]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
scsi: convert to blk_delay_queue()
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
55782138
LZ
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/block.h>
1da177e4 33
8324aa91
JA
34#include "blk.h"
35
d07335e5 36EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 37EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 39
165125e1 40static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
41
42/*
43 * For the allocated request tables
44 */
5ece6c52 45static struct kmem_cache *request_cachep;
1da177e4
LT
46
47/*
48 * For queue allocation
49 */
6728cb0e 50struct kmem_cache *blk_requestq_cachep;
1da177e4 51
1da177e4
LT
52/*
53 * Controlling structure to kblockd
54 */
ff856bad 55static struct workqueue_struct *kblockd_workqueue;
1da177e4 56
26b8256e
JA
57static void drive_stat_acct(struct request *rq, int new_io)
58{
28f13702 59 struct hd_struct *part;
26b8256e 60 int rw = rq_data_dir(rq);
c9959059 61 int cpu;
26b8256e 62
c2553b58 63 if (!blk_do_io_stat(rq))
26b8256e
JA
64 return;
65
074a7aca 66 cpu = part_stat_lock();
c9959059 67
09e099d4
JM
68 if (!new_io) {
69 part = rq->part;
074a7aca 70 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
71 } else {
72 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 73 if (!hd_struct_try_get(part)) {
09e099d4
JM
74 /*
75 * The partition is already being removed,
76 * the request will be accounted on the disk only
77 *
78 * We take a reference on disk->part0 although that
79 * partition will never be deleted, so we can treat
80 * it as any other partition.
81 */
82 part = &rq->rq_disk->part0;
6c23a968 83 hd_struct_get(part);
09e099d4 84 }
074a7aca 85 part_round_stats(cpu, part);
316d315b 86 part_inc_in_flight(part, rw);
09e099d4 87 rq->part = part;
26b8256e 88 }
e71bf0d0 89
074a7aca 90 part_stat_unlock();
26b8256e
JA
91}
92
8324aa91 93void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
94{
95 int nr;
96
97 nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 if (nr > q->nr_requests)
99 nr = q->nr_requests;
100 q->nr_congestion_on = nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 if (nr < 1)
104 nr = 1;
105 q->nr_congestion_off = nr;
106}
107
1da177e4
LT
108/**
109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110 * @bdev: device
111 *
112 * Locates the passed device's request queue and returns the address of its
113 * backing_dev_info
114 *
115 * Will return NULL if the request queue cannot be located.
116 */
117struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
118{
119 struct backing_dev_info *ret = NULL;
165125e1 120 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
121
122 if (q)
123 ret = &q->backing_dev_info;
124 return ret;
125}
1da177e4
LT
126EXPORT_SYMBOL(blk_get_backing_dev_info);
127
2a4aa30c 128void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 129{
1afb20f3
FT
130 memset(rq, 0, sizeof(*rq));
131
1da177e4 132 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 133 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 134 rq->cpu = -1;
63a71386 135 rq->q = q;
a2dec7b3 136 rq->__sector = (sector_t) -1;
2e662b65
JA
137 INIT_HLIST_NODE(&rq->hash);
138 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 139 rq->cmd = rq->__cmd;
e2494e1b 140 rq->cmd_len = BLK_MAX_CDB;
63a71386 141 rq->tag = -1;
1da177e4 142 rq->ref_count = 1;
b243ddcb 143 rq->start_time = jiffies;
9195291e 144 set_start_time_ns(rq);
09e099d4 145 rq->part = NULL;
1da177e4 146}
2a4aa30c 147EXPORT_SYMBOL(blk_rq_init);
1da177e4 148
5bb23a68
N
149static void req_bio_endio(struct request *rq, struct bio *bio,
150 unsigned int nbytes, int error)
1da177e4 151{
143a87f4
TH
152 if (error)
153 clear_bit(BIO_UPTODATE, &bio->bi_flags);
154 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
155 error = -EIO;
156
157 if (unlikely(nbytes > bio->bi_size)) {
158 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
159 __func__, nbytes, bio->bi_size);
160 nbytes = bio->bi_size;
5bb23a68 161 }
143a87f4
TH
162
163 if (unlikely(rq->cmd_flags & REQ_QUIET))
164 set_bit(BIO_QUIET, &bio->bi_flags);
165
166 bio->bi_size -= nbytes;
167 bio->bi_sector += (nbytes >> 9);
168
169 if (bio_integrity(bio))
170 bio_integrity_advance(bio, nbytes);
171
172 /* don't actually finish bio if it's part of flush sequence */
173 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
174 bio_endio(bio, error);
1da177e4 175}
1da177e4 176
1da177e4
LT
177void blk_dump_rq_flags(struct request *rq, char *msg)
178{
179 int bit;
180
6728cb0e 181 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
182 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
183 rq->cmd_flags);
1da177e4 184
83096ebf
TH
185 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
186 (unsigned long long)blk_rq_pos(rq),
187 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 188 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 189 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 190
33659ebb 191 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 192 printk(KERN_INFO " cdb: ");
d34c87e4 193 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
194 printk("%02x ", rq->cmd[bit]);
195 printk("\n");
196 }
197}
1da177e4
LT
198EXPORT_SYMBOL(blk_dump_rq_flags);
199
3cca6dc1
JA
200static void blk_delay_work(struct work_struct *work)
201{
202 struct request_queue *q;
203
204 q = container_of(work, struct request_queue, delay_work.work);
205 spin_lock_irq(q->queue_lock);
206 q->request_fn(q);
207 spin_unlock_irq(q->queue_lock);
208}
209
210/**
211 * blk_delay_queue - restart queueing after defined interval
212 * @q: The &struct request_queue in question
213 * @msecs: Delay in msecs
214 *
215 * Description:
216 * Sometimes queueing needs to be postponed for a little while, to allow
217 * resources to come back. This function will make sure that queueing is
218 * restarted around the specified time.
219 */
220void blk_delay_queue(struct request_queue *q, unsigned long msecs)
221{
222 schedule_delayed_work(&q->delay_work, msecs_to_jiffies(msecs));
223}
224EXPORT_SYMBOL(blk_delay_queue);
225
1da177e4
LT
226/*
227 * "plug" the device if there are no outstanding requests: this will
228 * force the transfer to start only after we have put all the requests
229 * on the list.
230 *
231 * This is called with interrupts off and no requests on the queue and
232 * with the queue lock held.
233 */
165125e1 234void blk_plug_device(struct request_queue *q)
1da177e4
LT
235{
236 WARN_ON(!irqs_disabled());
237
238 /*
239 * don't plug a stopped queue, it must be paired with blk_start_queue()
240 * which will restart the queueing
241 */
7daac490 242 if (blk_queue_stopped(q))
1da177e4
LT
243 return;
244
e48ec690 245 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 246 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
5f3ea37c 247 trace_block_plug(q);
2056a782 248 }
1da177e4 249}
1da177e4
LT
250EXPORT_SYMBOL(blk_plug_device);
251
6c5e0c4d
JA
252/**
253 * blk_plug_device_unlocked - plug a device without queue lock held
254 * @q: The &struct request_queue to plug
255 *
256 * Description:
257 * Like @blk_plug_device(), but grabs the queue lock and disables
258 * interrupts.
259 **/
260void blk_plug_device_unlocked(struct request_queue *q)
261{
262 unsigned long flags;
263
264 spin_lock_irqsave(q->queue_lock, flags);
265 blk_plug_device(q);
266 spin_unlock_irqrestore(q->queue_lock, flags);
267}
268EXPORT_SYMBOL(blk_plug_device_unlocked);
269
1da177e4
LT
270/*
271 * remove the queue from the plugged list, if present. called with
272 * queue lock held and interrupts disabled.
273 */
165125e1 274int blk_remove_plug(struct request_queue *q)
1da177e4
LT
275{
276 WARN_ON(!irqs_disabled());
277
e48ec690 278 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
279 return 0;
280
281 del_timer(&q->unplug_timer);
282 return 1;
283}
1da177e4
LT
284EXPORT_SYMBOL(blk_remove_plug);
285
286/*
287 * remove the plug and let it rip..
288 */
165125e1 289void __generic_unplug_device(struct request_queue *q)
1da177e4 290{
7daac490 291 if (unlikely(blk_queue_stopped(q)))
1da177e4 292 return;
a31a9738 293 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
1da177e4
LT
294 return;
295
22e2c507 296 q->request_fn(q);
1da177e4 297}
1da177e4
LT
298
299/**
300 * generic_unplug_device - fire a request queue
165125e1 301 * @q: The &struct request_queue in question
1da177e4
LT
302 *
303 * Description:
304 * Linux uses plugging to build bigger requests queues before letting
305 * the device have at them. If a queue is plugged, the I/O scheduler
306 * is still adding and merging requests on the queue. Once the queue
307 * gets unplugged, the request_fn defined for the queue is invoked and
308 * transfers started.
309 **/
165125e1 310void generic_unplug_device(struct request_queue *q)
1da177e4 311{
dbaf2c00
JA
312 if (blk_queue_plugged(q)) {
313 spin_lock_irq(q->queue_lock);
314 __generic_unplug_device(q);
315 spin_unlock_irq(q->queue_lock);
316 }
1da177e4
LT
317}
318EXPORT_SYMBOL(generic_unplug_device);
319
320static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
321 struct page *page)
322{
165125e1 323 struct request_queue *q = bdi->unplug_io_data;
1da177e4 324
2ad8b1ef 325 blk_unplug(q);
1da177e4
LT
326}
327
86db1e29 328void blk_unplug_work(struct work_struct *work)
1da177e4 329{
165125e1
JA
330 struct request_queue *q =
331 container_of(work, struct request_queue, unplug_work);
1da177e4 332
5f3ea37c 333 trace_block_unplug_io(q);
1da177e4
LT
334 q->unplug_fn(q);
335}
336
86db1e29 337void blk_unplug_timeout(unsigned long data)
1da177e4 338{
165125e1 339 struct request_queue *q = (struct request_queue *)data;
1da177e4 340
5f3ea37c 341 trace_block_unplug_timer(q);
18887ad9 342 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
343}
344
2ad8b1ef
AB
345void blk_unplug(struct request_queue *q)
346{
347 /*
348 * devices don't necessarily have an ->unplug_fn defined
349 */
350 if (q->unplug_fn) {
5f3ea37c 351 trace_block_unplug_io(q);
2ad8b1ef
AB
352 q->unplug_fn(q);
353 }
354}
355EXPORT_SYMBOL(blk_unplug);
356
1da177e4
LT
357/**
358 * blk_start_queue - restart a previously stopped queue
165125e1 359 * @q: The &struct request_queue in question
1da177e4
LT
360 *
361 * Description:
362 * blk_start_queue() will clear the stop flag on the queue, and call
363 * the request_fn for the queue if it was in a stopped state when
364 * entered. Also see blk_stop_queue(). Queue lock must be held.
365 **/
165125e1 366void blk_start_queue(struct request_queue *q)
1da177e4 367{
a038e253
PBG
368 WARN_ON(!irqs_disabled());
369
75ad23bc 370 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
a538cd03 371 __blk_run_queue(q);
1da177e4 372}
1da177e4
LT
373EXPORT_SYMBOL(blk_start_queue);
374
375/**
376 * blk_stop_queue - stop a queue
165125e1 377 * @q: The &struct request_queue in question
1da177e4
LT
378 *
379 * Description:
380 * The Linux block layer assumes that a block driver will consume all
381 * entries on the request queue when the request_fn strategy is called.
382 * Often this will not happen, because of hardware limitations (queue
383 * depth settings). If a device driver gets a 'queue full' response,
384 * or if it simply chooses not to queue more I/O at one point, it can
385 * call this function to prevent the request_fn from being called until
386 * the driver has signalled it's ready to go again. This happens by calling
387 * blk_start_queue() to restart queue operations. Queue lock must be held.
388 **/
165125e1 389void blk_stop_queue(struct request_queue *q)
1da177e4
LT
390{
391 blk_remove_plug(q);
3cca6dc1 392 cancel_delayed_work(&q->delay_work);
75ad23bc 393 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
394}
395EXPORT_SYMBOL(blk_stop_queue);
396
397/**
398 * blk_sync_queue - cancel any pending callbacks on a queue
399 * @q: the queue
400 *
401 * Description:
402 * The block layer may perform asynchronous callback activity
403 * on a queue, such as calling the unplug function after a timeout.
404 * A block device may call blk_sync_queue to ensure that any
405 * such activity is cancelled, thus allowing it to release resources
59c51591 406 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
407 * that its ->make_request_fn will not re-add plugging prior to calling
408 * this function.
409 *
410 */
411void blk_sync_queue(struct request_queue *q)
412{
413 del_timer_sync(&q->unplug_timer);
70ed28b9 414 del_timer_sync(&q->timeout);
64d01dc9 415 cancel_work_sync(&q->unplug_work);
e43473b7 416 throtl_shutdown_timer_wq(q);
3cca6dc1 417 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
418}
419EXPORT_SYMBOL(blk_sync_queue);
420
421/**
80a4b58e 422 * __blk_run_queue - run a single device queue
1da177e4 423 * @q: The queue to run
80a4b58e
JA
424 *
425 * Description:
426 * See @blk_run_queue. This variant must be called with the queue lock
427 * held and interrupts disabled.
428 *
1da177e4 429 */
75ad23bc 430void __blk_run_queue(struct request_queue *q)
1da177e4 431{
1da177e4 432 blk_remove_plug(q);
dac07ec1 433
a538cd03
TH
434 if (unlikely(blk_queue_stopped(q)))
435 return;
436
437 if (elv_queue_empty(q))
438 return;
439
dac07ec1
JA
440 /*
441 * Only recurse once to avoid overrunning the stack, let the unplug
442 * handling reinvoke the handler shortly if we already got there.
443 */
a538cd03
TH
444 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
445 q->request_fn(q);
446 queue_flag_clear(QUEUE_FLAG_REENTER, q);
447 } else {
448 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
449 kblockd_schedule_work(q, &q->unplug_work);
450 }
75ad23bc
NP
451}
452EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 453
75ad23bc
NP
454/**
455 * blk_run_queue - run a single device queue
456 * @q: The queue to run
80a4b58e
JA
457 *
458 * Description:
459 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 460 * May be used to restart queueing when a request has completed.
75ad23bc
NP
461 */
462void blk_run_queue(struct request_queue *q)
463{
464 unsigned long flags;
465
466 spin_lock_irqsave(q->queue_lock, flags);
467 __blk_run_queue(q);
1da177e4
LT
468 spin_unlock_irqrestore(q->queue_lock, flags);
469}
470EXPORT_SYMBOL(blk_run_queue);
471
165125e1 472void blk_put_queue(struct request_queue *q)
483f4afc
AV
473{
474 kobject_put(&q->kobj);
475}
483f4afc 476
6728cb0e 477void blk_cleanup_queue(struct request_queue *q)
483f4afc 478{
e3335de9
JA
479 /*
480 * We know we have process context here, so we can be a little
481 * cautious and ensure that pending block actions on this device
482 * are done before moving on. Going into this function, we should
483 * not have processes doing IO to this device.
484 */
485 blk_sync_queue(q);
486
31373d09 487 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
483f4afc 488 mutex_lock(&q->sysfs_lock);
75ad23bc 489 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
490 mutex_unlock(&q->sysfs_lock);
491
492 if (q->elevator)
493 elevator_exit(q->elevator);
494
495 blk_put_queue(q);
496}
1da177e4
LT
497EXPORT_SYMBOL(blk_cleanup_queue);
498
165125e1 499static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
500{
501 struct request_list *rl = &q->rq;
502
1abec4fd
MS
503 if (unlikely(rl->rq_pool))
504 return 0;
505
1faa16d2
JA
506 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
507 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 508 rl->elvpriv = 0;
1faa16d2
JA
509 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
510 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 511
1946089a
CL
512 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
513 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
514
515 if (!rl->rq_pool)
516 return -ENOMEM;
517
518 return 0;
519}
520
165125e1 521struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 522{
1946089a
CL
523 return blk_alloc_queue_node(gfp_mask, -1);
524}
525EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 526
165125e1 527struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 528{
165125e1 529 struct request_queue *q;
e0bf68dd 530 int err;
1946089a 531
8324aa91 532 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 533 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
534 if (!q)
535 return NULL;
536
e0bf68dd
PZ
537 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
538 q->backing_dev_info.unplug_io_data = q;
0989a025
JA
539 q->backing_dev_info.ra_pages =
540 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
541 q->backing_dev_info.state = 0;
542 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 543 q->backing_dev_info.name = "block";
0989a025 544
e0bf68dd
PZ
545 err = bdi_init(&q->backing_dev_info);
546 if (err) {
8324aa91 547 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
548 return NULL;
549 }
550
e43473b7
VG
551 if (blk_throtl_init(q)) {
552 kmem_cache_free(blk_requestq_cachep, q);
553 return NULL;
554 }
555
31373d09
MG
556 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
557 laptop_mode_timer_fn, (unsigned long) q);
1da177e4 558 init_timer(&q->unplug_timer);
242f9dcb
JA
559 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
560 INIT_LIST_HEAD(&q->timeout_list);
ae1b1539
TH
561 INIT_LIST_HEAD(&q->flush_queue[0]);
562 INIT_LIST_HEAD(&q->flush_queue[1]);
563 INIT_LIST_HEAD(&q->flush_data_in_flight);
713ada9b 564 INIT_WORK(&q->unplug_work, blk_unplug_work);
3cca6dc1 565 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 566
8324aa91 567 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 568
483f4afc 569 mutex_init(&q->sysfs_lock);
e7e72bf6 570 spin_lock_init(&q->__queue_lock);
483f4afc 571
1da177e4
LT
572 return q;
573}
1946089a 574EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
575
576/**
577 * blk_init_queue - prepare a request queue for use with a block device
578 * @rfn: The function to be called to process requests that have been
579 * placed on the queue.
580 * @lock: Request queue spin lock
581 *
582 * Description:
583 * If a block device wishes to use the standard request handling procedures,
584 * which sorts requests and coalesces adjacent requests, then it must
585 * call blk_init_queue(). The function @rfn will be called when there
586 * are requests on the queue that need to be processed. If the device
587 * supports plugging, then @rfn may not be called immediately when requests
588 * are available on the queue, but may be called at some time later instead.
589 * Plugged queues are generally unplugged when a buffer belonging to one
590 * of the requests on the queue is needed, or due to memory pressure.
591 *
592 * @rfn is not required, or even expected, to remove all requests off the
593 * queue, but only as many as it can handle at a time. If it does leave
594 * requests on the queue, it is responsible for arranging that the requests
595 * get dealt with eventually.
596 *
597 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
598 * request queue; this lock will be taken also from interrupt context, so irq
599 * disabling is needed for it.
1da177e4 600 *
710027a4 601 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
602 * it didn't succeed.
603 *
604 * Note:
605 * blk_init_queue() must be paired with a blk_cleanup_queue() call
606 * when the block device is deactivated (such as at module unload).
607 **/
1946089a 608
165125e1 609struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 610{
1946089a
CL
611 return blk_init_queue_node(rfn, lock, -1);
612}
613EXPORT_SYMBOL(blk_init_queue);
614
165125e1 615struct request_queue *
1946089a
CL
616blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
617{
c86d1b8a 618 struct request_queue *uninit_q, *q;
1da177e4 619
c86d1b8a
MS
620 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
621 if (!uninit_q)
622 return NULL;
623
624 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
625 if (!q)
626 blk_cleanup_queue(uninit_q);
627
628 return q;
01effb0d
MS
629}
630EXPORT_SYMBOL(blk_init_queue_node);
631
632struct request_queue *
633blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
634 spinlock_t *lock)
635{
636 return blk_init_allocated_queue_node(q, rfn, lock, -1);
637}
638EXPORT_SYMBOL(blk_init_allocated_queue);
639
640struct request_queue *
641blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
642 spinlock_t *lock, int node_id)
643{
1da177e4
LT
644 if (!q)
645 return NULL;
646
1946089a 647 q->node = node_id;
c86d1b8a 648 if (blk_init_free_list(q))
8669aafd 649 return NULL;
1da177e4
LT
650
651 q->request_fn = rfn;
1da177e4 652 q->prep_rq_fn = NULL;
28018c24 653 q->unprep_rq_fn = NULL;
1da177e4 654 q->unplug_fn = generic_unplug_device;
bc58ba94 655 q->queue_flags = QUEUE_FLAG_DEFAULT;
1da177e4
LT
656 q->queue_lock = lock;
657
f3b144aa
JA
658 /*
659 * This also sets hw/phys segments, boundary and size
660 */
1da177e4 661 blk_queue_make_request(q, __make_request);
1da177e4 662
44ec9542
AS
663 q->sg_reserved_size = INT_MAX;
664
1da177e4
LT
665 /*
666 * all done
667 */
668 if (!elevator_init(q, NULL)) {
669 blk_queue_congestion_threshold(q);
670 return q;
671 }
672
1da177e4
LT
673 return NULL;
674}
01effb0d 675EXPORT_SYMBOL(blk_init_allocated_queue_node);
1da177e4 676
165125e1 677int blk_get_queue(struct request_queue *q)
1da177e4 678{
fde6ad22 679 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 680 kobject_get(&q->kobj);
1da177e4
LT
681 return 0;
682 }
683
684 return 1;
685}
1da177e4 686
165125e1 687static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 688{
4aff5e23 689 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 690 elv_put_request(q, rq);
1da177e4
LT
691 mempool_free(rq, q->rq.rq_pool);
692}
693
1ea25ecb 694static struct request *
42dad764 695blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
696{
697 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
698
699 if (!rq)
700 return NULL;
701
2a4aa30c 702 blk_rq_init(q, rq);
1afb20f3 703
42dad764 704 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 705
cb98fc8b 706 if (priv) {
cb78b285 707 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
708 mempool_free(rq, q->rq.rq_pool);
709 return NULL;
710 }
4aff5e23 711 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 712 }
1da177e4 713
cb98fc8b 714 return rq;
1da177e4
LT
715}
716
717/*
718 * ioc_batching returns true if the ioc is a valid batching request and
719 * should be given priority access to a request.
720 */
165125e1 721static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
722{
723 if (!ioc)
724 return 0;
725
726 /*
727 * Make sure the process is able to allocate at least 1 request
728 * even if the batch times out, otherwise we could theoretically
729 * lose wakeups.
730 */
731 return ioc->nr_batch_requests == q->nr_batching ||
732 (ioc->nr_batch_requests > 0
733 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
734}
735
736/*
737 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
738 * will cause the process to be a "batcher" on all queues in the system. This
739 * is the behaviour we want though - once it gets a wakeup it should be given
740 * a nice run.
741 */
165125e1 742static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
743{
744 if (!ioc || ioc_batching(q, ioc))
745 return;
746
747 ioc->nr_batch_requests = q->nr_batching;
748 ioc->last_waited = jiffies;
749}
750
1faa16d2 751static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
752{
753 struct request_list *rl = &q->rq;
754
1faa16d2
JA
755 if (rl->count[sync] < queue_congestion_off_threshold(q))
756 blk_clear_queue_congested(q, sync);
1da177e4 757
1faa16d2
JA
758 if (rl->count[sync] + 1 <= q->nr_requests) {
759 if (waitqueue_active(&rl->wait[sync]))
760 wake_up(&rl->wait[sync]);
1da177e4 761
1faa16d2 762 blk_clear_queue_full(q, sync);
1da177e4
LT
763 }
764}
765
766/*
767 * A request has just been released. Account for it, update the full and
768 * congestion status, wake up any waiters. Called under q->queue_lock.
769 */
1faa16d2 770static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
771{
772 struct request_list *rl = &q->rq;
773
1faa16d2 774 rl->count[sync]--;
cb98fc8b
TH
775 if (priv)
776 rl->elvpriv--;
1da177e4 777
1faa16d2 778 __freed_request(q, sync);
1da177e4 779
1faa16d2
JA
780 if (unlikely(rl->starved[sync ^ 1]))
781 __freed_request(q, sync ^ 1);
1da177e4
LT
782}
783
9d5a4e94
MS
784/*
785 * Determine if elevator data should be initialized when allocating the
786 * request associated with @bio.
787 */
788static bool blk_rq_should_init_elevator(struct bio *bio)
789{
790 if (!bio)
791 return true;
792
793 /*
794 * Flush requests do not use the elevator so skip initialization.
795 * This allows a request to share the flush and elevator data.
796 */
797 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
798 return false;
799
800 return true;
801}
802
1da177e4 803/*
d6344532
NP
804 * Get a free request, queue_lock must be held.
805 * Returns NULL on failure, with queue_lock held.
806 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 807 */
165125e1 808static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 809 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
810{
811 struct request *rq = NULL;
812 struct request_list *rl = &q->rq;
88ee5ef1 813 struct io_context *ioc = NULL;
1faa16d2 814 const bool is_sync = rw_is_sync(rw_flags) != 0;
9d5a4e94 815 int may_queue, priv = 0;
88ee5ef1 816
7749a8d4 817 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
818 if (may_queue == ELV_MQUEUE_NO)
819 goto rq_starved;
820
1faa16d2
JA
821 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
822 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 823 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
824 /*
825 * The queue will fill after this allocation, so set
826 * it as full, and mark this process as "batching".
827 * This process will be allowed to complete a batch of
828 * requests, others will be blocked.
829 */
1faa16d2 830 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 831 ioc_set_batching(q, ioc);
1faa16d2 832 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
833 } else {
834 if (may_queue != ELV_MQUEUE_MUST
835 && !ioc_batching(q, ioc)) {
836 /*
837 * The queue is full and the allocating
838 * process is not a "batcher", and not
839 * exempted by the IO scheduler
840 */
841 goto out;
842 }
843 }
1da177e4 844 }
1faa16d2 845 blk_set_queue_congested(q, is_sync);
1da177e4
LT
846 }
847
082cf69e
JA
848 /*
849 * Only allow batching queuers to allocate up to 50% over the defined
850 * limit of requests, otherwise we could have thousands of requests
851 * allocated with any setting of ->nr_requests
852 */
1faa16d2 853 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 854 goto out;
fd782a4a 855
1faa16d2
JA
856 rl->count[is_sync]++;
857 rl->starved[is_sync] = 0;
cb98fc8b 858
9d5a4e94
MS
859 if (blk_rq_should_init_elevator(bio)) {
860 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
861 if (priv)
862 rl->elvpriv++;
863 }
cb98fc8b 864
f253b86b
JA
865 if (blk_queue_io_stat(q))
866 rw_flags |= REQ_IO_STAT;
1da177e4
LT
867 spin_unlock_irq(q->queue_lock);
868
7749a8d4 869 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 870 if (unlikely(!rq)) {
1da177e4
LT
871 /*
872 * Allocation failed presumably due to memory. Undo anything
873 * we might have messed up.
874 *
875 * Allocating task should really be put onto the front of the
876 * wait queue, but this is pretty rare.
877 */
878 spin_lock_irq(q->queue_lock);
1faa16d2 879 freed_request(q, is_sync, priv);
1da177e4
LT
880
881 /*
882 * in the very unlikely event that allocation failed and no
883 * requests for this direction was pending, mark us starved
884 * so that freeing of a request in the other direction will
885 * notice us. another possible fix would be to split the
886 * rq mempool into READ and WRITE
887 */
888rq_starved:
1faa16d2
JA
889 if (unlikely(rl->count[is_sync] == 0))
890 rl->starved[is_sync] = 1;
1da177e4 891
1da177e4
LT
892 goto out;
893 }
894
88ee5ef1
JA
895 /*
896 * ioc may be NULL here, and ioc_batching will be false. That's
897 * OK, if the queue is under the request limit then requests need
898 * not count toward the nr_batch_requests limit. There will always
899 * be some limit enforced by BLK_BATCH_TIME.
900 */
1da177e4
LT
901 if (ioc_batching(q, ioc))
902 ioc->nr_batch_requests--;
6728cb0e 903
1faa16d2 904 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 905out:
1da177e4
LT
906 return rq;
907}
908
909/*
910 * No available requests for this queue, unplug the device and wait for some
911 * requests to become available.
d6344532
NP
912 *
913 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 914 */
165125e1 915static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 916 struct bio *bio)
1da177e4 917{
1faa16d2 918 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
919 struct request *rq;
920
7749a8d4 921 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
922 while (!rq) {
923 DEFINE_WAIT(wait);
05caf8db 924 struct io_context *ioc;
1da177e4
LT
925 struct request_list *rl = &q->rq;
926
1faa16d2 927 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
928 TASK_UNINTERRUPTIBLE);
929
1faa16d2 930 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 931
05caf8db
ZY
932 __generic_unplug_device(q);
933 spin_unlock_irq(q->queue_lock);
934 io_schedule();
1da177e4 935
05caf8db
ZY
936 /*
937 * After sleeping, we become a "batching" process and
938 * will be able to allocate at least one request, and
939 * up to a big batch of them for a small period time.
940 * See ioc_batching, ioc_set_batching
941 */
942 ioc = current_io_context(GFP_NOIO, q->node);
943 ioc_set_batching(q, ioc);
d6344532 944
05caf8db 945 spin_lock_irq(q->queue_lock);
1faa16d2 946 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
947
948 rq = get_request(q, rw_flags, bio, GFP_NOIO);
949 };
1da177e4
LT
950
951 return rq;
952}
953
165125e1 954struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
955{
956 struct request *rq;
957
958 BUG_ON(rw != READ && rw != WRITE);
959
d6344532
NP
960 spin_lock_irq(q->queue_lock);
961 if (gfp_mask & __GFP_WAIT) {
22e2c507 962 rq = get_request_wait(q, rw, NULL);
d6344532 963 } else {
22e2c507 964 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
965 if (!rq)
966 spin_unlock_irq(q->queue_lock);
967 }
968 /* q->queue_lock is unlocked at this point */
1da177e4
LT
969
970 return rq;
971}
1da177e4
LT
972EXPORT_SYMBOL(blk_get_request);
973
dc72ef4a 974/**
79eb63e9 975 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 976 * @q: target request queue
79eb63e9
BH
977 * @bio: The bio describing the memory mappings that will be submitted for IO.
978 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 979 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 980 *
79eb63e9
BH
981 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
982 * type commands. Where the struct request needs to be farther initialized by
983 * the caller. It is passed a &struct bio, which describes the memory info of
984 * the I/O transfer.
dc72ef4a 985 *
79eb63e9
BH
986 * The caller of blk_make_request must make sure that bi_io_vec
987 * are set to describe the memory buffers. That bio_data_dir() will return
988 * the needed direction of the request. (And all bio's in the passed bio-chain
989 * are properly set accordingly)
990 *
991 * If called under none-sleepable conditions, mapped bio buffers must not
992 * need bouncing, by calling the appropriate masked or flagged allocator,
993 * suitable for the target device. Otherwise the call to blk_queue_bounce will
994 * BUG.
53674ac5
JA
995 *
996 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
997 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
998 * anything but the first bio in the chain. Otherwise you risk waiting for IO
999 * completion of a bio that hasn't been submitted yet, thus resulting in a
1000 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1001 * of bio_alloc(), as that avoids the mempool deadlock.
1002 * If possible a big IO should be split into smaller parts when allocation
1003 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1004 */
79eb63e9
BH
1005struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1006 gfp_t gfp_mask)
dc72ef4a 1007{
79eb63e9
BH
1008 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1009
1010 if (unlikely(!rq))
1011 return ERR_PTR(-ENOMEM);
1012
1013 for_each_bio(bio) {
1014 struct bio *bounce_bio = bio;
1015 int ret;
1016
1017 blk_queue_bounce(q, &bounce_bio);
1018 ret = blk_rq_append_bio(q, rq, bounce_bio);
1019 if (unlikely(ret)) {
1020 blk_put_request(rq);
1021 return ERR_PTR(ret);
1022 }
1023 }
1024
1025 return rq;
dc72ef4a 1026}
79eb63e9 1027EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1028
1da177e4
LT
1029/**
1030 * blk_requeue_request - put a request back on queue
1031 * @q: request queue where request should be inserted
1032 * @rq: request to be inserted
1033 *
1034 * Description:
1035 * Drivers often keep queueing requests until the hardware cannot accept
1036 * more, when that condition happens we need to put the request back
1037 * on the queue. Must be called with queue lock held.
1038 */
165125e1 1039void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1040{
242f9dcb
JA
1041 blk_delete_timer(rq);
1042 blk_clear_rq_complete(rq);
5f3ea37c 1043 trace_block_rq_requeue(q, rq);
2056a782 1044
1da177e4
LT
1045 if (blk_rq_tagged(rq))
1046 blk_queue_end_tag(q, rq);
1047
ba396a6c
JB
1048 BUG_ON(blk_queued_rq(rq));
1049
1da177e4
LT
1050 elv_requeue_request(q, rq);
1051}
1da177e4
LT
1052EXPORT_SYMBOL(blk_requeue_request);
1053
1054/**
710027a4 1055 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
1056 * @q: request queue where request should be inserted
1057 * @rq: request to be inserted
1058 * @at_head: insert request at head or tail of queue
1059 * @data: private data
1da177e4
LT
1060 *
1061 * Description:
1062 * Many block devices need to execute commands asynchronously, so they don't
1063 * block the whole kernel from preemption during request execution. This is
1064 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
1065 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1066 * be scheduled for actual execution by the request queue.
1da177e4
LT
1067 *
1068 * We have the option of inserting the head or the tail of the queue.
1069 * Typically we use the tail for new ioctls and so forth. We use the head
1070 * of the queue for things like a QUEUE_FULL message from a device, or a
1071 * host that is unable to accept a particular command.
1072 */
165125e1 1073void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 1074 int at_head, void *data)
1da177e4 1075{
867d1191 1076 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
1077 unsigned long flags;
1078
1079 /*
1080 * tell I/O scheduler that this isn't a regular read/write (ie it
1081 * must not attempt merges on this) and that it acts as a soft
1082 * barrier
1083 */
4aff5e23 1084 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
1085
1086 rq->special = data;
1087
1088 spin_lock_irqsave(q->queue_lock, flags);
1089
1090 /*
1091 * If command is tagged, release the tag
1092 */
867d1191
TH
1093 if (blk_rq_tagged(rq))
1094 blk_queue_end_tag(q, rq);
1da177e4 1095
b238b3d4 1096 drive_stat_acct(rq, 1);
867d1191 1097 __elv_add_request(q, rq, where, 0);
a7f55792 1098 __blk_run_queue(q);
1da177e4
LT
1099 spin_unlock_irqrestore(q->queue_lock, flags);
1100}
1da177e4
LT
1101EXPORT_SYMBOL(blk_insert_request);
1102
074a7aca
TH
1103static void part_round_stats_single(int cpu, struct hd_struct *part,
1104 unsigned long now)
1105{
1106 if (now == part->stamp)
1107 return;
1108
316d315b 1109 if (part_in_flight(part)) {
074a7aca 1110 __part_stat_add(cpu, part, time_in_queue,
316d315b 1111 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1112 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1113 }
1114 part->stamp = now;
1115}
1116
1117/**
496aa8a9
RD
1118 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1119 * @cpu: cpu number for stats access
1120 * @part: target partition
1da177e4
LT
1121 *
1122 * The average IO queue length and utilisation statistics are maintained
1123 * by observing the current state of the queue length and the amount of
1124 * time it has been in this state for.
1125 *
1126 * Normally, that accounting is done on IO completion, but that can result
1127 * in more than a second's worth of IO being accounted for within any one
1128 * second, leading to >100% utilisation. To deal with that, we call this
1129 * function to do a round-off before returning the results when reading
1130 * /proc/diskstats. This accounts immediately for all queue usage up to
1131 * the current jiffies and restarts the counters again.
1132 */
c9959059 1133void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1134{
1135 unsigned long now = jiffies;
1136
074a7aca
TH
1137 if (part->partno)
1138 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1139 part_round_stats_single(cpu, part, now);
6f2576af 1140}
074a7aca 1141EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1142
1da177e4
LT
1143/*
1144 * queue lock must be held
1145 */
165125e1 1146void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1147{
1da177e4
LT
1148 if (unlikely(!q))
1149 return;
1150 if (unlikely(--req->ref_count))
1151 return;
1152
8922e16c
TH
1153 elv_completed_request(q, req);
1154
1cd96c24
BH
1155 /* this is a bio leak */
1156 WARN_ON(req->bio != NULL);
1157
1da177e4
LT
1158 /*
1159 * Request may not have originated from ll_rw_blk. if not,
1160 * it didn't come out of our reserved rq pools
1161 */
49171e5c 1162 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1163 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1164 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1165
1da177e4 1166 BUG_ON(!list_empty(&req->queuelist));
9817064b 1167 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1168
1169 blk_free_request(q, req);
1faa16d2 1170 freed_request(q, is_sync, priv);
1da177e4
LT
1171 }
1172}
6e39b69e
MC
1173EXPORT_SYMBOL_GPL(__blk_put_request);
1174
1da177e4
LT
1175void blk_put_request(struct request *req)
1176{
8922e16c 1177 unsigned long flags;
165125e1 1178 struct request_queue *q = req->q;
8922e16c 1179
52a93ba8
FT
1180 spin_lock_irqsave(q->queue_lock, flags);
1181 __blk_put_request(q, req);
1182 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1183}
1da177e4
LT
1184EXPORT_SYMBOL(blk_put_request);
1185
66ac0280
CH
1186/**
1187 * blk_add_request_payload - add a payload to a request
1188 * @rq: request to update
1189 * @page: page backing the payload
1190 * @len: length of the payload.
1191 *
1192 * This allows to later add a payload to an already submitted request by
1193 * a block driver. The driver needs to take care of freeing the payload
1194 * itself.
1195 *
1196 * Note that this is a quite horrible hack and nothing but handling of
1197 * discard requests should ever use it.
1198 */
1199void blk_add_request_payload(struct request *rq, struct page *page,
1200 unsigned int len)
1201{
1202 struct bio *bio = rq->bio;
1203
1204 bio->bi_io_vec->bv_page = page;
1205 bio->bi_io_vec->bv_offset = 0;
1206 bio->bi_io_vec->bv_len = len;
1207
1208 bio->bi_size = len;
1209 bio->bi_vcnt = 1;
1210 bio->bi_phys_segments = 1;
1211
1212 rq->__data_len = rq->resid_len = len;
1213 rq->nr_phys_segments = 1;
1214 rq->buffer = bio_data(bio);
1215}
1216EXPORT_SYMBOL_GPL(blk_add_request_payload);
1217
86db1e29 1218void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1219{
c7c22e4d 1220 req->cpu = bio->bi_comp_cpu;
4aff5e23 1221 req->cmd_type = REQ_TYPE_FS;
52d9e675 1222
7b6d91da
CH
1223 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1224 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1225 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1226
52d9e675 1227 req->errors = 0;
a2dec7b3 1228 req->__sector = bio->bi_sector;
52d9e675 1229 req->ioprio = bio_prio(bio);
bc1c56fd 1230 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1231}
1232
644b2d99
JA
1233/*
1234 * Only disabling plugging for non-rotational devices if it does tagging
1235 * as well, otherwise we do need the proper merging
1236 */
1237static inline bool queue_should_plug(struct request_queue *q)
1238{
79da0644 1239 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
644b2d99
JA
1240}
1241
165125e1 1242static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1243{
450991bc 1244 struct request *req;
2e46e8b2
TH
1245 int el_ret;
1246 unsigned int bytes = bio->bi_size;
51da90fc 1247 const unsigned short prio = bio_prio(bio);
5e00d1b5
JS
1248 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1249 const bool unplug = !!(bio->bi_rw & REQ_UNPLUG);
1250 const unsigned long ff = bio->bi_rw & REQ_FAILFAST_MASK;
28e7d184 1251 int where = ELEVATOR_INSERT_SORT;
7749a8d4 1252 int rw_flags;
1da177e4 1253
1da177e4
LT
1254 /*
1255 * low level driver can indicate that it wants pages above a
1256 * certain limit bounced to low memory (ie for highmem, or even
1257 * ISA dma in theory)
1258 */
1259 blk_queue_bounce(q, &bio);
1260
1da177e4
LT
1261 spin_lock_irq(q->queue_lock);
1262
4fed947c 1263 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
ae1b1539 1264 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1265 goto get_rq;
1266 }
1267
1268 if (elv_queue_empty(q))
1da177e4
LT
1269 goto get_rq;
1270
1271 el_ret = elv_merge(q, &req, bio);
1272 switch (el_ret) {
6728cb0e
JA
1273 case ELEVATOR_BACK_MERGE:
1274 BUG_ON(!rq_mergeable(req));
1da177e4 1275
6728cb0e
JA
1276 if (!ll_back_merge_fn(q, req, bio))
1277 break;
1da177e4 1278
5f3ea37c 1279 trace_block_bio_backmerge(q, bio);
2056a782 1280
80a761fd
TH
1281 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1282 blk_rq_set_mixed_merge(req);
1283
6728cb0e
JA
1284 req->biotail->bi_next = bio;
1285 req->biotail = bio;
a2dec7b3 1286 req->__data_len += bytes;
6728cb0e 1287 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1288 if (!blk_rq_cpu_valid(req))
1289 req->cpu = bio->bi_comp_cpu;
6728cb0e 1290 drive_stat_acct(req, 0);
812d4026 1291 elv_bio_merged(q, req, bio);
6728cb0e
JA
1292 if (!attempt_back_merge(q, req))
1293 elv_merged_request(q, req, el_ret);
1294 goto out;
1da177e4 1295
6728cb0e
JA
1296 case ELEVATOR_FRONT_MERGE:
1297 BUG_ON(!rq_mergeable(req));
1da177e4 1298
6728cb0e
JA
1299 if (!ll_front_merge_fn(q, req, bio))
1300 break;
1da177e4 1301
5f3ea37c 1302 trace_block_bio_frontmerge(q, bio);
2056a782 1303
80a761fd
TH
1304 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1305 blk_rq_set_mixed_merge(req);
1306 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1307 req->cmd_flags |= ff;
1308 }
1309
6728cb0e
JA
1310 bio->bi_next = req->bio;
1311 req->bio = bio;
1da177e4 1312
6728cb0e
JA
1313 /*
1314 * may not be valid. if the low level driver said
1315 * it didn't need a bounce buffer then it better
1316 * not touch req->buffer either...
1317 */
1318 req->buffer = bio_data(bio);
a2dec7b3
TH
1319 req->__sector = bio->bi_sector;
1320 req->__data_len += bytes;
6728cb0e 1321 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1322 if (!blk_rq_cpu_valid(req))
1323 req->cpu = bio->bi_comp_cpu;
6728cb0e 1324 drive_stat_acct(req, 0);
812d4026 1325 elv_bio_merged(q, req, bio);
6728cb0e
JA
1326 if (!attempt_front_merge(q, req))
1327 elv_merged_request(q, req, el_ret);
1328 goto out;
1329
1330 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1331 default:
1332 ;
1da177e4
LT
1333 }
1334
450991bc 1335get_rq:
7749a8d4
JA
1336 /*
1337 * This sync check and mask will be re-done in init_request_from_bio(),
1338 * but we need to set it earlier to expose the sync flag to the
1339 * rq allocator and io schedulers.
1340 */
1341 rw_flags = bio_data_dir(bio);
1342 if (sync)
7b6d91da 1343 rw_flags |= REQ_SYNC;
7749a8d4 1344
1da177e4 1345 /*
450991bc 1346 * Grab a free request. This is might sleep but can not fail.
d6344532 1347 * Returns with the queue unlocked.
450991bc 1348 */
7749a8d4 1349 req = get_request_wait(q, rw_flags, bio);
d6344532 1350
450991bc
NP
1351 /*
1352 * After dropping the lock and possibly sleeping here, our request
1353 * may now be mergeable after it had proven unmergeable (above).
1354 * We don't worry about that case for efficiency. It won't happen
1355 * often, and the elevators are able to handle it.
1da177e4 1356 */
52d9e675 1357 init_request_from_bio(req, bio);
1da177e4 1358
450991bc 1359 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1360 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1361 bio_flagged(bio, BIO_CPU_AFFINE))
1362 req->cpu = blk_cpu_to_group(smp_processor_id());
644b2d99 1363 if (queue_should_plug(q) && elv_queue_empty(q))
450991bc 1364 blk_plug_device(q);
dd831006
TH
1365
1366 /* insert the request into the elevator */
1367 drive_stat_acct(req, 1);
28e7d184 1368 __elv_add_request(q, req, where, 0);
1da177e4 1369out:
644b2d99 1370 if (unplug || !queue_should_plug(q))
1da177e4 1371 __generic_unplug_device(q);
1da177e4
LT
1372 spin_unlock_irq(q->queue_lock);
1373 return 0;
1da177e4
LT
1374}
1375
1376/*
1377 * If bio->bi_dev is a partition, remap the location
1378 */
1379static inline void blk_partition_remap(struct bio *bio)
1380{
1381 struct block_device *bdev = bio->bi_bdev;
1382
bf2de6f5 1383 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1384 struct hd_struct *p = bdev->bd_part;
1385
1da177e4
LT
1386 bio->bi_sector += p->start_sect;
1387 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1388
d07335e5
MS
1389 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1390 bdev->bd_dev,
1391 bio->bi_sector - p->start_sect);
1da177e4
LT
1392 }
1393}
1394
1da177e4
LT
1395static void handle_bad_sector(struct bio *bio)
1396{
1397 char b[BDEVNAME_SIZE];
1398
1399 printk(KERN_INFO "attempt to access beyond end of device\n");
1400 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1401 bdevname(bio->bi_bdev, b),
1402 bio->bi_rw,
1403 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1404 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1405
1406 set_bit(BIO_EOF, &bio->bi_flags);
1407}
1408
c17bb495
AM
1409#ifdef CONFIG_FAIL_MAKE_REQUEST
1410
1411static DECLARE_FAULT_ATTR(fail_make_request);
1412
1413static int __init setup_fail_make_request(char *str)
1414{
1415 return setup_fault_attr(&fail_make_request, str);
1416}
1417__setup("fail_make_request=", setup_fail_make_request);
1418
1419static int should_fail_request(struct bio *bio)
1420{
eddb2e26
TH
1421 struct hd_struct *part = bio->bi_bdev->bd_part;
1422
1423 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1424 return should_fail(&fail_make_request, bio->bi_size);
1425
1426 return 0;
1427}
1428
1429static int __init fail_make_request_debugfs(void)
1430{
1431 return init_fault_attr_dentries(&fail_make_request,
1432 "fail_make_request");
1433}
1434
1435late_initcall(fail_make_request_debugfs);
1436
1437#else /* CONFIG_FAIL_MAKE_REQUEST */
1438
1439static inline int should_fail_request(struct bio *bio)
1440{
1441 return 0;
1442}
1443
1444#endif /* CONFIG_FAIL_MAKE_REQUEST */
1445
c07e2b41
JA
1446/*
1447 * Check whether this bio extends beyond the end of the device.
1448 */
1449static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1450{
1451 sector_t maxsector;
1452
1453 if (!nr_sectors)
1454 return 0;
1455
1456 /* Test device or partition size, when known. */
77304d2a 1457 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1458 if (maxsector) {
1459 sector_t sector = bio->bi_sector;
1460
1461 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1462 /*
1463 * This may well happen - the kernel calls bread()
1464 * without checking the size of the device, e.g., when
1465 * mounting a device.
1466 */
1467 handle_bad_sector(bio);
1468 return 1;
1469 }
1470 }
1471
1472 return 0;
1473}
1474
1da177e4 1475/**
710027a4 1476 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1477 * @bio: The bio describing the location in memory and on the device.
1478 *
1479 * generic_make_request() is used to make I/O requests of block
1480 * devices. It is passed a &struct bio, which describes the I/O that needs
1481 * to be done.
1482 *
1483 * generic_make_request() does not return any status. The
1484 * success/failure status of the request, along with notification of
1485 * completion, is delivered asynchronously through the bio->bi_end_io
1486 * function described (one day) else where.
1487 *
1488 * The caller of generic_make_request must make sure that bi_io_vec
1489 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1490 * set to describe the device address, and the
1491 * bi_end_io and optionally bi_private are set to describe how
1492 * completion notification should be signaled.
1493 *
1494 * generic_make_request and the drivers it calls may use bi_next if this
1495 * bio happens to be merged with someone else, and may change bi_dev and
1496 * bi_sector for remaps as it sees fit. So the values of these fields
1497 * should NOT be depended on after the call to generic_make_request.
1498 */
d89d8796 1499static inline void __generic_make_request(struct bio *bio)
1da177e4 1500{
165125e1 1501 struct request_queue *q;
5ddfe969 1502 sector_t old_sector;
1da177e4 1503 int ret, nr_sectors = bio_sectors(bio);
2056a782 1504 dev_t old_dev;
51fd77bd 1505 int err = -EIO;
1da177e4
LT
1506
1507 might_sleep();
1da177e4 1508
c07e2b41
JA
1509 if (bio_check_eod(bio, nr_sectors))
1510 goto end_io;
1da177e4
LT
1511
1512 /*
1513 * Resolve the mapping until finished. (drivers are
1514 * still free to implement/resolve their own stacking
1515 * by explicitly returning 0)
1516 *
1517 * NOTE: we don't repeat the blk_size check for each new device.
1518 * Stacking drivers are expected to know what they are doing.
1519 */
5ddfe969 1520 old_sector = -1;
2056a782 1521 old_dev = 0;
1da177e4
LT
1522 do {
1523 char b[BDEVNAME_SIZE];
1524
1525 q = bdev_get_queue(bio->bi_bdev);
a7384677 1526 if (unlikely(!q)) {
1da177e4
LT
1527 printk(KERN_ERR
1528 "generic_make_request: Trying to access "
1529 "nonexistent block-device %s (%Lu)\n",
1530 bdevname(bio->bi_bdev, b),
1531 (long long) bio->bi_sector);
a7384677 1532 goto end_io;
1da177e4
LT
1533 }
1534
7b6d91da 1535 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
67efc925 1536 nr_sectors > queue_max_hw_sectors(q))) {
6728cb0e 1537 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
ae03bf63
MP
1538 bdevname(bio->bi_bdev, b),
1539 bio_sectors(bio),
1540 queue_max_hw_sectors(q));
1da177e4
LT
1541 goto end_io;
1542 }
1543
fde6ad22 1544 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1545 goto end_io;
1546
c17bb495
AM
1547 if (should_fail_request(bio))
1548 goto end_io;
1549
1da177e4
LT
1550 /*
1551 * If this device has partitions, remap block n
1552 * of partition p to block n+start(p) of the disk.
1553 */
1554 blk_partition_remap(bio);
1555
7ba1ba12
MP
1556 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1557 goto end_io;
1558
5ddfe969 1559 if (old_sector != -1)
d07335e5 1560 trace_block_bio_remap(q, bio, old_dev, old_sector);
2056a782 1561
5ddfe969 1562 old_sector = bio->bi_sector;
2056a782
JA
1563 old_dev = bio->bi_bdev->bd_dev;
1564
c07e2b41
JA
1565 if (bio_check_eod(bio, nr_sectors))
1566 goto end_io;
a7384677 1567
1e87901e
TH
1568 /*
1569 * Filter flush bio's early so that make_request based
1570 * drivers without flush support don't have to worry
1571 * about them.
1572 */
1573 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1574 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1575 if (!nr_sectors) {
1576 err = 0;
1577 goto end_io;
1578 }
1579 }
1580
8d57a98c
AH
1581 if ((bio->bi_rw & REQ_DISCARD) &&
1582 (!blk_queue_discard(q) ||
1583 ((bio->bi_rw & REQ_SECURE) &&
1584 !blk_queue_secdiscard(q)))) {
51fd77bd
JA
1585 err = -EOPNOTSUPP;
1586 goto end_io;
1587 }
5ddfe969 1588
e43473b7
VG
1589 blk_throtl_bio(q, &bio);
1590
1591 /*
1592 * If bio = NULL, bio has been throttled and will be submitted
1593 * later.
1594 */
1595 if (!bio)
1596 break;
1597
01edede4
MK
1598 trace_block_bio_queue(q, bio);
1599
1da177e4
LT
1600 ret = q->make_request_fn(q, bio);
1601 } while (ret);
a7384677
TH
1602
1603 return;
1604
1605end_io:
1606 bio_endio(bio, err);
1da177e4
LT
1607}
1608
d89d8796
NB
1609/*
1610 * We only want one ->make_request_fn to be active at a time,
1611 * else stack usage with stacked devices could be a problem.
bddd87c7 1612 * So use current->bio_list to keep a list of requests
d89d8796 1613 * submited by a make_request_fn function.
bddd87c7 1614 * current->bio_list is also used as a flag to say if
d89d8796
NB
1615 * generic_make_request is currently active in this task or not.
1616 * If it is NULL, then no make_request is active. If it is non-NULL,
1617 * then a make_request is active, and new requests should be added
1618 * at the tail
1619 */
1620void generic_make_request(struct bio *bio)
1621{
bddd87c7
AM
1622 struct bio_list bio_list_on_stack;
1623
1624 if (current->bio_list) {
d89d8796 1625 /* make_request is active */
bddd87c7 1626 bio_list_add(current->bio_list, bio);
d89d8796
NB
1627 return;
1628 }
1629 /* following loop may be a bit non-obvious, and so deserves some
1630 * explanation.
1631 * Before entering the loop, bio->bi_next is NULL (as all callers
1632 * ensure that) so we have a list with a single bio.
1633 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1634 * we assign bio_list to a pointer to the bio_list_on_stack,
1635 * thus initialising the bio_list of new bios to be
d89d8796
NB
1636 * added. __generic_make_request may indeed add some more bios
1637 * through a recursive call to generic_make_request. If it
1638 * did, we find a non-NULL value in bio_list and re-enter the loop
1639 * from the top. In this case we really did just take the bio
bddd87c7
AM
1640 * of the top of the list (no pretending) and so remove it from
1641 * bio_list, and call into __generic_make_request again.
d89d8796
NB
1642 *
1643 * The loop was structured like this to make only one call to
1644 * __generic_make_request (which is important as it is large and
1645 * inlined) and to keep the structure simple.
1646 */
1647 BUG_ON(bio->bi_next);
bddd87c7
AM
1648 bio_list_init(&bio_list_on_stack);
1649 current->bio_list = &bio_list_on_stack;
d89d8796 1650 do {
d89d8796 1651 __generic_make_request(bio);
bddd87c7 1652 bio = bio_list_pop(current->bio_list);
d89d8796 1653 } while (bio);
bddd87c7 1654 current->bio_list = NULL; /* deactivate */
d89d8796 1655}
1da177e4
LT
1656EXPORT_SYMBOL(generic_make_request);
1657
1658/**
710027a4 1659 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1660 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1661 * @bio: The &struct bio which describes the I/O
1662 *
1663 * submit_bio() is very similar in purpose to generic_make_request(), and
1664 * uses that function to do most of the work. Both are fairly rough
710027a4 1665 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1666 *
1667 */
1668void submit_bio(int rw, struct bio *bio)
1669{
1670 int count = bio_sectors(bio);
1671
22e2c507 1672 bio->bi_rw |= rw;
1da177e4 1673
bf2de6f5
JA
1674 /*
1675 * If it's a regular read/write or a barrier with data attached,
1676 * go through the normal accounting stuff before submission.
1677 */
3ffb52e7 1678 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1679 if (rw & WRITE) {
1680 count_vm_events(PGPGOUT, count);
1681 } else {
1682 task_io_account_read(bio->bi_size);
1683 count_vm_events(PGPGIN, count);
1684 }
1685
1686 if (unlikely(block_dump)) {
1687 char b[BDEVNAME_SIZE];
8dcbdc74 1688 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1689 current->comm, task_pid_nr(current),
bf2de6f5
JA
1690 (rw & WRITE) ? "WRITE" : "READ",
1691 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1692 bdevname(bio->bi_bdev, b),
1693 count);
bf2de6f5 1694 }
1da177e4
LT
1695 }
1696
1697 generic_make_request(bio);
1698}
1da177e4
LT
1699EXPORT_SYMBOL(submit_bio);
1700
82124d60
KU
1701/**
1702 * blk_rq_check_limits - Helper function to check a request for the queue limit
1703 * @q: the queue
1704 * @rq: the request being checked
1705 *
1706 * Description:
1707 * @rq may have been made based on weaker limitations of upper-level queues
1708 * in request stacking drivers, and it may violate the limitation of @q.
1709 * Since the block layer and the underlying device driver trust @rq
1710 * after it is inserted to @q, it should be checked against @q before
1711 * the insertion using this generic function.
1712 *
1713 * This function should also be useful for request stacking drivers
eef35c2d 1714 * in some cases below, so export this function.
82124d60
KU
1715 * Request stacking drivers like request-based dm may change the queue
1716 * limits while requests are in the queue (e.g. dm's table swapping).
1717 * Such request stacking drivers should check those requests agaist
1718 * the new queue limits again when they dispatch those requests,
1719 * although such checkings are also done against the old queue limits
1720 * when submitting requests.
1721 */
1722int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1723{
3383977f
S
1724 if (rq->cmd_flags & REQ_DISCARD)
1725 return 0;
1726
ae03bf63
MP
1727 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1728 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1729 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1730 return -EIO;
1731 }
1732
1733 /*
1734 * queue's settings related to segment counting like q->bounce_pfn
1735 * may differ from that of other stacking queues.
1736 * Recalculate it to check the request correctly on this queue's
1737 * limitation.
1738 */
1739 blk_recalc_rq_segments(rq);
8a78362c 1740 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1741 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1742 return -EIO;
1743 }
1744
1745 return 0;
1746}
1747EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1748
1749/**
1750 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1751 * @q: the queue to submit the request
1752 * @rq: the request being queued
1753 */
1754int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1755{
1756 unsigned long flags;
1757
1758 if (blk_rq_check_limits(q, rq))
1759 return -EIO;
1760
1761#ifdef CONFIG_FAIL_MAKE_REQUEST
1762 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1763 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1764 return -EIO;
1765#endif
1766
1767 spin_lock_irqsave(q->queue_lock, flags);
1768
1769 /*
1770 * Submitting request must be dequeued before calling this function
1771 * because it will be linked to another request_queue
1772 */
1773 BUG_ON(blk_queued_rq(rq));
1774
1775 drive_stat_acct(rq, 1);
1776 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1777
1778 spin_unlock_irqrestore(q->queue_lock, flags);
1779
1780 return 0;
1781}
1782EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1783
80a761fd
TH
1784/**
1785 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1786 * @rq: request to examine
1787 *
1788 * Description:
1789 * A request could be merge of IOs which require different failure
1790 * handling. This function determines the number of bytes which
1791 * can be failed from the beginning of the request without
1792 * crossing into area which need to be retried further.
1793 *
1794 * Return:
1795 * The number of bytes to fail.
1796 *
1797 * Context:
1798 * queue_lock must be held.
1799 */
1800unsigned int blk_rq_err_bytes(const struct request *rq)
1801{
1802 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1803 unsigned int bytes = 0;
1804 struct bio *bio;
1805
1806 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1807 return blk_rq_bytes(rq);
1808
1809 /*
1810 * Currently the only 'mixing' which can happen is between
1811 * different fastfail types. We can safely fail portions
1812 * which have all the failfast bits that the first one has -
1813 * the ones which are at least as eager to fail as the first
1814 * one.
1815 */
1816 for (bio = rq->bio; bio; bio = bio->bi_next) {
1817 if ((bio->bi_rw & ff) != ff)
1818 break;
1819 bytes += bio->bi_size;
1820 }
1821
1822 /* this could lead to infinite loop */
1823 BUG_ON(blk_rq_bytes(rq) && !bytes);
1824 return bytes;
1825}
1826EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1827
bc58ba94
JA
1828static void blk_account_io_completion(struct request *req, unsigned int bytes)
1829{
c2553b58 1830 if (blk_do_io_stat(req)) {
bc58ba94
JA
1831 const int rw = rq_data_dir(req);
1832 struct hd_struct *part;
1833 int cpu;
1834
1835 cpu = part_stat_lock();
09e099d4 1836 part = req->part;
bc58ba94
JA
1837 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1838 part_stat_unlock();
1839 }
1840}
1841
1842static void blk_account_io_done(struct request *req)
1843{
bc58ba94 1844 /*
dd4c133f
TH
1845 * Account IO completion. flush_rq isn't accounted as a
1846 * normal IO on queueing nor completion. Accounting the
1847 * containing request is enough.
bc58ba94 1848 */
414b4ff5 1849 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
1850 unsigned long duration = jiffies - req->start_time;
1851 const int rw = rq_data_dir(req);
1852 struct hd_struct *part;
1853 int cpu;
1854
1855 cpu = part_stat_lock();
09e099d4 1856 part = req->part;
bc58ba94
JA
1857
1858 part_stat_inc(cpu, part, ios[rw]);
1859 part_stat_add(cpu, part, ticks[rw], duration);
1860 part_round_stats(cpu, part);
316d315b 1861 part_dec_in_flight(part, rw);
bc58ba94 1862
6c23a968 1863 hd_struct_put(part);
bc58ba94
JA
1864 part_stat_unlock();
1865 }
1866}
1867
3bcddeac 1868/**
9934c8c0
TH
1869 * blk_peek_request - peek at the top of a request queue
1870 * @q: request queue to peek at
1871 *
1872 * Description:
1873 * Return the request at the top of @q. The returned request
1874 * should be started using blk_start_request() before LLD starts
1875 * processing it.
1876 *
1877 * Return:
1878 * Pointer to the request at the top of @q if available. Null
1879 * otherwise.
1880 *
1881 * Context:
1882 * queue_lock must be held.
1883 */
1884struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1885{
1886 struct request *rq;
1887 int ret;
1888
1889 while ((rq = __elv_next_request(q)) != NULL) {
1890 if (!(rq->cmd_flags & REQ_STARTED)) {
1891 /*
1892 * This is the first time the device driver
1893 * sees this request (possibly after
1894 * requeueing). Notify IO scheduler.
1895 */
33659ebb 1896 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1897 elv_activate_rq(q, rq);
1898
1899 /*
1900 * just mark as started even if we don't start
1901 * it, a request that has been delayed should
1902 * not be passed by new incoming requests
1903 */
1904 rq->cmd_flags |= REQ_STARTED;
1905 trace_block_rq_issue(q, rq);
1906 }
1907
1908 if (!q->boundary_rq || q->boundary_rq == rq) {
1909 q->end_sector = rq_end_sector(rq);
1910 q->boundary_rq = NULL;
1911 }
1912
1913 if (rq->cmd_flags & REQ_DONTPREP)
1914 break;
1915
2e46e8b2 1916 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1917 /*
1918 * make sure space for the drain appears we
1919 * know we can do this because max_hw_segments
1920 * has been adjusted to be one fewer than the
1921 * device can handle
1922 */
1923 rq->nr_phys_segments++;
1924 }
1925
1926 if (!q->prep_rq_fn)
1927 break;
1928
1929 ret = q->prep_rq_fn(q, rq);
1930 if (ret == BLKPREP_OK) {
1931 break;
1932 } else if (ret == BLKPREP_DEFER) {
1933 /*
1934 * the request may have been (partially) prepped.
1935 * we need to keep this request in the front to
1936 * avoid resource deadlock. REQ_STARTED will
1937 * prevent other fs requests from passing this one.
1938 */
2e46e8b2 1939 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1940 !(rq->cmd_flags & REQ_DONTPREP)) {
1941 /*
1942 * remove the space for the drain we added
1943 * so that we don't add it again
1944 */
1945 --rq->nr_phys_segments;
1946 }
1947
1948 rq = NULL;
1949 break;
1950 } else if (ret == BLKPREP_KILL) {
1951 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1952 /*
1953 * Mark this request as started so we don't trigger
1954 * any debug logic in the end I/O path.
1955 */
1956 blk_start_request(rq);
40cbbb78 1957 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1958 } else {
1959 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1960 break;
1961 }
1962 }
1963
1964 return rq;
1965}
9934c8c0 1966EXPORT_SYMBOL(blk_peek_request);
158dbda0 1967
9934c8c0 1968void blk_dequeue_request(struct request *rq)
158dbda0 1969{
9934c8c0
TH
1970 struct request_queue *q = rq->q;
1971
158dbda0
TH
1972 BUG_ON(list_empty(&rq->queuelist));
1973 BUG_ON(ELV_ON_HASH(rq));
1974
1975 list_del_init(&rq->queuelist);
1976
1977 /*
1978 * the time frame between a request being removed from the lists
1979 * and to it is freed is accounted as io that is in progress at
1980 * the driver side.
1981 */
9195291e 1982 if (blk_account_rq(rq)) {
0a7ae2ff 1983 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1984 set_io_start_time_ns(rq);
1985 }
158dbda0
TH
1986}
1987
9934c8c0
TH
1988/**
1989 * blk_start_request - start request processing on the driver
1990 * @req: request to dequeue
1991 *
1992 * Description:
1993 * Dequeue @req and start timeout timer on it. This hands off the
1994 * request to the driver.
1995 *
1996 * Block internal functions which don't want to start timer should
1997 * call blk_dequeue_request().
1998 *
1999 * Context:
2000 * queue_lock must be held.
2001 */
2002void blk_start_request(struct request *req)
2003{
2004 blk_dequeue_request(req);
2005
2006 /*
5f49f631
TH
2007 * We are now handing the request to the hardware, initialize
2008 * resid_len to full count and add the timeout handler.
9934c8c0 2009 */
5f49f631 2010 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2011 if (unlikely(blk_bidi_rq(req)))
2012 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2013
9934c8c0
TH
2014 blk_add_timer(req);
2015}
2016EXPORT_SYMBOL(blk_start_request);
2017
2018/**
2019 * blk_fetch_request - fetch a request from a request queue
2020 * @q: request queue to fetch a request from
2021 *
2022 * Description:
2023 * Return the request at the top of @q. The request is started on
2024 * return and LLD can start processing it immediately.
2025 *
2026 * Return:
2027 * Pointer to the request at the top of @q if available. Null
2028 * otherwise.
2029 *
2030 * Context:
2031 * queue_lock must be held.
2032 */
2033struct request *blk_fetch_request(struct request_queue *q)
2034{
2035 struct request *rq;
2036
2037 rq = blk_peek_request(q);
2038 if (rq)
2039 blk_start_request(rq);
2040 return rq;
2041}
2042EXPORT_SYMBOL(blk_fetch_request);
2043
3bcddeac 2044/**
2e60e022 2045 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2046 * @req: the request being processed
710027a4 2047 * @error: %0 for success, < %0 for error
8ebf9756 2048 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2049 *
2050 * Description:
8ebf9756
RD
2051 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2052 * the request structure even if @req doesn't have leftover.
2053 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2054 *
2055 * This special helper function is only for request stacking drivers
2056 * (e.g. request-based dm) so that they can handle partial completion.
2057 * Actual device drivers should use blk_end_request instead.
2058 *
2059 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2060 * %false return from this function.
3bcddeac
KU
2061 *
2062 * Return:
2e60e022
TH
2063 * %false - this request doesn't have any more data
2064 * %true - this request has more data
3bcddeac 2065 **/
2e60e022 2066bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2067{
5450d3e1 2068 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2069 struct bio *bio;
2070
2e60e022
TH
2071 if (!req->bio)
2072 return false;
2073
5f3ea37c 2074 trace_block_rq_complete(req->q, req);
2056a782 2075
1da177e4 2076 /*
6f41469c
TH
2077 * For fs requests, rq is just carrier of independent bio's
2078 * and each partial completion should be handled separately.
2079 * Reset per-request error on each partial completion.
2080 *
2081 * TODO: tj: This is too subtle. It would be better to let
2082 * low level drivers do what they see fit.
1da177e4 2083 */
33659ebb 2084 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2085 req->errors = 0;
2086
33659ebb
CH
2087 if (error && req->cmd_type == REQ_TYPE_FS &&
2088 !(req->cmd_flags & REQ_QUIET)) {
6728cb0e 2089 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4 2090 req->rq_disk ? req->rq_disk->disk_name : "?",
83096ebf 2091 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2092 }
2093
bc58ba94 2094 blk_account_io_completion(req, nr_bytes);
d72d904a 2095
1da177e4
LT
2096 total_bytes = bio_nbytes = 0;
2097 while ((bio = req->bio) != NULL) {
2098 int nbytes;
2099
2100 if (nr_bytes >= bio->bi_size) {
2101 req->bio = bio->bi_next;
2102 nbytes = bio->bi_size;
5bb23a68 2103 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2104 next_idx = 0;
2105 bio_nbytes = 0;
2106 } else {
2107 int idx = bio->bi_idx + next_idx;
2108
af498d7f 2109 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2110 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2111 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2112 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2113 break;
2114 }
2115
2116 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2117 BIO_BUG_ON(nbytes > bio->bi_size);
2118
2119 /*
2120 * not a complete bvec done
2121 */
2122 if (unlikely(nbytes > nr_bytes)) {
2123 bio_nbytes += nr_bytes;
2124 total_bytes += nr_bytes;
2125 break;
2126 }
2127
2128 /*
2129 * advance to the next vector
2130 */
2131 next_idx++;
2132 bio_nbytes += nbytes;
2133 }
2134
2135 total_bytes += nbytes;
2136 nr_bytes -= nbytes;
2137
6728cb0e
JA
2138 bio = req->bio;
2139 if (bio) {
1da177e4
LT
2140 /*
2141 * end more in this run, or just return 'not-done'
2142 */
2143 if (unlikely(nr_bytes <= 0))
2144 break;
2145 }
2146 }
2147
2148 /*
2149 * completely done
2150 */
2e60e022
TH
2151 if (!req->bio) {
2152 /*
2153 * Reset counters so that the request stacking driver
2154 * can find how many bytes remain in the request
2155 * later.
2156 */
a2dec7b3 2157 req->__data_len = 0;
2e60e022
TH
2158 return false;
2159 }
1da177e4
LT
2160
2161 /*
2162 * if the request wasn't completed, update state
2163 */
2164 if (bio_nbytes) {
5bb23a68 2165 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2166 bio->bi_idx += next_idx;
2167 bio_iovec(bio)->bv_offset += nr_bytes;
2168 bio_iovec(bio)->bv_len -= nr_bytes;
2169 }
2170
a2dec7b3 2171 req->__data_len -= total_bytes;
2e46e8b2
TH
2172 req->buffer = bio_data(req->bio);
2173
2174 /* update sector only for requests with clear definition of sector */
33659ebb 2175 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2176 req->__sector += total_bytes >> 9;
2e46e8b2 2177
80a761fd
TH
2178 /* mixed attributes always follow the first bio */
2179 if (req->cmd_flags & REQ_MIXED_MERGE) {
2180 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2181 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2182 }
2183
2e46e8b2
TH
2184 /*
2185 * If total number of sectors is less than the first segment
2186 * size, something has gone terribly wrong.
2187 */
2188 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2189 printk(KERN_ERR "blk: request botched\n");
a2dec7b3 2190 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2191 }
2192
2193 /* recalculate the number of segments */
1da177e4 2194 blk_recalc_rq_segments(req);
2e46e8b2 2195
2e60e022 2196 return true;
1da177e4 2197}
2e60e022 2198EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2199
2e60e022
TH
2200static bool blk_update_bidi_request(struct request *rq, int error,
2201 unsigned int nr_bytes,
2202 unsigned int bidi_bytes)
5efccd17 2203{
2e60e022
TH
2204 if (blk_update_request(rq, error, nr_bytes))
2205 return true;
5efccd17 2206
2e60e022
TH
2207 /* Bidi request must be completed as a whole */
2208 if (unlikely(blk_bidi_rq(rq)) &&
2209 blk_update_request(rq->next_rq, error, bidi_bytes))
2210 return true;
5efccd17 2211
e2e1a148
JA
2212 if (blk_queue_add_random(rq->q))
2213 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2214
2215 return false;
1da177e4
LT
2216}
2217
28018c24
JB
2218/**
2219 * blk_unprep_request - unprepare a request
2220 * @req: the request
2221 *
2222 * This function makes a request ready for complete resubmission (or
2223 * completion). It happens only after all error handling is complete,
2224 * so represents the appropriate moment to deallocate any resources
2225 * that were allocated to the request in the prep_rq_fn. The queue
2226 * lock is held when calling this.
2227 */
2228void blk_unprep_request(struct request *req)
2229{
2230 struct request_queue *q = req->q;
2231
2232 req->cmd_flags &= ~REQ_DONTPREP;
2233 if (q->unprep_rq_fn)
2234 q->unprep_rq_fn(q, req);
2235}
2236EXPORT_SYMBOL_GPL(blk_unprep_request);
2237
1da177e4
LT
2238/*
2239 * queue lock must be held
2240 */
2e60e022 2241static void blk_finish_request(struct request *req, int error)
1da177e4 2242{
b8286239
KU
2243 if (blk_rq_tagged(req))
2244 blk_queue_end_tag(req->q, req);
2245
ba396a6c 2246 BUG_ON(blk_queued_rq(req));
1da177e4 2247
33659ebb 2248 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2249 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2250
e78042e5
MA
2251 blk_delete_timer(req);
2252
28018c24
JB
2253 if (req->cmd_flags & REQ_DONTPREP)
2254 blk_unprep_request(req);
2255
2256
bc58ba94 2257 blk_account_io_done(req);
b8286239 2258
1da177e4 2259 if (req->end_io)
8ffdc655 2260 req->end_io(req, error);
b8286239
KU
2261 else {
2262 if (blk_bidi_rq(req))
2263 __blk_put_request(req->next_rq->q, req->next_rq);
2264
1da177e4 2265 __blk_put_request(req->q, req);
b8286239 2266 }
1da177e4
LT
2267}
2268
3b11313a 2269/**
2e60e022
TH
2270 * blk_end_bidi_request - Complete a bidi request
2271 * @rq: the request to complete
2272 * @error: %0 for success, < %0 for error
2273 * @nr_bytes: number of bytes to complete @rq
2274 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2275 *
2276 * Description:
e3a04fe3 2277 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2278 * Drivers that supports bidi can safely call this member for any
2279 * type of request, bidi or uni. In the later case @bidi_bytes is
2280 * just ignored.
336cdb40
KU
2281 *
2282 * Return:
2e60e022
TH
2283 * %false - we are done with this request
2284 * %true - still buffers pending for this request
a0cd1285 2285 **/
b1f74493 2286static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2287 unsigned int nr_bytes, unsigned int bidi_bytes)
2288{
336cdb40 2289 struct request_queue *q = rq->q;
2e60e022 2290 unsigned long flags;
32fab448 2291
2e60e022
TH
2292 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2293 return true;
32fab448 2294
336cdb40 2295 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2296 blk_finish_request(rq, error);
336cdb40
KU
2297 spin_unlock_irqrestore(q->queue_lock, flags);
2298
2e60e022 2299 return false;
32fab448
KU
2300}
2301
336cdb40 2302/**
2e60e022
TH
2303 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2304 * @rq: the request to complete
710027a4 2305 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2306 * @nr_bytes: number of bytes to complete @rq
2307 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2308 *
2309 * Description:
2e60e022
TH
2310 * Identical to blk_end_bidi_request() except that queue lock is
2311 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2312 *
2313 * Return:
2e60e022
TH
2314 * %false - we are done with this request
2315 * %true - still buffers pending for this request
336cdb40 2316 **/
b1f74493
FT
2317static bool __blk_end_bidi_request(struct request *rq, int error,
2318 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2319{
2e60e022
TH
2320 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2321 return true;
336cdb40 2322
2e60e022 2323 blk_finish_request(rq, error);
336cdb40 2324
2e60e022 2325 return false;
336cdb40 2326}
e19a3ab0
KU
2327
2328/**
2329 * blk_end_request - Helper function for drivers to complete the request.
2330 * @rq: the request being processed
710027a4 2331 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2332 * @nr_bytes: number of bytes to complete
2333 *
2334 * Description:
2335 * Ends I/O on a number of bytes attached to @rq.
2336 * If @rq has leftover, sets it up for the next range of segments.
2337 *
2338 * Return:
b1f74493
FT
2339 * %false - we are done with this request
2340 * %true - still buffers pending for this request
e19a3ab0 2341 **/
b1f74493 2342bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2343{
b1f74493 2344 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2345}
56ad1740 2346EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2347
2348/**
b1f74493
FT
2349 * blk_end_request_all - Helper function for drives to finish the request.
2350 * @rq: the request to finish
8ebf9756 2351 * @error: %0 for success, < %0 for error
336cdb40
KU
2352 *
2353 * Description:
b1f74493
FT
2354 * Completely finish @rq.
2355 */
2356void blk_end_request_all(struct request *rq, int error)
336cdb40 2357{
b1f74493
FT
2358 bool pending;
2359 unsigned int bidi_bytes = 0;
336cdb40 2360
b1f74493
FT
2361 if (unlikely(blk_bidi_rq(rq)))
2362 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2363
b1f74493
FT
2364 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2365 BUG_ON(pending);
2366}
56ad1740 2367EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2368
b1f74493
FT
2369/**
2370 * blk_end_request_cur - Helper function to finish the current request chunk.
2371 * @rq: the request to finish the current chunk for
8ebf9756 2372 * @error: %0 for success, < %0 for error
b1f74493
FT
2373 *
2374 * Description:
2375 * Complete the current consecutively mapped chunk from @rq.
2376 *
2377 * Return:
2378 * %false - we are done with this request
2379 * %true - still buffers pending for this request
2380 */
2381bool blk_end_request_cur(struct request *rq, int error)
2382{
2383 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2384}
56ad1740 2385EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2386
80a761fd
TH
2387/**
2388 * blk_end_request_err - Finish a request till the next failure boundary.
2389 * @rq: the request to finish till the next failure boundary for
2390 * @error: must be negative errno
2391 *
2392 * Description:
2393 * Complete @rq till the next failure boundary.
2394 *
2395 * Return:
2396 * %false - we are done with this request
2397 * %true - still buffers pending for this request
2398 */
2399bool blk_end_request_err(struct request *rq, int error)
2400{
2401 WARN_ON(error >= 0);
2402 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2403}
2404EXPORT_SYMBOL_GPL(blk_end_request_err);
2405
e3a04fe3 2406/**
b1f74493
FT
2407 * __blk_end_request - Helper function for drivers to complete the request.
2408 * @rq: the request being processed
2409 * @error: %0 for success, < %0 for error
2410 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2411 *
2412 * Description:
b1f74493 2413 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2414 *
2415 * Return:
b1f74493
FT
2416 * %false - we are done with this request
2417 * %true - still buffers pending for this request
e3a04fe3 2418 **/
b1f74493 2419bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2420{
b1f74493 2421 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2422}
56ad1740 2423EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2424
32fab448 2425/**
b1f74493
FT
2426 * __blk_end_request_all - Helper function for drives to finish the request.
2427 * @rq: the request to finish
8ebf9756 2428 * @error: %0 for success, < %0 for error
32fab448
KU
2429 *
2430 * Description:
b1f74493 2431 * Completely finish @rq. Must be called with queue lock held.
32fab448 2432 */
b1f74493 2433void __blk_end_request_all(struct request *rq, int error)
32fab448 2434{
b1f74493
FT
2435 bool pending;
2436 unsigned int bidi_bytes = 0;
2437
2438 if (unlikely(blk_bidi_rq(rq)))
2439 bidi_bytes = blk_rq_bytes(rq->next_rq);
2440
2441 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2442 BUG_ON(pending);
32fab448 2443}
56ad1740 2444EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2445
e19a3ab0 2446/**
b1f74493
FT
2447 * __blk_end_request_cur - Helper function to finish the current request chunk.
2448 * @rq: the request to finish the current chunk for
8ebf9756 2449 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2450 *
2451 * Description:
b1f74493
FT
2452 * Complete the current consecutively mapped chunk from @rq. Must
2453 * be called with queue lock held.
e19a3ab0
KU
2454 *
2455 * Return:
b1f74493
FT
2456 * %false - we are done with this request
2457 * %true - still buffers pending for this request
2458 */
2459bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2460{
b1f74493 2461 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2462}
56ad1740 2463EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2464
80a761fd
TH
2465/**
2466 * __blk_end_request_err - Finish a request till the next failure boundary.
2467 * @rq: the request to finish till the next failure boundary for
2468 * @error: must be negative errno
2469 *
2470 * Description:
2471 * Complete @rq till the next failure boundary. Must be called
2472 * with queue lock held.
2473 *
2474 * Return:
2475 * %false - we are done with this request
2476 * %true - still buffers pending for this request
2477 */
2478bool __blk_end_request_err(struct request *rq, int error)
2479{
2480 WARN_ON(error >= 0);
2481 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2482}
2483EXPORT_SYMBOL_GPL(__blk_end_request_err);
2484
86db1e29
JA
2485void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2486 struct bio *bio)
1da177e4 2487{
a82afdfc 2488 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2489 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2490
fb2dce86
DW
2491 if (bio_has_data(bio)) {
2492 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2493 rq->buffer = bio_data(bio);
2494 }
a2dec7b3 2495 rq->__data_len = bio->bi_size;
1da177e4 2496 rq->bio = rq->biotail = bio;
1da177e4 2497
66846572
N
2498 if (bio->bi_bdev)
2499 rq->rq_disk = bio->bi_bdev->bd_disk;
2500}
1da177e4 2501
2d4dc890
IL
2502#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2503/**
2504 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2505 * @rq: the request to be flushed
2506 *
2507 * Description:
2508 * Flush all pages in @rq.
2509 */
2510void rq_flush_dcache_pages(struct request *rq)
2511{
2512 struct req_iterator iter;
2513 struct bio_vec *bvec;
2514
2515 rq_for_each_segment(bvec, rq, iter)
2516 flush_dcache_page(bvec->bv_page);
2517}
2518EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2519#endif
2520
ef9e3fac
KU
2521/**
2522 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2523 * @q : the queue of the device being checked
2524 *
2525 * Description:
2526 * Check if underlying low-level drivers of a device are busy.
2527 * If the drivers want to export their busy state, they must set own
2528 * exporting function using blk_queue_lld_busy() first.
2529 *
2530 * Basically, this function is used only by request stacking drivers
2531 * to stop dispatching requests to underlying devices when underlying
2532 * devices are busy. This behavior helps more I/O merging on the queue
2533 * of the request stacking driver and prevents I/O throughput regression
2534 * on burst I/O load.
2535 *
2536 * Return:
2537 * 0 - Not busy (The request stacking driver should dispatch request)
2538 * 1 - Busy (The request stacking driver should stop dispatching request)
2539 */
2540int blk_lld_busy(struct request_queue *q)
2541{
2542 if (q->lld_busy_fn)
2543 return q->lld_busy_fn(q);
2544
2545 return 0;
2546}
2547EXPORT_SYMBOL_GPL(blk_lld_busy);
2548
b0fd271d
KU
2549/**
2550 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2551 * @rq: the clone request to be cleaned up
2552 *
2553 * Description:
2554 * Free all bios in @rq for a cloned request.
2555 */
2556void blk_rq_unprep_clone(struct request *rq)
2557{
2558 struct bio *bio;
2559
2560 while ((bio = rq->bio) != NULL) {
2561 rq->bio = bio->bi_next;
2562
2563 bio_put(bio);
2564 }
2565}
2566EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2567
2568/*
2569 * Copy attributes of the original request to the clone request.
2570 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2571 */
2572static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2573{
2574 dst->cpu = src->cpu;
3a2edd0d 2575 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2576 dst->cmd_type = src->cmd_type;
2577 dst->__sector = blk_rq_pos(src);
2578 dst->__data_len = blk_rq_bytes(src);
2579 dst->nr_phys_segments = src->nr_phys_segments;
2580 dst->ioprio = src->ioprio;
2581 dst->extra_len = src->extra_len;
2582}
2583
2584/**
2585 * blk_rq_prep_clone - Helper function to setup clone request
2586 * @rq: the request to be setup
2587 * @rq_src: original request to be cloned
2588 * @bs: bio_set that bios for clone are allocated from
2589 * @gfp_mask: memory allocation mask for bio
2590 * @bio_ctr: setup function to be called for each clone bio.
2591 * Returns %0 for success, non %0 for failure.
2592 * @data: private data to be passed to @bio_ctr
2593 *
2594 * Description:
2595 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2596 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2597 * are not copied, and copying such parts is the caller's responsibility.
2598 * Also, pages which the original bios are pointing to are not copied
2599 * and the cloned bios just point same pages.
2600 * So cloned bios must be completed before original bios, which means
2601 * the caller must complete @rq before @rq_src.
2602 */
2603int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2604 struct bio_set *bs, gfp_t gfp_mask,
2605 int (*bio_ctr)(struct bio *, struct bio *, void *),
2606 void *data)
2607{
2608 struct bio *bio, *bio_src;
2609
2610 if (!bs)
2611 bs = fs_bio_set;
2612
2613 blk_rq_init(NULL, rq);
2614
2615 __rq_for_each_bio(bio_src, rq_src) {
2616 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2617 if (!bio)
2618 goto free_and_out;
2619
2620 __bio_clone(bio, bio_src);
2621
2622 if (bio_integrity(bio_src) &&
7878cba9 2623 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2624 goto free_and_out;
2625
2626 if (bio_ctr && bio_ctr(bio, bio_src, data))
2627 goto free_and_out;
2628
2629 if (rq->bio) {
2630 rq->biotail->bi_next = bio;
2631 rq->biotail = bio;
2632 } else
2633 rq->bio = rq->biotail = bio;
2634 }
2635
2636 __blk_rq_prep_clone(rq, rq_src);
2637
2638 return 0;
2639
2640free_and_out:
2641 if (bio)
2642 bio_free(bio, bs);
2643 blk_rq_unprep_clone(rq);
2644
2645 return -ENOMEM;
2646}
2647EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2648
18887ad9 2649int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2650{
2651 return queue_work(kblockd_workqueue, work);
2652}
1da177e4
LT
2653EXPORT_SYMBOL(kblockd_schedule_work);
2654
e43473b7
VG
2655int kblockd_schedule_delayed_work(struct request_queue *q,
2656 struct delayed_work *dwork, unsigned long delay)
2657{
2658 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2659}
2660EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2661
1da177e4
LT
2662int __init blk_dev_init(void)
2663{
9eb55b03
NK
2664 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2665 sizeof(((struct request *)0)->cmd_flags));
2666
89b90be2
TH
2667 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2668 kblockd_workqueue = alloc_workqueue("kblockd",
2669 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
2670 if (!kblockd_workqueue)
2671 panic("Failed to create kblockd\n");
2672
2673 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2674 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2675
8324aa91 2676 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2677 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2678
d38ecf93 2679 return 0;
1da177e4 2680}