]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block: improve flush bio completion
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
55782138
LZ
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/block.h>
1da177e4 33
8324aa91
JA
34#include "blk.h"
35
0bfc2455 36EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
b0da3f0d 37EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 39
165125e1 40static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
41
42/*
43 * For the allocated request tables
44 */
5ece6c52 45static struct kmem_cache *request_cachep;
1da177e4
LT
46
47/*
48 * For queue allocation
49 */
6728cb0e 50struct kmem_cache *blk_requestq_cachep;
1da177e4 51
1da177e4
LT
52/*
53 * Controlling structure to kblockd
54 */
ff856bad 55static struct workqueue_struct *kblockd_workqueue;
1da177e4 56
26b8256e
JA
57static void drive_stat_acct(struct request *rq, int new_io)
58{
28f13702 59 struct hd_struct *part;
26b8256e 60 int rw = rq_data_dir(rq);
c9959059 61 int cpu;
26b8256e 62
c2553b58 63 if (!blk_do_io_stat(rq))
26b8256e
JA
64 return;
65
074a7aca 66 cpu = part_stat_lock();
f253b86b 67 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
c9959059 68
f253b86b 69 if (!new_io)
074a7aca 70 part_stat_inc(cpu, part, merges[rw]);
f253b86b 71 else {
074a7aca 72 part_round_stats(cpu, part);
316d315b 73 part_inc_in_flight(part, rw);
26b8256e 74 }
e71bf0d0 75
074a7aca 76 part_stat_unlock();
26b8256e
JA
77}
78
8324aa91 79void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
80{
81 int nr;
82
83 nr = q->nr_requests - (q->nr_requests / 8) + 1;
84 if (nr > q->nr_requests)
85 nr = q->nr_requests;
86 q->nr_congestion_on = nr;
87
88 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
89 if (nr < 1)
90 nr = 1;
91 q->nr_congestion_off = nr;
92}
93
1da177e4
LT
94/**
95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
96 * @bdev: device
97 *
98 * Locates the passed device's request queue and returns the address of its
99 * backing_dev_info
100 *
101 * Will return NULL if the request queue cannot be located.
102 */
103struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
104{
105 struct backing_dev_info *ret = NULL;
165125e1 106 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
107
108 if (q)
109 ret = &q->backing_dev_info;
110 return ret;
111}
1da177e4
LT
112EXPORT_SYMBOL(blk_get_backing_dev_info);
113
2a4aa30c 114void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 115{
1afb20f3
FT
116 memset(rq, 0, sizeof(*rq));
117
1da177e4 118 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 119 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 120 rq->cpu = -1;
63a71386 121 rq->q = q;
a2dec7b3 122 rq->__sector = (sector_t) -1;
2e662b65
JA
123 INIT_HLIST_NODE(&rq->hash);
124 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 125 rq->cmd = rq->__cmd;
e2494e1b 126 rq->cmd_len = BLK_MAX_CDB;
63a71386 127 rq->tag = -1;
1da177e4 128 rq->ref_count = 1;
b243ddcb 129 rq->start_time = jiffies;
9195291e 130 set_start_time_ns(rq);
1da177e4 131}
2a4aa30c 132EXPORT_SYMBOL(blk_rq_init);
1da177e4 133
5bb23a68
N
134static void req_bio_endio(struct request *rq, struct bio *bio,
135 unsigned int nbytes, int error)
1da177e4 136{
165125e1 137 struct request_queue *q = rq->q;
797e7dbb 138
143a87f4
TH
139 if (error)
140 clear_bit(BIO_UPTODATE, &bio->bi_flags);
141 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
142 error = -EIO;
143
144 if (unlikely(nbytes > bio->bi_size)) {
145 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
146 __func__, nbytes, bio->bi_size);
147 nbytes = bio->bi_size;
5bb23a68 148 }
143a87f4
TH
149
150 if (unlikely(rq->cmd_flags & REQ_QUIET))
151 set_bit(BIO_QUIET, &bio->bi_flags);
152
153 bio->bi_size -= nbytes;
154 bio->bi_sector += (nbytes >> 9);
155
156 if (bio_integrity(bio))
157 bio_integrity_advance(bio, nbytes);
158
159 /* don't actually finish bio if it's part of flush sequence */
160 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
161 bio_endio(bio, error);
162 else if (error && !q->flush_err)
163 q->flush_err = error;
1da177e4 164}
1da177e4 165
1da177e4
LT
166void blk_dump_rq_flags(struct request *rq, char *msg)
167{
168 int bit;
169
6728cb0e 170 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
171 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
172 rq->cmd_flags);
1da177e4 173
83096ebf
TH
174 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
175 (unsigned long long)blk_rq_pos(rq),
176 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 177 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 178 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 179
33659ebb 180 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 181 printk(KERN_INFO " cdb: ");
d34c87e4 182 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
183 printk("%02x ", rq->cmd[bit]);
184 printk("\n");
185 }
186}
1da177e4
LT
187EXPORT_SYMBOL(blk_dump_rq_flags);
188
1da177e4
LT
189/*
190 * "plug" the device if there are no outstanding requests: this will
191 * force the transfer to start only after we have put all the requests
192 * on the list.
193 *
194 * This is called with interrupts off and no requests on the queue and
195 * with the queue lock held.
196 */
165125e1 197void blk_plug_device(struct request_queue *q)
1da177e4
LT
198{
199 WARN_ON(!irqs_disabled());
200
201 /*
202 * don't plug a stopped queue, it must be paired with blk_start_queue()
203 * which will restart the queueing
204 */
7daac490 205 if (blk_queue_stopped(q))
1da177e4
LT
206 return;
207
e48ec690 208 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 209 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
5f3ea37c 210 trace_block_plug(q);
2056a782 211 }
1da177e4 212}
1da177e4
LT
213EXPORT_SYMBOL(blk_plug_device);
214
6c5e0c4d
JA
215/**
216 * blk_plug_device_unlocked - plug a device without queue lock held
217 * @q: The &struct request_queue to plug
218 *
219 * Description:
220 * Like @blk_plug_device(), but grabs the queue lock and disables
221 * interrupts.
222 **/
223void blk_plug_device_unlocked(struct request_queue *q)
224{
225 unsigned long flags;
226
227 spin_lock_irqsave(q->queue_lock, flags);
228 blk_plug_device(q);
229 spin_unlock_irqrestore(q->queue_lock, flags);
230}
231EXPORT_SYMBOL(blk_plug_device_unlocked);
232
1da177e4
LT
233/*
234 * remove the queue from the plugged list, if present. called with
235 * queue lock held and interrupts disabled.
236 */
165125e1 237int blk_remove_plug(struct request_queue *q)
1da177e4
LT
238{
239 WARN_ON(!irqs_disabled());
240
e48ec690 241 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
242 return 0;
243
244 del_timer(&q->unplug_timer);
245 return 1;
246}
1da177e4
LT
247EXPORT_SYMBOL(blk_remove_plug);
248
249/*
250 * remove the plug and let it rip..
251 */
165125e1 252void __generic_unplug_device(struct request_queue *q)
1da177e4 253{
7daac490 254 if (unlikely(blk_queue_stopped(q)))
1da177e4 255 return;
a31a9738 256 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
1da177e4
LT
257 return;
258
22e2c507 259 q->request_fn(q);
1da177e4 260}
1da177e4
LT
261
262/**
263 * generic_unplug_device - fire a request queue
165125e1 264 * @q: The &struct request_queue in question
1da177e4
LT
265 *
266 * Description:
267 * Linux uses plugging to build bigger requests queues before letting
268 * the device have at them. If a queue is plugged, the I/O scheduler
269 * is still adding and merging requests on the queue. Once the queue
270 * gets unplugged, the request_fn defined for the queue is invoked and
271 * transfers started.
272 **/
165125e1 273void generic_unplug_device(struct request_queue *q)
1da177e4 274{
dbaf2c00
JA
275 if (blk_queue_plugged(q)) {
276 spin_lock_irq(q->queue_lock);
277 __generic_unplug_device(q);
278 spin_unlock_irq(q->queue_lock);
279 }
1da177e4
LT
280}
281EXPORT_SYMBOL(generic_unplug_device);
282
283static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
284 struct page *page)
285{
165125e1 286 struct request_queue *q = bdi->unplug_io_data;
1da177e4 287
2ad8b1ef 288 blk_unplug(q);
1da177e4
LT
289}
290
86db1e29 291void blk_unplug_work(struct work_struct *work)
1da177e4 292{
165125e1
JA
293 struct request_queue *q =
294 container_of(work, struct request_queue, unplug_work);
1da177e4 295
5f3ea37c 296 trace_block_unplug_io(q);
1da177e4
LT
297 q->unplug_fn(q);
298}
299
86db1e29 300void blk_unplug_timeout(unsigned long data)
1da177e4 301{
165125e1 302 struct request_queue *q = (struct request_queue *)data;
1da177e4 303
5f3ea37c 304 trace_block_unplug_timer(q);
18887ad9 305 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
306}
307
2ad8b1ef
AB
308void blk_unplug(struct request_queue *q)
309{
310 /*
311 * devices don't necessarily have an ->unplug_fn defined
312 */
313 if (q->unplug_fn) {
5f3ea37c 314 trace_block_unplug_io(q);
2ad8b1ef
AB
315 q->unplug_fn(q);
316 }
317}
318EXPORT_SYMBOL(blk_unplug);
319
1da177e4
LT
320/**
321 * blk_start_queue - restart a previously stopped queue
165125e1 322 * @q: The &struct request_queue in question
1da177e4
LT
323 *
324 * Description:
325 * blk_start_queue() will clear the stop flag on the queue, and call
326 * the request_fn for the queue if it was in a stopped state when
327 * entered. Also see blk_stop_queue(). Queue lock must be held.
328 **/
165125e1 329void blk_start_queue(struct request_queue *q)
1da177e4 330{
a038e253
PBG
331 WARN_ON(!irqs_disabled());
332
75ad23bc 333 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
a538cd03 334 __blk_run_queue(q);
1da177e4 335}
1da177e4
LT
336EXPORT_SYMBOL(blk_start_queue);
337
338/**
339 * blk_stop_queue - stop a queue
165125e1 340 * @q: The &struct request_queue in question
1da177e4
LT
341 *
342 * Description:
343 * The Linux block layer assumes that a block driver will consume all
344 * entries on the request queue when the request_fn strategy is called.
345 * Often this will not happen, because of hardware limitations (queue
346 * depth settings). If a device driver gets a 'queue full' response,
347 * or if it simply chooses not to queue more I/O at one point, it can
348 * call this function to prevent the request_fn from being called until
349 * the driver has signalled it's ready to go again. This happens by calling
350 * blk_start_queue() to restart queue operations. Queue lock must be held.
351 **/
165125e1 352void blk_stop_queue(struct request_queue *q)
1da177e4
LT
353{
354 blk_remove_plug(q);
75ad23bc 355 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
356}
357EXPORT_SYMBOL(blk_stop_queue);
358
359/**
360 * blk_sync_queue - cancel any pending callbacks on a queue
361 * @q: the queue
362 *
363 * Description:
364 * The block layer may perform asynchronous callback activity
365 * on a queue, such as calling the unplug function after a timeout.
366 * A block device may call blk_sync_queue to ensure that any
367 * such activity is cancelled, thus allowing it to release resources
59c51591 368 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
369 * that its ->make_request_fn will not re-add plugging prior to calling
370 * this function.
371 *
372 */
373void blk_sync_queue(struct request_queue *q)
374{
375 del_timer_sync(&q->unplug_timer);
70ed28b9 376 del_timer_sync(&q->timeout);
64d01dc9 377 cancel_work_sync(&q->unplug_work);
e43473b7 378 throtl_shutdown_timer_wq(q);
1da177e4
LT
379}
380EXPORT_SYMBOL(blk_sync_queue);
381
382/**
80a4b58e 383 * __blk_run_queue - run a single device queue
1da177e4 384 * @q: The queue to run
80a4b58e
JA
385 *
386 * Description:
387 * See @blk_run_queue. This variant must be called with the queue lock
388 * held and interrupts disabled.
389 *
1da177e4 390 */
75ad23bc 391void __blk_run_queue(struct request_queue *q)
1da177e4 392{
1da177e4 393 blk_remove_plug(q);
dac07ec1 394
a538cd03
TH
395 if (unlikely(blk_queue_stopped(q)))
396 return;
397
398 if (elv_queue_empty(q))
399 return;
400
dac07ec1
JA
401 /*
402 * Only recurse once to avoid overrunning the stack, let the unplug
403 * handling reinvoke the handler shortly if we already got there.
404 */
a538cd03
TH
405 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
406 q->request_fn(q);
407 queue_flag_clear(QUEUE_FLAG_REENTER, q);
408 } else {
409 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
410 kblockd_schedule_work(q, &q->unplug_work);
411 }
75ad23bc
NP
412}
413EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 414
75ad23bc
NP
415/**
416 * blk_run_queue - run a single device queue
417 * @q: The queue to run
80a4b58e
JA
418 *
419 * Description:
420 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 421 * May be used to restart queueing when a request has completed.
75ad23bc
NP
422 */
423void blk_run_queue(struct request_queue *q)
424{
425 unsigned long flags;
426
427 spin_lock_irqsave(q->queue_lock, flags);
428 __blk_run_queue(q);
1da177e4
LT
429 spin_unlock_irqrestore(q->queue_lock, flags);
430}
431EXPORT_SYMBOL(blk_run_queue);
432
165125e1 433void blk_put_queue(struct request_queue *q)
483f4afc
AV
434{
435 kobject_put(&q->kobj);
436}
483f4afc 437
6728cb0e 438void blk_cleanup_queue(struct request_queue *q)
483f4afc 439{
e3335de9
JA
440 /*
441 * We know we have process context here, so we can be a little
442 * cautious and ensure that pending block actions on this device
443 * are done before moving on. Going into this function, we should
444 * not have processes doing IO to this device.
445 */
446 blk_sync_queue(q);
447
31373d09 448 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
483f4afc 449 mutex_lock(&q->sysfs_lock);
75ad23bc 450 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
451 mutex_unlock(&q->sysfs_lock);
452
453 if (q->elevator)
454 elevator_exit(q->elevator);
455
456 blk_put_queue(q);
457}
1da177e4
LT
458EXPORT_SYMBOL(blk_cleanup_queue);
459
165125e1 460static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
461{
462 struct request_list *rl = &q->rq;
463
1abec4fd
MS
464 if (unlikely(rl->rq_pool))
465 return 0;
466
1faa16d2
JA
467 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
468 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 469 rl->elvpriv = 0;
1faa16d2
JA
470 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
471 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 472
1946089a
CL
473 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
474 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
475
476 if (!rl->rq_pool)
477 return -ENOMEM;
478
479 return 0;
480}
481
165125e1 482struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 483{
1946089a
CL
484 return blk_alloc_queue_node(gfp_mask, -1);
485}
486EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 487
165125e1 488struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 489{
165125e1 490 struct request_queue *q;
e0bf68dd 491 int err;
1946089a 492
8324aa91 493 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 494 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
495 if (!q)
496 return NULL;
497
e0bf68dd
PZ
498 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
499 q->backing_dev_info.unplug_io_data = q;
0989a025
JA
500 q->backing_dev_info.ra_pages =
501 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
502 q->backing_dev_info.state = 0;
503 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 504 q->backing_dev_info.name = "block";
0989a025 505
e0bf68dd
PZ
506 err = bdi_init(&q->backing_dev_info);
507 if (err) {
8324aa91 508 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
509 return NULL;
510 }
511
e43473b7
VG
512 if (blk_throtl_init(q)) {
513 kmem_cache_free(blk_requestq_cachep, q);
514 return NULL;
515 }
516
31373d09
MG
517 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
518 laptop_mode_timer_fn, (unsigned long) q);
1da177e4 519 init_timer(&q->unplug_timer);
242f9dcb
JA
520 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
521 INIT_LIST_HEAD(&q->timeout_list);
dd4c133f 522 INIT_LIST_HEAD(&q->pending_flushes);
713ada9b 523 INIT_WORK(&q->unplug_work, blk_unplug_work);
483f4afc 524
8324aa91 525 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 526
483f4afc 527 mutex_init(&q->sysfs_lock);
e7e72bf6 528 spin_lock_init(&q->__queue_lock);
483f4afc 529
1da177e4
LT
530 return q;
531}
1946089a 532EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
533
534/**
535 * blk_init_queue - prepare a request queue for use with a block device
536 * @rfn: The function to be called to process requests that have been
537 * placed on the queue.
538 * @lock: Request queue spin lock
539 *
540 * Description:
541 * If a block device wishes to use the standard request handling procedures,
542 * which sorts requests and coalesces adjacent requests, then it must
543 * call blk_init_queue(). The function @rfn will be called when there
544 * are requests on the queue that need to be processed. If the device
545 * supports plugging, then @rfn may not be called immediately when requests
546 * are available on the queue, but may be called at some time later instead.
547 * Plugged queues are generally unplugged when a buffer belonging to one
548 * of the requests on the queue is needed, or due to memory pressure.
549 *
550 * @rfn is not required, or even expected, to remove all requests off the
551 * queue, but only as many as it can handle at a time. If it does leave
552 * requests on the queue, it is responsible for arranging that the requests
553 * get dealt with eventually.
554 *
555 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
556 * request queue; this lock will be taken also from interrupt context, so irq
557 * disabling is needed for it.
1da177e4 558 *
710027a4 559 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
560 * it didn't succeed.
561 *
562 * Note:
563 * blk_init_queue() must be paired with a blk_cleanup_queue() call
564 * when the block device is deactivated (such as at module unload).
565 **/
1946089a 566
165125e1 567struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 568{
1946089a
CL
569 return blk_init_queue_node(rfn, lock, -1);
570}
571EXPORT_SYMBOL(blk_init_queue);
572
165125e1 573struct request_queue *
1946089a
CL
574blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
575{
c86d1b8a 576 struct request_queue *uninit_q, *q;
1da177e4 577
c86d1b8a
MS
578 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
579 if (!uninit_q)
580 return NULL;
581
582 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
583 if (!q)
584 blk_cleanup_queue(uninit_q);
585
586 return q;
01effb0d
MS
587}
588EXPORT_SYMBOL(blk_init_queue_node);
589
590struct request_queue *
591blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
592 spinlock_t *lock)
593{
594 return blk_init_allocated_queue_node(q, rfn, lock, -1);
595}
596EXPORT_SYMBOL(blk_init_allocated_queue);
597
598struct request_queue *
599blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
600 spinlock_t *lock, int node_id)
601{
1da177e4
LT
602 if (!q)
603 return NULL;
604
1946089a 605 q->node = node_id;
c86d1b8a 606 if (blk_init_free_list(q))
8669aafd 607 return NULL;
1da177e4
LT
608
609 q->request_fn = rfn;
1da177e4 610 q->prep_rq_fn = NULL;
28018c24 611 q->unprep_rq_fn = NULL;
1da177e4 612 q->unplug_fn = generic_unplug_device;
bc58ba94 613 q->queue_flags = QUEUE_FLAG_DEFAULT;
1da177e4
LT
614 q->queue_lock = lock;
615
f3b144aa
JA
616 /*
617 * This also sets hw/phys segments, boundary and size
618 */
1da177e4 619 blk_queue_make_request(q, __make_request);
1da177e4 620
44ec9542
AS
621 q->sg_reserved_size = INT_MAX;
622
1da177e4
LT
623 /*
624 * all done
625 */
626 if (!elevator_init(q, NULL)) {
627 blk_queue_congestion_threshold(q);
628 return q;
629 }
630
1da177e4
LT
631 return NULL;
632}
01effb0d 633EXPORT_SYMBOL(blk_init_allocated_queue_node);
1da177e4 634
165125e1 635int blk_get_queue(struct request_queue *q)
1da177e4 636{
fde6ad22 637 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 638 kobject_get(&q->kobj);
1da177e4
LT
639 return 0;
640 }
641
642 return 1;
643}
1da177e4 644
165125e1 645static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 646{
4aff5e23 647 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 648 elv_put_request(q, rq);
1da177e4
LT
649 mempool_free(rq, q->rq.rq_pool);
650}
651
1ea25ecb 652static struct request *
42dad764 653blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
654{
655 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
656
657 if (!rq)
658 return NULL;
659
2a4aa30c 660 blk_rq_init(q, rq);
1afb20f3 661
42dad764 662 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 663
cb98fc8b 664 if (priv) {
cb78b285 665 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
666 mempool_free(rq, q->rq.rq_pool);
667 return NULL;
668 }
4aff5e23 669 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 670 }
1da177e4 671
cb98fc8b 672 return rq;
1da177e4
LT
673}
674
675/*
676 * ioc_batching returns true if the ioc is a valid batching request and
677 * should be given priority access to a request.
678 */
165125e1 679static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
680{
681 if (!ioc)
682 return 0;
683
684 /*
685 * Make sure the process is able to allocate at least 1 request
686 * even if the batch times out, otherwise we could theoretically
687 * lose wakeups.
688 */
689 return ioc->nr_batch_requests == q->nr_batching ||
690 (ioc->nr_batch_requests > 0
691 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
692}
693
694/*
695 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
696 * will cause the process to be a "batcher" on all queues in the system. This
697 * is the behaviour we want though - once it gets a wakeup it should be given
698 * a nice run.
699 */
165125e1 700static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
701{
702 if (!ioc || ioc_batching(q, ioc))
703 return;
704
705 ioc->nr_batch_requests = q->nr_batching;
706 ioc->last_waited = jiffies;
707}
708
1faa16d2 709static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
710{
711 struct request_list *rl = &q->rq;
712
1faa16d2
JA
713 if (rl->count[sync] < queue_congestion_off_threshold(q))
714 blk_clear_queue_congested(q, sync);
1da177e4 715
1faa16d2
JA
716 if (rl->count[sync] + 1 <= q->nr_requests) {
717 if (waitqueue_active(&rl->wait[sync]))
718 wake_up(&rl->wait[sync]);
1da177e4 719
1faa16d2 720 blk_clear_queue_full(q, sync);
1da177e4
LT
721 }
722}
723
724/*
725 * A request has just been released. Account for it, update the full and
726 * congestion status, wake up any waiters. Called under q->queue_lock.
727 */
1faa16d2 728static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
729{
730 struct request_list *rl = &q->rq;
731
1faa16d2 732 rl->count[sync]--;
cb98fc8b
TH
733 if (priv)
734 rl->elvpriv--;
1da177e4 735
1faa16d2 736 __freed_request(q, sync);
1da177e4 737
1faa16d2
JA
738 if (unlikely(rl->starved[sync ^ 1]))
739 __freed_request(q, sync ^ 1);
1da177e4
LT
740}
741
1da177e4 742/*
d6344532
NP
743 * Get a free request, queue_lock must be held.
744 * Returns NULL on failure, with queue_lock held.
745 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 746 */
165125e1 747static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 748 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
749{
750 struct request *rq = NULL;
751 struct request_list *rl = &q->rq;
88ee5ef1 752 struct io_context *ioc = NULL;
1faa16d2 753 const bool is_sync = rw_is_sync(rw_flags) != 0;
88ee5ef1
JA
754 int may_queue, priv;
755
7749a8d4 756 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
757 if (may_queue == ELV_MQUEUE_NO)
758 goto rq_starved;
759
1faa16d2
JA
760 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
761 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 762 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
763 /*
764 * The queue will fill after this allocation, so set
765 * it as full, and mark this process as "batching".
766 * This process will be allowed to complete a batch of
767 * requests, others will be blocked.
768 */
1faa16d2 769 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 770 ioc_set_batching(q, ioc);
1faa16d2 771 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
772 } else {
773 if (may_queue != ELV_MQUEUE_MUST
774 && !ioc_batching(q, ioc)) {
775 /*
776 * The queue is full and the allocating
777 * process is not a "batcher", and not
778 * exempted by the IO scheduler
779 */
780 goto out;
781 }
782 }
1da177e4 783 }
1faa16d2 784 blk_set_queue_congested(q, is_sync);
1da177e4
LT
785 }
786
082cf69e
JA
787 /*
788 * Only allow batching queuers to allocate up to 50% over the defined
789 * limit of requests, otherwise we could have thousands of requests
790 * allocated with any setting of ->nr_requests
791 */
1faa16d2 792 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 793 goto out;
fd782a4a 794
1faa16d2
JA
795 rl->count[is_sync]++;
796 rl->starved[is_sync] = 0;
cb98fc8b 797
64521d1a 798 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
f253b86b 799 if (priv)
cb98fc8b
TH
800 rl->elvpriv++;
801
f253b86b
JA
802 if (blk_queue_io_stat(q))
803 rw_flags |= REQ_IO_STAT;
1da177e4
LT
804 spin_unlock_irq(q->queue_lock);
805
7749a8d4 806 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 807 if (unlikely(!rq)) {
1da177e4
LT
808 /*
809 * Allocation failed presumably due to memory. Undo anything
810 * we might have messed up.
811 *
812 * Allocating task should really be put onto the front of the
813 * wait queue, but this is pretty rare.
814 */
815 spin_lock_irq(q->queue_lock);
1faa16d2 816 freed_request(q, is_sync, priv);
1da177e4
LT
817
818 /*
819 * in the very unlikely event that allocation failed and no
820 * requests for this direction was pending, mark us starved
821 * so that freeing of a request in the other direction will
822 * notice us. another possible fix would be to split the
823 * rq mempool into READ and WRITE
824 */
825rq_starved:
1faa16d2
JA
826 if (unlikely(rl->count[is_sync] == 0))
827 rl->starved[is_sync] = 1;
1da177e4 828
1da177e4
LT
829 goto out;
830 }
831
88ee5ef1
JA
832 /*
833 * ioc may be NULL here, and ioc_batching will be false. That's
834 * OK, if the queue is under the request limit then requests need
835 * not count toward the nr_batch_requests limit. There will always
836 * be some limit enforced by BLK_BATCH_TIME.
837 */
1da177e4
LT
838 if (ioc_batching(q, ioc))
839 ioc->nr_batch_requests--;
6728cb0e 840
1faa16d2 841 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 842out:
1da177e4
LT
843 return rq;
844}
845
846/*
847 * No available requests for this queue, unplug the device and wait for some
848 * requests to become available.
d6344532
NP
849 *
850 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 851 */
165125e1 852static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 853 struct bio *bio)
1da177e4 854{
1faa16d2 855 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
856 struct request *rq;
857
7749a8d4 858 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
859 while (!rq) {
860 DEFINE_WAIT(wait);
05caf8db 861 struct io_context *ioc;
1da177e4
LT
862 struct request_list *rl = &q->rq;
863
1faa16d2 864 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
865 TASK_UNINTERRUPTIBLE);
866
1faa16d2 867 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 868
05caf8db
ZY
869 __generic_unplug_device(q);
870 spin_unlock_irq(q->queue_lock);
871 io_schedule();
1da177e4 872
05caf8db
ZY
873 /*
874 * After sleeping, we become a "batching" process and
875 * will be able to allocate at least one request, and
876 * up to a big batch of them for a small period time.
877 * See ioc_batching, ioc_set_batching
878 */
879 ioc = current_io_context(GFP_NOIO, q->node);
880 ioc_set_batching(q, ioc);
d6344532 881
05caf8db 882 spin_lock_irq(q->queue_lock);
1faa16d2 883 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
884
885 rq = get_request(q, rw_flags, bio, GFP_NOIO);
886 };
1da177e4
LT
887
888 return rq;
889}
890
165125e1 891struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
892{
893 struct request *rq;
894
895 BUG_ON(rw != READ && rw != WRITE);
896
d6344532
NP
897 spin_lock_irq(q->queue_lock);
898 if (gfp_mask & __GFP_WAIT) {
22e2c507 899 rq = get_request_wait(q, rw, NULL);
d6344532 900 } else {
22e2c507 901 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
902 if (!rq)
903 spin_unlock_irq(q->queue_lock);
904 }
905 /* q->queue_lock is unlocked at this point */
1da177e4
LT
906
907 return rq;
908}
1da177e4
LT
909EXPORT_SYMBOL(blk_get_request);
910
dc72ef4a 911/**
79eb63e9 912 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 913 * @q: target request queue
79eb63e9
BH
914 * @bio: The bio describing the memory mappings that will be submitted for IO.
915 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 916 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 917 *
79eb63e9
BH
918 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
919 * type commands. Where the struct request needs to be farther initialized by
920 * the caller. It is passed a &struct bio, which describes the memory info of
921 * the I/O transfer.
dc72ef4a 922 *
79eb63e9
BH
923 * The caller of blk_make_request must make sure that bi_io_vec
924 * are set to describe the memory buffers. That bio_data_dir() will return
925 * the needed direction of the request. (And all bio's in the passed bio-chain
926 * are properly set accordingly)
927 *
928 * If called under none-sleepable conditions, mapped bio buffers must not
929 * need bouncing, by calling the appropriate masked or flagged allocator,
930 * suitable for the target device. Otherwise the call to blk_queue_bounce will
931 * BUG.
53674ac5
JA
932 *
933 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
934 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
935 * anything but the first bio in the chain. Otherwise you risk waiting for IO
936 * completion of a bio that hasn't been submitted yet, thus resulting in a
937 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
938 * of bio_alloc(), as that avoids the mempool deadlock.
939 * If possible a big IO should be split into smaller parts when allocation
940 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 941 */
79eb63e9
BH
942struct request *blk_make_request(struct request_queue *q, struct bio *bio,
943 gfp_t gfp_mask)
dc72ef4a 944{
79eb63e9
BH
945 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
946
947 if (unlikely(!rq))
948 return ERR_PTR(-ENOMEM);
949
950 for_each_bio(bio) {
951 struct bio *bounce_bio = bio;
952 int ret;
953
954 blk_queue_bounce(q, &bounce_bio);
955 ret = blk_rq_append_bio(q, rq, bounce_bio);
956 if (unlikely(ret)) {
957 blk_put_request(rq);
958 return ERR_PTR(ret);
959 }
960 }
961
962 return rq;
dc72ef4a 963}
79eb63e9 964EXPORT_SYMBOL(blk_make_request);
dc72ef4a 965
1da177e4
LT
966/**
967 * blk_requeue_request - put a request back on queue
968 * @q: request queue where request should be inserted
969 * @rq: request to be inserted
970 *
971 * Description:
972 * Drivers often keep queueing requests until the hardware cannot accept
973 * more, when that condition happens we need to put the request back
974 * on the queue. Must be called with queue lock held.
975 */
165125e1 976void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 977{
242f9dcb
JA
978 blk_delete_timer(rq);
979 blk_clear_rq_complete(rq);
5f3ea37c 980 trace_block_rq_requeue(q, rq);
2056a782 981
1da177e4
LT
982 if (blk_rq_tagged(rq))
983 blk_queue_end_tag(q, rq);
984
ba396a6c
JB
985 BUG_ON(blk_queued_rq(rq));
986
1da177e4
LT
987 elv_requeue_request(q, rq);
988}
1da177e4
LT
989EXPORT_SYMBOL(blk_requeue_request);
990
991/**
710027a4 992 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
993 * @q: request queue where request should be inserted
994 * @rq: request to be inserted
995 * @at_head: insert request at head or tail of queue
996 * @data: private data
1da177e4
LT
997 *
998 * Description:
999 * Many block devices need to execute commands asynchronously, so they don't
1000 * block the whole kernel from preemption during request execution. This is
1001 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
1002 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1003 * be scheduled for actual execution by the request queue.
1da177e4
LT
1004 *
1005 * We have the option of inserting the head or the tail of the queue.
1006 * Typically we use the tail for new ioctls and so forth. We use the head
1007 * of the queue for things like a QUEUE_FULL message from a device, or a
1008 * host that is unable to accept a particular command.
1009 */
165125e1 1010void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 1011 int at_head, void *data)
1da177e4 1012{
867d1191 1013 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
1014 unsigned long flags;
1015
1016 /*
1017 * tell I/O scheduler that this isn't a regular read/write (ie it
1018 * must not attempt merges on this) and that it acts as a soft
1019 * barrier
1020 */
4aff5e23 1021 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
1022
1023 rq->special = data;
1024
1025 spin_lock_irqsave(q->queue_lock, flags);
1026
1027 /*
1028 * If command is tagged, release the tag
1029 */
867d1191
TH
1030 if (blk_rq_tagged(rq))
1031 blk_queue_end_tag(q, rq);
1da177e4 1032
b238b3d4 1033 drive_stat_acct(rq, 1);
867d1191 1034 __elv_add_request(q, rq, where, 0);
a7f55792 1035 __blk_run_queue(q);
1da177e4
LT
1036 spin_unlock_irqrestore(q->queue_lock, flags);
1037}
1da177e4
LT
1038EXPORT_SYMBOL(blk_insert_request);
1039
074a7aca
TH
1040static void part_round_stats_single(int cpu, struct hd_struct *part,
1041 unsigned long now)
1042{
1043 if (now == part->stamp)
1044 return;
1045
316d315b 1046 if (part_in_flight(part)) {
074a7aca 1047 __part_stat_add(cpu, part, time_in_queue,
316d315b 1048 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1049 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1050 }
1051 part->stamp = now;
1052}
1053
1054/**
496aa8a9
RD
1055 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1056 * @cpu: cpu number for stats access
1057 * @part: target partition
1da177e4
LT
1058 *
1059 * The average IO queue length and utilisation statistics are maintained
1060 * by observing the current state of the queue length and the amount of
1061 * time it has been in this state for.
1062 *
1063 * Normally, that accounting is done on IO completion, but that can result
1064 * in more than a second's worth of IO being accounted for within any one
1065 * second, leading to >100% utilisation. To deal with that, we call this
1066 * function to do a round-off before returning the results when reading
1067 * /proc/diskstats. This accounts immediately for all queue usage up to
1068 * the current jiffies and restarts the counters again.
1069 */
c9959059 1070void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1071{
1072 unsigned long now = jiffies;
1073
074a7aca
TH
1074 if (part->partno)
1075 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1076 part_round_stats_single(cpu, part, now);
6f2576af 1077}
074a7aca 1078EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1079
1da177e4
LT
1080/*
1081 * queue lock must be held
1082 */
165125e1 1083void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1084{
1da177e4
LT
1085 if (unlikely(!q))
1086 return;
1087 if (unlikely(--req->ref_count))
1088 return;
1089
8922e16c
TH
1090 elv_completed_request(q, req);
1091
1cd96c24
BH
1092 /* this is a bio leak */
1093 WARN_ON(req->bio != NULL);
1094
1da177e4
LT
1095 /*
1096 * Request may not have originated from ll_rw_blk. if not,
1097 * it didn't come out of our reserved rq pools
1098 */
49171e5c 1099 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1100 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1101 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1102
1da177e4 1103 BUG_ON(!list_empty(&req->queuelist));
9817064b 1104 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1105
1106 blk_free_request(q, req);
1faa16d2 1107 freed_request(q, is_sync, priv);
1da177e4
LT
1108 }
1109}
6e39b69e
MC
1110EXPORT_SYMBOL_GPL(__blk_put_request);
1111
1da177e4
LT
1112void blk_put_request(struct request *req)
1113{
8922e16c 1114 unsigned long flags;
165125e1 1115 struct request_queue *q = req->q;
8922e16c 1116
52a93ba8
FT
1117 spin_lock_irqsave(q->queue_lock, flags);
1118 __blk_put_request(q, req);
1119 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1120}
1da177e4
LT
1121EXPORT_SYMBOL(blk_put_request);
1122
66ac0280
CH
1123/**
1124 * blk_add_request_payload - add a payload to a request
1125 * @rq: request to update
1126 * @page: page backing the payload
1127 * @len: length of the payload.
1128 *
1129 * This allows to later add a payload to an already submitted request by
1130 * a block driver. The driver needs to take care of freeing the payload
1131 * itself.
1132 *
1133 * Note that this is a quite horrible hack and nothing but handling of
1134 * discard requests should ever use it.
1135 */
1136void blk_add_request_payload(struct request *rq, struct page *page,
1137 unsigned int len)
1138{
1139 struct bio *bio = rq->bio;
1140
1141 bio->bi_io_vec->bv_page = page;
1142 bio->bi_io_vec->bv_offset = 0;
1143 bio->bi_io_vec->bv_len = len;
1144
1145 bio->bi_size = len;
1146 bio->bi_vcnt = 1;
1147 bio->bi_phys_segments = 1;
1148
1149 rq->__data_len = rq->resid_len = len;
1150 rq->nr_phys_segments = 1;
1151 rq->buffer = bio_data(bio);
1152}
1153EXPORT_SYMBOL_GPL(blk_add_request_payload);
1154
86db1e29 1155void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1156{
c7c22e4d 1157 req->cpu = bio->bi_comp_cpu;
4aff5e23 1158 req->cmd_type = REQ_TYPE_FS;
52d9e675 1159
7b6d91da
CH
1160 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1161 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1162 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1163
52d9e675 1164 req->errors = 0;
a2dec7b3 1165 req->__sector = bio->bi_sector;
52d9e675 1166 req->ioprio = bio_prio(bio);
bc1c56fd 1167 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1168}
1169
644b2d99
JA
1170/*
1171 * Only disabling plugging for non-rotational devices if it does tagging
1172 * as well, otherwise we do need the proper merging
1173 */
1174static inline bool queue_should_plug(struct request_queue *q)
1175{
79da0644 1176 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
644b2d99
JA
1177}
1178
165125e1 1179static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1180{
450991bc 1181 struct request *req;
2e46e8b2
TH
1182 int el_ret;
1183 unsigned int bytes = bio->bi_size;
51da90fc 1184 const unsigned short prio = bio_prio(bio);
5e00d1b5
JS
1185 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1186 const bool unplug = !!(bio->bi_rw & REQ_UNPLUG);
1187 const unsigned long ff = bio->bi_rw & REQ_FAILFAST_MASK;
28e7d184 1188 int where = ELEVATOR_INSERT_SORT;
7749a8d4 1189 int rw_flags;
1da177e4 1190
1da177e4
LT
1191 /*
1192 * low level driver can indicate that it wants pages above a
1193 * certain limit bounced to low memory (ie for highmem, or even
1194 * ISA dma in theory)
1195 */
1196 blk_queue_bounce(q, &bio);
1197
1da177e4
LT
1198 spin_lock_irq(q->queue_lock);
1199
4fed947c 1200 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
28e7d184
TH
1201 where = ELEVATOR_INSERT_FRONT;
1202 goto get_rq;
1203 }
1204
1205 if (elv_queue_empty(q))
1da177e4
LT
1206 goto get_rq;
1207
1208 el_ret = elv_merge(q, &req, bio);
1209 switch (el_ret) {
6728cb0e
JA
1210 case ELEVATOR_BACK_MERGE:
1211 BUG_ON(!rq_mergeable(req));
1da177e4 1212
6728cb0e
JA
1213 if (!ll_back_merge_fn(q, req, bio))
1214 break;
1da177e4 1215
5f3ea37c 1216 trace_block_bio_backmerge(q, bio);
2056a782 1217
80a761fd
TH
1218 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1219 blk_rq_set_mixed_merge(req);
1220
6728cb0e
JA
1221 req->biotail->bi_next = bio;
1222 req->biotail = bio;
a2dec7b3 1223 req->__data_len += bytes;
6728cb0e 1224 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1225 if (!blk_rq_cpu_valid(req))
1226 req->cpu = bio->bi_comp_cpu;
6728cb0e 1227 drive_stat_acct(req, 0);
812d4026 1228 elv_bio_merged(q, req, bio);
6728cb0e
JA
1229 if (!attempt_back_merge(q, req))
1230 elv_merged_request(q, req, el_ret);
1231 goto out;
1da177e4 1232
6728cb0e
JA
1233 case ELEVATOR_FRONT_MERGE:
1234 BUG_ON(!rq_mergeable(req));
1da177e4 1235
6728cb0e
JA
1236 if (!ll_front_merge_fn(q, req, bio))
1237 break;
1da177e4 1238
5f3ea37c 1239 trace_block_bio_frontmerge(q, bio);
2056a782 1240
80a761fd
TH
1241 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1242 blk_rq_set_mixed_merge(req);
1243 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1244 req->cmd_flags |= ff;
1245 }
1246
6728cb0e
JA
1247 bio->bi_next = req->bio;
1248 req->bio = bio;
1da177e4 1249
6728cb0e
JA
1250 /*
1251 * may not be valid. if the low level driver said
1252 * it didn't need a bounce buffer then it better
1253 * not touch req->buffer either...
1254 */
1255 req->buffer = bio_data(bio);
a2dec7b3
TH
1256 req->__sector = bio->bi_sector;
1257 req->__data_len += bytes;
6728cb0e 1258 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1259 if (!blk_rq_cpu_valid(req))
1260 req->cpu = bio->bi_comp_cpu;
6728cb0e 1261 drive_stat_acct(req, 0);
812d4026 1262 elv_bio_merged(q, req, bio);
6728cb0e
JA
1263 if (!attempt_front_merge(q, req))
1264 elv_merged_request(q, req, el_ret);
1265 goto out;
1266
1267 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1268 default:
1269 ;
1da177e4
LT
1270 }
1271
450991bc 1272get_rq:
7749a8d4
JA
1273 /*
1274 * This sync check and mask will be re-done in init_request_from_bio(),
1275 * but we need to set it earlier to expose the sync flag to the
1276 * rq allocator and io schedulers.
1277 */
1278 rw_flags = bio_data_dir(bio);
1279 if (sync)
7b6d91da 1280 rw_flags |= REQ_SYNC;
7749a8d4 1281
1da177e4 1282 /*
450991bc 1283 * Grab a free request. This is might sleep but can not fail.
d6344532 1284 * Returns with the queue unlocked.
450991bc 1285 */
7749a8d4 1286 req = get_request_wait(q, rw_flags, bio);
d6344532 1287
450991bc
NP
1288 /*
1289 * After dropping the lock and possibly sleeping here, our request
1290 * may now be mergeable after it had proven unmergeable (above).
1291 * We don't worry about that case for efficiency. It won't happen
1292 * often, and the elevators are able to handle it.
1da177e4 1293 */
52d9e675 1294 init_request_from_bio(req, bio);
1da177e4 1295
450991bc 1296 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1297 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1298 bio_flagged(bio, BIO_CPU_AFFINE))
1299 req->cpu = blk_cpu_to_group(smp_processor_id());
644b2d99 1300 if (queue_should_plug(q) && elv_queue_empty(q))
450991bc 1301 blk_plug_device(q);
dd831006
TH
1302
1303 /* insert the request into the elevator */
1304 drive_stat_acct(req, 1);
28e7d184 1305 __elv_add_request(q, req, where, 0);
1da177e4 1306out:
644b2d99 1307 if (unplug || !queue_should_plug(q))
1da177e4 1308 __generic_unplug_device(q);
1da177e4
LT
1309 spin_unlock_irq(q->queue_lock);
1310 return 0;
1da177e4
LT
1311}
1312
1313/*
1314 * If bio->bi_dev is a partition, remap the location
1315 */
1316static inline void blk_partition_remap(struct bio *bio)
1317{
1318 struct block_device *bdev = bio->bi_bdev;
1319
bf2de6f5 1320 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1321 struct hd_struct *p = bdev->bd_part;
1322
1da177e4
LT
1323 bio->bi_sector += p->start_sect;
1324 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1325
5f3ea37c 1326 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
22a7c31a 1327 bdev->bd_dev,
c7149d6b 1328 bio->bi_sector - p->start_sect);
1da177e4
LT
1329 }
1330}
1331
1da177e4
LT
1332static void handle_bad_sector(struct bio *bio)
1333{
1334 char b[BDEVNAME_SIZE];
1335
1336 printk(KERN_INFO "attempt to access beyond end of device\n");
1337 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1338 bdevname(bio->bi_bdev, b),
1339 bio->bi_rw,
1340 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1341 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1342
1343 set_bit(BIO_EOF, &bio->bi_flags);
1344}
1345
c17bb495
AM
1346#ifdef CONFIG_FAIL_MAKE_REQUEST
1347
1348static DECLARE_FAULT_ATTR(fail_make_request);
1349
1350static int __init setup_fail_make_request(char *str)
1351{
1352 return setup_fault_attr(&fail_make_request, str);
1353}
1354__setup("fail_make_request=", setup_fail_make_request);
1355
1356static int should_fail_request(struct bio *bio)
1357{
eddb2e26
TH
1358 struct hd_struct *part = bio->bi_bdev->bd_part;
1359
1360 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1361 return should_fail(&fail_make_request, bio->bi_size);
1362
1363 return 0;
1364}
1365
1366static int __init fail_make_request_debugfs(void)
1367{
1368 return init_fault_attr_dentries(&fail_make_request,
1369 "fail_make_request");
1370}
1371
1372late_initcall(fail_make_request_debugfs);
1373
1374#else /* CONFIG_FAIL_MAKE_REQUEST */
1375
1376static inline int should_fail_request(struct bio *bio)
1377{
1378 return 0;
1379}
1380
1381#endif /* CONFIG_FAIL_MAKE_REQUEST */
1382
c07e2b41
JA
1383/*
1384 * Check whether this bio extends beyond the end of the device.
1385 */
1386static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1387{
1388 sector_t maxsector;
1389
1390 if (!nr_sectors)
1391 return 0;
1392
1393 /* Test device or partition size, when known. */
77304d2a 1394 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1395 if (maxsector) {
1396 sector_t sector = bio->bi_sector;
1397
1398 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1399 /*
1400 * This may well happen - the kernel calls bread()
1401 * without checking the size of the device, e.g., when
1402 * mounting a device.
1403 */
1404 handle_bad_sector(bio);
1405 return 1;
1406 }
1407 }
1408
1409 return 0;
1410}
1411
1da177e4 1412/**
710027a4 1413 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1414 * @bio: The bio describing the location in memory and on the device.
1415 *
1416 * generic_make_request() is used to make I/O requests of block
1417 * devices. It is passed a &struct bio, which describes the I/O that needs
1418 * to be done.
1419 *
1420 * generic_make_request() does not return any status. The
1421 * success/failure status of the request, along with notification of
1422 * completion, is delivered asynchronously through the bio->bi_end_io
1423 * function described (one day) else where.
1424 *
1425 * The caller of generic_make_request must make sure that bi_io_vec
1426 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1427 * set to describe the device address, and the
1428 * bi_end_io and optionally bi_private are set to describe how
1429 * completion notification should be signaled.
1430 *
1431 * generic_make_request and the drivers it calls may use bi_next if this
1432 * bio happens to be merged with someone else, and may change bi_dev and
1433 * bi_sector for remaps as it sees fit. So the values of these fields
1434 * should NOT be depended on after the call to generic_make_request.
1435 */
d89d8796 1436static inline void __generic_make_request(struct bio *bio)
1da177e4 1437{
165125e1 1438 struct request_queue *q;
5ddfe969 1439 sector_t old_sector;
1da177e4 1440 int ret, nr_sectors = bio_sectors(bio);
2056a782 1441 dev_t old_dev;
51fd77bd 1442 int err = -EIO;
1da177e4
LT
1443
1444 might_sleep();
1da177e4 1445
c07e2b41
JA
1446 if (bio_check_eod(bio, nr_sectors))
1447 goto end_io;
1da177e4
LT
1448
1449 /*
1450 * Resolve the mapping until finished. (drivers are
1451 * still free to implement/resolve their own stacking
1452 * by explicitly returning 0)
1453 *
1454 * NOTE: we don't repeat the blk_size check for each new device.
1455 * Stacking drivers are expected to know what they are doing.
1456 */
5ddfe969 1457 old_sector = -1;
2056a782 1458 old_dev = 0;
1da177e4
LT
1459 do {
1460 char b[BDEVNAME_SIZE];
1461
1462 q = bdev_get_queue(bio->bi_bdev);
a7384677 1463 if (unlikely(!q)) {
1da177e4
LT
1464 printk(KERN_ERR
1465 "generic_make_request: Trying to access "
1466 "nonexistent block-device %s (%Lu)\n",
1467 bdevname(bio->bi_bdev, b),
1468 (long long) bio->bi_sector);
a7384677 1469 goto end_io;
1da177e4
LT
1470 }
1471
7b6d91da 1472 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
67efc925 1473 nr_sectors > queue_max_hw_sectors(q))) {
6728cb0e 1474 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
ae03bf63
MP
1475 bdevname(bio->bi_bdev, b),
1476 bio_sectors(bio),
1477 queue_max_hw_sectors(q));
1da177e4
LT
1478 goto end_io;
1479 }
1480
fde6ad22 1481 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1482 goto end_io;
1483
c17bb495
AM
1484 if (should_fail_request(bio))
1485 goto end_io;
1486
1da177e4
LT
1487 /*
1488 * If this device has partitions, remap block n
1489 * of partition p to block n+start(p) of the disk.
1490 */
1491 blk_partition_remap(bio);
1492
7ba1ba12
MP
1493 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1494 goto end_io;
1495
5ddfe969 1496 if (old_sector != -1)
22a7c31a 1497 trace_block_remap(q, bio, old_dev, old_sector);
2056a782 1498
5ddfe969 1499 old_sector = bio->bi_sector;
2056a782
JA
1500 old_dev = bio->bi_bdev->bd_dev;
1501
c07e2b41
JA
1502 if (bio_check_eod(bio, nr_sectors))
1503 goto end_io;
a7384677 1504
1e87901e
TH
1505 /*
1506 * Filter flush bio's early so that make_request based
1507 * drivers without flush support don't have to worry
1508 * about them.
1509 */
1510 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1511 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1512 if (!nr_sectors) {
1513 err = 0;
1514 goto end_io;
1515 }
1516 }
1517
8d57a98c
AH
1518 if ((bio->bi_rw & REQ_DISCARD) &&
1519 (!blk_queue_discard(q) ||
1520 ((bio->bi_rw & REQ_SECURE) &&
1521 !blk_queue_secdiscard(q)))) {
51fd77bd
JA
1522 err = -EOPNOTSUPP;
1523 goto end_io;
1524 }
5ddfe969 1525
e43473b7
VG
1526 blk_throtl_bio(q, &bio);
1527
1528 /*
1529 * If bio = NULL, bio has been throttled and will be submitted
1530 * later.
1531 */
1532 if (!bio)
1533 break;
1534
01edede4
MK
1535 trace_block_bio_queue(q, bio);
1536
1da177e4
LT
1537 ret = q->make_request_fn(q, bio);
1538 } while (ret);
a7384677
TH
1539
1540 return;
1541
1542end_io:
1543 bio_endio(bio, err);
1da177e4
LT
1544}
1545
d89d8796
NB
1546/*
1547 * We only want one ->make_request_fn to be active at a time,
1548 * else stack usage with stacked devices could be a problem.
bddd87c7 1549 * So use current->bio_list to keep a list of requests
d89d8796 1550 * submited by a make_request_fn function.
bddd87c7 1551 * current->bio_list is also used as a flag to say if
d89d8796
NB
1552 * generic_make_request is currently active in this task or not.
1553 * If it is NULL, then no make_request is active. If it is non-NULL,
1554 * then a make_request is active, and new requests should be added
1555 * at the tail
1556 */
1557void generic_make_request(struct bio *bio)
1558{
bddd87c7
AM
1559 struct bio_list bio_list_on_stack;
1560
1561 if (current->bio_list) {
d89d8796 1562 /* make_request is active */
bddd87c7 1563 bio_list_add(current->bio_list, bio);
d89d8796
NB
1564 return;
1565 }
1566 /* following loop may be a bit non-obvious, and so deserves some
1567 * explanation.
1568 * Before entering the loop, bio->bi_next is NULL (as all callers
1569 * ensure that) so we have a list with a single bio.
1570 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1571 * we assign bio_list to a pointer to the bio_list_on_stack,
1572 * thus initialising the bio_list of new bios to be
d89d8796
NB
1573 * added. __generic_make_request may indeed add some more bios
1574 * through a recursive call to generic_make_request. If it
1575 * did, we find a non-NULL value in bio_list and re-enter the loop
1576 * from the top. In this case we really did just take the bio
bddd87c7
AM
1577 * of the top of the list (no pretending) and so remove it from
1578 * bio_list, and call into __generic_make_request again.
d89d8796
NB
1579 *
1580 * The loop was structured like this to make only one call to
1581 * __generic_make_request (which is important as it is large and
1582 * inlined) and to keep the structure simple.
1583 */
1584 BUG_ON(bio->bi_next);
bddd87c7
AM
1585 bio_list_init(&bio_list_on_stack);
1586 current->bio_list = &bio_list_on_stack;
d89d8796 1587 do {
d89d8796 1588 __generic_make_request(bio);
bddd87c7 1589 bio = bio_list_pop(current->bio_list);
d89d8796 1590 } while (bio);
bddd87c7 1591 current->bio_list = NULL; /* deactivate */
d89d8796 1592}
1da177e4
LT
1593EXPORT_SYMBOL(generic_make_request);
1594
1595/**
710027a4 1596 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1597 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1598 * @bio: The &struct bio which describes the I/O
1599 *
1600 * submit_bio() is very similar in purpose to generic_make_request(), and
1601 * uses that function to do most of the work. Both are fairly rough
710027a4 1602 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1603 *
1604 */
1605void submit_bio(int rw, struct bio *bio)
1606{
1607 int count = bio_sectors(bio);
1608
22e2c507 1609 bio->bi_rw |= rw;
1da177e4 1610
bf2de6f5
JA
1611 /*
1612 * If it's a regular read/write or a barrier with data attached,
1613 * go through the normal accounting stuff before submission.
1614 */
3ffb52e7 1615 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1616 if (rw & WRITE) {
1617 count_vm_events(PGPGOUT, count);
1618 } else {
1619 task_io_account_read(bio->bi_size);
1620 count_vm_events(PGPGIN, count);
1621 }
1622
1623 if (unlikely(block_dump)) {
1624 char b[BDEVNAME_SIZE];
8dcbdc74 1625 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1626 current->comm, task_pid_nr(current),
bf2de6f5
JA
1627 (rw & WRITE) ? "WRITE" : "READ",
1628 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1629 bdevname(bio->bi_bdev, b),
1630 count);
bf2de6f5 1631 }
1da177e4
LT
1632 }
1633
1634 generic_make_request(bio);
1635}
1da177e4
LT
1636EXPORT_SYMBOL(submit_bio);
1637
82124d60
KU
1638/**
1639 * blk_rq_check_limits - Helper function to check a request for the queue limit
1640 * @q: the queue
1641 * @rq: the request being checked
1642 *
1643 * Description:
1644 * @rq may have been made based on weaker limitations of upper-level queues
1645 * in request stacking drivers, and it may violate the limitation of @q.
1646 * Since the block layer and the underlying device driver trust @rq
1647 * after it is inserted to @q, it should be checked against @q before
1648 * the insertion using this generic function.
1649 *
1650 * This function should also be useful for request stacking drivers
eef35c2d 1651 * in some cases below, so export this function.
82124d60
KU
1652 * Request stacking drivers like request-based dm may change the queue
1653 * limits while requests are in the queue (e.g. dm's table swapping).
1654 * Such request stacking drivers should check those requests agaist
1655 * the new queue limits again when they dispatch those requests,
1656 * although such checkings are also done against the old queue limits
1657 * when submitting requests.
1658 */
1659int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1660{
3383977f
S
1661 if (rq->cmd_flags & REQ_DISCARD)
1662 return 0;
1663
ae03bf63
MP
1664 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1665 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1666 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1667 return -EIO;
1668 }
1669
1670 /*
1671 * queue's settings related to segment counting like q->bounce_pfn
1672 * may differ from that of other stacking queues.
1673 * Recalculate it to check the request correctly on this queue's
1674 * limitation.
1675 */
1676 blk_recalc_rq_segments(rq);
8a78362c 1677 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1678 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1679 return -EIO;
1680 }
1681
1682 return 0;
1683}
1684EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1685
1686/**
1687 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1688 * @q: the queue to submit the request
1689 * @rq: the request being queued
1690 */
1691int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1692{
1693 unsigned long flags;
1694
1695 if (blk_rq_check_limits(q, rq))
1696 return -EIO;
1697
1698#ifdef CONFIG_FAIL_MAKE_REQUEST
1699 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1700 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1701 return -EIO;
1702#endif
1703
1704 spin_lock_irqsave(q->queue_lock, flags);
1705
1706 /*
1707 * Submitting request must be dequeued before calling this function
1708 * because it will be linked to another request_queue
1709 */
1710 BUG_ON(blk_queued_rq(rq));
1711
1712 drive_stat_acct(rq, 1);
1713 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1714
1715 spin_unlock_irqrestore(q->queue_lock, flags);
1716
1717 return 0;
1718}
1719EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1720
80a761fd
TH
1721/**
1722 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1723 * @rq: request to examine
1724 *
1725 * Description:
1726 * A request could be merge of IOs which require different failure
1727 * handling. This function determines the number of bytes which
1728 * can be failed from the beginning of the request without
1729 * crossing into area which need to be retried further.
1730 *
1731 * Return:
1732 * The number of bytes to fail.
1733 *
1734 * Context:
1735 * queue_lock must be held.
1736 */
1737unsigned int blk_rq_err_bytes(const struct request *rq)
1738{
1739 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1740 unsigned int bytes = 0;
1741 struct bio *bio;
1742
1743 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1744 return blk_rq_bytes(rq);
1745
1746 /*
1747 * Currently the only 'mixing' which can happen is between
1748 * different fastfail types. We can safely fail portions
1749 * which have all the failfast bits that the first one has -
1750 * the ones which are at least as eager to fail as the first
1751 * one.
1752 */
1753 for (bio = rq->bio; bio; bio = bio->bi_next) {
1754 if ((bio->bi_rw & ff) != ff)
1755 break;
1756 bytes += bio->bi_size;
1757 }
1758
1759 /* this could lead to infinite loop */
1760 BUG_ON(blk_rq_bytes(rq) && !bytes);
1761 return bytes;
1762}
1763EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1764
bc58ba94
JA
1765static void blk_account_io_completion(struct request *req, unsigned int bytes)
1766{
c2553b58 1767 if (blk_do_io_stat(req)) {
bc58ba94
JA
1768 const int rw = rq_data_dir(req);
1769 struct hd_struct *part;
1770 int cpu;
1771
1772 cpu = part_stat_lock();
f253b86b 1773 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
bc58ba94
JA
1774 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1775 part_stat_unlock();
1776 }
1777}
1778
1779static void blk_account_io_done(struct request *req)
1780{
bc58ba94 1781 /*
dd4c133f
TH
1782 * Account IO completion. flush_rq isn't accounted as a
1783 * normal IO on queueing nor completion. Accounting the
1784 * containing request is enough.
bc58ba94 1785 */
414b4ff5 1786 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
1787 unsigned long duration = jiffies - req->start_time;
1788 const int rw = rq_data_dir(req);
1789 struct hd_struct *part;
1790 int cpu;
1791
1792 cpu = part_stat_lock();
f253b86b 1793 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
bc58ba94
JA
1794
1795 part_stat_inc(cpu, part, ios[rw]);
1796 part_stat_add(cpu, part, ticks[rw], duration);
1797 part_round_stats(cpu, part);
316d315b 1798 part_dec_in_flight(part, rw);
bc58ba94
JA
1799
1800 part_stat_unlock();
1801 }
1802}
1803
3bcddeac 1804/**
9934c8c0
TH
1805 * blk_peek_request - peek at the top of a request queue
1806 * @q: request queue to peek at
1807 *
1808 * Description:
1809 * Return the request at the top of @q. The returned request
1810 * should be started using blk_start_request() before LLD starts
1811 * processing it.
1812 *
1813 * Return:
1814 * Pointer to the request at the top of @q if available. Null
1815 * otherwise.
1816 *
1817 * Context:
1818 * queue_lock must be held.
1819 */
1820struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1821{
1822 struct request *rq;
1823 int ret;
1824
1825 while ((rq = __elv_next_request(q)) != NULL) {
1826 if (!(rq->cmd_flags & REQ_STARTED)) {
1827 /*
1828 * This is the first time the device driver
1829 * sees this request (possibly after
1830 * requeueing). Notify IO scheduler.
1831 */
33659ebb 1832 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1833 elv_activate_rq(q, rq);
1834
1835 /*
1836 * just mark as started even if we don't start
1837 * it, a request that has been delayed should
1838 * not be passed by new incoming requests
1839 */
1840 rq->cmd_flags |= REQ_STARTED;
1841 trace_block_rq_issue(q, rq);
1842 }
1843
1844 if (!q->boundary_rq || q->boundary_rq == rq) {
1845 q->end_sector = rq_end_sector(rq);
1846 q->boundary_rq = NULL;
1847 }
1848
1849 if (rq->cmd_flags & REQ_DONTPREP)
1850 break;
1851
2e46e8b2 1852 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1853 /*
1854 * make sure space for the drain appears we
1855 * know we can do this because max_hw_segments
1856 * has been adjusted to be one fewer than the
1857 * device can handle
1858 */
1859 rq->nr_phys_segments++;
1860 }
1861
1862 if (!q->prep_rq_fn)
1863 break;
1864
1865 ret = q->prep_rq_fn(q, rq);
1866 if (ret == BLKPREP_OK) {
1867 break;
1868 } else if (ret == BLKPREP_DEFER) {
1869 /*
1870 * the request may have been (partially) prepped.
1871 * we need to keep this request in the front to
1872 * avoid resource deadlock. REQ_STARTED will
1873 * prevent other fs requests from passing this one.
1874 */
2e46e8b2 1875 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1876 !(rq->cmd_flags & REQ_DONTPREP)) {
1877 /*
1878 * remove the space for the drain we added
1879 * so that we don't add it again
1880 */
1881 --rq->nr_phys_segments;
1882 }
1883
1884 rq = NULL;
1885 break;
1886 } else if (ret == BLKPREP_KILL) {
1887 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1888 /*
1889 * Mark this request as started so we don't trigger
1890 * any debug logic in the end I/O path.
1891 */
1892 blk_start_request(rq);
40cbbb78 1893 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1894 } else {
1895 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1896 break;
1897 }
1898 }
1899
1900 return rq;
1901}
9934c8c0 1902EXPORT_SYMBOL(blk_peek_request);
158dbda0 1903
9934c8c0 1904void blk_dequeue_request(struct request *rq)
158dbda0 1905{
9934c8c0
TH
1906 struct request_queue *q = rq->q;
1907
158dbda0
TH
1908 BUG_ON(list_empty(&rq->queuelist));
1909 BUG_ON(ELV_ON_HASH(rq));
1910
1911 list_del_init(&rq->queuelist);
1912
1913 /*
1914 * the time frame between a request being removed from the lists
1915 * and to it is freed is accounted as io that is in progress at
1916 * the driver side.
1917 */
9195291e 1918 if (blk_account_rq(rq)) {
0a7ae2ff 1919 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1920 set_io_start_time_ns(rq);
1921 }
158dbda0
TH
1922}
1923
9934c8c0
TH
1924/**
1925 * blk_start_request - start request processing on the driver
1926 * @req: request to dequeue
1927 *
1928 * Description:
1929 * Dequeue @req and start timeout timer on it. This hands off the
1930 * request to the driver.
1931 *
1932 * Block internal functions which don't want to start timer should
1933 * call blk_dequeue_request().
1934 *
1935 * Context:
1936 * queue_lock must be held.
1937 */
1938void blk_start_request(struct request *req)
1939{
1940 blk_dequeue_request(req);
1941
1942 /*
5f49f631
TH
1943 * We are now handing the request to the hardware, initialize
1944 * resid_len to full count and add the timeout handler.
9934c8c0 1945 */
5f49f631 1946 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
1947 if (unlikely(blk_bidi_rq(req)))
1948 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1949
9934c8c0
TH
1950 blk_add_timer(req);
1951}
1952EXPORT_SYMBOL(blk_start_request);
1953
1954/**
1955 * blk_fetch_request - fetch a request from a request queue
1956 * @q: request queue to fetch a request from
1957 *
1958 * Description:
1959 * Return the request at the top of @q. The request is started on
1960 * return and LLD can start processing it immediately.
1961 *
1962 * Return:
1963 * Pointer to the request at the top of @q if available. Null
1964 * otherwise.
1965 *
1966 * Context:
1967 * queue_lock must be held.
1968 */
1969struct request *blk_fetch_request(struct request_queue *q)
1970{
1971 struct request *rq;
1972
1973 rq = blk_peek_request(q);
1974 if (rq)
1975 blk_start_request(rq);
1976 return rq;
1977}
1978EXPORT_SYMBOL(blk_fetch_request);
1979
3bcddeac 1980/**
2e60e022 1981 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1982 * @req: the request being processed
710027a4 1983 * @error: %0 for success, < %0 for error
8ebf9756 1984 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
1985 *
1986 * Description:
8ebf9756
RD
1987 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1988 * the request structure even if @req doesn't have leftover.
1989 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
1990 *
1991 * This special helper function is only for request stacking drivers
1992 * (e.g. request-based dm) so that they can handle partial completion.
1993 * Actual device drivers should use blk_end_request instead.
1994 *
1995 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1996 * %false return from this function.
3bcddeac
KU
1997 *
1998 * Return:
2e60e022
TH
1999 * %false - this request doesn't have any more data
2000 * %true - this request has more data
3bcddeac 2001 **/
2e60e022 2002bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2003{
5450d3e1 2004 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2005 struct bio *bio;
2006
2e60e022
TH
2007 if (!req->bio)
2008 return false;
2009
5f3ea37c 2010 trace_block_rq_complete(req->q, req);
2056a782 2011
1da177e4 2012 /*
6f41469c
TH
2013 * For fs requests, rq is just carrier of independent bio's
2014 * and each partial completion should be handled separately.
2015 * Reset per-request error on each partial completion.
2016 *
2017 * TODO: tj: This is too subtle. It would be better to let
2018 * low level drivers do what they see fit.
1da177e4 2019 */
33659ebb 2020 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2021 req->errors = 0;
2022
33659ebb
CH
2023 if (error && req->cmd_type == REQ_TYPE_FS &&
2024 !(req->cmd_flags & REQ_QUIET)) {
6728cb0e 2025 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4 2026 req->rq_disk ? req->rq_disk->disk_name : "?",
83096ebf 2027 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2028 }
2029
bc58ba94 2030 blk_account_io_completion(req, nr_bytes);
d72d904a 2031
1da177e4
LT
2032 total_bytes = bio_nbytes = 0;
2033 while ((bio = req->bio) != NULL) {
2034 int nbytes;
2035
2036 if (nr_bytes >= bio->bi_size) {
2037 req->bio = bio->bi_next;
2038 nbytes = bio->bi_size;
5bb23a68 2039 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2040 next_idx = 0;
2041 bio_nbytes = 0;
2042 } else {
2043 int idx = bio->bi_idx + next_idx;
2044
af498d7f 2045 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2046 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2047 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2048 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2049 break;
2050 }
2051
2052 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2053 BIO_BUG_ON(nbytes > bio->bi_size);
2054
2055 /*
2056 * not a complete bvec done
2057 */
2058 if (unlikely(nbytes > nr_bytes)) {
2059 bio_nbytes += nr_bytes;
2060 total_bytes += nr_bytes;
2061 break;
2062 }
2063
2064 /*
2065 * advance to the next vector
2066 */
2067 next_idx++;
2068 bio_nbytes += nbytes;
2069 }
2070
2071 total_bytes += nbytes;
2072 nr_bytes -= nbytes;
2073
6728cb0e
JA
2074 bio = req->bio;
2075 if (bio) {
1da177e4
LT
2076 /*
2077 * end more in this run, or just return 'not-done'
2078 */
2079 if (unlikely(nr_bytes <= 0))
2080 break;
2081 }
2082 }
2083
2084 /*
2085 * completely done
2086 */
2e60e022
TH
2087 if (!req->bio) {
2088 /*
2089 * Reset counters so that the request stacking driver
2090 * can find how many bytes remain in the request
2091 * later.
2092 */
a2dec7b3 2093 req->__data_len = 0;
2e60e022
TH
2094 return false;
2095 }
1da177e4
LT
2096
2097 /*
2098 * if the request wasn't completed, update state
2099 */
2100 if (bio_nbytes) {
5bb23a68 2101 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2102 bio->bi_idx += next_idx;
2103 bio_iovec(bio)->bv_offset += nr_bytes;
2104 bio_iovec(bio)->bv_len -= nr_bytes;
2105 }
2106
a2dec7b3 2107 req->__data_len -= total_bytes;
2e46e8b2
TH
2108 req->buffer = bio_data(req->bio);
2109
2110 /* update sector only for requests with clear definition of sector */
33659ebb 2111 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2112 req->__sector += total_bytes >> 9;
2e46e8b2 2113
80a761fd
TH
2114 /* mixed attributes always follow the first bio */
2115 if (req->cmd_flags & REQ_MIXED_MERGE) {
2116 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2117 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2118 }
2119
2e46e8b2
TH
2120 /*
2121 * If total number of sectors is less than the first segment
2122 * size, something has gone terribly wrong.
2123 */
2124 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2125 printk(KERN_ERR "blk: request botched\n");
a2dec7b3 2126 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2127 }
2128
2129 /* recalculate the number of segments */
1da177e4 2130 blk_recalc_rq_segments(req);
2e46e8b2 2131
2e60e022 2132 return true;
1da177e4 2133}
2e60e022 2134EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2135
2e60e022
TH
2136static bool blk_update_bidi_request(struct request *rq, int error,
2137 unsigned int nr_bytes,
2138 unsigned int bidi_bytes)
5efccd17 2139{
2e60e022
TH
2140 if (blk_update_request(rq, error, nr_bytes))
2141 return true;
5efccd17 2142
2e60e022
TH
2143 /* Bidi request must be completed as a whole */
2144 if (unlikely(blk_bidi_rq(rq)) &&
2145 blk_update_request(rq->next_rq, error, bidi_bytes))
2146 return true;
5efccd17 2147
e2e1a148
JA
2148 if (blk_queue_add_random(rq->q))
2149 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2150
2151 return false;
1da177e4
LT
2152}
2153
28018c24
JB
2154/**
2155 * blk_unprep_request - unprepare a request
2156 * @req: the request
2157 *
2158 * This function makes a request ready for complete resubmission (or
2159 * completion). It happens only after all error handling is complete,
2160 * so represents the appropriate moment to deallocate any resources
2161 * that were allocated to the request in the prep_rq_fn. The queue
2162 * lock is held when calling this.
2163 */
2164void blk_unprep_request(struct request *req)
2165{
2166 struct request_queue *q = req->q;
2167
2168 req->cmd_flags &= ~REQ_DONTPREP;
2169 if (q->unprep_rq_fn)
2170 q->unprep_rq_fn(q, req);
2171}
2172EXPORT_SYMBOL_GPL(blk_unprep_request);
2173
1da177e4
LT
2174/*
2175 * queue lock must be held
2176 */
2e60e022 2177static void blk_finish_request(struct request *req, int error)
1da177e4 2178{
b8286239
KU
2179 if (blk_rq_tagged(req))
2180 blk_queue_end_tag(req->q, req);
2181
ba396a6c 2182 BUG_ON(blk_queued_rq(req));
1da177e4 2183
33659ebb 2184 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2185 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2186
e78042e5
MA
2187 blk_delete_timer(req);
2188
28018c24
JB
2189 if (req->cmd_flags & REQ_DONTPREP)
2190 blk_unprep_request(req);
2191
2192
bc58ba94 2193 blk_account_io_done(req);
b8286239 2194
1da177e4 2195 if (req->end_io)
8ffdc655 2196 req->end_io(req, error);
b8286239
KU
2197 else {
2198 if (blk_bidi_rq(req))
2199 __blk_put_request(req->next_rq->q, req->next_rq);
2200
1da177e4 2201 __blk_put_request(req->q, req);
b8286239 2202 }
1da177e4
LT
2203}
2204
3b11313a 2205/**
2e60e022
TH
2206 * blk_end_bidi_request - Complete a bidi request
2207 * @rq: the request to complete
2208 * @error: %0 for success, < %0 for error
2209 * @nr_bytes: number of bytes to complete @rq
2210 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2211 *
2212 * Description:
e3a04fe3 2213 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2214 * Drivers that supports bidi can safely call this member for any
2215 * type of request, bidi or uni. In the later case @bidi_bytes is
2216 * just ignored.
336cdb40
KU
2217 *
2218 * Return:
2e60e022
TH
2219 * %false - we are done with this request
2220 * %true - still buffers pending for this request
a0cd1285 2221 **/
b1f74493 2222static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2223 unsigned int nr_bytes, unsigned int bidi_bytes)
2224{
336cdb40 2225 struct request_queue *q = rq->q;
2e60e022 2226 unsigned long flags;
32fab448 2227
2e60e022
TH
2228 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2229 return true;
32fab448 2230
336cdb40 2231 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2232 blk_finish_request(rq, error);
336cdb40
KU
2233 spin_unlock_irqrestore(q->queue_lock, flags);
2234
2e60e022 2235 return false;
32fab448
KU
2236}
2237
336cdb40 2238/**
2e60e022
TH
2239 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2240 * @rq: the request to complete
710027a4 2241 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2242 * @nr_bytes: number of bytes to complete @rq
2243 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2244 *
2245 * Description:
2e60e022
TH
2246 * Identical to blk_end_bidi_request() except that queue lock is
2247 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2248 *
2249 * Return:
2e60e022
TH
2250 * %false - we are done with this request
2251 * %true - still buffers pending for this request
336cdb40 2252 **/
b1f74493
FT
2253static bool __blk_end_bidi_request(struct request *rq, int error,
2254 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2255{
2e60e022
TH
2256 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2257 return true;
336cdb40 2258
2e60e022 2259 blk_finish_request(rq, error);
336cdb40 2260
2e60e022 2261 return false;
336cdb40 2262}
e19a3ab0
KU
2263
2264/**
2265 * blk_end_request - Helper function for drivers to complete the request.
2266 * @rq: the request being processed
710027a4 2267 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2268 * @nr_bytes: number of bytes to complete
2269 *
2270 * Description:
2271 * Ends I/O on a number of bytes attached to @rq.
2272 * If @rq has leftover, sets it up for the next range of segments.
2273 *
2274 * Return:
b1f74493
FT
2275 * %false - we are done with this request
2276 * %true - still buffers pending for this request
e19a3ab0 2277 **/
b1f74493 2278bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2279{
b1f74493 2280 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2281}
56ad1740 2282EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2283
2284/**
b1f74493
FT
2285 * blk_end_request_all - Helper function for drives to finish the request.
2286 * @rq: the request to finish
8ebf9756 2287 * @error: %0 for success, < %0 for error
336cdb40
KU
2288 *
2289 * Description:
b1f74493
FT
2290 * Completely finish @rq.
2291 */
2292void blk_end_request_all(struct request *rq, int error)
336cdb40 2293{
b1f74493
FT
2294 bool pending;
2295 unsigned int bidi_bytes = 0;
336cdb40 2296
b1f74493
FT
2297 if (unlikely(blk_bidi_rq(rq)))
2298 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2299
b1f74493
FT
2300 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2301 BUG_ON(pending);
2302}
56ad1740 2303EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2304
b1f74493
FT
2305/**
2306 * blk_end_request_cur - Helper function to finish the current request chunk.
2307 * @rq: the request to finish the current chunk for
8ebf9756 2308 * @error: %0 for success, < %0 for error
b1f74493
FT
2309 *
2310 * Description:
2311 * Complete the current consecutively mapped chunk from @rq.
2312 *
2313 * Return:
2314 * %false - we are done with this request
2315 * %true - still buffers pending for this request
2316 */
2317bool blk_end_request_cur(struct request *rq, int error)
2318{
2319 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2320}
56ad1740 2321EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2322
80a761fd
TH
2323/**
2324 * blk_end_request_err - Finish a request till the next failure boundary.
2325 * @rq: the request to finish till the next failure boundary for
2326 * @error: must be negative errno
2327 *
2328 * Description:
2329 * Complete @rq till the next failure boundary.
2330 *
2331 * Return:
2332 * %false - we are done with this request
2333 * %true - still buffers pending for this request
2334 */
2335bool blk_end_request_err(struct request *rq, int error)
2336{
2337 WARN_ON(error >= 0);
2338 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2339}
2340EXPORT_SYMBOL_GPL(blk_end_request_err);
2341
e3a04fe3 2342/**
b1f74493
FT
2343 * __blk_end_request - Helper function for drivers to complete the request.
2344 * @rq: the request being processed
2345 * @error: %0 for success, < %0 for error
2346 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2347 *
2348 * Description:
b1f74493 2349 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2350 *
2351 * Return:
b1f74493
FT
2352 * %false - we are done with this request
2353 * %true - still buffers pending for this request
e3a04fe3 2354 **/
b1f74493 2355bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2356{
b1f74493 2357 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2358}
56ad1740 2359EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2360
32fab448 2361/**
b1f74493
FT
2362 * __blk_end_request_all - Helper function for drives to finish the request.
2363 * @rq: the request to finish
8ebf9756 2364 * @error: %0 for success, < %0 for error
32fab448
KU
2365 *
2366 * Description:
b1f74493 2367 * Completely finish @rq. Must be called with queue lock held.
32fab448 2368 */
b1f74493 2369void __blk_end_request_all(struct request *rq, int error)
32fab448 2370{
b1f74493
FT
2371 bool pending;
2372 unsigned int bidi_bytes = 0;
2373
2374 if (unlikely(blk_bidi_rq(rq)))
2375 bidi_bytes = blk_rq_bytes(rq->next_rq);
2376
2377 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2378 BUG_ON(pending);
32fab448 2379}
56ad1740 2380EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2381
e19a3ab0 2382/**
b1f74493
FT
2383 * __blk_end_request_cur - Helper function to finish the current request chunk.
2384 * @rq: the request to finish the current chunk for
8ebf9756 2385 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2386 *
2387 * Description:
b1f74493
FT
2388 * Complete the current consecutively mapped chunk from @rq. Must
2389 * be called with queue lock held.
e19a3ab0
KU
2390 *
2391 * Return:
b1f74493
FT
2392 * %false - we are done with this request
2393 * %true - still buffers pending for this request
2394 */
2395bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2396{
b1f74493 2397 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2398}
56ad1740 2399EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2400
80a761fd
TH
2401/**
2402 * __blk_end_request_err - Finish a request till the next failure boundary.
2403 * @rq: the request to finish till the next failure boundary for
2404 * @error: must be negative errno
2405 *
2406 * Description:
2407 * Complete @rq till the next failure boundary. Must be called
2408 * with queue lock held.
2409 *
2410 * Return:
2411 * %false - we are done with this request
2412 * %true - still buffers pending for this request
2413 */
2414bool __blk_end_request_err(struct request *rq, int error)
2415{
2416 WARN_ON(error >= 0);
2417 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2418}
2419EXPORT_SYMBOL_GPL(__blk_end_request_err);
2420
86db1e29
JA
2421void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2422 struct bio *bio)
1da177e4 2423{
a82afdfc 2424 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2425 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2426
fb2dce86
DW
2427 if (bio_has_data(bio)) {
2428 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2429 rq->buffer = bio_data(bio);
2430 }
a2dec7b3 2431 rq->__data_len = bio->bi_size;
1da177e4 2432 rq->bio = rq->biotail = bio;
1da177e4 2433
66846572
N
2434 if (bio->bi_bdev)
2435 rq->rq_disk = bio->bi_bdev->bd_disk;
2436}
1da177e4 2437
2d4dc890
IL
2438#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2439/**
2440 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2441 * @rq: the request to be flushed
2442 *
2443 * Description:
2444 * Flush all pages in @rq.
2445 */
2446void rq_flush_dcache_pages(struct request *rq)
2447{
2448 struct req_iterator iter;
2449 struct bio_vec *bvec;
2450
2451 rq_for_each_segment(bvec, rq, iter)
2452 flush_dcache_page(bvec->bv_page);
2453}
2454EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2455#endif
2456
ef9e3fac
KU
2457/**
2458 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2459 * @q : the queue of the device being checked
2460 *
2461 * Description:
2462 * Check if underlying low-level drivers of a device are busy.
2463 * If the drivers want to export their busy state, they must set own
2464 * exporting function using blk_queue_lld_busy() first.
2465 *
2466 * Basically, this function is used only by request stacking drivers
2467 * to stop dispatching requests to underlying devices when underlying
2468 * devices are busy. This behavior helps more I/O merging on the queue
2469 * of the request stacking driver and prevents I/O throughput regression
2470 * on burst I/O load.
2471 *
2472 * Return:
2473 * 0 - Not busy (The request stacking driver should dispatch request)
2474 * 1 - Busy (The request stacking driver should stop dispatching request)
2475 */
2476int blk_lld_busy(struct request_queue *q)
2477{
2478 if (q->lld_busy_fn)
2479 return q->lld_busy_fn(q);
2480
2481 return 0;
2482}
2483EXPORT_SYMBOL_GPL(blk_lld_busy);
2484
b0fd271d
KU
2485/**
2486 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2487 * @rq: the clone request to be cleaned up
2488 *
2489 * Description:
2490 * Free all bios in @rq for a cloned request.
2491 */
2492void blk_rq_unprep_clone(struct request *rq)
2493{
2494 struct bio *bio;
2495
2496 while ((bio = rq->bio) != NULL) {
2497 rq->bio = bio->bi_next;
2498
2499 bio_put(bio);
2500 }
2501}
2502EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2503
2504/*
2505 * Copy attributes of the original request to the clone request.
2506 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2507 */
2508static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2509{
2510 dst->cpu = src->cpu;
3a2edd0d 2511 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2512 dst->cmd_type = src->cmd_type;
2513 dst->__sector = blk_rq_pos(src);
2514 dst->__data_len = blk_rq_bytes(src);
2515 dst->nr_phys_segments = src->nr_phys_segments;
2516 dst->ioprio = src->ioprio;
2517 dst->extra_len = src->extra_len;
2518}
2519
2520/**
2521 * blk_rq_prep_clone - Helper function to setup clone request
2522 * @rq: the request to be setup
2523 * @rq_src: original request to be cloned
2524 * @bs: bio_set that bios for clone are allocated from
2525 * @gfp_mask: memory allocation mask for bio
2526 * @bio_ctr: setup function to be called for each clone bio.
2527 * Returns %0 for success, non %0 for failure.
2528 * @data: private data to be passed to @bio_ctr
2529 *
2530 * Description:
2531 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2532 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2533 * are not copied, and copying such parts is the caller's responsibility.
2534 * Also, pages which the original bios are pointing to are not copied
2535 * and the cloned bios just point same pages.
2536 * So cloned bios must be completed before original bios, which means
2537 * the caller must complete @rq before @rq_src.
2538 */
2539int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2540 struct bio_set *bs, gfp_t gfp_mask,
2541 int (*bio_ctr)(struct bio *, struct bio *, void *),
2542 void *data)
2543{
2544 struct bio *bio, *bio_src;
2545
2546 if (!bs)
2547 bs = fs_bio_set;
2548
2549 blk_rq_init(NULL, rq);
2550
2551 __rq_for_each_bio(bio_src, rq_src) {
2552 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2553 if (!bio)
2554 goto free_and_out;
2555
2556 __bio_clone(bio, bio_src);
2557
2558 if (bio_integrity(bio_src) &&
7878cba9 2559 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2560 goto free_and_out;
2561
2562 if (bio_ctr && bio_ctr(bio, bio_src, data))
2563 goto free_and_out;
2564
2565 if (rq->bio) {
2566 rq->biotail->bi_next = bio;
2567 rq->biotail = bio;
2568 } else
2569 rq->bio = rq->biotail = bio;
2570 }
2571
2572 __blk_rq_prep_clone(rq, rq_src);
2573
2574 return 0;
2575
2576free_and_out:
2577 if (bio)
2578 bio_free(bio, bs);
2579 blk_rq_unprep_clone(rq);
2580
2581 return -ENOMEM;
2582}
2583EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2584
18887ad9 2585int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2586{
2587 return queue_work(kblockd_workqueue, work);
2588}
1da177e4
LT
2589EXPORT_SYMBOL(kblockd_schedule_work);
2590
e43473b7
VG
2591int kblockd_schedule_delayed_work(struct request_queue *q,
2592 struct delayed_work *dwork, unsigned long delay)
2593{
2594 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2595}
2596EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2597
1da177e4
LT
2598int __init blk_dev_init(void)
2599{
9eb55b03
NK
2600 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2601 sizeof(((struct request *)0)->cmd_flags));
2602
1da177e4
LT
2603 kblockd_workqueue = create_workqueue("kblockd");
2604 if (!kblockd_workqueue)
2605 panic("Failed to create kblockd\n");
2606
2607 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2608 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2609
8324aa91 2610 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2611 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2612
d38ecf93 2613 return 0;
1da177e4 2614}