 if (elv_queue_empty(q))
1da177e4
LT
1227 goto get_rq;
1228
1229 el_ret = elv_merge(q, &req, bio);
1230 switch (el_ret) {
6728cb0e
JA
1231 case ELEVATOR_BACK_MERGE:
1232 BUG_ON(!rq_mergeable(req));
1da177e4 1233
6728cb0e
JA
1234 if (!ll_back_merge_fn(q, req, bio))
1235 break;
1da177e4 1236
5f3ea37c 1237 trace_block_bio_backmerge(q, bio);
2056a782 1238
80a761fd
TH
1239 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1240 blk_rq_set_mixed_merge(req);
1241
6728cb0e
JA
1242 req->biotail->bi_next = bio;
1243 req->biotail = bio;
a2dec7b3 1244 req->__data_len += bytes;
6728cb0e 1245 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1246 if (!blk_rq_cpu_valid(req))
1247 req->cpu = bio->bi_comp_cpu;
6728cb0e 1248 drive_stat_acct(req, 0);
812d4026 1249 elv_bio_merged(q, req, bio);
6728cb0e
JA
1250 if (!attempt_back_merge(q, req))
1251 elv_merged_request(q, req, el_ret);
1252 goto out;
1da177e4 1253
6728cb0e
JA
1254 case ELEVATOR_FRONT_MERGE:
1255 BUG_ON(!rq_mergeable(req));
1da177e4 1256
6728cb0e
JA
1257 if (!ll_front_merge_fn(q, req, bio))
1258 break;
1da177e4 1259
5f3ea37c 1260 trace_block_bio_frontmerge(q, bio);
2056a782 1261
80a761fd
TH
1262 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1263 blk_rq_set_mixed_merge(req);
1264 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1265 req->cmd_flags |= ff;
1266 }
1267
6728cb0e
JA
1268 bio->bi_next = req->bio;
1269 req->bio = bio;
1da177e4 1270
6728cb0e
JA
1271 /*
1272 * may not be valid. if the low level driver said
1273 * it didn't need a bounce buffer then it better
1274 * not touch req->buffer either...
1275 */
1276 req->buffer = bio_data(bio);
a2dec7b3
TH
1277 req->__sector = bio->bi_sector;
1278 req->__data_len += bytes;
6728cb0e 1279 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1280 if (!blk_rq_cpu_valid(req))
1281 req->cpu = bio->bi_comp_cpu;
6728cb0e 1282 drive_stat_acct(req, 0);
812d4026 1283 elv_bio_merged(q, req, bio);
6728cb0e
JA
1284 if (!attempt_front_merge(q, req))
1285 elv_merged_request(q, req, el_ret);
1286 goto out;
1287
1288 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1289 default:
1290 ;
1da177e4
LT
1291 }
1292
450991bc 1293get_rq:
7749a8d4
JA
1294 /*
1295 * This sync check and mask will be re-done in init_request_from_bio(),
1296 * but we need to set it earlier to expose the sync flag to the
1297 * rq allocator and io schedulers.
1298 */
1299 rw_flags = bio_data_dir(bio);
1300 if (sync)
7b6d91da 1301 rw_flags |= REQ_SYNC;
7749a8d4 1302
1da177e4 1303 /*
450991bc 1304 * Grab a free request. This is might sleep but can not fail.
d6344532 1305 * Returns with the queue unlocked.
450991bc 1306 */
7749a8d4 1307 req = get_request_wait(q, rw_flags, bio);
d6344532 1308
450991bc
NP
1309 /*
1310 * After dropping the lock and possibly sleeping here, our request
1311 * may now be mergeable after it had proven unmergeable (above).
1312 * We don't worry about that case for efficiency. It won't happen
1313 * often, and the elevators are able to handle it.
1da177e4 1314 */
52d9e675 1315 init_request_from_bio(req, bio);
1da177e4 1316
450991bc 1317 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1318 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1319 bio_flagged(bio, BIO_CPU_AFFINE))
1320 req->cpu = blk_cpu_to_group(smp_processor_id());
644b2d99 1321 if (queue_should_plug(q) && elv_queue_empty(q))
450991bc 1322 blk_plug_device(q);
dd831006
TH
1323
1324 /* insert the request into the elevator */
1325 drive_stat_acct(req, 1);
28e7d184 1326 __elv_add_request(q, req, where, 0);
1da177e4 1327out:
644b2d99 1328 if (unplug || !queue_should_plug(q))
1da177e4 1329 __generic_unplug_device(q);
1da177e4
LT
1330 spin_unlock_irq(q->queue_lock);
1331 return 0;
1da177e4
LT
1332}
1333
1334/*
1335 * If bio->bi_dev is a partition, remap the location
1336 */
1337static inline void blk_partition_remap(struct bio *bio)
1338{
1339 struct block_device *bdev = bio->bi_bdev;
1340
bf2de6f5 1341 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1342 struct hd_struct *p = bdev->bd_part;
1343
1da177e4
LT
1344 bio->bi_sector += p->start_sect;
1345 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1346
d07335e5
MS
1347 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1348 bdev->bd_dev,
1349 bio->bi_sector - p->start_sect);
1da177e4
LT
1350 }
1351}
1352
1da177e4
LT
1353static void handle_bad_sector(struct bio *bio)
1354{
1355 char b[BDEVNAME_SIZE];
1356
1357 printk(KERN_INFO "attempt to access beyond end of device\n");
1358 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1359 bdevname(bio->bi_bdev, b),
1360 bio->bi_rw,
1361 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1362 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1363
1364 set_bit(BIO_EOF, &bio->bi_flags);
1365}
1366
c17bb495
AM
1367#ifdef CONFIG_FAIL_MAKE_REQUEST
1368
1369static DECLARE_FAULT_ATTR(fail_make_request);
1370
1371static int __init setup_fail_make_request(char *str)
1372{
1373 return setup_fault_attr(&fail_make_request, str);
1374}
1375__setup("fail_make_request=", setup_fail_make_request);
1376
1377static int should_fail_request(struct bio *bio)
1378{
eddb2e26
TH
1379 struct hd_struct *part = bio->bi_bdev->bd_part;
1380
1381 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1382 return should_fail(&fail_make_request, bio->bi_size);
1383
1384 return 0;
1385}
1386
1387static int __init fail_make_request_debugfs(void)
1388{
1389 return init_fault_attr_dentries(&fail_make_request,
1390 "fail_make_request");
1391}
1392
1393late_initcall(fail_make_request_debugfs);
1394
1395#else /* CONFIG_FAIL_MAKE_REQUEST */
1396
1397static inline int should_fail_request(struct bio *bio)
1398{
1399 return 0;
1400}
1401
1402#endif /* CONFIG_FAIL_MAKE_REQUEST */
1403
c07e2b41
JA
1404/*
1405 * Check whether this bio extends beyond the end of the device.
1406 */
1407static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1408{
1409 sector_t maxsector;
1410
1411 if (!nr_sectors)
1412 return 0;
1413
1414 /* Test device or partition size, when known. */
77304d2a 1415 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1416 if (maxsector) {
1417 sector_t sector = bio->bi_sector;
1418
1419 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1420 /*
1421 * This may well happen - the kernel calls bread()
1422 * without checking the size of the device, e.g., when
1423 * mounting a device.
1424 */
1425 handle_bad_sector(bio);
1426 return 1;
1427 }
1428 }
1429
1430 return 0;
1431}
1432
1da177e4 1433/**
710027a4 1434 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1435 * @bio: The bio describing the location in memory and on the device.
1436 *
1437 * generic_make_request() is used to make I/O requests of block
1438 * devices. It is passed a &struct bio, which describes the I/O that needs
1439 * to be done.
1440 *
1441 * generic_make_request() does not return any status. The
1442 * success/failure status of the request, along with notification of
1443 * completion, is delivered asynchronously through the bio->bi_end_io
1444 * function described (one day) else where.
1445 *
1446 * The caller of generic_make_request must make sure that bi_io_vec
1447 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1448 * set to describe the device address, and the
1449 * bi_end_io and optionally bi_private are set to describe how
1450 * completion notification should be signaled.
1451 *
1452 * generic_make_request and the drivers it calls may use bi_next if this
1453 * bio happens to be merged with someone else, and may change bi_dev and
1454 * bi_sector for remaps as it sees fit. So the values of these fields
1455 * should NOT be depended on after the call to generic_make_request.
1456 */
d89d8796 1457static inline void __generic_make_request(struct bio *bio)
1da177e4 1458{
165125e1 1459 struct request_queue *q;
5ddfe969 1460 sector_t old_sector;
1da177e4 1461 int ret, nr_sectors = bio_sectors(bio);
2056a782 1462 dev_t old_dev;
51fd77bd 1463 int err = -EIO;
1da177e4
LT
1464
1465 might_sleep();
1da177e4 1466
c07e2b41
JA
1467 if (bio_check_eod(bio, nr_sectors))
1468 goto end_io;
1da177e4
LT
1469
1470 /*
1471 * Resolve the mapping until finished. (drivers are
1472 * still free to implement/resolve their own stacking
1473 * by explicitly returning 0)
1474 *
1475 * NOTE: we don't repeat the blk_size check for each new device.
1476 * Stacking drivers are expected to know what they are doing.
1477 */
5ddfe969 1478 old_sector = -1;
2056a782 1479 old_dev = 0;
1da177e4
LT
1480 do {
1481 char b[BDEVNAME_SIZE];
1482
1483 q = bdev_get_queue(bio->bi_bdev);
a7384677 1484 if (unlikely(!q)) {
1da177e4
LT
1485 printk(KERN_ERR
1486 "generic_make_request: Trying to access "
1487 "nonexistent block-device %s (%Lu)\n",
1488 bdevname(bio->bi_bdev, b),
1489 (long long) bio->bi_sector);
a7384677 1490 goto end_io;
1da177e4
LT
1491 }
1492
7b6d91da 1493 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
67efc925 1494 nr_sectors > queue_max_hw_sectors(q))) {
6728cb0e 1495 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
ae03bf63
MP
1496 bdevname(bio->bi_bdev, b),
1497 bio_sectors(bio),
1498 queue_max_hw_sectors(q));
1da177e4
LT
1499 goto end_io;
1500 }
1501
fde6ad22 1502 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1503 goto end_io;
1504
c17bb495
AM
1505 if (should_fail_request(bio))
1506 goto end_io;
1507
1da177e4
LT
1508 /*
1509 * If this device has partitions, remap block n
1510 * of partition p to block n+start(p) of the disk.
1511 */
1512 blk_partition_remap(bio);
1513
7ba1ba12
MP
1514 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1515 goto end_io;
1516
5ddfe969 1517 if (old_sector != -1)
d07335e5 1518 trace_block_bio_remap(q, bio, old_dev, old_sector);
2056a782 1519
5ddfe969 1520 old_sector = bio->bi_sector;
2056a782
JA
1521 old_dev = bio->bi_bdev->bd_dev;
1522
c07e2b41
JA
1523 if (bio_check_eod(bio, nr_sectors))
1524 goto end_io;
a7384677 1525
1e87901e
TH
1526 /*
1527 * Filter flush bio's early so that make_request based
1528 * drivers without flush support don't have to worry
1529 * about them.
1530 */
1531 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1532 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1533 if (!nr_sectors) {
1534 err = 0;
1535 goto end_io;
1536 }
1537 }
1538
8d57a98c
AH
1539 if ((bio->bi_rw & REQ_DISCARD) &&
1540 (!blk_queue_discard(q) ||
1541 ((bio->bi_rw & REQ_SECURE) &&
1542 !blk_queue_secdiscard(q)))) {
51fd77bd
JA
1543 err = -EOPNOTSUPP;
1544 goto end_io;
1545 }
5ddfe969 1546
e43473b7
VG
1547 blk_throtl_bio(q, &bio);
1548
1549 /*
1550 * If bio = NULL, bio has been throttled and will be submitted
1551 * later.
1552 */
1553 if (!bio)
1554 break;
1555
01edede4
MK
1556 trace_block_bio_queue(q, bio);
1557
1da177e4
LT
1558 ret = q->make_request_fn(q, bio);
1559 } while (ret);
a7384677
TH
1560
1561 return;
1562
1563end_io:
1564 bio_endio(bio, err);
1da177e4
LT
1565}
1566
d89d8796
NB
1567/*
1568 * We only want one ->make_request_fn to be active at a time,
1569 * else stack usage with stacked devices could be a problem.
bddd87c7 1570 * So use current->bio_list to keep a list of requests
d89d8796 1571 * submited by a make_request_fn function.
bddd87c7 1572 * current->bio_list is also used as a flag to say if
d89d8796
NB
1573 * generic_make_request is currently active in this task or not.
1574 * If it is NULL, then no make_request is active. If it is non-NULL,
1575 * then a make_request is active, and new requests should be added
1576 * at the tail
1577 */
1578void generic_make_request(struct bio *bio)
1579{
bddd87c7
AM
1580 struct bio_list bio_list_on_stack;
1581
1582 if (current->bio_list) {
d89d8796 1583 /* make_request is active */
bddd87c7 1584 bio_list_add(current->bio_list, bio);
d89d8796
NB
1585 return;
1586 }
1587 /* following loop may be a bit non-obvious, and so deserves some
1588 * explanation.
1589 * Before entering the loop, bio->bi_next is NULL (as all callers
1590 * ensure that) so we have a list with a single bio.
1591 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1592 * we assign bio_list to a pointer to the bio_list_on_stack,
1593 * thus initialising the bio_list of new bios to be
d89d8796
NB
1594 * added. __generic_make_request may indeed add some more bios
1595 * through a recursive call to generic_make_request. If it
1596 * did, we find a non-NULL value in bio_list and re-enter the loop
1597 * from the top. In this case we really did just take the bio
bddd87c7
AM
1598 * of the top of the list (no pretending) and so remove it from
1599 * bio_list, and call into __generic_make_request again.
d89d8796
NB
1600 *
1601 * The loop was structured like this to make only one call to
1602 * __generic_make_request (which is important as it is large and
1603 * inlined) and to keep the structure simple.
1604 */
1605 BUG_ON(bio->bi_next);
bddd87c7
AM
1606 bio_list_init(&bio_list_on_stack);
1607 current->bio_list = &bio_list_on_stack;
d89d8796 1608 do {
d89d8796 1609 __generic_make_request(bio);
bddd87c7 1610 bio = bio_list_pop(current->bio_list);
d89d8796 1611 } while (bio);
bddd87c7 1612 current->bio_list = NULL; /* deactivate */
d89d8796 1613}
1da177e4
LT
1614EXPORT_SYMBOL(generic_make_request);
1615
1616/**
710027a4 1617 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1618 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1619 * @bio: The &struct bio which describes the I/O
1620 *
1621 * submit_bio() is very similar in purpose to generic_make_request(), and
1622 * uses that function to do most of the work. Both are fairly rough
710027a4 1623 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1624 *
1625 */
1626void submit_bio(int rw, struct bio *bio)
1627{
1628 int count = bio_sectors(bio);
1629
22e2c507 1630 bio->bi_rw |= rw;
1da177e4 1631
bf2de6f5
JA
1632 /*
1633 * If it's a regular read/write or a barrier with data attached,
1634 * go through the normal accounting stuff before submission.
1635 */
3ffb52e7 1636 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1637 if (rw & WRITE) {
1638 count_vm_events(PGPGOUT, count);
1639 } else {
1640 task_io_account_read(bio->bi_size);
1641 count_vm_events(PGPGIN, count);
1642 }
1643
1644 if (unlikely(block_dump)) {
1645 char b[BDEVNAME_SIZE];
8dcbdc74 1646 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1647 current->comm, task_pid_nr(current),
bf2de6f5
JA
1648 (rw & WRITE) ? "WRITE" : "READ",
1649 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1650 bdevname(bio->bi_bdev, b),
1651 count);
bf2de6f5 1652 }
1da177e4
LT
1653 }
1654
1655 generic_make_request(bio);
1656}
1da177e4
LT
1657EXPORT_SYMBOL(submit_bio);
1658
82124d60
KU
1659/**
1660 * blk_rq_check_limits - Helper function to check a request for the queue limit
1661 * @q: the queue
1662 * @rq: the request being checked
1663 *
1664 * Description:
1665 * @rq may have been made based on weaker limitations of upper-level queues
1666 * in request stacking drivers, and it may violate the limitation of @q.
1667 * Since the block layer and the underlying device driver trust @rq
1668 * after it is inserted to @q, it should be checked against @q before
1669 * the insertion using this generic function.
1670 *
1671 * This function should also be useful for request stacking drivers
eef35c2d 1672 * in some cases below, so export this function.
82124d60
KU
1673 * Request stacking drivers like request-based dm may change the queue
1674 * limits while requests are in the queue (e.g. dm's table swapping).
1675 * Such request stacking drivers should check those requests agaist
1676 * the new queue limits again when they dispatch those requests,
1677 * although such checkings are also done against the old queue limits
1678 * when submitting requests.
1679 */
1680int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1681{
3383977f
S
1682 if (rq->cmd_flags & REQ_DISCARD)
1683 return 0;
1684
ae03bf63
MP
1685 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1686 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1687 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1688 return -EIO;
1689 }
1690
1691 /*
1692 * queue's settings related to segment counting like q->bounce_pfn
1693 * may differ from that of other stacking queues.
1694 * Recalculate it to check the request correctly on this queue's
1695 * limitation.
1696 */
1697 blk_recalc_rq_segments(rq);
8a78362c 1698 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1699 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1700 return -EIO;
1701 }
1702
1703 return 0;
1704}
1705EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1706
1707/**
1708 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1709 * @q: the queue to submit the request
1710 * @rq: the request being queued
1711 */
1712int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1713{
1714 unsigned long flags;
1715
1716 if (blk_rq_check_limits(q, rq))
1717 return -EIO;
1718
1719#ifdef CONFIG_FAIL_MAKE_REQUEST
1720 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1721 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1722 return -EIO;
1723#endif
1724
1725 spin_lock_irqsave(q->queue_lock, flags);
1726
1727 /*
1728 * Submitting request must be dequeued before calling this function
1729 * because it will be linked to another request_queue
1730 */
1731 BUG_ON(blk_queued_rq(rq));
1732
1733 drive_stat_acct(rq, 1);
1734 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1735
1736 spin_unlock_irqrestore(q->queue_lock, flags);
1737
1738 return 0;
1739}
1740EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1741
80a761fd
TH
1742/**
1743 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1744 * @rq: request to examine
1745 *
1746 * Description:
1747 * A request could be merge of IOs which require different failure
1748 * handling. This function determines the number of bytes which
1749 * can be failed from the beginning of the request without
1750 * crossing into area which need to be retried further.
1751 *
1752 * Return:
1753 * The number of bytes to fail.
1754 *
1755 * Context:
1756 * queue_lock must be held.
1757 */
1758unsigned int blk_rq_err_bytes(const struct request *rq)
1759{
1760 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1761 unsigned int bytes = 0;
1762 struct bio *bio;
1763
1764 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1765 return blk_rq_bytes(rq);
1766
1767 /*
1768 * Currently the only 'mixing' which can happen is between
1769 * different fastfail types. We can safely fail portions
1770 * which have all the failfast bits that the first one has -
1771 * the ones which are at least as eager to fail as the first
1772 * one.
1773 */
1774 for (bio = rq->bio; bio; bio = bio->bi_next) {
1775 if ((bio->bi_rw & ff) != ff)
1776 break;
1777 bytes += bio->bi_size;
1778 }
1779
1780 /* this could lead to infinite loop */
1781 BUG_ON(blk_rq_bytes(rq) && !bytes);
1782 return bytes;
1783}
1784EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1785
bc58ba94
JA
1786static void blk_account_io_completion(struct request *req, unsigned int bytes)
1787{
c2553b58 1788 if (blk_do_io_stat(req)) {
bc58ba94
JA
1789 const int rw = rq_data_dir(req);
1790 struct hd_struct *part;
1791 int cpu;
1792
1793 cpu = part_stat_lock();
09e099d4 1794 part = req->part;
bc58ba94
JA
1795 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1796 part_stat_unlock();
1797 }
1798}
1799
1800static void blk_account_io_done(struct request *req)
1801{
bc58ba94 1802 /*
dd4c133f
TH
1803 * Account IO completion. flush_rq isn't accounted as a
1804 * normal IO on queueing nor completion. Accounting the
1805 * containing request is enough.
bc58ba94 1806 */
dd4c133f 1807 if (blk_do_io_stat(req) && req != &req->q->flush_rq) {
bc58ba94
JA
1808 unsigned long duration = jiffies - req->start_time;
1809 const int rw = rq_data_dir(req);
1810 struct hd_struct *part;
1811 int cpu;
1812
1813 cpu = part_stat_lock();
09e099d4 1814 part = req->part;
bc58ba94
JA
1815
1816 part_stat_inc(cpu, part, ios[rw]);
1817 part_stat_add(cpu, part, ticks[rw], duration);
1818 part_round_stats(cpu, part);
316d315b 1819 part_dec_in_flight(part, rw);
bc58ba94 1820
09e099d4 1821 kref_put(&part->ref, __delete_partition);
bc58ba94
JA
1822 part_stat_unlock();
1823 }
1824}
1825
3bcddeac 1826/**
9934c8c0
TH
1827 * blk_peek_request - peek at the top of a request queue
1828 * @q: request queue to peek at
1829 *
1830 * Description:
1831 * Return the request at the top of @q. The returned request
1832 * should be started using blk_start_request() before LLD starts
1833 * processing it.
1834 *
1835 * Return:
1836 * Pointer to the request at the top of @q if available. Null
1837 * otherwise.
1838 *
1839 * Context:
1840 * queue_lock must be held.
1841 */
1842struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1843{
1844 struct request *rq;
1845 int ret;
1846
1847 while ((rq = __elv_next_request(q)) != NULL) {
1848 if (!(rq->cmd_flags & REQ_STARTED)) {
1849 /*
1850 * This is the first time the device driver
1851 * sees this request (possibly after
1852 * requeueing). Notify IO scheduler.
1853 */
33659ebb 1854 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1855 elv_activate_rq(q, rq);
1856
1857 /*
1858 * just mark as started even if we don't start
1859 * it, a request that has been delayed should
1860 * not be passed by new incoming requests
1861 */
1862 rq->cmd_flags |= REQ_STARTED;
1863 trace_block_rq_issue(q, rq);
1864 }
1865
1866 if (!q->boundary_rq || q->boundary_rq == rq) {
1867 q->end_sector = rq_end_sector(rq);
1868 q->boundary_rq = NULL;
1869 }
1870
1871 if (rq->cmd_flags & REQ_DONTPREP)
1872 break;
1873
2e46e8b2 1874 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1875 /*
1876 * make sure space for the drain appears we
1877 * know we can do this because max_hw_segments
1878 * has been adjusted to be one fewer than the
1879 * device can handle
1880 */
1881 rq->nr_phys_segments++;
1882 }
1883
1884 if (!q->prep_rq_fn)
1885 break;
1886
1887 ret = q->prep_rq_fn(q, rq);
1888 if (ret == BLKPREP_OK) {
1889 break;
1890 } else if (ret == BLKPREP_DEFER) {
1891 /*
1892 * the request may have been (partially) prepped.
1893 * we need to keep this request in the front to
1894 * avoid resource deadlock. REQ_STARTED will
1895 * prevent other fs requests from passing this one.
1896 */
2e46e8b2 1897 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1898 !(rq->cmd_flags & REQ_DONTPREP)) {
1899 /*
1900 * remove the space for the drain we added
1901 * so that we don't add it again
1902 */
1903 --rq->nr_phys_segments;
1904 }
1905
1906 rq = NULL;
1907 break;
1908 } else if (ret == BLKPREP_KILL) {
1909 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1910 /*
1911 * Mark this request as started so we don't trigger
1912 * any debug logic in the end I/O path.
1913 */
1914 blk_start_request(rq);
40cbbb78 1915 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1916 } else {
1917 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1918 break;
1919 }
1920 }
1921
1922 return rq;
1923}
9934c8c0 1924EXPORT_SYMBOL(blk_peek_request);
158dbda0 1925
9934c8c0 1926void blk_dequeue_request(struct request *rq)
158dbda0 1927{
9934c8c0
TH
1928 struct request_queue *q = rq->q;
1929
158dbda0
TH
1930 BUG_ON(list_empty(&rq->queuelist));
1931 BUG_ON(ELV_ON_HASH(rq));
1932
1933 list_del_init(&rq->queuelist);
1934
1935 /*
1936 * the time frame between a request being removed from the lists
1937 * and to it is freed is accounted as io that is in progress at
1938 * the driver side.
1939 */
9195291e 1940 if (blk_account_rq(rq)) {
0a7ae2ff 1941 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1942 set_io_start_time_ns(rq);
1943 }
158dbda0
TH
1944}
1945
9934c8c0
TH
1946/**
1947 * blk_start_request - start request processing on the driver
1948 * @req: request to dequeue
1949 *
1950 * Description:
1951 * Dequeue @req and start timeout timer on it. This hands off the
1952 * request to the driver.
1953 *
1954 * Block internal functions which don't want to start timer should
1955 * call blk_dequeue_request().
1956 *
1957 * Context:
1958 * queue_lock must be held.
1959 */
1960void blk_start_request(struct request *req)
1961{
1962 blk_dequeue_request(req);
1963
1964 /*
5f49f631
TH
1965 * We are now handing the request to the hardware, initialize
1966 * resid_len to full count and add the timeout handler.
9934c8c0 1967 */
5f49f631 1968 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
1969 if (unlikely(blk_bidi_rq(req)))
1970 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1971
9934c8c0
TH
1972 blk_add_timer(req);
1973}
1974EXPORT_SYMBOL(blk_start_request);
1975
1976/**
1977 * blk_fetch_request - fetch a request from a request queue
1978 * @q: request queue to fetch a request from
1979 *
1980 * Description:
1981 * Return the request at the top of @q. The request is started on
1982 * return and LLD can start processing it immediately.
1983 *
1984 * Return:
1985 * Pointer to the request at the top of @q if available. Null
1986 * otherwise.
1987 *
1988 * Context:
1989 * queue_lock must be held.
1990 */
1991struct request *blk_fetch_request(struct request_queue *q)
1992{
1993 struct request *rq;
1994
1995 rq = blk_peek_request(q);
1996 if (rq)
1997 blk_start_request(rq);
1998 return rq;
1999}
2000EXPORT_SYMBOL(blk_fetch_request);
2001
3bcddeac 2002/**
2e60e022 2003 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2004 * @req: the request being processed
710027a4 2005 * @error: %0 for success, < %0 for error
8ebf9756 2006 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2007 *
2008 * Description:
8ebf9756
RD
2009 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2010 * the request structure even if @req doesn't have leftover.
2011 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2012 *
2013 * This special helper function is only for request stacking drivers
2014 * (e.g. request-based dm) so that they can handle partial completion.
2015 * Actual device drivers should use blk_end_request instead.
2016 *
2017 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2018 * %false return from this function.
3bcddeac
KU
2019 *
2020 * Return:
2e60e022
TH
2021 * %false - this request doesn't have any more data
2022 * %true - this request has more data
3bcddeac 2023 **/
2e60e022 2024bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2025{
5450d3e1 2026 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2027 struct bio *bio;
2028
2e60e022
TH
2029 if (!req->bio)
2030 return false;
2031
5f3ea37c 2032 trace_block_rq_complete(req->q, req);
2056a782 2033
1da177e4 2034 /*
6f41469c
TH
2035 * For fs requests, rq is just carrier of independent bio's
2036 * and each partial completion should be handled separately.
2037 * Reset per-request error on each partial completion.
2038 *
2039 * TODO: tj: This is too subtle. It would be better to let
2040 * low level drivers do what they see fit.
1da177e4 2041 */
33659ebb 2042 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2043 req->errors = 0;
2044
33659ebb
CH
2045 if (error && req->cmd_type == REQ_TYPE_FS &&
2046 !(req->cmd_flags & REQ_QUIET)) {
6728cb0e 2047 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4 2048 req->rq_disk ? req->rq_disk->disk_name : "?",
83096ebf 2049 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2050 }
2051
bc58ba94 2052 blk_account_io_completion(req, nr_bytes);
d72d904a 2053
1da177e4
LT
2054 total_bytes = bio_nbytes = 0;
2055 while ((bio = req->bio) != NULL) {
2056 int nbytes;
2057
2058 if (nr_bytes >= bio->bi_size) {
2059 req->bio = bio->bi_next;
2060 nbytes = bio->bi_size;
5bb23a68 2061 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2062 next_idx = 0;
2063 bio_nbytes = 0;
2064 } else {
2065 int idx = bio->bi_idx + next_idx;
2066
af498d7f 2067 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2068 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2069 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2070 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2071 break;
2072 }
2073
2074 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2075 BIO_BUG_ON(nbytes > bio->bi_size);
2076
2077 /*
2078 * not a complete bvec done
2079 */
2080 if (unlikely(nbytes > nr_bytes)) {
2081 bio_nbytes += nr_bytes;
2082 total_bytes += nr_bytes;
2083 break;
2084 }
2085
2086 /*
2087 * advance to the next vector
2088 */
2089 next_idx++;
2090 bio_nbytes += nbytes;
2091 }
2092
2093 total_bytes += nbytes;
2094 nr_bytes -= nbytes;
2095
6728cb0e
JA
2096 bio = req->bio;
2097 if (bio) {
1da177e4
LT
2098 /*
2099 * end more in this run, or just return 'not-done'
2100 */
2101 if (unlikely(nr_bytes <= 0))
2102 break;
2103 }
2104 }
2105
2106 /*
2107 * completely done
2108 */
2e60e022
TH
2109 if (!req->bio) {
2110 /*
2111 * Reset counters so that the request stacking driver
2112 * can find how many bytes remain in the request
2113 * later.
2114 */
a2dec7b3 2115 req->__data_len = 0;
2e60e022
TH
2116 return false;
2117 }
1da177e4
LT
2118
2119 /*
2120 * if the request wasn't completed, update state
2121 */
2122 if (bio_nbytes) {
5bb23a68 2123 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2124 bio->bi_idx += next_idx;
2125 bio_iovec(bio)->bv_offset += nr_bytes;
2126 bio_iovec(bio)->bv_len -= nr_bytes;
2127 }
2128
a2dec7b3 2129 req->__data_len -= total_bytes;
2e46e8b2
TH
2130 req->buffer = bio_data(req->bio);
2131
2132 /* update sector only for requests with clear definition of sector */
33659ebb 2133 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2134 req->__sector += total_bytes >> 9;
2e46e8b2 2135
80a761fd
TH
2136 /* mixed attributes always follow the first bio */
2137 if (req->cmd_flags & REQ_MIXED_MERGE) {
2138 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2139 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2140 }
2141
2e46e8b2
TH
2142 /*
2143 * If total number of sectors is less than the first segment
2144 * size, something has gone terribly wrong.
2145 */
2146 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2147 printk(KERN_ERR "blk: request botched\n");
a2dec7b3 2148 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2149 }
2150
2151 /* recalculate the number of segments */
1da177e4 2152 blk_recalc_rq_segments(req);
2e46e8b2 2153
2e60e022 2154 return true;
1da177e4 2155}
2e60e022 2156EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2157
2e60e022
TH
2158static bool blk_update_bidi_request(struct request *rq, int error,
2159 unsigned int nr_bytes,
2160 unsigned int bidi_bytes)
5efccd17 2161{
2e60e022
TH
2162 if (blk_update_request(rq, error, nr_bytes))
2163 return true;
5efccd17 2164
2e60e022
TH
2165 /* Bidi request must be completed as a whole */
2166 if (unlikely(blk_bidi_rq(rq)) &&
2167 blk_update_request(rq->next_rq, error, bidi_bytes))
2168 return true;
5efccd17 2169
e2e1a148
JA
2170 if (blk_queue_add_random(rq->q))
2171 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2172
2173 return false;
1da177e4
LT
2174}
2175
28018c24
JB
2176/**
2177 * blk_unprep_request - unprepare a request
2178 * @req: the request
2179 *
2180 * This function makes a request ready for complete resubmission (or
2181 * completion). It happens only after all error handling is complete,
2182 * so represents the appropriate moment to deallocate any resources
2183 * that were allocated to the request in the prep_rq_fn. The queue
2184 * lock is held when calling this.
2185 */
2186void blk_unprep_request(struct request *req)
2187{
2188 struct request_queue *q = req->q;
2189
2190 req->cmd_flags &= ~REQ_DONTPREP;
2191 if (q->unprep_rq_fn)
2192 q->unprep_rq_fn(q, req);
2193}
2194EXPORT_SYMBOL_GPL(blk_unprep_request);
2195
1da177e4
LT
2196/*
2197 * queue lock must be held
2198 */
2e60e022 2199static void blk_finish_request(struct request *req, int error)
1da177e4 2200{
b8286239
KU
2201 if (blk_rq_tagged(req))
2202 blk_queue_end_tag(req->q, req);
2203
ba396a6c 2204 BUG_ON(blk_queued_rq(req));
1da177e4 2205
33659ebb 2206 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2207 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2208
e78042e5
MA
2209 blk_delete_timer(req);
2210
28018c24
JB
2211 if (req->cmd_flags & REQ_DONTPREP)
2212 blk_unprep_request(req);
2213
2214
bc58ba94 2215 blk_account_io_done(req);
b8286239 2216
1da177e4 2217 if (req->end_io)
8ffdc655 2218 req->end_io(req, error);
b8286239
KU
2219 else {
2220 if (blk_bidi_rq(req))
2221 __blk_put_request(req->next_rq->q, req->next_rq);
2222
1da177e4 2223 __blk_put_request(req->q, req);
b8286239 2224 }
1da177e4
LT
2225}
2226
3b11313a 2227/**
2e60e022
TH
2228 * blk_end_bidi_request - Complete a bidi request
2229 * @rq: the request to complete
2230 * @error: %0 for success, < %0 for error
2231 * @nr_bytes: number of bytes to complete @rq
2232 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2233 *
2234 * Description:
e3a04fe3 2235 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2236 * Drivers that supports bidi can safely call this member for any
2237 * type of request, bidi or uni. In the later case @bidi_bytes is
2238 * just ignored.
336cdb40
KU
2239 *
2240 * Return:
2e60e022
TH
2241 * %false - we are done with this request
2242 * %true - still buffers pending for this request
a0cd1285 2243 **/
b1f74493 2244static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2245 unsigned int nr_bytes, unsigned int bidi_bytes)
2246{
336cdb40 2247 struct request_queue *q = rq->q;
2e60e022 2248 unsigned long flags;
32fab448 2249
2e60e022
TH
2250 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2251 return true;
32fab448 2252
336cdb40 2253 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2254 blk_finish_request(rq, error);
336cdb40
KU
2255 spin_unlock_irqrestore(q->queue_lock, flags);
2256
2e60e022 2257 return false;
32fab448
KU
2258}
2259
336cdb40 2260/**
2e60e022
TH
2261 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2262 * @rq: the request to complete
710027a4 2263 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2264 * @nr_bytes: number of bytes to complete @rq
2265 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2266 *
2267 * Description:
2e60e022
TH
2268 * Identical to blk_end_bidi_request() except that queue lock is
2269 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2270 *
2271 * Return:
2e60e022
TH
2272 * %false - we are done with this request
2273 * %true - still buffers pending for this request
336cdb40 2274 **/
b1f74493
FT
2275static bool __blk_end_bidi_request(struct request *rq, int error,
2276 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2277{
2e60e022
TH
2278 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2279 return true;
336cdb40 2280
2e60e022 2281 blk_finish_request(rq, error);
336cdb40 2282
2e60e022 2283 return false;
336cdb40 2284}
e19a3ab0
KU
2285
2286/**
2287 * blk_end_request - Helper function for drivers to complete the request.
2288 * @rq: the request being processed
710027a4 2289 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2290 * @nr_bytes: number of bytes to complete
2291 *
2292 * Description:
2293 * Ends I/O on a number of bytes attached to @rq.
2294 * If @rq has leftover, sets it up for the next range of segments.
2295 *
2296 * Return:
b1f74493
FT
2297 * %false - we are done with this request
2298 * %true - still buffers pending for this request
e19a3ab0 2299 **/
b1f74493 2300bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2301{
b1f74493 2302 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2303}
56ad1740 2304EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2305
2306/**
b1f74493
FT
2307 * blk_end_request_all - Helper function for drives to finish the request.
2308 * @rq: the request to finish
8ebf9756 2309 * @error: %0 for success, < %0 for error
336cdb40
KU
2310 *
2311 * Description:
b1f74493
FT
2312 * Completely finish @rq.
2313 */
2314void blk_end_request_all(struct request *rq, int error)
336cdb40 2315{
b1f74493
FT
2316 bool pending;
2317 unsigned int bidi_bytes = 0;
336cdb40 2318
b1f74493
FT
2319 if (unlikely(blk_bidi_rq(rq)))
2320 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2321
b1f74493
FT
2322 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2323 BUG_ON(pending);
2324}
56ad1740 2325EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2326
b1f74493
FT
2327/**
2328 * blk_end_request_cur - Helper function to finish the current request chunk.
2329 * @rq: the request to finish the current chunk for
8ebf9756 2330 * @error: %0 for success, < %0 for error
b1f74493
FT
2331 *
2332 * Description:
2333 * Complete the current consecutively mapped chunk from @rq.
2334 *
2335 * Return:
2336 * %false - we are done with this request
2337 * %true - still buffers pending for this request
2338 */
2339bool blk_end_request_cur(struct request *rq, int error)
2340{
2341 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2342}
56ad1740 2343EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2344
80a761fd
TH
2345/**
2346 * blk_end_request_err - Finish a request till the next failure boundary.
2347 * @rq: the request to finish till the next failure boundary for
2348 * @error: must be negative errno
2349 *
2350 * Description:
2351 * Complete @rq till the next failure boundary.
2352 *
2353 * Return:
2354 * %false - we are done with this request
2355 * %true - still buffers pending for this request
2356 */
2357bool blk_end_request_err(struct request *rq, int error)
2358{
2359 WARN_ON(error >= 0);
2360 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2361}
2362EXPORT_SYMBOL_GPL(blk_end_request_err);
2363
e3a04fe3 2364/**
b1f74493
FT
2365 * __blk_end_request - Helper function for drivers to complete the request.
2366 * @rq: the request being processed
2367 * @error: %0 for success, < %0 for error
2368 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2369 *
2370 * Description:
b1f74493 2371 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2372 *
2373 * Return:
b1f74493
FT
2374 * %false - we are done with this request
2375 * %true - still buffers pending for this request
e3a04fe3 2376 **/
b1f74493 2377bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2378{
b1f74493 2379 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2380}
56ad1740 2381EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2382
32fab448 2383/**
b1f74493
FT
2384 * __blk_end_request_all - Helper function for drives to finish the request.
2385 * @rq: the request to finish
8ebf9756 2386 * @error: %0 for success, < %0 for error
32fab448
KU
2387 *
2388 * Description:
b1f74493 2389 * Completely finish @rq. Must be called with queue lock held.
32fab448 2390 */
b1f74493 2391void __blk_end_request_all(struct request *rq, int error)
32fab448 2392{
b1f74493
FT
2393 bool pending;
2394 unsigned int bidi_bytes = 0;
2395
2396 if (unlikely(blk_bidi_rq(rq)))
2397 bidi_bytes = blk_rq_bytes(rq->next_rq);
2398
2399 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2400 BUG_ON(pending);
32fab448 2401}
56ad1740 2402EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2403
e19a3ab0 2404/**
b1f74493
FT
2405 * __blk_end_request_cur - Helper function to finish the current request chunk.
2406 * @rq: the request to finish the current chunk for
8ebf9756 2407 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2408 *
2409 * Description:
b1f74493
FT
2410 * Complete the current consecutively mapped chunk from @rq. Must
2411 * be called with queue lock held.
e19a3ab0
KU
2412 *
2413 * Return:
b1f74493
FT
2414 * %false - we are done with this request
2415 * %true - still buffers pending for this request
2416 */
2417bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2418{
b1f74493 2419 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2420}
56ad1740 2421EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2422
80a761fd
TH
2423/**
2424 * __blk_end_request_err - Finish a request till the next failure boundary.
2425 * @rq: the request to finish till the next failure boundary for
2426 * @error: must be negative errno
2427 *
2428 * Description:
2429 * Complete @rq till the next failure boundary. Must be called
2430 * with queue lock held.
2431 *
2432 * Return:
2433 * %false - we are done with this request
2434 * %true - still buffers pending for this request
2435 */
2436bool __blk_end_request_err(struct request *rq, int error)
2437{
2438 WARN_ON(error >= 0);
2439 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2440}
2441EXPORT_SYMBOL_GPL(__blk_end_request_err);
2442
86db1e29
JA
2443void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2444 struct bio *bio)
1da177e4 2445{
a82afdfc 2446 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2447 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2448
fb2dce86
DW
2449 if (bio_has_data(bio)) {
2450 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2451 rq->buffer = bio_data(bio);
2452 }
a2dec7b3 2453 rq->__data_len = bio->bi_size;
1da177e4 2454 rq->bio = rq->biotail = bio;
1da177e4 2455
66846572
N
2456 if (bio->bi_bdev)
2457 rq->rq_disk = bio->bi_bdev->bd_disk;
2458}
1da177e4 2459
2d4dc890
IL
2460#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2461/**
2462 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2463 * @rq: the request to be flushed
2464 *
2465 * Description:
2466 * Flush all pages in @rq.
2467 */
2468void rq_flush_dcache_pages(struct request *rq)
2469{
2470 struct req_iterator iter;
2471 struct bio_vec *bvec;
2472
2473 rq_for_each_segment(bvec, rq, iter)
2474 flush_dcache_page(bvec->bv_page);
2475}
2476EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2477#endif
2478
ef9e3fac
KU
2479/**
2480 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2481 * @q : the queue of the device being checked
2482 *
2483 * Description:
2484 * Check if underlying low-level drivers of a device are busy.
2485 * If the drivers want to export their busy state, they must set own
2486 * exporting function using blk_queue_lld_busy() first.
2487 *
2488 * Basically, this function is used only by request stacking drivers
2489 * to stop dispatching requests to underlying devices when underlying
2490 * devices are busy. This behavior helps more I/O merging on the queue
2491 * of the request stacking driver and prevents I/O throughput regression
2492 * on burst I/O load.
2493 *
2494 * Return:
2495 * 0 - Not busy (The request stacking driver should dispatch request)
2496 * 1 - Busy (The request stacking driver should stop dispatching request)
2497 */
2498int blk_lld_busy(struct request_queue *q)
2499{
2500 if (q->lld_busy_fn)
2501 return q->lld_busy_fn(q);
2502
2503 return 0;
2504}
2505EXPORT_SYMBOL_GPL(blk_lld_busy);
2506
b0fd271d
KU
2507/**
2508 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2509 * @rq: the clone request to be cleaned up
2510 *
2511 * Description:
2512 * Free all bios in @rq for a cloned request.
2513 */
2514void blk_rq_unprep_clone(struct request *rq)
2515{
2516 struct bio *bio;
2517
2518 while ((bio = rq->bio) != NULL) {
2519 rq->bio = bio->bi_next;
2520
2521 bio_put(bio);
2522 }
2523}
2524EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2525
2526/*
2527 * Copy attributes of the original request to the clone request.
2528 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2529 */
2530static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2531{
2532 dst->cpu = src->cpu;
3a2edd0d 2533 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2534 dst->cmd_type = src->cmd_type;
2535 dst->__sector = blk_rq_pos(src);
2536 dst->__data_len = blk_rq_bytes(src);
2537 dst->nr_phys_segments = src->nr_phys_segments;
2538 dst->ioprio = src->ioprio;
2539 dst->extra_len = src->extra_len;
2540}
2541
2542/**
2543 * blk_rq_prep_clone - Helper function to setup clone request
2544 * @rq: the request to be setup
2545 * @rq_src: original request to be cloned
2546 * @bs: bio_set that bios for clone are allocated from
2547 * @gfp_mask: memory allocation mask for bio
2548 * @bio_ctr: setup function to be called for each clone bio.
2549 * Returns %0 for success, non %0 for failure.
2550 * @data: private data to be passed to @bio_ctr
2551 *
2552 * Description:
2553 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2554 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2555 * are not copied, and copying such parts is the caller's responsibility.
2556 * Also, pages which the original bios are pointing to are not copied
2557 * and the cloned bios just point same pages.
2558 * So cloned bios must be completed before original bios, which means
2559 * the caller must complete @rq before @rq_src.
2560 */
2561int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2562 struct bio_set *bs, gfp_t gfp_mask,
2563 int (*bio_ctr)(struct bio *, struct bio *, void *),
2564 void *data)
2565{
2566 struct bio *bio, *bio_src;
2567
2568 if (!bs)
2569 bs = fs_bio_set;
2570
2571 blk_rq_init(NULL, rq);
2572
2573 __rq_for_each_bio(bio_src, rq_src) {
2574 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2575 if (!bio)
2576 goto free_and_out;
2577
2578 __bio_clone(bio, bio_src);
2579
2580 if (bio_integrity(bio_src) &&
7878cba9 2581 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2582 goto free_and_out;
2583
2584 if (bio_ctr && bio_ctr(bio, bio_src, data))
2585 goto free_and_out;
2586
2587 if (rq->bio) {
2588 rq->biotail->bi_next = bio;
2589 rq->biotail = bio;
2590 } else
2591 rq->bio = rq->biotail = bio;
2592 }
2593
2594 __blk_rq_prep_clone(rq, rq_src);
2595
2596 return 0;
2597
2598free_and_out:
2599 if (bio)
2600 bio_free(bio, bs);
2601 blk_rq_unprep_clone(rq);
2602
2603 return -ENOMEM;
2604}
2605EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2606
18887ad9 2607int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2608{
2609 return queue_work(kblockd_workqueue, work);
2610}
1da177e4
LT
2611EXPORT_SYMBOL(kblockd_schedule_work);
2612
e43473b7
VG
2613int kblockd_schedule_delayed_work(struct request_queue *q,
2614 struct delayed_work *dwork, unsigned long delay)
2615{
2616 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2617}
2618EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2619
1da177e4
LT
2620int __init blk_dev_init(void)
2621{
9eb55b03
NK
2622 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2623 sizeof(((struct request *)0)->cmd_flags));
2624
89b90be2
TH
2625 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2626 kblockd_workqueue = alloc_workqueue("kblockd",
2627 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
2628 if (!kblockd_workqueue)
2629 panic("Failed to create kblockd\n");
2630
2631 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2632 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2633
8324aa91 2634 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2635 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2636
d38ecf93 2637 return 0;
1da177e4 2638}